
Under review as a conference paper at ICLR 2022

DYNAMIC AND EFFICIENT GRAY-BOX HYPERPARAM-
ETER OPTIMIZATION FOR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gray-box hyperparameter optimization techniques have recently emerged as a
promising direction for tuning Deep Learning methods. However, the multi-
budget search mechanisms of existing prior works can suffer from the poor cor-
relation among the performances of hyperparameter configurations at different
budgets. As a remedy, we introduce DYHPO, a method that learns to dynami-
cally decide which configuration to try next, and for what budget. Our technique
is a modification to the classical Bayesian optimization for a gray-box setup. Con-
cretely, we propose a new surrogate for Gaussian Processes that embeds the learn-
ing curve dynamics and a new acquisition function that incorporates multi-budget
information. We demonstrate the significant superiority of DYHPO against state-
of-the-art hyperparameter optimization baselines through large-scale experiments
comprising 50 datasets (Tabular, Image, NLP) and diverse neural networks (MLP,
CNN/NAS, RNN).

1 INTRODUCTION

Hyperparameter Optimization (HPO) is arguably an acute open challenge for Deep Learning (DL),
especially considering the crucial impact HPO has on achieving state-of-the-art empirical results.
Unfortunately, HPO for DL is a relatively under-explored field and most DL researchers still op-
timize their hyperparameters via obscure trial-and-error practices. On the other hand, traditional
Bayesian Optimization HPO methods (Snoek et al., 2012; Bergstra et al., 2011) are not directly
applicable to deep networks, due to the infeasibility of evaluating a large number of hyperparam-
eter configurations. In order to scale HPO for DL, three main directions of research have been
recently explored. (i) Online HPO methods search for hyperparameters during the optimization pro-
cess via meta-level controllers (Chen et al., 2017; Parker-Holder et al., 2020), however, this online
adaptation can not accommodate all hyperparameters (e.g. related to architectural changes). (ii)
Gradient-based HPO techniques, on the other hand, compute the derivative of the validation loss
w.r.t. hyperparameters by reversing the training update steps (Maclaurin et al., 2015; Franceschi
et al., 2017; Lorraine et al., 2020), however, the reversion is not directly applicable to all cases (e.g.
dropout rate). The last direction, (iii) Gray-box HPO techniques discard sub-optimal configurations
after evaluating them on lower budgets (e.g. after few epochs) (Li et al., 2017; Falkner et al., 2018).

In contrast to the online and gradient-based alternatives, gray-box approaches can be deployed in
an off-the-shelf manner to all types of hyperparameters and architectures. The gray-box concept is
based on the intuition that a poorly-performing hyperparameter configuration can be identified and
terminated by inspecting the validation loss of the first few epochs, instead of waiting for the full
convergence. The most prominent gray-box algorithm is Hyperband (Li et al., 2017), which runs
random configurations at different budgets (e.g. different number of epochs) and successively halves
these configurations by keeping only the top performers. Follow-up works, such as BOHB (Falkner
et al., 2018) or DEHB (Awad et al., 2021), replace the random sampling of Hyperband with more
intelligent sampling based on Bayesian optimization or differentiable evolution.

Despite their great practical potential, existing gray-box methods suffer from a major issue. The
low-budget (few epochs) performances are not always a good indicator for the full-budget (full
convergence) performances. For example, a properly regularized network converges slower in the
first few epochs, however, typically performs better than a non-regularized variant after the full
convergence. In other words, there is a poor rank correlation of the configurations’ performances

1

Under review as a conference paper at ICLR 2022

at different budgets. As a remedy, we introduce DYHPO, a gray-box method that dynamically
decides how many configurations to try and how much budget to spend on each configuration.

DYHPO is a Bayesian Optimization (BO) approach based on Gaussian Processes (GP), that extends
and adapts BO to the multi-budget (a.k.a. multi-fidelity) case. In this perspective, we propose a
deep kernel GP that captures the learning dynamics (learning curve until the evaluated budget). As
a result, we train a kernel capable of capturing the similarity of a pair of hyperparameter config-
urations, even if the pair’s configurations are evaluated at different budgets (technically, different
learning curve lengths). Furthermore, we extend Expected Improvement (Jones et al., 1998) to the
multi-budget case, by introducing a new mechanism for the incumbent configuration of a budget.

The joint effect of modeling a GP kernel across budgets together with a dedicated acquisition func-
tion leads to DYHPO achieving a statistically significant empirical gain against state-of-the-art
gray-box baselines (Falkner et al., 2018; Awad et al., 2021), including prior work on multi-budget
GPs (Kandasamy et al., 2017; Metz et al., 2020). We demonstrate the performance of DYHPO in
three diverse popular types of deep learning architectures (MLP, CNN/NAS, RNN) and 50 datasets
of three diverse modalities (tabular, image, natural language processing). We believe our method is
a step forward towards making HPO for DL practical and feasible. Overall, our contributions can be
summarized as follows:

• We introduce a novel Bayesian surrogate model that is based on a Gaussian Process with
a deep kernel. This surrogate model predicts the validation score of a machine learning
model based on the hyperparameter configuration and the learning curve.

• We derive a simple yet robust way to combine this surrogate model with Bayesian opti-
mization, reusing most of the existing components currently used in traditional Bayesian
optimization methods.

• Finally, we demonstrate the efficiency of our method for hyperparameter optimization and
neural architecture search tasks compared to the current state-of-the-art methods. As an
overarching goal, we believe our method is an important step towards scaling HPO for DL.

2 MOTIVATION

As mentioned earlier, a major source of sub-optimality for the current gray-box techniques (Li et al.,
2017; Falkner et al., 2018; Awad et al., 2021) is the poor rank correlation of performances at low and
high budgets, which is endemic to the successive halving mechanism. In essence, prior methods mis-
takenly discard good hyper-parameter configurations by myopically relying only on the early per-
formance after few epochs. In contrast, our method fixes the endemic poor correlation of successive
halving, by learning to decide which configuration to continue optimizing for one more time-budget
step (e.g. one more epoch). In that perspective, our strategy resembles Freeze-Thaw (Swersky
et al., 2014), however, differs in fitting deep kernel GP surrogates with learning curves and a special
multi-budget acquisition. DYHPO never discards a configuration as all options remain latent until
the acquisition selects the most promising one and allocates one more budget unit of optimization.

We illustrate the differences between our strategy and successive halving with the experiment of
Figure 1, where we showcase the HPO progress of three different methods on the ”Helena” dataset
from the LCBench benchmark (Zimmer et al., 2021). Random search is an example of a black-box
approach that trains each candidate until completion without considering the intermediate scores.
Hyperband (Li et al., 2017) is a gray-box approach that statically pre-allocates the budget for a set
of candidates (Hyperband bracket) according to a predefined policy. Finally, DYHPO dynamically
adapts the allocation of budgets for configurations after every HPO step.

The plots in the top row of Figure 1 show the learning curves of multiple neural networks trained
with different hyperparameter configurations. The darker the color of a learning curve, the later
the model corresponding to the learning curve was trained during the optimization process. In an
optimal scenario, there should be no learning curve of darker color trained for a very long time if
there is already a learning curve of lighter color with higher accuracy. Since black-box functions
do not consider intermediate responses, this trend is not observed for random search. This is also
not the case for gray-box methods such as Hyperband, because it is possible that no configuration
selected for a Hyperband bracket is outperforming the current best configuration. Since at least one

2

Under review as a conference paper at ICLR 2022

0.0

0.1

0.2
A

cc
ur

ac
y

Random Search
(Black-Box)

Hyperband
(Gray-Box)

DyHPO
(Gray-Box)

0 20 40
Number of Epochs

0

5

10

15

Te
m

po
ra

l O
rd

er

0 20 40
Number of Epochs

0

25

50

75

0 20 40
Number of Epochs

0

25

50

75

Figure 1: Top row: Learning curves observed during the search. The darker the learning curve, the
later it was evaluated during the search. Bottom row: y-axis shows a sequence of learning curve
evaluations (bottom to top). The color indicates accuracy. The darker red the higher the accuracy.

of the bracket candidates must be fully trained according to the predefined policy, we observe this
suboptimal behavior in Figure 1. This motivates our idea of dynamically deciding when we want to
continue training a configuration based on the intermediate response. Clearly, DYHPO invests only
a small budget into configurations that show little promise as indicated by the intermediate scores.

3 RELATED WORK ON GRAY-BOX HPO

Multi-Fidelity Bayesian Optimization. Bayesian optimization is a black-box function optimiza-
tion framework that has been successfully applied in optimizing hyperparameter and neural archi-
tectures alike (Snoek et al., 2012; Kandasamy et al., 2018; Bergstra et al., 2011). To further improve
Bayesian optimization, several works propose low-fidelity data approximations of hyperparameter
configurations. Low-fidelity approximations of hyperparameter configurations can be obtained by
training on a subset of the data (Swersky et al., 2013; Klein et al., 2017) or terminating training
early (Swersky et al., 2014). Several methods extend Bayesian optimization to multi-fidelity data
by engineering new kernels suited for this problem (Swersky et al., 2013; 2014; Poloczek et al.,
2017). Kandasamy et al. (2016) extends GP-UCB (Srinivas et al., 2010) to the multi-fidelity setting
by learning one Gaussian Process (GP) with a standard kernel for each fidelity. Their later work
improves upon this method by learning one GP for all fidelities that enables the use of continuous
fidelities (Kandasamy et al., 2017). The work by Takeno et al. (2020) follows a similar idea but pro-
poses to use an acquisition function based on information gain instead of UCB. While most of the
works rely on GPs to model the surrogate function, Li et al. (2020) use a Bayesian neural network
that models the complex relationship between fidelities with stacked neural networks, one for each
fidelity.

Multi-Fidelity Bandits. Hyperband (Li et al., 2017) is a bandits-based multi-fidelity method for
hyperparameter optimization, that due to its simplicity and strong performance, enjoys great pop-
ularity. The algorithm selects hyperparameter configurations at random and uses successive halv-
ing (Jamieson & Talwalkar, 2016) with different settings to early-stop less promising training runs.
Several improvements have been proposed to Hyperband with the aim to replace the random sam-
pling of hyperparameter configurations with a more guided approach (Bertrand et al., 2017; Wang
et al., 2018; Wistuba, 2017). BOHB (Falkner et al., 2018) uses TPE (Bergstra et al., 2011) and builds
a surrogate model for every fidelity adhering to a fixed-fidelity selection scheme. DEHB (Awad
et al., 2021) samples candidates using differential evolution which handles discrete and large hyper-
parameter search spaces better than BOHB.

3

Under review as a conference paper at ICLR 2022

Deep Kernel Learning with Bayesian Optimization. We are among the first to use deep kernel
learning with Bayesian optimization and to the best of our knowledge the first to use it for multi-
fidelity Bayesian optimization. Rai et al. (2016) consider the use of a deep kernel instead of a
manually designed kernel in the context of standard Bayesian optimization, but, limit their exper-
imentation to synthetic data and do not consider its use for hyperparameter optimization. Perrone
et al. (2018); Wistuba & Grabocka (2021) use a pre-trained deep kernel to warm start Bayesian op-
timization with meta-data from previous optimizations. These approaches are multi-task or transfer
learning methods that require the availability of meta-data from related tasks.

In contrast to prior work, we propose the first deep kernel GP for multi-fidelity HPO that is able
to capture the learning dynamics across fidelities/budgets, combined with an acquisition function
that is tailored for the gray-box setup. Furthermore, our work represents an important step towards
scaling HPO for Deep Learning (DL), by demonstrating a statistically significant reduction in terms
of HPO time on a series of DL network architectures and a large set of diverse datasets.

4 PRELIMINARIES

Black-Box Optimization. As mentioned earlier, the problem of optimizing hyperparameters can
be modeled as a black-box optimization problem. The objective is to maximize the response func-
tion f : X → R that returns the validation score for training a machine learning model with a
hyperparameter configuration x ∈ X . In practice, this observation is noisy such that we observe in
fact yi = f(xi) + ε where ε ∼ N (0, σ2

n).

Gray-Box Optimization. Since many machine learning algorithms allow to measure at various fi-
delities, a relaxation of the black-box to the gray-box optimization problem is in many cases logical
and allows for significantly faster optimization. The gray-box setting allows us to query configu-
rations with a budget smaller than the maximum budget B. Thus, we can query from the response
function f : X × N → R where fi,j = f(xi, j) is the response after spending a budget of j on
configuration xi. As before, these observations are noisy and we observe yi,j = f(xi, j) + εj
where εj ∼ N (0, σ2

j,n). Please note, we assume that the budget required to query fi,j+b after
querying fi,j is only b. While this is not necessarily the case for all problems, the models we
consider are learned incrementally. Furthermore, we are able to make use of the learning curve
Yi,j−1 = (yi,1, . . . , yi,j−1) when predicting fi,j .

Bayesian Optimization (BO). BO is a general framework for solving black-box optimization
problems and is very popular for optimizing hyperparameters. It has two ingredients, i.e. a surrogate
model and an acquisition function. The surrogate is a probabilistic model which approximates the
black-box function using the available information of function evaluations. The acquisition function
returns the expected utility for a configuration given the surrogate model’s prediction. The BO
framework executes the following steps sequentially. First, the surrogate model is trained on the
available information about the black-box function, denoted as the history of evaluations D. Then,
the configuration with the highest expected utility xi is evaluated and yi is observed. The tuple
(xi, yi) is added to D and the process is repeated until the HPO budget is exhausted. A common
choice for the surrogate model are Gaussian Processes (Rasmussen & Williams, 2006), a popular
choice for the acquisition function is expected improvement (Jones et al., 1998).

Gaussian Processes (GP). GPs are probabilistic machine learning models. Given a training data
set D = {(xi, yi)|i = 1, . . . , n} with n data points, the Gaussian Process assumption is that yi is a
random variable and the joint distribution of all yi is assumed to be multivariate Gaussian distributed
as:

y ∼ N (m (X) , k (X,X)) (1)
Furthermore, f∗ for test instances x∗ are jointly Gaussian with y as:[

y
f∗

]
∼ N

(
m (X,x∗) ,

(
Kn K∗
KT
∗ K∗∗

))
. (2)

The mean function m is often set to 0 and its covariance function k depends on parameters θ. For
notational convenience, we use:

Kn = k (X,X|θ) + σ2
nI, K∗ = k (X,X∗|θ) , K∗∗ = k (X∗,X∗|θ) (3)

4

Under review as a conference paper at ICLR 2022

to define the kernel matrix. We can derive the posterior predictive distribution with mean and co-
variance as follows:

E [f∗|X,y,X∗] = KT
∗K
−1
n y, cov [f∗|X,X∗] = K∗∗ −KT

∗K
−1
n K∗ (4)

Often, the kernel function is manually engineered, one popular example is the squared exponential
kernel. However, in this work, we make use of the idea of deep kernel learning (Wilson et al., 2016).
The idea is to model the kernel as a neural network ϕ and learn the best kernel transformation as:

kdeep(x,x
′|θ,w) = k(ϕ(x,w), ϕ(x′,w)|θ). (5)

As we will see later, this allows us to use convolutional operations as part of our kernel.

5 DYNAMIC MULTI-FIDELITY HYPERPARAMETER OPTIMIZATION

In this section, we will describe DYHPO, our proposed method for hyperparameter optimization in
the gray-box setting. At first, we will describe the surrogate model which is a Gaussian Process with
a deep convolutional kernel. Then, we describe a variation of the popular expected improvement
acquisition function (Jones et al., 1998), modified to consider multiple fidelities, and conclude with
the final algorithm.

5.1 MULTI-FIDELITY SURROGATE WITH DEEP CONVOLUTIONAL KERNEL

We propose to use a Gaussian Process surrogate model that infers the value of fi,j based on the
hyperparameter configuration xi, the budget j as well as the past learning curve Yi,j−1. For this
purpose, we use a deep kernel which is defined as

kdeep((xi,Yi,j−1, j), (xi′ ,Yi′,j′−1, j
′)) = k(ϕ(xi,Yi,j−1, j), ϕ(xi′ ,Yi′,j′−1, j

′)) (6)

We use a squared exponential kernel for k and the neural network ϕ is composed of linear and
convolutional layers as shown in Figure 2. We normalize the budget j to a range between 0 and 1
by dividing it by the maximum budget B. Afterward, it is concatenated with the hyperparameter
configuration xi and fed to a linear layer.

xi

j

Yi,j−1

· 1
B

∑
∑
∑

Convolution max

∑
∑
∑

Figure 2: The feature extractor ϕ used in our deep kernel.

The learning curve Yi,j−1 is trans-
formed by a one-dimensional convo-
lution followed by a global max pool-
ing layer. Finally, both representa-
tions are fed to another linear layer.
Its output will be the input to the ker-
nel function k. Both, the kernel k
and the neural network ϕ consist of
trainable parameters θ and w, respec-
tively. We find their optimal values
by computing the maximum likeli-
hood estimates as:

θ̂, ŵ = argmax
θ,w

p(y|X,Y,θ,w) = argmax
θ,w

∫
p(y|X,Y,θ,w)p(f |X,Y,θ,w)df

∝ argmin
θ,w

yTK−1n y + log |Kn|
(7)

In order to solve this optimization problem, we use gradient descent and Adam (Kingma & Ba,
2015) with a learning rate of 0.1. Given the maximum likelihood estimates, we can approximate the
predictive posterior as formalized in Equation 8, and ultimately compute the mean and covariance
of this Gaussian using Equation 4.

p (fi,j |xi,Yi,j−1, j,D) ≈ p
(
fi,j |xi,Yi,j−1, j,D, θ̂, ŵ

)
(8)

5

Under review as a conference paper at ICLR 2022

5.2 MULTI-FIDELITY EXPECTED IMPROVEMENT

Expected improvement (Jones et al., 1998) is a commonly used acquisition function for the black-
box setting and is defined as:

EI(x|D) = E [max {f(x)− ymax, 0}] , (9)

where ymax is the largest observed value of f . We propose a multi-fidelity version of it as:

EIMF(x, j|D) = E
[
max

{
f(x, j)− ymax

j , 0
}]

, (10)

where:

ymax
j =

{
max {y | ((x, ·, j), y) ∈ D} ∃x ∈ X : ((x, ·, j), y) ∈ D
max {y | (·, y) ∈ D} otherwise

(11)

Simply put, ymax
j is the largest observed value of f for a budget of j if it exists already, otherwise, it

is the largest observed value for any budget. If there is only one possible budget, the multi-fidelity
expected improvement is identical to expected improvement.

5.3 THE DYHPO ALGORITHM

Algorithm 1: DYHPO Algorithm
1: while not converged do
2: xi ← argmaxx∈X EIMF (x, j) (Section 5.2)
3: Observe yi,j .
4: D ← D ∪ {((xi,Yi,j−1, j), yi,j)}
5: Update the surrogate model on D. (Section 5.1)
6: return xi with largest yi,j .

The DYHPO algorithm looks very
similar to many black-box Bayesian
optimization algorithms as shown in
Algorithm 1. The big difference is that
at each step we dynamically decide
which candidate configuration to train
for a small additional budget. Possi-
ble candidates are previously uncon-
sidered configurations as well as con-
figurations that did not reach the max-
imum budget. In Line 2, the most

promising candidate is chosen using the acquisition function introduced in Section 5.2 and the sur-
rogate model’s predictions. It is important to highlight that we do not maximize the acquisition
function along the budget dimensionality. Instead, we set j such that it is by exactly one higher than
the budget used to evaluate xi before. If xi has not been evaluated for any budget yet, j is set to 1.
This ensures that we explore configurations by slowly increasing the budget. After having selected
the candidate and the corresponding budget, the function f is evaluated and we observe yi,j (Line
3). This additional data point is added toD in Line 4. Then in Line 5, the surrogate model is updated
according to the training scheme described in Section 5.1.

6 EXPERIMENTS

We evaluate DYHPO in three different settings on hyperparameter optimization for tabular, text, and
image classification against several competitor methods. These include Hyperband (Li et al., 2017),
BOHB (Falkner et al., 2018), DEHB (Awad et al., 2021), and Dragonfly (Metz et al., 2020). We use
Dragonfly’s multi-fidelity optimizer (Kandasamy et al., 2017). For a sanity check, we also compare
against random search (Bergstra & Bengio, 2012). We use the publicly available implementations
whenever available and implemented Hyperband and random search ourselves. We report the mean
of ten repetitions and report two common metrics such as the regret and the average rank. The regret
refers to the absolute difference between the score of the solution found by an optimizer compared to
the best possible score. If we report the regret as an aggregate result over multiple datasets, we report
the mean over all regrets. The average rank is a metric we use to aggregate results over different
datasets. For each dataset, the best performing method obtains a rank of 1. Ties are broken by using
the average rank, e.g., if the methods have scores 0.9, 0.8, 0.8, 0.7, the ranks are 1, 2.5, 2.5, and 4.
For both metrics, smaller is better.

6.1 FEEDFORWARD NEURAL NETWORKS

In our first experiment, we evaluate the various methods on how well they optimize neural networks
for tabular datasets. For this purpose, we use the LCBench learning curve benchmark (Zimmer et al.,

6

Under review as a conference paper at ICLR 2022

0.2 0.4 0.6 0.8 1.0
Normalized Wallclock Time

10
1

M
ea

n
R

eg
re

t

0.2 0.4 0.6 0.8 1.0
Normalized Wallclock Time

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

R
an

k Random
Hyperband
BOHB
DEHB
Dragonfly
DyHPO

Figure 3: LCBench: Aggregated results over 35 different datasets. The normalized wallclock time
represents the actual runtime divided by the total wallclock time of DYHPO including the overhead
of fitting the deep GP. DYHPO achieves the best performance among all methods for both metrics.

123456

Random
Dragonfly

Hyperband DyHPO
BOHB
DEHB

123456

Random
Dragonfly

Hyperband DEHB
BOHB
DyHPO

123456

Random
Dragonfly

Hyperband DEHB
BOHB
DyHPO

Figure 4: Critical difference diagram for LCBench for results corresponding to the time DYHPO
took to complete 200, 600 and 1,000 epochs. DYHPO’s improvement is statistically significant.

2021). This benchmark contains learning curves for 35 different datasets where 2,000 neural net-
works per dataset are trained for 50 epochs with Auto-PyTorch. The objective is to optimize seven
different hyperparameters of funnel-shaped neural networks, i.e., batch size, learning rate, momen-
tum, weight decay, dropout, number of layers, and maximum number of units per layer. We show
the aggregated results in Figure 3. Here we aggregate the normalized wallclock time by dividing
the actual wallclock time of baselines by the total wallclock time of our method DYHPO includ-
ing the overhead incurred by fitting the deep GP. In that manner, we can aggregate wallclock times
across datasets. However, all the results for each individual dataset are reported in the Appendix
(Figure 12 and 13). Furthermore, we use a critical difference diagram to report the pairwise statis-
tical difference between all methods (Figure 4). Horizontal lines indicate groups of methods that
are not significantly different from each other. As suggested in the work of Demsar (2006), we use
the Friedman test to reject the null hypothesis followed by a pairwise posthoc analysis based on the
Wilcoxon signed-rank test (α = 0.05). While all gray-box methods have a very similar performance
in the very beginning, DYHPO quickly outperforms its competitors with respect to both evaluation
metrics with statistical significance. On this task, both BOHB and DEHB are significantly better
than Hyperband but there is no clear winner among these two methods.

6.2 RECURRENT NEURAL NETWORKS

We continue with evaluating all methods on NLP tasks using search spaces provided in
TaskSet (Metz et al., 2020). The objective is to optimize eight hyperparameters for a set of different
recurrent neural networks (RNN) that differ in embedding size, RNN cell, and other architectural
features. The set of hyperparameters consists of optimizer-specific hyperparameters, such as the
learning rate, the exponential decay rate of the first and second momentum of Adam, β1 and β2, and
Adam’s constant for numerical stability ε. Furthermore, there are two hyperparameters controlling
linear and exponential learning rate decays, as well as L1 and L2 regularization terms. As before,
we provide the aggregated results in the main paper (Figure 5) and provide detailed results in the
Appendix (Figure 11). We show the critical difference diagram in Figure 6. As before, all gray-box
methods have a very similar performance in the very beginning, but, DYHPO quickly outperforms
its competitors with respect to both evaluation metrics. The difference is significant in the first inter-
val measured, in fact, DYHPO is providing the best results across all different tasks for the majority

7

Under review as a conference paper at ICLR 2022

0 200 400 600 800 1000
Number of Steps

10
1

M
ea

n
R

eg
re

t

0 200 400 600 800 1000
Number of Steps

1

2

3

4

5

6

Av
er

ag
e

R
an

k Random
Hyperband
BOHB
DEHB
Dragonfly
DyHPO

Figure 5: TaskSet: Aggregated results over 12 different NLP tasks. Again, DYHPO shows the best
performance among all methods for both evaluation metrics.

123456

Random
Dragonfly

Hyperband DEHB
BOHB
DyHPO

123456

Random
Dragonfly

Hyperband DEHB
BOHB
DyHPO

123456

Random
Dragonfly

DEHB Hyperband
BOHB
DyHPO

Figure 6: Critical difference diagram for TaskSet for results after 200, 600 and 1,000 epochs, re-
spectively. DYHPO’s improvement is statistically significant.

of the elapsed time. Given enough time, BOHB is able to catch up but DYHPO’s improvement is
still statistically significant.

6.3 CONVOLUTIONAL NEURAL NETWORKS

10
2

10
3

10
4

10
5

Wallclock Time in Seconds

10
1

R
eg

re
t

ImageNet16-120

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 8: DYHPO quickly finds well-performing
configurations. Given enough time, most methods
find equally good architectures.

Neural Architecture Search (Zoph & Le, 2017)
(NAS) raised a lot of interest in the deep learn-
ing community in the last few years. Since it
can be reformulated to a hyperparameter op-
timization problem, we can apply our method
as well as many other standard hyperparame-
ter optimization methods to it. We refrain from
comparing against specialized NAS methods,
since, this is out-of-scope for our work but re-
fer the interested reader to the comparison of
Dong & Yang (2020). To evaluate our methods
in this scenario, we use NAS-Bench-201 (Dong
& Yang, 2020). This benchmark has precom-
puted about 15,600 architectures trained for
200 epochs for the image classification datasets
CIFAR-10, CIFAR-100, and ImageNet. The
objective is to select for each of the six oper-
ations within the cell of the macro architecture
one of five different operations. All other hy-
perparameters such as learning rate and batch size are kept fix. We report the results in Figure 8,
the remaining results can be found in the Appendix (Figure 10). Initially, DYHPO provides better
results, but, given enough time, most methods perform no longer significantly different. We see
also no difference between Hyperband and BOHB or DEHB. A reason for this observation will be
discussed in the next section.

8

Under review as a conference paper at ICLR 2022

0 200 400 600 800 1000
Number of Epochs

10
2

10
1

R
eg

re
t

Mean Regret over all Datasets

DyHPO DyHPO w/o LC

10
2

10
3

10
4

10
5

Training Time in Seconds

10
1

R
eg

re
t

ImageNet16-120

DyHPO DyHPO w/o LC

Figure 7: Left: Aggregated results for LCBench. Right: Results on ImageNet from NAS-Bench
201. Using the learning curve gives only little advantage on average for the LCBench problems.
However, not using it significantly worsens it for the NAS-Bench 201 tasks.

6.4 ABLATION STUDY

One of the main differences between DYHPO and similar methods such as the work by Kandasamy
et al. (2017), is that the learning curve is an input to the kernel function. For this reason, we investi-
gate the impact of this design choice. We consider a variation of DYHPO, DYHPO w/o LC, which
is identical to its counterpart, and the only difference is that the learning curve is not part of the
input. We report the results in Figure 7 and refer to the Appendix for additional results (Figure 9).
One of the striking observations is that the learning curve has only a small impact for LCBench in
contrast to NAS-Bench-201 where it is significant. Our hypothesis is that for LCBench the hyperpa-
rameter representation is a valuable feature such that the additional use of the learning curve (which
in fact is already implicitly considered by the Gaussian Process) is not required. For NAS-Bench
201, however, the architecture representation is poor and does not allow for good predictions on
its own. This hypothesis aligns well with our previous experiments, where BOHB did better on
LCBench compared to Hyperband whereas we have not seen any difference on NAS-Bench 201. As
a reminder, BOHB is a variation of Hyperband that considers the hyperparameter representation to
sample candidates.

We conclude, that the additional use of an explicit learning curve representation might not lead to a
strong improvement in every scenario, however, it also does not seem to deteriorate it. Furthermore,
there are cases where the explicit consideration leads to significantly better results.

7 LIMITATIONS OF OUR PAPER

Although DYHPO shows a convincing and statistically significant reduction of the HPO time on
diverse Deep Learning (DL) experiments, we cautiously characterized our method only as a ”step
towards” scaling HPO for DL. The reason for our restrain is the lack of tabular benchmarks for HPO
on very large deep learning models, such as Transformers-based architectures (Devlin et al., 2019).
We hope our promising results will motivate the DL community, that own compute power, to invest
in creating pre-computed tabular HPO benchmarks for very deep models, where HPO researchers
can demonstrate the empirical performance of their proposed methods.

8 CONCLUSIONS

In this work, we present DYHPO, a new Bayesian optimization (BO) algorithm for the gray-box
setting. We introduced a new surrogate model for BO that uses a learnable deep kernel and takes the
learning curve as an explicit input. Furthermore, we motivated a variation of expected improvement
for the multi-fidelity setting. Finally, we compared our approach on diverse benchmarks on a total
of 50 different tasks against the current state-of-the-art methods on gray-box hyperparameter opti-
mization (HPO). Our method shows significant gains and has the potential to become the de facto
standard for HPO in Deep Learning.

9

Under review as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

Double-blind.

ETHICS STATEMENT

In our work, we use only publicly available data with no privacy concerns. Furthermore, our algo-
rithm reduces the overall time for fitting deep networks, therefore, saving computational resources
and yielding a positive impact on the environment. Moreover, our method can help smaller research
organizations with limited access to resources to be competitive in the deep learning domain, which
reduces the investment costs on hardware. Although our method significantly reduces the time taken
for optimizing a machine learning algorithm that achieves peak performance, we warn against run-
ning our method for an extended time only to achieve marginal gains in performance, unless it is
mission-critical. Last but not least, in order to save energy, we invite the community to create sparse
benchmarks with surrogates, instead of dense tabular ones.

REPRODUCIBILITY STATEMENT

We attempt to facilitate reproduction of our results with the following measures:

• We use only publicly available datasets and provide a detailed description of preprocessing
(Section A.2) and the datasets themselves (Section A.1).

• All our baselines are publicly available or trivial to implement. We provide all required
details in Section A.5.

• We clearly describe our method in Section 5 and provide additional details in Section A.4.
• Finally, we plan to make the source code of our method publicly available.

REFERENCES

Noor H. Awad, Neeratyoy Mallik, and Frank Hutter. DEHB: evolutionary hyberband for scalable,
robust and efficient hyperparameter optimization. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pp. 2147–2153, 2021. doi: 10.24963/ijcai.2021/296. URL https://doi.org/
10.24963/ijcai.2021/296.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13:281–305, 2012. URL http://dl.acm.org/citation.cfm?id=
2188395.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In Advances in Neural Information Processing Sys-
tems 24: 25th Annual Conference on Neural Information Processing Systems 2011.
Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pp. 2546–
2554, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html.

Hadrien Bertrand, Roberto Ardon, Matthieu Perrot, and Isabelle Bloch. Hyperparameter opti-
mization of deep neural networks: Combining hyperband with bayesian model selection. In
Conférence sur l’Apprentissage Automatique, 2017.

Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap,
Matthew Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient
descent. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pp. 748–756, 2017. URL http://proceedings.
mlr.press/v70/chen17e.html.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.,
7:1–30, 2006. URL http://jmlr.org/papers/v7/demsar06a.html.

10

https://doi.org/10.24963/ijcai.2021/296
https://doi.org/10.24963/ijcai.2021/296
http://dl.acm.org/citation.cfm?id=2188395
http://dl.acm.org/citation.cfm?id=2188395
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
http://proceedings.mlr.press/v70/chen17e.html
http://proceedings.mlr.press/v70/chen17e.html
http://jmlr.org/papers/v7/demsar06a.html

Under review as a conference paper at ICLR 2022

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186, 2019. doi: 10.18653/v1/n19-1423. URL https://doi.org/
10.18653/v1/n19-1423.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architec-
ture search. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, 2020. URL https://openreview.net/forum?id=
HJxyZkBKDr.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1436–1445, 2018.
URL http://proceedings.mlr.press/v80/falkner18a.html.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1165–1173,
2017. URL http://proceedings.mlr.press/v70/franceschi17a.html.

Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew Gordon Wil-
son. Gpytorch: Blackbox matrix-matrix gaussian process inference with GPU acceleration. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
7587–7597, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
27e8e17134dd7083b050476733207ea1-Abstract.html.

Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pp. 240–248, 2016. URL http://
proceedings.mlr.press/v51/jamieson16.html.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of ex-
pensive black-box functions. J. Global Optimization, 13(4):455–492, 1998. doi: 10.1023/A:
1008306431147. URL https://doi.org/10.1023/A:1008306431147.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, and Barnabás
Póczos. Gaussian process bandit optimisation with multi-fidelity evaluations. In Ad-
vances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
992–1000, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
605ff764c617d3cd28dbbdd72be8f9a2-Abstract.html.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff G. Schneider, and Barnabás Póczos. Multi-fidelity
bayesian optimisation with continuous approximations. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pp. 1799–1808, 2017. URL http://proceedings.mlr.press/v70/kandasamy17a.
html.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P.
Xing. Neural architecture search with bayesian optimisation and optimal transport. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2020–2029, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
f33ba15effa5c10e873bf3842afb46a6-Abstract.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

11

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v70/franceschi17a.html
https://proceedings.neurips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
http://proceedings.mlr.press/v51/jamieson16.html
http://proceedings.mlr.press/v51/jamieson16.html
https://doi.org/10.1023/A:1008306431147
https://proceedings.neurips.cc/paper/2016/hash/605ff764c617d3cd28dbbdd72be8f9a2-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/605ff764c617d3cd28dbbdd72be8f9a2-Abstract.html
http://proceedings.mlr.press/v70/kandasamy17a.html
http://proceedings.mlr.press/v70/kandasamy17a.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2022

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian opti-
mization of machine learning hyperparameters on large datasets. In Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, pp. 528–536, 2017. URL http://proceedings.mlr.press/
v54/klein17a.html.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18:
185:1–185:52, 2017. URL http://jmlr.org/papers/v18/16-558.html.

Shibo Li, Wei Xing, Robert M. Kirby, and Shandian Zhe. Multi-fidelity bayesian optimization
via deep neural networks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
60e1deb043af37db5ea4ce9ae8d2c9ea-Abstract.html.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In The 23rd International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], pp. 1540–1552, 2020.
URL http://proceedings.mlr.press/v108/lorraine20a.html.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 2113–2122, 2015. URL
http://proceedings.mlr.press/v37/maclaurin15.html.

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C. Daniel Freeman, Ben Poole, and Jascha Sohl-
Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies. CoRR,
abs/2002.11887, 2020. URL https://arxiv.org/abs/2002.11887.

Jack Parker-Holder, Vu Nguyen, and Stephen J. Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c7af0926b294e47e52e46cfebe173f20-Abstract.html.

Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, and Cédric Archambeau. Scalable hyper-
parameter transfer learning. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 6846–6856, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.html.

Matthias Poloczek, Jialei Wang, and Peter I. Frazier. Multi-information source optimization.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4288–4298, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
df1f1d20ee86704251795841e6a9405a-Abstract.html.

Akshara Rai, Ruta Desai, and Siddharth Goyal. Bayesian optimization with a neural network kernel,
2016. URL http://www.cs.cmu.edu/˜rutad/files/BO_NN.pdf.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp.
2960–2968, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
05311655a15b75fab86956663e1819cd-Abstract.html.

12

http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://jmlr.org/papers/v18/16-558.html
https://proceedings.neurips.cc/paper/2020/hash/60e1deb043af37db5ea4ce9ae8d2c9ea-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/60e1deb043af37db5ea4ce9ae8d2c9ea-Abstract.html
http://proceedings.mlr.press/v108/lorraine20a.html
http://proceedings.mlr.press/v37/maclaurin15.html
https://arxiv.org/abs/2002.11887
https://proceedings.neurips.cc/paper/2020/hash/c7af0926b294e47e52e46cfebe173f20-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c7af0926b294e47e52e46cfebe173f20-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/df1f1d20ee86704251795841e6a9405a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/df1f1d20ee86704251795841e6a9405a-Abstract.html
http://www.cs.cmu.edu/~rutad/files/BO_NN.pdf
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html

Under review as a conference paper at ICLR 2022

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp.
1015–1022, 2010. URL https://icml.cc/Conferences/2010/papers/422.pdf.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Multi-task bayesian opti-
mization. In Advances in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pp. 2004–
2012, 2013. URL https://proceedings.neurips.cc/paper/2013/hash/
f33ba15effa5c10e873bf3842afb46a6-Abstract.html.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. CoRR,
abs/1406.3896, 2014. URL http://arxiv.org/abs/1406.3896.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi,
and Masayuki Karasuyama. Multi-fidelity bayesian optimization with max-value entropy search
and its parallelization. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, pp. 9334–9345, 2020. URL http://
proceedings.mlr.press/v119/takeno20a.html.

Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combination of hyperband and bayesian optimization
for hyperparameter optimization in deep learning. CoRR, abs/1801.01596, 2018. URL http:
//arxiv.org/abs/1801.01596.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel
learning. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pp. 370–378, 2016. URL http:
//proceedings.mlr.press/v51/wilson16.html.

Martin Wistuba. Bayesian optimization combined with incremental evaluation for neural network
architecture optimization. In AutoML@PKDD/ECML, 2017.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021. URL https://openreview.net/forum?id=bJxgv5C3sYc.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Trans. Pattern Anal. Mach. Intell., 43(9):3079–3090, 2021.
doi: 10.1109/TPAMI.2021.3067763. URL https://doi.org/10.1109/TPAMI.2021.
3067763.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

13

https://icml.cc/Conferences/2010/papers/422.pdf
https://proceedings.neurips.cc/paper/2013/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
http://arxiv.org/abs/1406.3896
http://proceedings.mlr.press/v119/takeno20a.html
http://proceedings.mlr.press/v119/takeno20a.html
http://arxiv.org/abs/1801.01596
http://arxiv.org/abs/1801.01596
http://proceedings.mlr.press/v51/wilson16.html
http://proceedings.mlr.press/v51/wilson16.html
https://openreview.net/forum?id=bJxgv5C3sYc
https://doi.org/10.1109/TPAMI.2021.3067763
https://doi.org/10.1109/TPAMI.2021.3067763
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Under review as a conference paper at ICLR 2022

A EXPERIMENTAL SETUP

A.1 BENCHMARKS

LCBench. LCBench1 is a feedforward neural network benchmark on tabular data which consists
of 2000 configuration settings for each of the 35 datasets. The configurations were evaluated during
HPO runs with AutoPyTorch. LCBench features a search space of 7 numerical hyperparameters,
where every hyperparameter configuration is trained for 50 epochs.

TaskSet. TaskSet2 is a benchmark that features over 1162 diverse tasks from different domains
and includes 5 search spaces. In this work, we focus on NLP tasks and we use the Adam8p search
space with 8 continuous hyperparameters. We refer to Figure 11 for the exact task names considered
in our experiments. The learning curves provided in TaskSet report scores after every 200 iterations.
We refer to those as ”steps” in Figure 5.

NAS-Bench-201. NAS-Bench-2013 is a benchmark consisting of 15625 hyperparameter config-
urations representing different architectures on the CIFAR-10, CIFAR-100 and ImageNet datasets.
NAS-Bench-201 features a search space of 6 categorical hyperparameters and each architecture is
trained for 200 epochs.

A.2 PREPROCESSING

In the following, we describe the preprocessing applied to the hyperparameter representation. For
LCBench, we apply a log-transform to batch size, learning rate, and weight decay. For TaskSet,
we apply it on the learning rate, L1 and L2 regularization terms, linear and exponential decay of
the learning rate. All continuous hyperparameters are scaled to the range between 0 and 1 using
sklearn’s MinMaxScaler. If not mentioned otherwise, we use one-hot encoding for the categorical
hyperparameters. As detailed in the following, some baselines have a specific way of dealing with
them. In that case, we use the method recommended by the authors.

A.3 FRAMEWORK

The framework contains the evaluated hyperparameters and their corresponding validation curves.
The list of candidate hyperparameters is passed to the baseline-specific interface, which in turn,
optimizes and queries the framework for the hyperparameter configuration that maximizes utility.
Our framework in turn responds with the validation curve and the cost of the evaluation. In case a
hyperparameter configuration has been evaluated previously up to a budget b and a baseline requires
the response for budget b+1, the cost is calculated accordingly only for the extra budget requested.

A.4 IMPLEMENTATION DETAILS

We implement the Deep Kernel Gaussian Process using GPyTorch 1.5 (Gardner et al., 2018). We
use an RBF kernel and the dense layers of the transformation function ϕ (Figure 2) have 128 and
256 units. We used a convolutional layer with kernel size three and four filters. All parameters of
the Deep Kernel are estimated by maximizing the marginal likelihood. We achieve this by using
gradient ascent and Adam (Kingma & Ba, 2015) with a learning rate of 0.1 and batch size of 64.
We stop training as soon as the training likelihood is not improving for 10 epochs in a row or we
completed 1,000 epochs. For every new data point, we start training the GP with its old parameters
to reduce the required effort for training.

1https://github.com/automl/LCBench
2https://github.com/google-research/google-research/tree/master/task_

set
3https://github.com/D-X-Y/NAS-Bench-201

14

https://github.com/automl/LCBench
https://github.com/google-research/google-research/tree/master/task_set
https://github.com/google-research/google-research/tree/master/task_set
https://github.com/D-X-Y/NAS-Bench-201

Under review as a conference paper at ICLR 2022

A.5 BASELINES

Random Search & Hyperband. Random search and Hyperband sample hyperparameter config-
urations at random and therefore the preprocessing is irrelevant. We have implemented both from
scratch and use the recommended hyperparameters for Hyperband, i.e. η = 3.

BOHB. For our experiments with BOHB, we use version 0.7.4 of the officially-released code4.

DEHB. For our experiments with DEHB, we use the official public implementation5. We devel-
oped an interface that communicates between our framework and DEHB. In addition to the initial
preprocessing common for all methods, we encode categorical hyperparameters with a numerical
value in the interval [0, 1]. For a categorical hyperparameter xi, we take N equal-sized intervals,
where Ni represents the number of unique categorical values for hyperparameter xi and we assign
the value for a categorical value n ∈ Ni to the middle of the interval [i, i + 1] as suggested by the
authors. For configuring the DEHB algorithm we used the default values from the library.

Dragonfly. We use the publicly available code of Dragonfly6. No special treatment of categorical
hyperparameters is required since Dragonfly has its own way to deal with them. We use version
0.1.6 with default settings.

B ADDITIONAL PLOTS

In this section, we provide additional plots for the performance comparison between all methods for
the individual datasets in our benchmarks. In Figure 12 and 13 we show the performance comparison
for all the datasets from LCBench regarding regret over the number of epochs. As can be seen,
DYHPO manages to outperform the other competitors in the majority of the datasets, and in the
datasets that it does not, it is always close to the top-performing method and the difference between
methods is marginal.

10
2

10
3

10
4

Training Time in Seconds

10
2

10
1

R
eg

re
t

cifar10

DyHPO DyHPO w/o LC

10
2

10
3

10
4

Training Time in Seconds

10
2

10
1

R
eg

re
t

cifar100

DyHPO DyHPO w/o LC

Figure 9: The learning curve as an explicit input is very important for each task of NAS-Bench 201.

Additionally, in Figure 10 we show the performance comparison over time of every method for the
CIFAR-10 and CIFAR-100 datasets in the NAS-Bench-201 benchmark. As can be seen, DYHPO
converges faster and has a better performance compared to the other methods over the majority of
the time, however, towards the end although it is the optimal method or close to the optimal method,
the difference in regret is not significant anymore.

Furthermore, Figure 11 shows the performance comparison for the datasets chosen from TaskSet
over the number of steps. Looking at the results, DYHPO is outperforming all methods convinc-
ingly on the majority of datasets by converging faster and with significant differences in the regret
evaluation metric.

4https://github.com/automl/HpBandSter
5https://github.com/automl/DEHB/
6https://github.com/dragonfly/dragonfly

15

https://github.com/automl/HpBandSter
https://github.com/automl/DEHB/
https://github.com/dragonfly/dragonfly

Under review as a conference paper at ICLR 2022

10
2

10
3

10
4

Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

cifar10

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

10
2

10
3

10
4

Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

cifar100

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 10: NAS-Bench-201 Regret Results.

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_avg_bs64

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_bs64

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch128_LSTM128_embed128_bs64

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

6 × 10
2

2 × 10
1

3 × 10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_GRU128_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_GRU64_avg_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_IRNN64_relu_avg_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

10
0

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_IRNN64_relu_last_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_LSTM128_E128_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_LSTM128_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

2 × 10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN128_tanh_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN64_relu_avg_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Number of Steps

10
3

10
2

10
1

R
eg

re
t

FixedTextRNNClassification
imdb_patch32_VRNN64_tanh_avg_bs128

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 11: Detailed results on a per dataset level for TaskSet.

Lastly, in Figure 9 we ablate the learning curve input in our kernel, to see the effect it has on perfor-
mance for the CIFAR-10 and CIFAR-100 datasets. The results indicate that the learning curve plays
an important role in achieving better results by allowing faster convergence and a better anytime
performance.

16

Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000
Wallclock Time in Seconds

10
2

R
eg

re
t

APSFailure

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200 1400 1600
Wallclock Time in Seconds

10
1

3 × 10
2

4 × 10
2

6 × 10
2

R
eg

re
t

Amazon_employee_access

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
3

10
2

10
1

R
eg

re
t

Australian

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 1000 2000 3000 4000 5000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

Fashion-MNIST

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

KDDCup09_appetency

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000 3500 4000
Wallclock Time in Seconds

10
1

R
eg

re
t

MiniBooNE

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
3

10
2

10
1

R
eg

re
t

adult

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 2000 4000 6000 8000 10000 12000 14000
Wallclock Time in Seconds

10
2

R
eg

re
t

airlines

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 2000 4000 6000 8000 10000
Wallclock Time in Seconds

10
2R

eg
re

t

albert

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 250 500 750 1000 1250 1500 1750 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

bank-marketing

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

blood-transfusion-service-center

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

car

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 2500 5000 7500 10000 12500 15000 17500
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

christine

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

10
0

R
eg

re
t

cnae-9

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

connect-4

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 1000 2000 3000 4000 5000
Wallclock Time in Seconds

10
1

R
eg

re
t

covertype

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

credit-g

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 2000 4000 6000 8000 10000 12000 14000
Wallclock Time in Seconds

10
1R

eg
re

t

dionis

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 12: Detailed results on a per dataset level for LCBench.

17

Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

fabert

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000 3500
Wallclock Time in Seconds

10
1

R
eg

re
t

helena

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000 3500
Wallclock Time in Seconds

10
1

R
eg

re
t

higgs

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jannis

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200 1400
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jasmine

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

jungle_chess_2pcs_raw_endgame_complete

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1

R
eg

re
t

kc1

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

kr-vs-kp

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

mfeat-factors

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

nomao

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000 3500
Wallclock Time in Seconds

10
2

R
eg

re
t

numerai28.6

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

phoneme

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
1R

eg
re

t

segment

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000
Wallclock Time in Seconds

10
1R

eg
re

t

shuttle

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000 1200
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

sylvine

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 200 400 600 800 1000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

vehicle

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 500 1000 1500 2000 2500 3000
Wallclock Time in Seconds

10
2

10
1

R
eg

re
t

volkert

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 13: Detailed results on a per dataset level for LCBench (cont.)

18

Under review as a conference paper at ICLR 2022

0 10 20 30 40 50
Number of Epochs

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

N
um

be
r o

f T
ru

e
P

os
iti

ve
s

LCBench

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 10 20 30 40 50
Number of Epochs

0.0

0.1

0.2

0.3

Av
er

ag
e

N
um

be
r o

f T
ru

e
P

os
iti

ve
s

Taskset

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 50 100 150 200
Number of Epochs

0.05

0.10

0.15

Av
er

ag
e

N
um

be
r o

f T
ru

e
P

os
iti

ve
s

NAS-Bench-201

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 14: DYHPO efficiently selects top-performing candidates and keeps training them, avoiding
training poor configurations for a long time.

0 10 20 30 40 50
Number of Epochs

0.05

0.10

0.15

Av
er

ag
e

R
eg

re
t

LCBench

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 10 20 30 40 50
Number of Epochs

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

R
eg

re
t

Taskset

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

0 50 100 150 200
Number of Epochs

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

R
eg

re
t

NAS-Bench-201

Random
Hyperband

BOHB
DEHB

Dragonfly
DyHPO

Figure 15: DYHPO spends most its budget on top-performing candidates.

C ON THE EFFECTIVENESS OF DYHPO

DYHPO effectively explores the search space and identifies promising candidates. This is visualized
in Figure 14 in which we plot the precision of each method for different considered budgets. The
precision at an epoch i is defined as the number of top 1% candidates trained for at least i epochs
divided by the number of all candidates trained for at least i epochs. The higher the precision, the less
irrelevant candidates were considered and the less computational resources were wasted. For small
budgets, the precision is low since DYHPO spends budget to consider some candidates but then
promising candidates are successfully identified and the precision quickly increases. For LCBench
and Taskset, all other methods dedicate significantly more resources to irrelevant candidates which
explains why DYHPO finds good candidates faster. For NAS-Bench-201, DEHB can match the
precision but only at a later stage. Simply put, the baselines select much more ”poor” configurations
(i.e. outside the top 1% performers) compared to our method DYHPO.

This argument is further supported by Figure 15 where we visualize the average regret of all the
candidates trained for at least the specified number of epochs in the x-axis. In contrast to the regret
plots in Section 6, here we do not show the regret of the best configuration, but the mean regret
of all the selected configurations. The analysis deduces a similar finding as in Figure 14 above.
Our method DYHPO selects highly more qualitative hyperparameter configurations than all the
baselines.

D PROMOTION OF POOR PERFORMING CANDIDATES

An interesting property of multi-fidelity HPO is the phenomenon of poor rank correlations among
the validation performance of candidates at different budgets. In other words, a configuration that
achieves a poor performance at a small budget, might perform strongly at a larger budget. For
instance, a well-regularized neural network will converge slower than an un-regularized network
in the early optimization epochs, but eventually performs better when converged. We analyze this
phenomenon and report the respective results in Figure 16. In this experiment we measure the
percentage of ”good” configurations at a particular budget, that were ”bad” performers in at least
one of the smaller budgets. We define a ”good” performance at a budget B, when a configuration
achieves a validation accuracy ranked among the top 1/3 compared to the validation accuracies of
all the other configurations that were run until that budget B. Similarly a ”bad” performance at

19

Under review as a conference paper at ICLR 2022

a budget B represents a configuration whose validation accuracy belongs to the bottom 2/3 of all
configurations run at that budget B.

0 10 20 30 40 50
Number of Epochs

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 P

oo
r

P
er

fo
rm

er
 P

ro
m

ot
io

ns
LCBench

Random
Hyperband
BOHB

DEHB
Dragonfly

DyHPO
Baseline

0 10 20 30 40 50
Number of Steps

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 P

oo
r

P
er

fo
rm

er
 P

ro
m

ot
io

ns

Taskset

Random
Hyperband
BOHB

DEHB
Dragonfly

DyHPO
Baseline

0 50 100 150 200
Number of Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

oo
r

P
er

fo
rm

er
 P

ro
m

ot
io

ns

NAS-Bench-201

Random
Hyperband
BOHB

DEHB
Dragonfly

DyHPO
Baseline

Figure 16: Percentage of configuration i) belonging to the top 1/3 configurations at a given budget,
and ii) that were in the bottom 2/3 of configurations at one of the previous budgets. Here the budget
is represented by the number of steps or epochs.

In Figure 16 we analyze the percentage of ”good” configurations at each budget denoted by the x-
axis, that were ”bad” performers in at least one of the lower budgets. Such a metric is a proxy for the
degree of the promotion of ”bad” configurations towards higher budgets. We present the analysis
for all the competing methods of our experimental protocol from Section 6. We have additionally
included the ground-truth line annotated as ”Baseline”, which represents the fraction of past poor
performers among all the feasible configurations in the search space. In contrast, the respective
methods compute the fraction of promotions only among the configurations that those methods have
considered (i.e. selected within their HPO trials) until the budget indicated by the x-axis. We see
that in all the search spaces LCBench, TaskSet and NASBench-201 there is a high degree of ”good”
configurations that were ”bad” at a previous budget, with fractions of the ground-truth ”Baseline”
varying from ca. 40% in LCBench, up to ca. 70% in the NASBench-201 datasets.

On the other hand, the analysis demonstrates that our method DYHPO has promoted more ”good”
configurations that were ”bad” in a lower budget, compared to all the rival methods. In particular, ca.
80% of selected configurations at the datasets from the LCBench benchmark were ”bad” performers
at a lower budget, while in the case of NASBench-201 this fraction approaches the level of 95%.

20

	Introduction
	Motivation
	Related Work on Gray-box HPO
	Preliminaries
	Dynamic Multi-Fidelity Hyperparameter Optimization
	Multi-Fidelity Surrogate with Deep Convolutional Kernel
	Multi-Fidelity Expected Improvement
	The DyHPO Algorithm

	Experiments
	Feedforward Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Ablation Study

	Limitations of Our Paper
	Conclusions
	Experimental Setup
	Benchmarks
	Preprocessing
	Framework
	Implementation Details
	Baselines

	Additional Plots
	On the Effectiveness of DyHPO
	Promotion of Poor Performing Candidates

