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ABSTRACT

The main premise of federated learning is local clients could upload gradients in-
stead of data during collaborative learning, hence preserving data privacy. But the
development of gradient inversion method renders this premise under severe chal-
lenges: a third-party could still reconstruct the original training images through the
uploaded gradients. While previous works are majorly conducted under relatively
low-resolution images and small batch sizes, in this paper, we show that image
reconstruction from complex datasets like ImageNet is still possible, even nested
with large batch sizes and high resolutions. Success of the proposed method is
built upon three key factors: a convolutional network to implicitly create an im-
age prior, an over-parameterized network to guarantee the non-empty of the image
generation and gradient matching, and a properly-designed architecture to create
pixel intimacy. We conduct a series of practical experiments to demonstrate that
the proposed algorithm can outperform SOTA algorithms and reconstruct the un-
derlying original training images more effectively. Source code is available at: (to
be released upon publication).

1 INTRODUCTION

Federated learning (FL) (Konecny et al., 2015; 2016; [McMahan et al., 2017) provides a distributed
paradigm that allows multiple parties to learn a machine learning model in a collaborative way. The
main premise of this learning scheme is to allay the concerns related to data privacy and security:
users can upload their local gradients instead of the data itself. As a canonical example, hospitals are
often keen to train models through such a federated learning system, especially when the medical
data contain sensitive patient information.

While this paradigm might provide some safety guarantees at the first glance, a line of recent
works (Zhu et al.| 2019} [Zhao et al., | 2020) have begun to question this central property of feder-
ated learning: since the gradients are directly linked to the local data, is it possible to reveal the local
images through the uploaded gradient? Recent studies (Geiping et al., [2020; |Yin et al., 2021} Jeon
et al., 2021) provide a positive answer through multiple rounds of gradient matching, and indicate
the training images can be revealed after certain iterations. The procedure, generally known as gra-
dient inversion, starts from some random images and then gradually modifies these image pixels to
match the uploaded gradient values.

But yet, the success of these works often relies on some strong assumptions: image recovery can be
performed under small batch sizes and low image resolutions. For datasets like CIFAR-10, gradient
inversion for batch sizes larger than 4 would be very challenging (Zhao et al.| 2020). For high
resolution and complex datasets like ImageNet, recovering images for batch size larger than 1 would
almost be impossible (Yin et al., |2021). As comparison, participants of FL typically use a much
larger batch size (e.g., 128 on CIFAR-10 and 16 on ImageNet) for local model training. Inverting
gradients into the original images in these cases remains challenging for current algorithms.

Lying ahead of the gradient inversion problem is the challenge of nested gradients. In general, local
clients in the FL system will only transmit an averaged gradient to the server, instead of gradients for
each image. Decoupling these gradients, especially for a large batch size, is clearly non-trivial since
random decomposition may only lead the inversion work to a batch of noises. An ideal algorithm
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Figure 1: Gradient inversion on CIFAR-10 dataset. Results indicate the structural similarity (SSIM) drops
significantly when the batch size increases to 128, except for our proposed method. Sample reconstructed
images for GIAS and our method are also plotted for visual comparison to the groundtruth.

would therefore know how to decouple the averaged gradient in a correct way such that each gradient
acts as a proxy for some natural image.

The conventional approach for the gradient coupling issue is to introduce extra regularization terms,
besides the original gradient matching. For instance, a total variation term on the generated images
is considered in |Geiping et al.|(2020) by penalizing images with high variances and provide an
image prior. But we shall address in this paper that these extra regularization terms may change the
fundamental properties of the original problem, and we cannot guarantee the truth images would
trigger the minimal loss when these regularization terms are involved (See Section[2.2). As such,
optimizing as the conventional ways may not lead us to the true images.

The goal of this work is to avoid using these regularization terms and propose an alternative solution
with over-parametered convolutional networks. Design of the algorithm relies on three key under-
standings and insights into this gradient inversion problem: a convolutional network (also known as
the generative network in (2021)) generates an image prior to avoid gradient matching
to noises, an over-parameterized network guarantees the non-empty of the image generation and
gradient matching, and a properly-designed architecture creates pixel intimacy to implicitly reduces
total variations. Building upon these insights, we propose an over-parameterized network, named as
Convolutional Inversion Network (CI-Net), to provide a novel method for gradient matching without
the necessity of prior information.

Numerical experiments indicate our proposed algorithm can perform well under more general sce-
narios, even with large batch sizes and high-resolutions. Figure [I] provides a simple example when
increasing the batch size from 4 to 128, where only our proposed algorithm can reconstruct all
groundtruth images when the batch size equals 128.

In summary, contributions of this paper are as follows: 1) We raise the issues of introducing ad-
ditional regularization terms in the previous works: it may change the properties of the optimiza-
tion function itself and cannot help to decouple the nested gradients; 2) Our understandings to the
gradient inversion problem allow us to deviate from this mainstream and propose a novel over-
parameterized algorithm that performs well in more general cases, such as large batches and high
resolutions; 3) Moreover, the proposed algorithm is designed in a “plug and play” way: we do not re-
quire any pre-training, image prior or explicit regularizations, rendering the proposed method more
applicable for gradient inversion in federated learning.

2 PROBLEM FORMULATION

We introduce the problem formulation of gradient inversion in this part, namely how to reconstruct
the original images from local gradient information. The potential issues of adding extra regulariza-
tion terms are discussed when proposing optimization algorithms to solve this formulation.

2.1 FORMULATION

In the federated learning system, local training data and labels are generally not accessible and
a curious server or third-party may only obtain the uploaded local gradient information in most
scenarios. Given the uploaded gradient VW computed from a minibatch of groundtruth images and
labels (z*, y*), the goal of gradient inversion is to search for some fake images (&*, §*) that trigger
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the minimum gradient matching loss:
(2%,9") = argmin Lonq ((2,9); W, VW)
(,9)
Following [Zhu et al.| (2019); |Zhao et al.| (2020), we assume the batch size and image resolution are
known in advance so that the truth images * and the fake images #* lie in the same space RN <P,
with IV denoting the batch size and D representing the dimension of each individual sample.

Recent works (Zhao et al., [2020; [Yin et al., 2021; Dang et al., 2021) find out the groundtruth labels
y* can be explicitly discovered via the last layer information. As such, the above formulation can
be simplified to:

R arg min Lgrad (z, W,VW). (1)

Choice of the gradient matching loss Lgg,q could be
Lyraa (2, W, VW) := |VwL(@,y*) — VwL(=",y)|?, )

if an Ly-norm loss is involved. Alternatively, the gradient matching loss Lgrq can be the cosine-
similarity loss (Geiping et al.,[2020):

IVw L2, y*) [ IVw L(z*, y*) ||

Lggaa (2, W, VW) :=1— 3)

Besides this gradient matching loss, a series of recent studies also consider adding extra regulariza-
tion terms AL, to the gradient loss, in order to create the simple image prior when reconstructing
images. For instance, the work in |Geiping et al. (2020) considers the total variation loss TV(x)
as the regularization term, while multiple fidelity and group consistency regularization terms are
utilized in | Yin et al.| (2021)). Therefore, the overall loss becomes:

Loum (&, W, VW) = Lyaq (&, W, VIV) + ALgeg(#). @)

2.2 ISSUES OF REGULARIZATION TERMS

Adding these regularization terms may help to improve the performance in certain scenarios, but
we shall highlight one key issue that is often neglected in the previous studies: adding these reg-
ularization terms may alter the fundamental properties of the problem itself. To see this, note the
groundtruth images will obtain a zero loss in Eq (Z)) and (3), but there is no guarantee that the under-
lying original training images will still trigger the minimal loss in Eq (4) when additional terms are
involved. As such, when using gradient descent to minimize the summed loss, we cannot ensure the
generated data are moving towards groundtruth images as expected. Moreover, as we have shown in
Figure|l] these regularization terms may not help to decouple the nested gradients when the batch
size is relatively large.

Therefore, in this paper, we shall deviate from this mainstream of introducing extra regularization
terms, and focus on designing proper network architectures to consider the gradient matching loss
Lgpag.

gra

3 EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let us first consider the existence and uniqueness of solutions in Eq () and (3) before marching
towards any practical algorithms.

3.1 EXISTENCE AND UNIQUENESS

Existence of an optimal solution is apparently trivial, since the groundtruth images trigger zero loss
and act as one optimal solution. But the real question is whether these images are the only solution
for the above loss functions. Otherwise, we may face the same issue as alluded to earlier: if there are
other solutions also obtaining zero loss, we cannot guarantee the optimization algorithm will lead us
to the groundtruth.

Unfortunately, the answer is negative in general: we cannot guarantee the uniqueness of solution.
To see this, consider the following simple example of a 1-layer neural network.
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Figure 2: The figure demonstrates the mathematical optimal solution may not be practically feasible, when us-
ing gradient inversion to reconstruct 128 images from the CIFAR-10 dataset. A convolutional model from
is trained for 50k iterations with signed gradient descent, obtaining a mean loss of 5.09 x 107°.
Despite the small loss, the generated images are highly blurred.

Proposition 1. Consider the gradient inversion problem on the 1-layer neural network and a
mini-batch data of N samples. Eq (2) and (3) obtain a zero loss when the generated images
T = [i‘l, To, - ,.fJN] satisfy:

N.-VW=i-P, (5)

where P refers to a matrix defined by the prediction probabilities {p; ;} and the one-hot encoding
for the labels y*.

The above equation defines the constraints that the generated images & must satisfy in order to obtain
a zero loss. Note these images can be considered as some free variables living in the space of RV <P
with D denoting the dimensions of each independent sample ;. For any uploaded VW, we can
always find a proper N such that dim(z) > dim(VW) so that the uniqueness of solution cannot be
guaranteed.

This 1-layer neural network can be extended to the more general cases where the gradient constraints
are not sufficient enough to derive a unique solution. A typical case would therefore be training local
gradients with a large number of local images. Optimizing towards (2) or (3) in this case cannot
guarantee us to reach the true images as we expected

3.2 MATHEMATICAL NON-UNIQUENESS VS PRACTICAL NON-UNIQUENESS

The mathematical non-uniqueness nevertheless rains on our parade, since directly optimizing the
gradient matching may not lead us to the groundtruth as we expected. But a close look into this set
could provide more insights into the problem.

Let us first define the optimal set of (T]) as

Xorad i= {x € RM*P | arg min Lgraa (2, W, VW)} . (6)
i*

The existence proof renders this set Xgrad non-empty for all cases, whereas the non-uniqueness
property allows it to contain more than one solution, or even infinite solutions in certain cases.
But yet, a close look renders most of the solutions actually “not practically feasible”. To see this,
consider the case in Figure 2} where we numerically test the gradient inversion performance on
128 CIFAR-10 images. Despite the closeness of gradient matching (loss ~ O(10~?)), the obtained
results in fact consist of a mixture of natural images and some blurring images that can hardly
be reckoned as the true solutions. The underlying reason is the gradient matching step is often
performed on a pixel-by-pixel level, while properties of natural images, such as smoothness of
neighbourhood pixels, are not well addressed in the gradient inversion problem.

This example illustrates a typical phenomenon when the underlying batch size is relatively large
and gradient matching may give us more than one solution. Decomposing the averaged gradient

!The non-uniqueness problem was also demonstrated in|Zhu & Blaschko (2020), where the authors showed
that there could exist a pair of different data having the same gradient even for a large network.
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arbitrarily may lead to a very large set of mathematical feasible solutions, but most of these decou-
pled gradients may only result in blurring pictures that are more like noises. The set of practically
feasible solutions is actually much smaller when solving the optimization problem in Eq (2)) or (3).

4 THE PROPOSED METHOD

The reduction of practically feasible solutions motivates us to find a new gradient inversion solution
that emphasizes the similarity to natural images, instead of simply addressing the gradient matching
issue. In this part, we present three key pillars to find a proper solution in gradient inversion: a con-
volutional architecture, an over-parameterization setting and a properly designed network to create
pixel intimacy.

4.1 CONVOLUTIONAL METHOD

As alluded to earlier, a gradient inversion algorithm should decompose the averaged gradient into
proper proxies for “natural images” before inverting them into multiple pictures. But this is clearly
non-trivial since there would be infinite solutions to decompose the averaged gradient. Adding
regularization terms like total variation may alter the fundamental properties of the problem and
does not perform well in practical cases.

Convolutional networks, on the other hand, are proved to have an image prior that favours natural
images over high-frequency noises. In|[Ulyanov et al|(2018)), the authors showed that the structure
of a convolutional network itself is sufficient to capture a great deal of low-level image statistics
prior to any learning. Given a perturbed natural image, the convolutional network could first learn a
clean solution before fitting to the noisy groundtruth. This also explained why simple architectures
like convolutional generators can generate high-fidelity images in the generative adversarial network
(GAN) studies (Goodfellow et al., |2020; Radford et al.,[2015).

Such a priority over clean images motivates us to consider the convolutional generative network as
the backbone when performing gradient inversion, instead of optimizing pixel values independently.
A pure convolutional method also avoids the potential biases arising from regularization terms like
total variation (Dosovitskiy et al.,|2015).

Specifically, we require the convolutional model G to take a latent vector zg as its input and generate
a batch of images & = G(zo, 0) to satisfy the gradient matching constraint. Note the main difference
to the conventional algorithms is now we generate images & from a convolutional model instead of
updating them directly to satisfy the gradient matching loss, as in (Zhu et al., 2019; |Zhao et al.,
20205 Yin et al., 2021).

From the mathematical aspect, the following intersection theorem indicates that our solution space
is actually narrowed down.
Theorem 2. Given a latent vector zy and a convolutional model G, define its generative model space
as Xg := {&# € RN*P | & = G(20,0),6 € O}. For the gradient inversion problem, we consider a
proper solution space as the intersection of the gradient matching space and the model generation
space, namely

Xp = XgmdﬂXg. )

Let us make a few remarks here.

e We expect the model space X to contain images more close to natural images, while
the gradient matching space Xgrad requires images (including noisy images) to satisfy the
matching requirement. A direct translation of the above theorem is that the solution should
not only satisfy the gradient matching requirement, but also should be (or similar to) natural
images.

e For conventional gradient inversion algorithms (Zhu et al., 2019; |Zhao et al., |2020)), solu-
tions would only lie in Z € X, erad> Whereas in the above theorem we have

Xp = Xgrad NXg C Xgrad-
Hence, the solution space is narrowed down.

e We can also vary the input z, to expand the model space X, but throughout this paper, we
shall select a fixed z( and only update € for convenience.
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Figure 3: Left is the gradient inversion on both true images and random noises. The true random noises and the
reconstructed noises from gradient inversion are plotted in the right figures for visual comparison.

Boiling down to the gradient inversion problem itself, we numerically test such an image prior
by requiring the same convolutional network to perform gradient inversion on 4 images from the
CIFAR-10 dataset and 4 random noises as the fake images. Figure [3|indicates that the groundtruth
can be easily recovered for natural images, while the same convolutional network fails to obtain
high-fidelity random noises. The reconstructed noises, ranging from —0.16 to 0.62, are statistically
different from the original fake images (normalized to [0,1]).

4.2 OVER-PARAMETERIZATION

But apparently, not every convolutional network G can act as our backbone. For instance, in Fig-
ure 2] we follow the previous work 2021) to adopt a convolutional generator from
DCGAN (Radford et al.}[2013)) for gradient inversion, but its performance is clearly not satisfactory.
The question here is we need to ensure Xg is sufficiently large so that the intersection (7)) is non-
empty. Denoting the parameters of G as P(G), the following proposition provides a guarantee for
the non-emptiness of intersection.

Proposition 3. There exists a number Ny such that when P(G) > No, we have X # 0.

From the theoretical aspect, /Ny can be set as a sufficiently large number so that the generative space
Xg is expanded to the whole space, namely Xg = RY*D  Intersection in this case is always non-
empty as the groundtruth images satisfies the gradient constraints z* € Xgrad. Empirically, while
the linear-independent constraints of VW is case-by-case, a safe choice of Ny is to require the
parameter number of G to be larger than the original model F(x, W).

The over-parameterization requirement of P(G) > P(F) may be somehow counter-intuitive at the
first glance: the training parameters now exceeds the constraints and we no longer have the unique-
ness guarantee. Under-parameterization, on the one hand, may help to render the solution to be
unique. But we shall argue here that the under-parameterization will generally obtain a non-zero
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Figure 4: Left figure shows the gradient inversion on a convolutional model with various channels. Right figure
plots the true and reconstructed images when using a highly over-parameterized model (channel=512).
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Figure 5: Gradient Inversion with CI-Net.

loss and the obtained figures may not be close to the groundtruth. By adding more parameters, we
expect the parameter number to exceed the constraint number so that a minimal loss is incurred.
When the optimal solutions for over-parameterization may be non-unique, the previous convolu-
tional image prior comes to rescue: among all possible solutions, it prioritizes natural images.

For numerical validations, we conduct an ablation study in Figure f] by varying the parameter
numbers of the same convolutional network architecture. The original model F' is made of 2
convolutional layers and 1 linear output layer, containing 0.33M parameters. Results indicate
that an under-parameterized G (channel=8 and 16) could lead to poor performance, whereas an
over-parameterized network model (channel=128) obtains a structural similarity index measure
value (SSIM, |Wang et al.[| (2004)) of almost 1. Note even for the highly over-parameterized case
where channel equals 512 and P(G) ~ 60 P(F), obtaining high-fidelity images is still possible.

4.3 PIXEL INTIMACY

The last issue is how to choose a practical over-parameterized convolutional architecture. Natural
images possess a series of properties that distinguish them different from random noises, where fre-
quent pixel jumps are generally not possible. To address this property, we consider the progressive-
growing network (Karras et al.|[2017) as our underlying model but tailor its architecture to fit to the
gradient inversion problem (details in Appendix [B-I)). Specifically, an image core, usually starting
from 4 X 4 pixels, is first generated and then progressively grows to the targeted resolution. A key
step here is the interpolation when upscaling image resolution: it inserts extra pixels by considering
neighbourhood values. This interpolation step allows the new pixels to be intimately related to its
neighbouring, hence creating an implicit regularization on the total variation.

4.4 SUMMARY

To this end, we can now propose an over-parameterized convolutional algorithm to generate images
before fitting to the gradient matching requirement. The network, named as the convolutional inver-
sion network (CI-Net), is built upon the above understandings and insights for the gradient inversion
problem itself. We depict how to utilize such a network in Figure 5} firstly, an over-parameterized
convolutional CI-Net GG will take a random vector z; as its input and generate some images ; the
fake gradient VW’ is then compared to the true gradient to update the parameters of our network
G (o, 0). Details of the above procedure is depicted in Alg|T]in Appendix

More importantly, the proposed method is designed in a “plug and play” way: we do not require any
prior information, pre-training or regularization. Gradient inversion can be applied directly on the
untrained network, without the necessities to know potential data distribution or fitting other data
beforehand. This allows the above algorithm to be more applicable for general FL settings, where
local data are totally invisible.

5 EXPERIMENTS

With these designs, we can now proceed to the practical validations on real-world datasets. The
focus of this part is to test algorithm performance on large batch size and high resolution images.

7
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5.1 PREPARATIONS

We consider the image classification task on CIFAR-10 (resolution: 32 x 32) and ImageNet (reso-
lution: 256 x 256). A Resnet-18 network [He et al.| (2016) is utilized as the original model F', with
its activation function replaced by sigmoid as 2019). All experiments are conducted on
Nvidia-A100 with 40GB GPU memory. A line of recent gradient inversion algorithms, DLG
let al] (2019), iDLG [Zhao et al.| (2020), IGT [Geiping et al(2020) and GIAS (2021)), are
reproduced based on their original source codes for performance comparison. Specifically, this work
is most related to the pioneering generative method GIAS, but the differences lie in three aspects: 1)
we do not require any image prior or pre-training; 2) we reveal the over-parameterization is one of
the key factors, whereas the convolutional model in (2021) could be under-parameterized
(e.g., model in Figure[d); 3) we design a specific network for the gradient inversion problem instead
of using any existing architectures.

5.2 CIFAR-10 EXPERIMENT

In this experiment, algorithms are required to decode an averaged gradient computed from 128
CIFAR-10 images through inverse engineering. The goal is to address the large batch size issue in
gradient inversion. For validations, the whole process is repeated on 3 ResNet-18 models gener-
ated from different seeds. Four image quality assessment metrics are then applied to measure the
similarities between the obtained images and the groundtruth.

Algorithm SSIM*T FSIM? PSNR? LPIPS (VGG)|
DLG|Zhu et al. 0.10£0.01 | 0.58 £0.01 6.13 £ 0.06 0.65 £ 0.01
iDLG|Zhao et a 0.10+£0.01 | 0.57+0.01 6.03 £0.01 0.61 £0.01
IGT 0.16 £0.01 | 0.59+0.01 8.03 £0.26 0.61 +0.01
GIA 0.26£0.11 | 0.66+£0.06 | 11.05£2.85 0.59 £ 0.06
0.98+0.01 | 0.98+0.01 | 31.40+£0.14 | 0.03+£0.01

Table 1: Algorithm performance of gradient inversion on CIFAR-10 data, when batch size equals 128. SSIM
and FSIM have maximum value 1, and LPIPS has minimum value 0.

Table [T| summarizes the overall performance for all algorithms. Results indicate that all algorithms
except for the proposed method fail to obtain proper decompositions in the gradient inversion process
and obtains very low SSIM and PSNR value. In contrast, the proposed algorithm can successfully
reconstruct the groundtruth images in Figure[T] obtaining high-fidelity images with an SSIM value
of 0.98.

5.3 IMAGENET EXPERIMENT

We repeat the above experiments on the ImageNet dataset to address the high-resolution problem.
As such, we do not scale down the images (e.g., (2021))) but keep the original image
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Figure 7: Sample reconstructed images on ImageNet dataset, when batch size equals 24.

resolution for better simulations. A batch size of 24 images is selected to generate an averaged
gradient for each algorithm to perform gradient inversion.

Table [2] indicates such a high-resolution and large batch causes severe challenges to all the algo-
rithms, where the best SSIM value for our competitors is only 0.04. Performance of the proposed
algorithm still beats the rest algorithm, but is also affected by the data complexity. Figure[7]plots the
reconstructed results for the first 2 images, and the rest are presented in Appendix [D] Visual results
illustrate the proposed algorithm can still reconstruct the original image, but pictures are relatively
blurred compared to the groundtruth.

Algorithm SSIMT FSIMT PSNRT | LPIPS (VGG)]
DLG [Zhu et al. 0.01£0.00 | 0.45+0.01 | 540%0.05 | 0.84%0.01
iDLG [Zhao et al|(2020) | 0.014+0.00 | 0.47+0.01 | 6.09+0.04 | 0.83+0.01
IGT (020) | 0.04+0.01 | 0.53+0.01 | 7.904022 | 0.77+0.01
GIAS @021) | 0.04+£0.02 | 0.54+0.04 | 803+£0.77 | 0.7840.07
0.52+0.06 | 0.77 +0.03 | 19.64+1.05 | 0.49 +0.04

Table 2: Algorithm performance of gradient inversion on ImageNet, when batch size equals 24.

5.4 EXTENSION TO LARGER SIZES

The above findings can be extended to an even larger batch, and we also numerically test on 256
CIFAR-10 images and 32 ImageNet pictures. Note these are the maximum batch sizes that our
GPU memory can support. Results in Table [3| are consistent with our previous conclusions and the
proposed algorithm continuously generate high-fidelity images on the CIFAR-10 dataset. For space
limitations, results on ImageNet are provided in Appendix [D]

Batch Size | SSIMT FSIMT PSNRT | LPIPS (VGG)J
64 T.00£0.00 | 1.00 £0.00 | 33.72£0.05 | 0.0 £0.00
128 0.98 +£0.01 | 0.98+£0.01 | 31.40+0.14 | 0.03 £0.01
256 0.98+0.01 | 0.99+0.01 | 34.11+0.13 | 0.02+0.01

Table 3: Performance of CI-Net, with various batch sizes.

6 SUMMARY

In this paper, we propose a new convolutional network named CI-Net to perform gradient inversion
attack in federated learning. The three key elements to the network are: a convolutional architecture,
an over-parameterization requirement and a properly designed growing model. Such a network is
required to generate images and then adjust its parameters to fit the true gradients, instead of the con-
ventional ways on the pixel level. We conduct a series of practical experiments to demonstrate that
the proposed algorithm can outperform SOTA algorithms and reconstruct the underlying original
training images more effectively, even with large batch sizes and high resolutions.
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