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ABSTRACT

Large language models distill broad knowledge from text corpora. However, they
can be inconsistent when it comes to completing user specified tasks. This issue
can be addressed by finetuning such models via supervised learning on curated
datasets, or via reinforcement learning. In this work, we propose a novel offline
RL method, implicit language Q-learning (ILQL), designed for use on language
models, that combines both the flexible utility maximization framework of RL
algorithms with the ability of supervised learning to leverage previously collected
data, as well as its simplicity and stability. Our method employs a combination
of value conservatism alongside an implicit dataset support constraint in learning
value functions, which are then used to guide language model generations towards
maximizing user-specified utility functions. In addition to empirically validating
ILQL, we present a detailed empirical analysis of situations where offline RL can
be useful in natural language generation settings, demonstrating how it can be a
more effective utility optimizer than prior approaches for end-to-end dialogue, and
how it can effectively optimize high variance reward functions based on subjective
judgement, such as whether to label a comment as toxic or not1.
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Figure 1: Offline RL differs from supervised learning
in that it learns to maximize user-specified rewards from
suboptimal data with reward labels.

Large language models can acquire a remark-
able amount of knowledge from large text cor-
pora, and can be applied to a wide range of
language-based tasks. However, such models
are not designed to optimize any user-specified
utility, instead requiring considerable trial and
error to design prompts that coerce the mod-
els into producing desirable outputs (Liu et al.,
2021; Brown et al., 2020; Min et al., 2021). In
essence, standard unsupervised language model
training only solves part of the problem, being
effective at distilling down knowledge in large
corpora, but relatively clumsy when applying
this knowledge to solve user-specified tasks.

Reinforcement learning (RL) in principle can
provide an effective framework for steering lan-
guage models toward user specified tasks as long
as the task can be represented by some utility
function (i.e., a reward function); however, as outlined in Figure 2 contemporary methods suffer from
high systems complexity and can require expensive human interaction. We need several conditions
to make RL practical: (1) Easy to use: the underlying learning algorithm and workflow should be
simple, stable, and scalable; (2) Able to optimize user specified rewards: the algorithm should be
able to steer a language model toward maximizing any user-defined reward signal, from high-level
task goals (e.g., book a flight) to low-level linguistic subtleties (e.g., avoiding rude or toxic speech);
(3) Practical for interactive applications: the system should be able to handle a variety of tasks,

1Code at https://sea-snell.github.io/ILQL_site/
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from generating text with desired properties to sequential turn-taking in settings such as dialogue
tasks; (4) Able to leverage existing data: such a system should be able to directly utilize the large
quantities of existing data, avoiding expensive and time-consuming online human interactions; (5)
Temporally compositional (Emmons et al., 2021; Rafols et al., 2005): the method should be able to
attain significant improvement over the average behavior in the data – not merely copying the best
behaviors in the dataset, but actually distilling out underlying patterns in the relationship between
rewards, task dynamics, and language to produce near optimal generations, even when the dataset
demonstrates only mediocre task performance.
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Figure 2: ILQL meets each of the five criteria for prac-
tical NLP RL methods we outline in Section 1.

Offline RL provides a learning paradigm (Fig-
ure 1) that combines both supervised learning’s
ability to leverage existing data (criteria 4) with
RL’s ability to optimize arbitrary rewards and
leverage temporal compositionality (criteria 2,
3, 5) (Levine et al., 2020; Kostrikov et al., 2021;
Kumar et al., 2020; Janner et al., 2021; Chen
et al., 2021; Yu et al., 2020; Kidambi et al.,
2020). However, prior offline RL approaches for
language tasks are either based on dynamic programming, which enjoy the temporal compositionality
(see Appendix A.2) but suffer from high systems complexity, hyper-parameter instability, and slow
training times (Verma et al., 2022; Jaques et al., 2020; 2017) (meets criteria 5, fails 1), or methods
based on conditional imitation or dataset value learning that are simple and stable to train, but do not
provide the temporal compositionality enjoyed by “full” RL methods (meets criteria 1, fails 5) (Chen
et al., 2021; Snell et al., 2022; Holtzman et al., 2018; Yang & Klein, 2021; Li et al., 2017; Krause
et al., 2021). Motivated by all these criteria, we design a novel offline RL method based on dynamic
programming with an implicit dataset support constraint (Kostrikov et al., 2021) that enjoys greater
stability, fewer training-time dependencies (such as relying on approximate likelihoods from an
external language model during training), and a more flexible decoding process than prior approaches
(see Sections 4 and 6.4). Our method, ILQL, fine-tunes a transformer language model to predict the
state-action Q function and the state value function V at each token. During training we perform
iterative policy improvement by fitting a value function to an upper-expectile of the Q function,
enabling us to learn policies that leverage temporal compositionality, significantly outperforming
the data, while avoiding the need to execute expensive training-time procedures, such as sampling
counterfactual utterances from the language model (Verma et al., 2022) (see Sections 5 and 6). Then
at inference time we can simply steer a standard language model towards utility maximizing behavior,
by perturbing the predicted likelihoods with our learned values functions (see Figure 3).

Our main contribution is twofold: (1) a novel offline RL algorithm, ILQL, for language models,
that employs a stable optimization process that can flexibly learn high-performing policies from
sub-optimal data in arbitrary sequential decision making settings, thus meeting each of the conditions
laid out above; and (2) a detailed empirical analysis, not only demonstrating ILQL’s ability to more
consistently and stably adapt to many different utility functions than prior approaches, but also ILQL’s
unique ability to optimize stochastic or subjective reward functions, and its ability to discover optimal
behaviors in the face of sub-optimal or unusual data distributions. In particular, in the controlled
generation setting of generating non-toxic text, we demonstrate that ILQL, trained on both toxic
and non-toxic comments, learns to produce fewer toxic outputs than the more standard approach of
performing standard supervised fine-tuning on only non-toxic comments.

2 RELATED WORK

A number of prior works have explored combining online RL methods with language models for
natural language tasks such as machine translation or summarization (Ranzato et al., 2015; Wu et al.,
2016; Paulus et al., 2017; Wu & Hu, 2018). These works have demonstrated that RL can be an
effective tool for steering language models towards satisfying utility functions. However, when it
comes to settings that require multiple steps of human interaction, e.g., dialogue, these methods can
quickly become impractical (Verma et al., 2022; Ghasemipour et al., 2020).

Offline RL addresses this shortcoming by removing all need for environment interaction or user
simulators, instead operating purely on static datasets of prior human interaction. Several prior
works have applied offline RL to NLP and more broadly sequence generation problems (Jaques
et al., 2020; Verma et al., 2022; Jaques et al., 2017; Snell et al., 2022; Janner et al., 2021; Chen
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et al., 2021). The most closely related to our work are those methods based on approximate dynamic
programming (Jaques et al., 2020; 2017; Verma et al., 2022; Jang et al., 2022). While all these works
present promising offline RL methods for NLP tasks, none of them provide a method that achieves the
simplicity, stability, and ease-of-use aspect at the level of supervised learning. For example, Verma et
al. and Jang et al. (Verma et al., 2022; Jang et al., 2022) define their action space at the “per-utterance”
level (Verma et al., 2022), resulting in expensive decoding processes during training (Bender et al.,
2021); and while Jaques et al. (Jaques et al., 2020; 2017) remove this issue by defining actions at the
“per-token” level, the offline RL algorithm proposed requires querying likelihoods from a language
model at RL training time, which adds an additional compounding source of approximation error
and increases systems complexity at training time. Our proposed method instead operates both at the
“per-token“ level and trains in a fully self-contained way, without the need to simulate generation at
training time or query likelihoods from a separate language model. This is achieved by combining
an implicit dataset support constraint (Kostrikov et al., 2021) with a novel policy extraction method
that takes advantage of the discrete “per-token” action space. The result of these design choices is
a simple, stable, and effective method that is easy for NLP practitioners to pick up and apply to a
variety of language-based tasks. In Section 6.4 we demonstrate our method’s effectiveness in meeting
these criteria through a series of ablations and comparisons.

Much prior work on steering language models towards desired behavior has done so without an
explicit utility function, instead focusing on curating finetuning datasets (Zhang et al., 2018; Zellers
et al., 2019; Rajpurkar et al., 2018). A more closely related line of work uses classifiers to guide
LMs towards generating desired textual attributes (Yang & Klein, 2021; Ghazvininejad et al., 2017;
Holtzman et al., 2018; Li et al., 2017). These methods are closely related to the prior work on offline
RL. In RL parlance, such methods could be considered “policy extraction” methods with Monte
Carlo value estimates. This can be interpreted as taking a single step of policy improvement which,
though often effective (Brandfonbrener et al., 2021), is known to be suboptimal as compared to full
dynamic programming methods (i.e., full Q-learning or actor-critic) (Kostrikov et al., 2021). We will
demonstrate empirically in Section 5 that our offline RL method can lead to significant improvements
in final performance as compared to such “single step” approaches, particularly when the training
data is highly suboptimal for the desired task.

3 PRELIMINARIES: LANGUAGE GENERATION AS A REINFORCEMENT
LEARNING TASK

Token-level POMDP. In this work, we formalize language generation tasks as a partially observable
Markov decision process (POMDP). We define the POMDP M at the token level with M =
(S,A,O, T ,Z, µ0,R, γ). We define the agent’s observation ht ∈ O as a history of tokens with
ht = {t0, t1, t2, t3, ...tt−1}; the action space at = tt ∈ A is the set of possible next-tokens in our
vocabulary which includes the special end-of-turn token aend (see Figure 3).

Value-based offline RL. In offline RL, the goal is to learn the optimal policy π that achieves highest
discounted cumulative reward from a static dataset D that was produced by some potentially subopti-
mal behavior policy πβ . In this work, we build on the implicit Q-learning (IQL) algorithm (Kostrikov
et al., 2021), which approximates the Bellman optimality equation constrained to in-dataset actions

Q∗(s, a) = R(s, a) + γ max
a′,s.t. πβ(a

′|s′)>0
Q∗(s′, a′).

Instead of directly implementing the support constraint, IQL approximates the maximization on the
right-hand side of the constrained Bellman operator with expectile regression:

LV (ψ) = E(s,a) ∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))] (1)

where Lτ2(u) = |τ − 1(u < 0)|u2. Increasing the hyperparameter τ , more closely approximates the
maximum. Then this approximation can be used to estimate TD-targets for the Q-networks:

LQ(θ) = E(s,a,s′) ∼D[(R(s, a) + γVψ(s
′)−Qθ(s, a))

2]. (2)

IQL was designed for fully observable MDPs. However, in Section 4.1, we discuss how we adapt this
formulation to the POMDP setting described above using sequence models.
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Figure 3: A diagram of our Implicit Language Q Learning algorithm. Left: ILQL training involves three
transformers, each of which is finetuned from a standard pretrained model: (1) A πβ model, finetuned with
standard supervised learning. (2) A value function model, with Q and V on two separate heads; the value
functions are trained with Bellman backups using a combination of conservatism and and an implicit dataset
support constraint. (3) A target value network, which is a Polyak moving average of (2). Right: At inference time,
we use our learned value functions to perturb the log probabilities of πβ towards utility maximizing behavior.

Supervised learning baselines. To align with NLP terminology, we refer to %BC, or supervised
learning on curated or filtered data, as “filtered fine-tuning”, and we refer to BC, or finetuning on
unfiltered data as “fine-tuning”. See Appendix A.4 for filtering details.

4 IMPLICIT LANGUAGE Q-LEARNING

Our main technical contribution implicit language Q-learning (ILQL), an offline RL algorithm for
NLP tasks. ILQL is specifically designed to enable simple and efficient training of language models
with user-specified reward functions, with a workflow that is similar to standard supervised learning.

ILQL builds on the IQL algorithm, extending it to the token-level POMDP that defines NLP tasks
via the following modifications: (i) it integrates with sequence models to handle partially observable
language generation tasks (Section 4.2); (ii) it utilizes a novel policy extraction method that directly
perturbs the behavior policy πβ with our learned value functions, rather than training a separate actor
π, significantly improving performance and stability on NLP tasks (Section 4.1) and (iii) it adds a
conservatism loss term (Kumar et al., 2020) to the Q-function, fixing a calibration issue in the policy
extraction step. Figure 3 provides an overview of our method.

4.1 ADAPTING IMPLICIT Q-LEARNING TO LANGUAGE MODELS

Implicit value function learning. Like IQL, our method learns both a value function and a Q-
function, which bootstrap off each other through Bellman backups with implicit maximization
through an expectile loss. This recursive process of fitting Q and V corresponds to iterative policy
improvement subject to an implicit dataset support constraint, specified by the expectile used to fit V.
Due to parameter sharing, we combine Eqn. 1 and 2 into a single loss function:

LQ,V (θ) = Eτ∼D

[
T∑
i=0

(R(hi, ai) + γVθ(hi+1)−Qθ(hi, ai))
2 + Lτ2(Qθ̂(hi, ai)− Vθ(hi))

]
In contrast to IQL, we sample sequences of tokens instead of individual transitions to handle partial
observability, such that for each time step, the values are predicted based on a full history.

Policy extraction. IQL (Kostrikov et al., 2021) uses AWR policy extraction (Peng et al., 2019),
which distills the Q-function into a policy with a eβ(Q̂−V ) weighted log-likelihood loss. However, as
we discuss in Section 6, we found this somewhat unstable to train on language models, likely due
to the high-variance gradients induced by the advantage weights. Fortunately, the value learning
procedure in IQL is independent of policy extraction, so instead of attempting to train a model to
represent the optimal policy, we use the learned Q and V values to directly perturb samples from
a model finetuned via supervised learning to model πβ (see Figure 3). To this end, we compute a
modified likelihood for each token by adding its advantage Q(h, a)− V (h) to its logits under the πβ
model, with a multiplier β. We can then renormalize these pseudo-logits and sample them, resulting in
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the implicit policy π(a|h) ∝ πβ(a|h)eβ(Q(h,a)−V (h)) = exp(log(πβ(a|h)) + β(Q(h, a)− V (h))).
This does not require training a separate actor, only a behavioral model πβ , which can be trained with
the standard and stable supervised finetuning objective.

However, naïvely performing policy extraction in this way can perform poorly due to over-smoothed
probabilities in πβ that may be nonzero for extremely unlikely tokens. In this case, samples from
πβ may be out of distribution for Q and V , and might have erroneous values. To fix this calibration
issue, we can either further decrease the probability of low probability actions in πβ by performing
top-p filtering or tuning a temperature parameter, or we can explicitly push down OOD Q-values
during training. We implement the latter by adding a small amount of NLL loss to the Q values,
which corresponds to the additional loss terms introduced by CQL (Kumar et al., 2020) with a
uniform KL regularizer. Since ILQL actions are discrete tokens, as opposed to the original CQL
method (Kostrikov et al., 2021), which operates on continuous action spaces, this CQL loss term is
no more expensive than, and in fact equivalent to, a standard cross-entropy loss at the token level. We
find that both of these approaches often work in practice, but prefer the latter, finding that it requires
less tuning for policy extraction at inference time. Our full loss function is therefore:

LcQ,V (θ) = LQ,V (θ)− αEτ∼D log

(
eQθ(si,ai)∑
a′∈A e

Qθ(si,a′)

)
In early experiments, we found that decoding using the CQL regularized value functions alone,
without πβ , required careful tuning of the CQL weight α. When the CQL regularized value function
is combined with πβ for policy extraction, it mitigates this issue with hyper parameter sensitivity, and
simply setting the CQL weight α to an arbitrary small value less than 1 typically works well.

4.2 ARCHITECTURES FOR IMPLICIT LANGUAGE Q-LEARNING

We use GPT-2 small as the base model for all transformers in our experiments. Our value function
transformer has three MLP heads: two independently initialized and trained Q heads and one V head.
Each head has two layers, with a hidden dimension twice that of the embedding dimension. Our
target Q value is parameterized as the minimum prediction of both Polyak averaged target Q heads:
Q̂ = min(Q1, Q2) (Fujimoto et al., 2018). As in standard language modeling, the transformer’s
causal masking enables us to perform Bellman updates over entire sequences in parallel.

5 PROOF OF CONCEPT: MULTI-STEP OFFLINE RL ON WORDLE

The lack of configurable task settings and reliable evaluations has arguably slowed down progress
in applying sophisticated RL algorithms to language and dialogue tasks (Jiang et al., 2021; Deriu
et al., 2021; Curry et al., 2017). To address this, we present the Wordle game (Lokshtanov &
Subercaseaux, 2022) as an easy-to-use but challenging benchmark task to test the capabilities of
offline RL algorithms. In this section, we use this task to construct situations where we would expect
offline RL to lead to significant improvement over simpler methods based on supervised learning or
single-step improvement (e.g., single-step RL-style or filtered supervised learning methods).

Multi-step RL: a motivating example. General value-based RL methods based on solving the
Bellman equation described in Section 3 can be viewed as iteratively improving the policy: each
update sets the current value Q(ht, at) to be the reward plus the maximum possible next time step
value according to the current value function. This is in contrast to “single-step” update methods,
which do not recursively update the value function, instead only learning to estimate the value of the
dataset and then greedily selecting the maximal-value action during inference. Classic examples of
such methods use Monte Carlo regression or single-step RL (Sutton et al., 1998) to train the value
function, and then greedily choose actions at test-time, though a number of different methods of
this sort have been proposed for guided language generation in the literature (Yang & Klein, 2021;
Ghazvininejad et al., 2017; Holtzman et al., 2018; Li et al., 2017). Such methods have been referred
to in the NLP literature as “reward models" (Young et al., 2017; Gu et al., 2016; Su et al., 2016) and
in the offline RL literature “one step RL" or SARSA (Brandfonbrener et al., 2021). Some works
also proposed behavioral cloning methods that filter the training data or use conditioning to clone
high-reward trajectories (Chen et al., 2021) – though these methods are based on different principles,
they also employ Monte Carlo estimates of the cumulative reward in place of value functions learned
with dynamic programming. While in principle such methods should not lead to optimal policies, in
practice they often constitute an appealing approximation due to their ease of use.
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Figure 4: Left: an abstract depiction of an MDP where single-step RL fails to discover the optimal policy. Right:
A notional illustrative example where we might expect full “multi-step” RL methods (such as ILQL) to perform
significantly better than “single-step” methods. In this example, good utterances tend to start with “The movie
was...”, while bad utterances start with “The movie wasn’t...” However, the very best examples also start with
“The movie wasn’t...”, requiring multi-step planning or multiple steps of policy improvement to derive effective
strategies. Methods that implement just a single step of policy improvement will fail to produce maximally
positive sentiment outputs. While this example may appear somewhat contrived, we see in our experiments that
multi-step RL methods do lead to improvements in a number of more real settings.

Since ILQL performs multiple steps of policy improvement, it can significantly improve over Monte
Carlo estimators or single-step RL when the underlying data is sub-optimal. One example corresponds
to the notional task in Figure 4, in which the optimal sequence of actions requires traversing a state
that’s also frequented by sub-optimal examples. In this case, single-step RL will learn to take actions
that appear safer according to the dataset — such as the transition “The movie” → “was” in Figure 4
-– whereas full (“multi-step”) RL methods would recover the optimal policy. We demonstrate this
empirically on the Wordle game below.
Wordle dataset. Our Wordle task is designed to allow us to use data from real humans in a sequential
decision-making setting while still enabling objective simulated evaluation and the flexibility to
compose datasets with different properties, thus providing an effective benchmark for validating a
variety of approaches. Wordle is a word guessing game in which the agent gets 6 attempts to guess a
certain word, and at each turn receives feedback from the environment about which letters from the
guessed word are and are not in the true word (see Appendix A.5 for more details). While Wordle may
appear distinct from many natural language tasks, it shares a number of high-level properties, such
as non-deterministic dynamics and a sequential turn-based structure, with more complex language
domains like dialogue, making it well suited for a first evaluation of NLP-focused RL methods.
Synthetic Wordle task. We constructed a synthetic Wordle dataset to serve as a benchmark that
is specifically intended to evaluate how well a particular method can perform multiple steps of
policy improvement. This task intended to specifically bring out the failure mode of single step
methods in a setting suitable for testing offline RL methods with sequence models. The dataset
consists of data sampled from three behavior policies, each corresponding to one of the branches
in Figure 4: (1) πupper bound, a high-performing policy, corresponding to the path S0 → Goal. (2)
πadversarial, which behaves the same as πupper bound for the first two actions (S0 → S1) and then behaves
suboptimally (S0 → Lava). (3) πsuboptimal, a policy of moderate performance, corresponding to
S0 → S1. Measuring the predicted Q values from our models trained on this distribution, in Figure 6
(right) we observe that ILQL assigns higher values to actions corresponding to the paths towards
“misleading states” (i.e. S2) than those to the “goal states” (i.e. S1), whereas single-step RL shows the
exact opposite preference, confirming both our hypothesis that this type of MDP would be amenable
to multiple steps of policy improvement, and that ILQL as an algorithm is able to perform such
policy improvement. Of course, the structure of real-world NLP tasks might not necessarily reflect
this setting – as we show in the next section, ILQL still often attains improvement over one-step
and BC-based methods, though it is more difficult to discern the particular structure that makes this
possible in more realistic tasks.
Validating on natural Wordle data. While the synthetic setting explored above was specifically
designed to demonstrate a dramatic difference between ILQL and single-step RL, the findings still
transfer to more realistic settings. In Table 6, we demonstrate ILQL outperforming single-step RL on
a natural dataset of Wordle games scraped from Twitter (see Appendix A.5 for details).

6 NATURAL LANGUAGE EXPERIMENTS

Next, we evaluate ILQL on two realistic language tasks. We first identify scenarios in which one
might expect offline RL to be particularly beneficial: (1) tasks that demand repeated interactions,
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method standard y/n cons. y/n
ILQL -5.21 ± 0.13 -5.57±0.13 -6.57 ± 0.18

1-step RL -5.14 ± 0.13 -5.91 ± 0.14 -7.63 ± 0.20
Filtered FT -5.07 ± 0.13 -7.48 ± 0.21 -9.13 ± 0.22

FT -5.25 ± 0.13 -10.85 ± 0.27 -15.16 ± 0.35

train/eval standard y/n cons. y/n
standard -5.21 ± 0.13 -11.12 ± 0.30 -14.97 ± 0.36

y/n -5.41 ± 0.12 -5.57 ± 0.13 -8.24 ± 0.22
cons. y/n -5.29 ± 0.13 -5.42 ± 0.13 -6.57 ± 0.18

Table 1: Left: comparing ILQL to baselines on our Visual Dialogue rewards. “Cons. y/n” refers to the
“Conservative y/n” reward. ILQL successfully optimizes for many different rewards, even those for which the
data is sub-optimal (e.g. BC performance). Right: Evaluating each ILQL agent on other rewards. Agents
generally perform worse on rewards for which they were not trained.

like dialogue; (2) data that is highly sub-optimal under its utility function; (3) settings with highly
stochastic rewards based on subjective human judgement (e.g., avoiding toxic language). Taking
into account these three scenarios, we evaluate ILQL on (1) a goal-directed question asking task
based on Visual Dialogue (Das et al., 2016), where achieving high rewards on a diverse set of metrics
during repeated interactions is desirable, and (2) a Reddit comments generation task with highly
subjective and noisy reward functions (toxicity ratings or upvotes). For general experiment details
see Appendix A.4.

6.1 EVALUATING DIVERSE REWARDS ON VISUAL DIALOGUE

Image Caption: A man, with other people in the background, is sitting at a 
picnic table with a cell phone in front of him while he uses a fork and knife 
to cut a dessert on a plate.
Questioner: is man young?
Answerer: yes
Questioner: is he wearing glasses?
Answerer: no
Questioner: is there food on table?
Answerer: yes
Questioner: is there food on table?
Answerer: yes

Image Caption: A person flying a kite over a sand dune.
Questioner: what color is kite?
Answerer: it's black and white
Questioner: is person male or female?
Answerer: can't tell
Questioner: what is person wearing?
Answerer: i can't tell
Questioner: what color is sand?
Answerer: dark brown
Questioner: is person flying kite flying in air?
Answerer: yes
Questioner: what color is kite?
Answerer: black

Image Caption: Tour buses are lined up on the street waiting for people.
Questioner: how many buses?
Answerer: 2
Questioner: what color are buses?
Answerer: white and red
Questioner: how many people?
Answerer: 2
Questioner: what gender are people?
Answerer: 1 is male and 1 is female
Questioner: what are they wearing?
Answerer: 1 is wearing shorts and other is wearing shorts and shirt
Questioner: what color is their hair?
Answerer: dark brown

Standard Reward Function:

Yes/No Penalty:

Conservative Yes/No Penalty:

Figure 5: Dialogues from different agents on
the Visual Dialogue task. We observe qualita-
tive differences depending on the agent’s reward.
The “standard” agent asks many yes/no question,
whereas adding a string-match penalty for yes/no
questions prevents many of such questions from
being asked, and adding a more conservative
yes/no penalty prevents all of such questions.

Visual Dialogue dataset. We use the Visual Dialogue
dataset (Das et al., 2016) to evaluate our algorithm’s
ability to optimize many different reward functions in
complex dialogue settings. The task involves both a
question asking and question answering agent, the latter
of which is presented with an image and tasked with
answering the former’s questions about the image. In-
stead of using this task as a question answering task, we
follow Das et al. (Das et al., 2017) and train our agents
to ask questions, with rewards based on how well the
ground-truth image can be predicted from the resulting
dialogue. For evaluation, we use the model from Das
et al. (Das et al., 2017) as our environment simulator.
To allow our agents to operate entirely in the space
of natural language, we treat the image embedding as
part of the reward function, using the supervised model
proposed by Das et al. (Das et al., 2017) to predict the
image embedding from the dialogue. See Figure 5 for
example dialogues in this domain. We chose this envi-
ronment specifically because (1) it has been previously
studied in the context of RL (Das et al., 2017); (2) as
a dialogue game, automated evaluation is more reliable
than other tasks; and (3) the Q&A structure enables
some temporal compositionality (i.e., the answer to one
question may prompt new more specific questions).

Visual Dialogue task. The agent receives a reward of
-1 for each turn in which the ground truth image can’t
be predicted accurately from the dialogue, otherwise
the agent receives a reward of 0 and the environment
ends interaction. For details on the task setup, see
Appendix A.6. Since the Visual-Dialogue dataset was
largely designed for supervised learning agents, the data is already near optimal for the original task.
However, if we shift the reward function such that the data is no longer optimal, we can observe large
gains from offline RL. We therefore use this domain to demonstrate offline RL’s flexibility to adapt to
different reward functions. We consider three rewards: “standard”, “y/n”, and “conservative y/n”.
“Standard” is simply the reward described above and detailed in Appendix A.6. “y/n” adds to the
“standard” reward a penalty for asking questions that produce yes or no answers, by assigning a reward
of -2 each time the other speaker says “yes” or “no”. This is challenging, because while the data
contains many yes/no questions, the goal is not for the agent itself to avoid those words, but rather
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method toxicity upvotes real upvotes model
ILQL 0.0±0.0 9.83±0.04 10.0±0.0

single-step RL 0.0±0.0 6.23±0.15 10.0±0.0
Filtered FT -0.74±0.07 7.06±0.14 7.86±0.13

FT -3.51±0.13 4.87±0.16 4.87±0.16

train/eval toxicity upvotes model
toxicity 0.0±0.0 9.07±0.09

upvotes gold -5.00±0.00 9.83±0.04
upvotes model -5.00±0.00 10.0±0.0

Table 2: Left: A comparison of ILQL against baselines on our Reddit comment rewards. ILQL never generates
undesirable comments on 2 out of 3 rewards, whereas fine-tuning on filtered data occasionally does. Right:
Evaluating each Reddit ILQL agent on other rewards. Agents trained on one reward are less optimal on others.
avoid utterances that cause the other speaker to use them. Not all simple questions produce literal
“yes/no” answers, so our third reward further penalizes brief responses, such as “I can’t tell”, “no it
isn’t”, “yes it is”, “I don’t know”. This reward function assigns a -2 reward to a set of low-information
responses using a handful of conservative string matching heuristics, detailed in Appendix A.6.

Results on optimizing diverse rewards We demonstrate that ILQL learns a policy distinct from
the dataset behavior policy and can optimize many different rewards in Table 1 left, where we can see
that ILQL is able to outperform baselines on most of our Visual Dialogue reward functions. Agents
optimized for each reward learn different behaviors as well: in Table 1 right, we see that offline RL
agents trained on one reward function are generally suboptimal on others. Figure 5 demonstrates
this qualitatively: without the “yes/no” penalty, our policies ask many “yes/no” questions, but under
its presence policies tend to ask other questions instead. Even when the underlying data is highly
sub-optimal for a given reward function, ILQL is able to determine the desired behavior. In addition
to our reward-based evaluations, we also provide language quality evaluations for all baselines on
each reward function in Section A.11.
6.2 SUBJECTIVE REWARDS ON REDDIT COMMENTS

Reddit comments dataset. To evaluate our agents on minimally curated and maximally diverse
open-domain text with highly stochastic reward functions based on subjective human judgement, we
train ILQL on a large dataset of 4 million Reddit comments from 2; our agents are given a parent
comment or post as context and then trained to produce replies that satisfy one of two rewards:
“toxicity” and “upvotes real”. Given that this is internet text, the data contains toxic language, so for
our “toxicity” reward, we train our agents to satisfy a toxicity filter, which gives rewards -10, -5, and
0 for toxic comments, moderately toxic, and non-toxic comments respectively. Our second reward
function incentivizes comments that would receive a positive number of upvotes, rewarding +10
for positive upvotes and 0 negative. We automatically evaluate our upvote agents with a finetuned
RoBERTa-base model, that predicts whether a comment will receive positive upvotes. We train this
model on a held-out split of the data (see Appendix A.7 for more details). We train agents on both the
ground truth upvotes (denoted “upvotes real”) and on this upvote model’s predicted reward (denoted
“upvotes model”).
Results on optimizing noisy rewards. In natural language tasks, we may need to optimize stochas-
tic, high-variance reward functions based on subjective judgement, such as whether a Reddit comment
should be flagged as toxic. Such stochastic settings should be expected when multiple users with
differing opinions provide reward labels. Offline RL, by design, is robust to environment stochasticity,
and therefore should be able to optimize such noisy environments. We use the Reddit toxicity and
upvote tasks to study how well ILQL can handle such settings. As we can see in Table 2 top, ILQL
is surprisingly able to get a perfect or near-perfect score on these more subjective settings, whereas
more standard approaches, such as filtered finetuning on only non-toxic or only positive upvote
comments, perform significantly worse (i.e. generates more comments flagged as toxic or predicted
to have negative upvotes). Additionally, we see in Table 2 bottom that agents trained on one reward
function are generally less optimal for others, confirming that ILQL is effectively specializing its
behavior for each utility function. We have additional complementary experiments studying this
effect in Appendix A.8. In addition to our reward-based evaluations, we also provide language quality
evaluations of our agents in Section A.11, and a preliminary user study in Appendix A.12.

6.3 CHOICE OF OFFLINE RL ALGORITHM

We compare ILQL to four other RL methods: a per-token version of CQL, an adaptation of the
ψ-learning as proposed by Jaques et al. (Jaques et al., 2020; 2017), decision transformer (DT) (Chen
et al., 2021), and single-step RL (Yang & Klein, 2021; Ghazvininejad et al., 2017; Holtzman et al.,
2018; Li et al., 2017). In Table 3, we see that ILQL significantly outperforms baselines, and also has
the second lowest hyper-parameter variance, just behind single-step RL, confirming our hypothesis
that ILQL can provide both high relative performance and training stability.

2https://www.kaggle.com/code/danofer/reddit-comments-scores-nlp/notebook
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6.4 ILQL ABLATIONS

To understand which components of ILQL enable both good results and greater ease-of-use than prior
offline RL approaches for language tasks, we abalate ILQL’s main design decisions: the choice of a
per-token action space, our value learning method, and our policy extraction strategy.

method max score σ w.r.t hparams
ILQL -5.57±0.13 0.46
CQL -7.32±0.17 1.98
ψ -10.05±0.18 0.60

single-step RL -5.91±0.14 0.35
DT -6.70±0.17 1.15

Filtered Fine-tuning -7.48±0.21 0.72
Fine-tuning -10.85±0.27 -

Table 3: Comparison of ILQL and other offline RL
methods on the visual dialogue “y/n” task. ILQL per-
forms better with lower hyperparameter sensitivity. Re-
sults show best hyperparameter settings for each method.

We evaluate these comparisons on the Visual
Dialogue “yes/no” reward because (1) it is im-
portant to compare offline RL methods on a chal-
lenging and realistic sequential decision prob-
lem like dialogue, and (2) since the Visual Dia-
logue data is already “near-expert” for the “stan-
dard” reward, the “yes/no” reward is better able
to differentiate between methods.

Ablations on per-token vs. per-utterance ac-
tions. We hypothesize that, since a per-token
Q function enables an efficient search through
the utterance action space, performing offline RL at the token level, rather than the utterance level,
can yield cheaper inference and better performance.
We compare ILQL to: (1) ILQL (utterance): a per-utterance adaptation of ILQL that removes the
conservatism loss term and performs Bellman backups at the utterance level instead of the token level;
(2) single-step RL (utterance): a per-utterance version of single-step RL; and (3) CHAI (Verma et al.,
2022): an adaptation of CQL for use on language models at the per-utterance action level. For policy
extraction, each baseline uses EMAQ (Ghasemipour et al., 2020), where we sample N utterances
from a learned behavior policy and then re-rank with the Q function.

We see in Table 5 that ILQL outperforms per-utterance ILQL and single-step RL, while also running
inference ∼4x faster on a single T4 GPU. When tuned well, we see that CHAI perform similarly to
ILQL. However, CHAI is less stable with respect to hyperparameters and is >2x slower at inference
time.

method max score σ w.r.t hparams
ILQL -5.57±0.13 0.46

ILQL (AWR) -5.96±0.13 2.82
ILQL (GOLD) -7.58±0.21 0.61

Table 4: Policy extraction techniques for ILQL.

Ablations on policy extraction strategies. In adapt-
ing IQL (Kostrikov et al., 2021) to sequence models, we
design a novel policy extraction strategy, as described in
Section 4. We compare our novel extraction procedure
to two baselines: (1) the standard AWR-based (Peng
et al., 2019) policy extraction method used in IQL (Kostrikov et al., 2021) and a number of other
offline RL algorithms (Nair et al., 2020; Wang et al., 2020), and (2) GOLD (Pang & He, 2020) an
off-policy gradient based method for natural language generation. We expect that our approach
should generally yield better performance, while also being easier to tune than these baselines. We
apply AWR and GOLD extraction to our best performing ILQL value function, denoting this as
“ILQL (AWR)” and “ILQL (GOLD)”. Table 4 demonstrates that ILQL is both more stable and better
at extracting good performance from a given value function than the well established AWR-style
extraction and GOLD. Additionally, the AWR and GOLD extraction methods require tuning addi-
tional hyper-parameters at training time rather than just at inference time, decreasing flexibility and
increasing the time and effort spent tuning parameters and re-training.

7 CONCLUSION

We proposed ILQL, an offline RL method for steering language generation to fulfill a variety of
desirable conversational behaviors. Through experiments ranging from word games and goal-directed
question asking to optimizing upvotes and minimizing toxic language, ILQL shows that offline
RL can serve as a strong alternative to the method landscape of language generation dominated by
language model finetuning on manually filtered datasets and classifier guidance. We hope the positive
results from ILQL will inspire more work on offline RL for dialogue, and lead to more controllable
language models that directly optimize user-specified utility functions for a wide range of tasks in text
generation. Lastly, we acknowledge that our method is generally more computationally expensive
than more standard supervised learning approaches to language generation ( 2x more training time
in our experiments), since it requires 3 separate transformer networks during training and 2 during
inference. Future work should study alleviating this cost.
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8 ETHICS STATEMENT

We acknowledge that any utility optimization method can be used to aid or harm, we hope these
future works consider ethical uses of offline RL. Additionally, our method also has its limitations:
for example, ILQL may not be effective when datasets are highly suboptimal. Offline RL would
also not be ideal in settings which require distributional constraints, such as fairness. We hope that
practitioners will take these limitations into account when applying our method.

9 REPRODUCIBILITY STATEMENT

To promote reproducibility, we present extensive results of all hyper-parameter settings we tried for
all baselines in the appendix. We also describe all experimental details. Lastly, we have also attached
in the supplemental source code for reproducing all the experiments in this submission.
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A APPENDIX

A.1 JUSTIFICATIONS FOR OFFLINE RL IN DIALOGUE

Dialogue tasks are one of the most rich and interactive settings in NLP, and as we will argue, these
properties make it an ideal target for applying offline RL. RL in general presents an elegant and
highly desirable utility optimization framework for sequential decision making settings, such as
dialogue. However, solving realistic interactive tasks with online RL requires either repeated real-
world interaction or building a realistic simulator of the environment. In the case of dialogue, such
online interaction means communicating with real humans, which may be impractically expensive
and time-consuming with contemporary sample-inefficient online RL methods (Schulman et al.,
2017; Haarnoja et al., 2018), and building a realistic simulator of human responses may be largely
intractable in sufficiently rich or complex dialogue settings. Offline RL, on the other hand, avoids
both of these heavy requirements, by, just as many recent breakthroughs in the field of NLP (Brown
et al., 2020; Radford et al., 2019; Devlin et al., 2018), operating purely on previously collected data,
which is wildly available on the internet in general. Offline-RL therefore presents an ideal approach
for flexibly steering language models towards the successful completion of dialogue tasks in a way
that effectively leverages existing data, just as supervised learning does.
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A.2 TEMPORAL COMPOSITIONALITY

It has been well studied in the RL literature that value-function based RL methods are capabale of
a form of temporal compositionality (Emmons et al., 2021; Rafols et al., 2005) or “stitching” in
their utility optimization. Specifically this refers to an RL algorithm’s ability to stitch together the
locally optimal parts of suboptimal trajectories to find globally optimal behavior. The result of this
stiching is a learning algorithm which can distill the optimal behavior out of a dataset that contains
only suboptimal demonstrations.

A.3 FULL TOKEN-LEVEL POMDP FORMULATION

We expand on the POMDP definition presented in Section 3. In order to apply RL to interactive
language settings, we need to formalize dialogue generation and other NLP tasks as a partially
observable Markov decision processes (POMDP). We define the POMDP M at the token level with
M = (S,A,O, T ,Z, µ0,R, γ). We define the agent’s observation ht ∈ O to be a history of tokens
with ht = {t0, t1, t2, t3, ...tt−1}; the action space at = tt ∈ A is defined to be the set of possible
next-tokens in our vocabulary, which includes the special end-of-turn token aend. The agent’s policy
then corresponds to a mapping π : O → P(A). Many tasks such as dialogue have an underlying state
st that goes beyond just the sequence history, which can encompass things like the speaker’s mental
state. The environment transitions T (·|st, at) are defined as a function of this st. In particular, in
domains, such as dialogue, the dynamics are trivial within the agent’s utterance (the selected token is
deterministically appended to the history), but when the policy outputs a special “end of turn” token,
the other speaker gets a turn, which is subsequently appended to the history. In other tasks, where
the goal is to generate a single utterance, such as generating a summary or a single Reddit comment,
the episode ends when the policy produces the end token. The agent receives a reward, defined by
R(st, at) → R, after each action taken. However, in all the settings we consider, the agent receives
non-zero reward rt only after producing an “end of turn” token, rather than densely at every token in
the agent’s utterances.

While some prior works (Verma et al., 2022; Jang et al., 2022) have considered actions at the
utterance level, defining decision processes at the token level can yield a more effective search
over the exponentially large utterance action space, simply by selecting tokens with high estimated
values. Typically, searching over a per-utterance action space requires a Monte Carlo process of
sampling multiple full utterances and then re-ranking with estimated values, which can generally
bring additional computational complexity at both training and inference time. In Section 6.4, we
demonstrated the effectiveness of learning at the token level through an ablation study that compares
with learning at the utterance level.

A.4 GENERAL EXPERIMENT DETAILS

Here we outline architecture and hyper-parameter details of all our models and baselines.

ILQL experiment details. We run all of our experiments on GPT-2 small transformer architectures,
with the supervised learning policy on one transformer and Q and V heads on a separate one. The
target Q network is also on a separate transformer. In all our experiments we initialize with GPT-2
pre-trained weights, except in the case of Wordle, where we initialize randomly. Additionally, Wordle
uses a different token set: the set of 26 characters, plus an additional token for each “color”. We train
all RL baselines with double-Q learning, using two separate heads on the same transformer model as
the two Q-functions. Our target Q networks are Polyak-averaged with decay factor 0.005 for both
the transformer and the Q function head. We use γ = 0.99 for all offline-RL experiments. All value
function heads are two layer MLPs with hidden dimension twice that of the transformer’s embedding
dimension. Our MLPs used ReLU non-linearities and no dropout. We used the AdamW optimizer
for all experiments, with a learning rate of 1e-4 on the Reddit and Visual Dialogue tasks and 1e-5 on
the Wordle task. We used no weight decay in the training any of our models, and we used a dropout
rate of 0.1 inside the transformer. We trained all Wordle models with a batch size of 1024, all Visual
Dialogue models with a batch size of 64, and all Reddit models with a batch size of 32. We always
truncate token sequences to length 1024, except on Reddit tasks, in which we truncate to length 512.

Except on the Reddit comment task, we train ILQL on each of τ = {0.7, 0.8, 0.9}, and we also
evaluate each on β = {4, 8, 16,∞}. Where β = ∞ refers to acting greedily according to only
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the Q function. On the Reddit comment tasks, we only train with τ = 0.6 and evaluate on β =
{1, 2, 4, 8, 16, 32}. On all tasks, we report the setting with the greatest performance.

For the NLL (CQL) loss term applied to ILQL, we used a weight α of 1.0 on all VisualDialogue
experiments, 0.25 on all Reddit Comment experiments, and 0.0001 on Wordle. These values were
tuned by hand. Generally, we find this loss parameter to not be too critical to performance; we tune it
a little at first for each task and then don’t worry about it.

All ILQL models and all baselines were trained on a single GPU until convergence. Training never
exceeded three days (or 72 V100 hours).

Evaluation details. During evaluation, we use greedy decoding to generate utterances on all tasks
and baselines, except the Reddit Comments tasks, where we sample instead. All experiments are
evaluated on 1024 task-instances from an unseen evaluation set. We use our BC baseline model as
πβ for guiding ILQL’s perturbation-based policy extraction.

Fine-tuning (BC) baselines. We train our fine-tuning baselines with the same optimization param-
eters (i.e., weight decay, dropout, learning rate, batch size) and initialization as ILQL. We use early
stopping: when the validation loss exceeds the training loss, we stop training. Unlike our ILQL value
function models, we use a linear head on top of the transformer to parameterize our BC policy, as is
standard for language model finetuning. The only difference between our fine-tuning and standard
language model training is that instead of finetuning the model to predict the whole sequence of states
and actions, we only finetune the model to predict the agent’s own actions or utterances.

Filtered Fine-tuning (%BC) baselines. For our filtered fine-tuning baselines, we train models on
datasets filtered for the top reward trajectories. Specifically we filter for the top {10%, 30%, 50%}
for Wordle, {10%, 20%, 30%} for Visual Dialogue, and for Reddit, since our rewards are discrete,
we define filtered fine-tuning to mean just training on the data-points with the maximum reward label.
For each task, we train models on each of these percentages and report the performance of the best
setting found. We use the same hyper-parameters as our Fine-tuning (BC) baselines for training these
models.

Decision transformer baseline. Our decision transformer baseline follows from Chen et al. (Chen
et al., 2021), except we initialize with pretrained GPT2 weights. All hyperparameters are iden-
tical to those used to train our BC baselines. To evaluate decision transformer on our Vi-
sual Dialogue “y/n” reward, we swept over a broad range of conditional reward-to-go values:
{−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0}. We report the setting with the best perfor-
mance.

single-step RL baselines. single-step RL baselines are implemented as ILQL with τ = 0.5 and
all other hyper-parameters are identical to those used with ILQL as described above. Except on
the Reddit comment tasks, we evaluate all single-step RL models on β = {4, 8, 16}, and report the
setting with the greatest performance. On the Reddit comment tasks, we show the best performance
from β = {1, 2, 4, 8, 16, 32}.

Per-utterance ILQL. For “ILQL (utterance)”, we train models with τ = {0.7, 0.8, 0.9}. We also
evaluate each model with number of EMAQ-style (Ghasemipour et al., 2020) samples chosen from
N={4, 8, 16}. We report the setting with the best task performance. “single-step RL (utterance)” is
a special case of “ILQL (utterance)” with τ = 0.5, which we evaluate on each of N={4, 8, 16} and
report the setting with the best performance. The architecture for “ILQL (utterance)” and “single-step
RL (utterance)” is largely identical to that of per-token ILQL, with the main difference being that
Bellman backups are performed at the utterance level instead of the token-level. As a result of this
difference, Q-heads map to a scalar at the end of an utterance instead of a vector at every token with
length equal to the size of the vocabulary. We include comparisons to Per-utterance ILQL in Table 5.

CHAI baseline. Our CHAI baseline is adopted from Verma et al. (Verma et al., 2022). The tasks we
consider only require utterance actions; no axuiliary actions, like the price proposal action required by
that of Verma et al. (Verma et al., 2022)’s bargaining task. We therefore only adopt the components
from CHAI relevant to utterance level actions. In order to compute CHAI’s CQL loss at the utterance
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method max score σ w.r.t hparams inference time per-dialogue (sec)
ILQL -5.57±0.13 0.46 5.10±0.12

ILQL (utterance) -5.89±0.14 0.51 22.1±0.47
single-step RL (utterance) -7.35 ± 0.17 0.21 20.38±0.41

CHAI -5.57±0.13 1.11 12.13 ± 0.25

Table 5: On the VisualDialogue “y/n” reward, we compare per-token ILQL to per-utterance ILQL, per-utterance
single-step RL, and CHAI (Verma et al., 2022). We observe that per-token ILQL is generally much faster at
inference time than per-utterance methods, while also outperforming or performing equivalently to all per-
utterance baselines. All evaluations were performed on a single T4 GPU. All baseline implementations build on
the same core code for sampling utterances, with a handful of method specific runtime optimizations in each
case.

level, we need to sample counterfactual utterances for each action in the training data, which can
be highly expensive and can greatly slow training. Following Verma et al. (Verma et al., 2022), we
amortize this cost at the risk of inducing some bias by caching 5 counterfactual samples for each
action in the training data as a preprocessing step. In our case, this preprocessing step took over
30 hours to execute on a V-100 GPU for the full the Visual Dialogue training set. As in all our
other experiments, we train two Q networks (Fujimoto et al., 2018), where our target Q value is
parameterized as the minimum of both Polyak averaged target Q heads. We train our CHAI models
with a batch size of 16 and otherwise all other hyperparameters are identical to those used with ILQL.
We train models with CQL α = {0.1, 1.0, 10.0}, and we evaluate each model with the number of
EMAQ-style (Ghasemipour et al., 2020) samples chosen from N={4, 8, 16}. We report the setting
with the best performance. We include comparisons to CHAI in Table 5.

Per-token dynamic programming baselines. For our per-token CQL and ψ-learning baselines in
Table 4, we tuned the CQL loss weight with α = {0.1, 1.0, 10.0}, and the ψ-learning reward scale
with c = {0.1, 1.0, 10.0}. For each baseline agent, we evaluated using ILQL’s policy extraction with
β = {4, 8, 16} and also evaluated by greedily selecting tokens with the Q function by itself. We
report the setting with the best performance for each baseline.

Our implementation of per-token CQL is identical to ILQL with the only exception being that for
per-token CQL the loss function is defined as:

LQ,V (θ) = Eτ∼D

[
T∑
i=0

(R(hi, ai) + γ max
at+1∈A

Qθ̂(hi+1, at+1)−Qθ(hi, ai))
2

]

Our implementation of ψ-learning is adapted from Jaques et al. (Jaques et al., 2020; 2017) for use
on transformer language models (Vaswani et al., 2017; Radford et al., 2019) instead of RNNs (Gers
et al., 2000). The architecture is identical to that of ILQL, the main difference is in the loss function:

LQ,V (θ) = Eτ∼D

 T∑
i=0

Lδ(
R(hi, ai)

c
+ log(πβ(hi, ai)) + γ log(

∑
at+1∈A

expQθ̂(hi+1, at+1))−Qθ(hi, ai))


Where πβ is our BC baseline model: a transformer language model trained with supervised learning.
And Lγ defines the Huber loss; we use γ = 1 in our experiments.

In both baselines, we also fit a value function head to the mean of the Q functions, as in ILQL
with τ = 0.5. Additionally, for both baselines, aside from the parameters mentioned, all other
parameters are identical to those used with ILQL, as described above. The only exception being that
for ψ-learning, we used a learning rate of 1e-5 instead of 1e-4 due to training instability with the
higher learning rate.

We generally found ψ-learning to be highly unstable to train in our experiments, often producing
incomprehensible outputs. It is possible that the baseline could work better with even more careful
tuning.

AWR extraction abalation details. For our “ILQL (AWR)” ablation, we extracted a policy
with AWR extraction using the best performing ILQL value function out of those trained with
τ = {0.7, 0.8, 0.9}. We performed AWR extraction from this value function using 3 different settings
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represents S0=>Goal
average reward: -2.647

~9% of data

represents S0=>Lava
average reward: -6.0

~45.5% of data
*repeats the first two words from optimal policy

represents S0=>S1
average reward: -4.262

~45.5% of data

We synthesize a dataset with trajectories from 
3 different Wordle policies.

We see a dramatic difference between 
ILQL and SARSA on this dataset.

Fraction of Q Values Where [ S0 => S2 ] > [ S0 => S1 ]

Figure 6: We empirically validate the setting depicted in Figure 4 on a Wordle task. Left: a visualization
of the synthetic dataset distribution we constructed to evaluate the benefits of ILQL’s multiple steps of policy
improvement over “single step” methods, such as single-step RL. Right: a plot showing that ILQL’s Q function
learns to more often assign higher Q values to optimal actions than single-step RL.

for beta: β = {4, 8, 16}. Using the same value function, we performed ILQL extraction with
τ = {4, 8, 16}. For each, we reported the setting with the best performance.

GOLD baseline. Our GOLD baseline is adopted from Pang et al. (Pang & He, 2020), with some
small modifications. In particular, we use our best performing ILQL Q function as the Q function
for GOLD policy learning, and instead of using a manually tuned constant baseline, we use our
ILQL value-function, V, as the baseline. We updated our target policy every 1.5k steps, as was done
on several tasks in the original gold paper. We trained 4 models one with the target-policy weight
lower-bound hyperparameter u set to each of {0.00, 0.10, 0.15, 0.20}. We reported the setting with
the best performance.

A.5 WORDLE TASK DETAILS

Evaluating ILQL on the synthetic Wordle task.

Wordle Background. In the game of Wordle, the agent gets 6 turns to guess a 5 letter word
randomly selected from a vocabulary, and the environment responds with one of three “colors” for
each letter in the guessed word: “black” meaning the guessed letter is not in the environment’s word,
“yellow” meaning the guessed letter is in the word but not in the right location, and “green” meaning
the guessed letter is in the right location. We give a reward of -1 for each incorrect guess and a reward
of 0 for a correct guess, at which point environment interaction ends; the agent’s goal is therefore to
guess the correct word in as few turns as possible, a task for which computing optimal behavior has
previously been proven to be an intractable NP-Hard problem (Lokshtanov & Subercaseaux, 2022).

Environment details. Our agents observe the game-state as a history of alternating sequences
of 5 letter tokens followed by 5 color tokens. Unlike the actual Wordle game, we do not prevent
the agent from generating words that aren’t in the vocabulary (i.e., the agent is free to produce any
sequence of 5 letters). For our synthetic experiments, we chose to use the full word list given at
https://gist.github.com/cfreshman/a03ef2cba789d8cf00c08f767e0fad7bdue to its relatively large size
and its use in the actual Wordle game. However, the environment can be configured with any provided
list of 5 letter words.

Wordle Twitter dataset details. We outline the details of our natural Wordle dataset scraped from
Twitter, introduced in Section 5. Due to Wordle’s popularity, we have access to a large amount of
natural human data for Wordle (specifically 214,930 games), scraped from tweets 3. Existing offline
RL benchmarks are composed of purely synthetic data (Fu et al., 2020), and as a result, it may be
unclear how well offline RL algorithms work on more natural data distributions. We therefore present
this human Wordle dataset as a more naturalistic offline RL task. While the scraped Tweets don’t
display the actual words used by human players, only the sequence of transition colors given by the

3we use the wordle tweet dataset provided here: https://www.kaggle.com/code/benhamner/wordle-1-
6/notebook
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method Wordle Score
ILQL -2.13 ± 0.03

single-step RL -2.23 ± 0.03
Filtered Fine-tuning -2.38 ± 0.03

Fine-tuning -2.61 ± 0.03
πupper bound -1.75 ± 0.02

Table 6: Comparing ILQL to baselines on Wordle human data. Even on realistic human data, ILQL outperforms
“single step” single-step RL.

environment, we can retrofit valid words onto these tweets to produce a dataset of full trajectories.
Note that the words we retrofit may not necessarily be the natural words human players would have
used, but the dataset still represents the average performance of human players, since the number
of turns remains unchanged in this retrofitting process. Additionally, this retrofitting allows us to
further multiply the size of the dataset, since typically several different sequences of words can be
valid for a given tweet. We can also partially control the difficulty level of the task and dataset by
specifying the size and composition of the vocabulary used to retrofit words onto Tweets. In our
Wordle human experiments in Table 6, we use a random subset of 200 words from the word list given
at https://gist.github.com/cfreshman/a03ef2cba789d8cf00c08f767e0fad7b.

Synthetic Wordle Evaluation. For our synthetic Wordle task, we constructed a training distribution
in which demonstrate ILQL’s multiple steps of policy improvement significantly outperforms methods
which only perform a single-step of improvement, such as single-step RL. As described in Secrion 5
our training distribution consists of a mixture of 3 policies, each of which represents one of the paths
through the MDP in Figure 4: (1). πupper bound, a high-performing policy which myopically selects
the word with the highest information gain, representing the path from S0 → Goal. (2). πadversarial,
which behaves the same as πupper bound for the first two actions (S0 → S1) and then subsequently
repeats these first two words (S0 → Lava). (3). πsuboptimal, which selects a random word 50%
of the time, and the other 50% randomly selects a word that meets all known letter constraints,
representing the path from S0 → S1. The relative performance of these policies is ordered according
to πupper bound > πsuboptimal > πadversarial. We construct our dataset with 9% of the data coming from
πupper bound, 45.5% from πsuboptimal, and 45.5% from πadversarial. In Figure 6 (right), we show that when
trained on this distribution, ILQL assigns higher Q values to actions corresponding to the paths to
”misleading states“ (i.e. S2) than those to the “goal states” (i.e. S1), whereas single-step RL shows
the exact opposite preference, just as our hypothesis predicted.

Human Wordle Evaluation. In Figure 6, we compare ILQL against baselines on our dataset of
Wordle games scraped from Twitter. We see that even on realistic data, ILQL’s multiple steps of
policy improvement outperforms methods which employ just a single-step of improvement.

A.6 VISUAL DIALOGUE TASK DETAILS

Here we detail the task setup and reward functions used in our Visual Dialogue experiments in
Section 6.1. We use Das et al.’s code 4 to produce generations and to predict image embeddings
from the provided supervised learning answer and question bots, respectively. We integrate these
components of Das et al.’s codebase into ours by wrapping the relevant functionality of Das et al.’s
codebase in a flask webserver interface that is then queried by our system.

As described in Section 6.1, our “standard” reward function gives a reward of -1 for each turn in
which the true image is sufficiently difficult to predict from the dialogue, otherwise the agent receives
a reward of 0 and the environment interaction ends. We firstly formalize this notion of “sufficiently
difficult to predict”.

The standard reward is based on the relative percentile ranking of the ground truth image’s distance
from the predicted embedding among a set of images taken from the evaluation set. We give a -1
reward to our agent for every turn in which (1− pt) < (1− p0) ∗ 0.5, where pt is the ground truth
image’s percentile rank at dialogue turn t and p0 is the ground truth image’s percentile rank at the
beginning of the dialogue, when only the image caption is observed. Otherwise, the agent gets a
reward of 0 and the episode ends. This condition effectively rewards the agent once the ground truth
image is preferred over 50% of the images that were preferred over it at initialization. The agent
should learn to ask as many good questions as possible to get the episode to successfully end as early

4https://github.com/batra-mlp-lab/visdial-rl
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method toxicity noised toxicity upvotes real upvotes model
ILQL 0.0±0.0 0.0±0.0 9.83±0.04 10.0±0.0

single-step RL 0.0±0.0 0.0±0.0 6.23±0.15 10.0±0.0
Filtered Fine-tuning -0.74±0.07 -1.61±0.11 7.06±0.14 7.86±0.13

Fine-tuning -3.51±0.13 -3.48±0.15 4.87±0.16 4.87±0.16

Table 7: A comparison of ILQL against baselines on the various Reddit comments reward functions. ILQL
manages to never generate undesirable comments on 3 out of 4 reward functions, whereas fine-tuning on filtered
data occasionally does.

as possible. In initial experiments, we found it took a very long time to train good value functions for
rewards based on the absolute Euclidean distance alone, as used by Das et al. (Das et al., 2017), so to
make it faster to iterate, we used the relative distance formulation described above.

Our “y/n” reward adds, on top of the “standard” reward, a reward of -2 for every question that results
in a response that exactly matches the strings “yes” or “no”.

Our “conservative y/n” reward instead aims to provide a more conservative, higher-recall lower-
precision penalty to any question which might be a yes/no question. This accounts for the fact
that people often answer yes/no questions with longer phrases (e.g., “It appears so”). This reward
function provides a reward of -2 if any of the following words are sub-strings of the response to the
agent’s question: “not”, “don’t”, “can’t”, “cannot”, “fairly”, “could”, “think so”, “okay”, “maybe”,
“yes”, “no”, “looks”, “appears”, “tell”, “mostly just”. All of these were determined by hand to be
words/phrases that occur often in answers to questions that are effectively yes/no questions.

A.7 REDDIT REWARD MODEL DETAILS

We outline the details of our reward functions for the Reddit tasks presented in Section 6.2.

Toxicity Reward. Our toxicity filter reward uses OpenAI’s API 5, which provides a free toxicity
filter, meant for developers building applications off the GPT3 API to use to block toxic inputs or
generations. We assign a reward of -10 for comments labeled as toxic (scored as 2), -5 for comments
labeled as moderately toxic (scored as 1), and 0 for comments labeled as non-toxic (scored as 0).

Upvote Model Reward. Our upvote reward function is finetuned from RoBERTa-base (Liu et al.,
2019) with a learning rate of 1e-5 and a batch size of 64. Since our reward functions are binary,
we train with binary cross entropy loss. Like our value function heads in ILQL, we predict the
reward as a scalar from a 2-layer MLP on top of the RoBERTa transformer, with hidden dimension
twice that of the transformer, ReLU non-linearity, and no dropout. We truncate token sequences to
maximum length 256. At inference time, we predict a reward of +10 if the model’s reward logit is
≥ 0 and a reward of 0 otherwise. We used binary (positive or negative) rewards for upvotes instead of
the more natural cardinal numeric representation, because different sub-reddits can have drastically
different upvote counts depending on the sub-reddit’s population, and our binarization (positive or
negative upvotes) is invariant to these differences in scale. However, this binarization is not the only
normalization that we could have used to overcome this issue.

A.8 NOISY REWARDS

In figure 7, we present a more detailed visual explanation for why offline RL outperforms filtered
finetuning on our Reddit tasks in section 6.2. As our results in Table 2 show, offline RL consistently
outperforms finetuning on filtered data on this task. We hypothesize that this is due to offline RL’s
ability to effectively reason about the inherently stochastic and subjective rewards functions present in
these tasks. In these high-variance reward settings, simply filtering or curating datasets for exclusively
high-reward examples can fail to produce desirable outputs, since such filtered finetuning approaches
do not make the model aware of the reward uncertainty. Put another way, training on curated datasets
that exclude low-reward examples doesn’t teach the model about what not to generate, whereas
models that are aware of the reward, such as Q-learning, directly learn to relate actions to their
expected reward values, averaging out uncertainty and stochasticity. This can enable models to avoid

5https://openai.com/api/
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Offline-RL PolicyFiltered Finetuning Policy

Key:
=  expected reward decision boundary =  comment labeled as non-toxic =  comment labeled as toxic =  policy probability density

Key:
=  reward decision boundary = non-toxic comment =  toxic comment =  policy probability density

Figure 7: A visual explanation of offline RL’s ability to optimize high variance reward functions
based on subjective judgement, such as whether to label a comment as an example of toxic speech or
not. Finetuning on filtered data accidentally generalizes into producing undesirable outputs, whereas
offline RL is able to find the “safe” outputs. Top: In the case of stochastic rewards, offline RL learns
to avoid the highly stochastic regions of the action space, whereas filtered finetuning will explicitly
learn to imitate undesirable outputs that were stochastically given a positive reward in the training
data, thus leading to suboptimal behavior. Right: In the case of non-stochastic but sharp-boundary
reward functions, ILQL is still able to integrate into its Q values uncertainty about actions near the
sharper parts of the reward function’s decision boundary, thus avoiding these regions. Finetuning on
filtered data expresses no such preference and thus risks generalizing into occasionally producing
undesirable outputs.
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Figure 8: Two toxic comments incidentally generated by the filtered fine-tuning model. ILQL assigns negative
advantages to many tokens, demonstrating how ILQL is more effectively able to avoid such generations.
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comment: yes
comment: lol
comment: edit

comment: http://i.imgur.com/e2O.gif
comment: I and all of you know me...
comment: Yep. The Oatmeal on the right is 
trying to deny [this](http://imgur.com/Ojc4M)

comment: it's not the main menu, it's the 
fridge
comment: I did what Idra did. Deep down 
they told me, I said "I'm not cool" and all I 
could do was leave.
comment: All I see in its place is a 
frame-by-frame summary of its most relevant 
comments. So having no thought 
whatsoever of this, I'm happy.

Figure 9: By varying β at inference time, we can interpolate the trade-off between offline RL
"optimization" and output diversity.

outputs that have low but non-trivial probability of undesirable outcomes (e.g., toxicity). Offline RL
in this sense is able to find the safest outputs, whereas fine-tuning on filtered data does not explicitly
express such a preference.

To further test this hypothesis, we artificially add further noise to the toxicity reward function. The
standard toxicity reward assigns all comments one of three reward values: 0, indicating the comment
is non-toxic; -5, indicating the comment is moderately toxic; -10, indicating the comment is highly
toxic. We now relabel the reward for all comments originally given a -5 reward, randomly to either 0
or 10 with equal probability.

Since some of the moderately toxic comments get relabeled with reward=0, they would be included in
the %BC training set, whereas offline RL should learn to represent uncertainty about such comments
and thus push away from the stochastic “middle ground” of this reward function. In Table A.8 in
the “noised toxicity” column, we see that our offline RL agents learn to never generate toxic outputs
despite the additional noise, and in Figure 8 we can see qualitatively that offline RL assigns low
advantages to potentially negative or toxic words/phrases that were incidentally generated by the
%BC model. All of this goes to support our hypothesis that the advantage of offline RL over filtered
supervised learning in these settings lies in its improved ability to handle reward uncertainty.

A.9 TRADING OFF OUTPUT DIVERSITY FOR OPTIMIZATION

An advantage of our novel policy extraction mechanism is that we can flexibly tune the parameter β
at inference time, directly trading off between random generation and optimality. As discussed in
Section 9, this parameter controls a constraint on our policy’s deviation from the data distribution. As
we increase β, the resulting policy will be more strongly influenced by the Q-function, and as we
decrease β, it should approach the data distribution. Beyond the risk in diverging too far from the
data, another potential downside to increasing β is that the resulting policy distribution will become
more deterministic. In some settings, such as chit-chat dialogue, we may desire policies capable of
producing diverse and interesting outputs, so such a deterministic, highly-optimized agent would be
undesirable.

We demonstrate in Figure 9, using the Reddit Toxicity task, how varying β can modulate the diversity
of the generations produced by our policy, as measured by its entropy, at the cost of a small decrease
in performance. We show that as we increase β, while the policy’s performance generally increases,
the entropy decreases and subsequently so does the interestingness and diversity of the language
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model reward rougeL rouge1 BERT score
precision recall F1

Fine-tuning standard 27±0.82 26±0.82 0.90±0.0011 0.89±0.0012 0.90±0.0011
Filtered Fine-tuning standard 22±0.73 21±0.72 0.89±0.0010 0.89±0.0010 0.89±0.0009

single-step RL standard 26±0.82 26±0.80 0.90±0.0011 0.89±0.0011 0.89±0.0011
ILQL standard 24±0.0.73 23±0.72 0.89±0.0011 0.89±0.0011 0.89±0.0011

Fine-tuning y/n 27±0.82 26±0.82 0.90±0.0012 0.89±0.0012 0.90±0.0011
Filtered Fine-tuning y/n 20±0.83 20±0.69 0.88±0.0010 0.88±0.0010 0.88±0.0009

single-step RL y/n 25±0.83 24±0.81 0.89±0.0012 0.89±0.0012 0.89±0.0011
ILQL y/n 25±0.82 24±0.81 0.88±0.0012 0.89±0.0012 0.89±0.0011

Fine-tuning conservative y/n 27±0.82 26±0.82 0.90±0.0012 0.89±0.0012 0.90±0.0011
Filtered Fine-tuning conservative y/n 22±0.74 21±0.73 0.88±0.0010 0.88±0.0010 0.88±0.0010

single-step RL conservative y/n 23±0.82 23±0.80 0.88±0.0012 0.88±0.0012 0.88±0.0011
ILQL conservative y/n 24±0.81 23±0.79 0.88±0.0011 0.89±0.0012 0.88±0.0011

Table 8: Automatic language quality evaluations comparisons between ILQL and baselines on each Visual
Dialogue reward. We see that ILQL still nearly matches standard fine-tuning on these reference-based metrics of
language quality and also generally matches or exceeds filtered fine-tuning.

model’s outputs. At inference time, we can tune this parameter to trade-off optimization for output
diversity as we desire.

A.10 VISUAL DIALOGUE EXAMPLE DIALOGUES AND HISTOGRAM

In Figures 10, 11,and 12 we present a set of selected representative example dialogues produced by
our best performing ILQL agent on each reward. In Figure 13 we present a histogram showing often
different agents generate yes/no questions as judged by their respective “y/n” or “y/n conservative”
reward functions.

A.11 AUTOMATIC LANGUAGE QUALITY EVALUATIONS

In Tables 8 and 9 we present automatic reference-based language quality scores for our main baselines
on each Visual Dialogue and Reddit comment reward.

A.12 REDDIT COMMENTS PRELIMINARY USER STUDY

To validate the automatic evaluations from our Reddit comments task, we ran a preliminary human
study, where we got 41 people to answer 48 questions each about generations from our Reddit
comment agents. We asked subjects two types of questions: 1) to classify the toxicity of comments
generated by agents trained on our “toxic” reward function; and 2) to compare the diversity of outputs
produced by our ILQL agent with β = 4 and β = 32, verifying the claims about output diversity in
Appendix A.9. In each case, generations were randomly selected and shuffled for each user from a
bank of 128 sampled generations for each agent.

We present the results for the toxicity questions in Table 10. We see that the human ratings align
very well with those from our automatic evaluations, with ILQL and single-step RL never generating
toxic comments, and BC and %BC producing more toxic comments. This further emphasizes the
effectiveness of ILQL in optimizing high variance rewards based on subjective human judgement.

In the case of our diversity questions, our human raters were given sets of 5 random comments from
ILQL with beta=4, and 5 random comments from ILQL with beta=32. They were then asked to select
which set of comments was more “diverse”. Our subjects were asked to do this task 7 times with the
order of the two sets randomly swapped. Raters determined that ILQL with beta=4 generated more
diverse comments in 282 out of 289 such cases. This confirms our claim in Appendix A.9 that by
changing beta, the inference time hyperparameter, we can effectively control the tradeoff between
output diversity and objective optimization.

In initial investigations, we found that human raters could not provide reliable evaluations for the
upvotes reward (regardless of which method produced the comments). This is likely because judging
whether a comment will receive an upvote without access to either the comment’s conversation
context or its broader context in the specific Reddit community is very difficult for human raters
(e.g., many of the comments are short phrases like “Yes" or “Thank you"), and the human raters
do not necessarily have the right mental model of typical reddit upvote dynamics to make accurate
predictions. We therefore consider our automated evaluations to be the closest thing we have to the
“ground truth reward” in this case.

22



Published as a conference paper at ICLR 2023

model reward rougeL rouge1 BERT score
precision recall F1

Fine-tuning upvotes real 7±0.29 6±0.26 0.81±0.0029 0.82±0.0025 0.82±0.0025
Filtered Fine-tuning upvotes real 9±0.32 7±0.29 0.83±0.0028 0.82±0.0025 0.83±0.0025

single-step RL β = 1 upvotes real 5±0.29 5±0.27 0.85±0.0026 0.81±0.0025 0.83±0.0025
single-step RL β = 2 upvotes real 1±0.15 1±0.14 0.84±0.0025 0.79±0.0025 0.81±0.0024
single-step RL β = 4 upvotes real 0.76±0.11 0.76±0.11 0.83±0.0025 0.79±0.0024 0.81±0.0024
single-step RL β = 8 upvotes real 0.75±0.11 0.75±0.11 0.83±0.0025 0.79±0.0024 0.81±0.0024

single-step RL β = 16 upvotes real 0.75±0.11 0.75±0.11 0.83±0.0025 0.79±0.0024 0.81±0.0024
single-step RL β = 32 upvotes real 0.75±0.11 0.75±0.11 0.83±0.0025 0.79±0.0024 0.81±0.0024

ILQL β = 1 upvotes real 5±0.28 5±0.26 0.85±0.0026 0.82±0.0025 0.83±0.0025
ILQL β = 2 upvotes real 3±0.26 3±0.25 0.87±0.0028 0.81±0.0025 0.84±0.0025
ILQL β = 4 upvotes real 2±0.22 2±0.22 0.87±0.0029 0.8±0.0025 0.83±0.0026
ILQL β = 8 upvotes real 1±0.12 1±0.12 0.85±0.0027 0.79±0.0025 0.82±0.0025

ILQL β = 16 upvotes real 0.34±0.08 0.34±0.08 0.84±0.0025 0.79±0.0025 0.81±0.0024
ILQL β = 32 upvotes real 0.15±0.05 0.15±0.05 0.84±0.0025 0.79±0.0024 0.81±0.0024

Fine-tuning upvotes model 7±0.29 6±0.26 0.81±0.0029 0.82±0.0025 0.82±0.0025
Filtered Fine-tuning upvotes model 10±0.34 8±0.31 0.84±0.0027 0.83±0.0025 0.83±0.0025

single-step RL β = 1 upvotes model 2±0.24 2±0.23 0.88±0.0029 0.81±0.0025 0.84±0.0026
single-step RL β = 2 upvotes model 0.33±0.14 0.33±0.14 0.84±0.0025 0.79±0.0024 0.81±0.0024
single-step RL β = 4 upvotes model 0.31±0.14 0.31±0.14 0.83±0.0025 0.78±0.0024 0.81±0.0024
single-step RL β = 8 upvotes model 0.31±0.14 0.31±0.14 0.83±0.0025 0.78±0.0024 0.81±0.0024

single-step RL β = 16 upvotes model 0.31±0.14 0.31±0.14 0.83±0.0025 0.78±0.0024 0.81±0.0024
single-step RL β = 32 upvotes model 0.31±0.14 0.31±0.14 0.83±0.0025 0.78±0.0024 0.81±0.0024

ILQL β = 1 upvotes model 3±0.24 2±0.23 0.88±0.0027 0.81±0.0025 0.85±0.0025
ILQL β = 2 upvotes model 0.42±0.15 0.42±0.15 0.87±0.0028 0.8±0.0025 0.83±0.0026
ILQL β = 4 upvotes model 0.31±0.14 0.31±0.14 0.83±0.0025 0.78±0.0024 0.81±0.0024
ILQL β = 8 upvotes model 0.33±0.14 0.33±0.14 0.83±0.0025 0.78±0.0024 0.8±0.0024

ILQL β = 16 upvotes model 0.31±0.14 0.31±0.14 0.82±0.0024 0.78±0.0024 0.8±0.0024
ILQL β = 32 upvotes model 0.31±0.14 0.31±0.14 0.82±0.0024 0.78±0.0024 0.8±0.0024

Fine-tuning toxicity 7±0.29 6±0.26 0.81±0.0029 0.82±0.0025 0.82±0.0025
Filtered Fine-tuning toxicity 8±0.32 7±0.29 0.82±0.0026 0.82±0.0025 0.82±0.0025

single-step RL β = 1 toxicity 7±0.31 6±0.28 0.81±0.003 0.82±0.0025 0.81±0.0026
single-step RL β = 2 toxicity 8±0.31 7±0.28 0.82±0.003 0.82±0.0025 0.82±0.0026
single-step RL β = 4 toxicity 7±0.29 6±0.26 0.82±0.0031 0.82±0.0025 0.82±0.0026
single-step RL β = 8 toxicity 3±0.24 3±0.23 0.84±0.0051 0.79±0.0047 0.81±0.0048

single-step RL β = 16 toxicity 0.02±0.01 0.02±0.01 0.14±0.0099 0.13±0.0092 0.14±0.0095
single-step RL β = 32 toxicity 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

ILQL β = 1 toxicity 7±0.31 6±0.28 0.81±0.003 0.82±0.0025 0.81±0.0026
ILQL β = 2 toxicity 7±0.32 6±0.29 0.81±0.0031 0.82±0.0025 0.81±0.0026
ILQL β = 4 toxicity 8±0.3 7±0.27 0.81±0.0031 0.82±0.0025 0.81±0.0027
ILQL β = 8 toxicity 7±0.31 6±0.29 0.83±0.003 0.82±0.0025 0.82±0.0026

ILQL β = 16 toxicity 0.81±0.18 0.8±0.18 0.85±0.0032 0.79±0.0028 0.82±0.0029
ILQL β = 32 toxicity 0.35±0.14 0.35±0.14 0.79±0.0062 0.74±0.0058 0.77±0.006

Table 9: Automatic language quality evaluations comparisons between ILQL and baselines on the Reddit
comment tasks. As we increase β, our policy diverges further from the dataset distribution, and correspondingly
the reference-based scores decreases. In general, however, we see that ILQL maintains greater language quality
than single-step RL for similar values of β.

method # toxicity ratings / # ratings
ILQL β = 32 0 / 164
ILQL β = 4 4 / 164

BC 43 / 159
%BC 12 / 158

single-step RL 0 / 159

Table 10: Human ratings of output toxicity on our Reddit comments task. We see that ILQL and
single-step RL never generate toxic comments, whereas BC and %BC occasionally do. These results
align very closely with our automatic evaluations, further emphasizing the effectiveness of ILQL for
optimizing these kinds of high variance reward functions based on subjective human judgement.
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A.13 COMPREHENSIVE RESULT TABLES

In Tables 11, 12, 13,and 14 we present comprehensive results for all hyper-parameter settings for all
baselines on all tasks.

model standard y/n conservative y/n
ILQL τ = 0.7, β = 4 -5.23±0.13 -6.65±0.18 -7.64±0.21
ILQL τ = 0.7, β = 8 -5.22±0.13 -5.92±0.15 -7.05±0.19

ILQL τ = 0.7, β = 16 -5.28±0.13 -5.69±0.13 -6.77±0.18
ILQL τ = 0.7, β = ∞ -5.21±0.13 -5.57±0.13 -6.64±0.18
ILQL τ = 0.8, β = 4 -5.30±0.12 -6.88±0.18 -7.97±0.21
ILQL τ = 0.8, β = 8 -5.40±0.13 -6.28±0.16 -6.85±0.18

ILQL τ = 0.8, β = 16 -5.38±0.13 -5.99±0.15 -6.65±0.18
ILQL τ = 0.8, β = ∞ -5.41±0.13 -5.64±0.14 -6.71±0.18
ILQL τ = 0.9, β = 4 -5.35±0.13 -7.01±0.19 -7.41±0.20
ILQL τ = 0.9, β = 8 -5.40±0.13 -6.35±0.16 -6.72±0.18

ILQL τ = 0.9, β = 16 -5.45±0.13 -6.17±0.15 -6.57±0.18
ILQL τ = 0.9, β = ∞ -5.41±0.13 -5.89±0.15 -6.69±0.18

single-step RL β = 4 -5.20±0.13 -6.87±0.18 -9.12±0.24
single-step RL β = 8 -5.14±0.13 -6.39±0.16 -8.09±0.21

single-step RL β = 16 -5.18±0.13 -6.19±0.15 -7.77±0.20
single-step RL β = ∞ -5.30±0.13 -5.91±0.14 -7.63±0.20

10% Filtered Fine-tuning -5.24±0.12 -7.48±0.21 -9.67±0.26
20% Filtered Fine-tuning -5.07±0.13 -8.91±0.24 -9.13±0.22
30% Filtered Fine-tuning -5.16±0.12 -9.10±0.22 -10.52±0.25

Fine-tuning -5.25±0.13 -10.85±0.27 -15.16±0.35

Table 11: All hyper-parameter settings evaluated across all Visual Dialogue tasks for our main
baselines. The best performing setting for each baseline of abalation is bolded. β = ∞ refers to
greedily selecting actions with just the Q function. ILQL is generally better performing and more
stable than all baseline approaches.
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model y/n
CQL α = 0.1, β = 4 -10.08±0.21
CQL α = 0.1, β = 8 -10.97±0.21

CQL α = 0.1, β = 16 -12.92±0.23
CQL α = 0.1, β = ∞ -10.74±0.17
CQL α = 1.0, β = 4 -7.84±0.20
CQL α = 1.0, β = 8 -7.53±0.19

CQL α = 1.0, β = 16 -7.45±0.18
CQL α = 1.0, β = ∞ -7.32±0.17
CQL α = 10.0, β = 4 -11.76±0.29
CQL α = 10.0, β = 8 -11.81±0.30

CQL α = 10.0, β = 16 -11.84±0.30
CQL α = 10.0, β = ∞ -11.81±0.30
ψ c = 0.1, β = 4 -11.59±0.18
ψ c = 0.1, β = 8 -11.26±0.17
ψ c = 0.1, β = 16 -11.42±0.17
ψ c = 0.1, β = ∞ -11.51±0.16
ψ c = 1.0, β = 4 -10.05±0.18
ψ c = 1.0, β = 8 -10.05±0.18
ψ c = 1.0, β = 16 -10.05±0.18
ψ c = 1.0, β = ∞ -10.05±0.18
ψ c = 10.0, β = 4 -11.35±0.18
ψ c = 10.0, β = 8 -10.99±0.17
ψ c = 10.0, β = 16 -10.95±0.17
ψ c = 10.0, β = ∞ -10.78±0.17

DT R = −11 -10.57 ± 0.24
DT R = −10 -10.58 ± 0.24
DT R = −9 -10.53 ± 0.24
DT R = −8 -10.49 ± 0.24
DT R = −7 -10.40 ± 0.23
DT R = −6 -10.42 ± 0.23
DT R = −5 -10.30 ± 0.23
DT R = −4 -10.30 ± 0.23
DT R = −3 -9.83 ± 0.22
DT R = −2 -9.54 ± 0.21
DT R = −1 -8.15 ± 0.19
DT R = 0 -6.70 ± 0.17

ILQL (AWR) τ = 0.7, β = 4 -5.96±0.13
ILQL (AWR) τ = 0.7, β = 8 -11.75±0.23

ILQL (AWR) τ = 0.7, β = 16 -12.11±0.22
ILQL (utterance) τ = 0.7, N = 4 -7.08±0.17
ILQL (utterance) τ = 0.7, N = 8 -6.04±0.15

ILQL (utterance) τ = 0.7, N = 16 -5.89±0.14
ILQL (utterance) τ = 0.8, N = 4 -7.12±0.17
ILQL (utterance) τ = 0.8, N = 8 -6.15±0.15

ILQL (utterance) τ = 0.8, N = 16 -5.91±0.14
ILQL (utterance) τ = 0.9, N = 4 -7.01±0.17
ILQL (utterance) τ = 0.9, N = 8 -6.12±0.15

ILQL (utterance) τ = 0.9, N = 16 -5.93±0.14
single-step RL (utterance) N = 4 -7.82±0.18
single-step RL (utterance) N = 8 -7.39±0.17

single-step RL (utterance) N = 16 -7.35±0.17
CHAI α = 0.1, N = 4 -7.18±0.18
CHAI α = 0.1, N = 8 -6.18±0.15

CHAI α = 0.1, N = 16 -5.62±0.13
CHAI α = 1.0, N = 4 -7.03±0.17
CHAI α = 1.0, N = 8 -5.87±0.14

CHAI α = 1.0, N = 16 -5.57±0.13
CHAI α = 10.0, N = 4 -8.43±0.18
CHAI α = 10.0, N = 8 -8.24±0.16

CHAI α = 10.0, N = 16 -8.28±0.15
GOLD u = 0.00 -8.33±0.21
GOLD u = 0.10 -7.58±0.21
GOLD u = 0.15 -8.97±0.25
GOLD u = 0.20 -9.12±0.25

Table 12: All hyper-parameter settings evaluated across all abalations, and baselines on the Visual-
Dialogue “y/n” reward. The best performing setting for each baseline of abalation is bolded. β = ∞
refers to greedily selecting actions with just the Q function. ILQL is generally better performing and
more stable than all baseline approaches.
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Image Caption: A man, with other people in the background, is sitting at a 
picnic table with a cell phone in front of him while he uses a fork and knife 
to cut a dessert on a plate.
Questioner: is man young?
Answerer: yes
Questioner: is he wearing glasses?
Answerer: no
Questioner: is there food on table?
Answerer: yes
Questioner: is there food on table?
Answerer: yes

Image Caption: A man with a wide eyed look with an apron on in a 
kitchen.
Questioner: is man young?
Answerer: i would say he is
Questioner: what color is man's hair?
Answerer: brown
Questioner: is he wearing glasses?
Answerer: no
Questioner: is he wearing apron?
Answerer: i can't tell
Questioner: is he wearing apron?
Answerer: i can't tell
Questioner: is there anything on his head?
Answerer: yes, it's UNK and UNK
Questioner: is he looking at something?
Answerer: he is looking at camera
Questioner: is there anything else on counter?
Answerer: yes, there are some papers and papers
Questioner: is there anything on counter?
Answerer: yes, there are some papers and papers

Image Caption: Young adults with surfboards standing on pathway near 
beach.
Questioner: how many people are there?
Answerer: 2
Questioner: are they male or female?
Answerer: 1 male and 1 female
Questioner: are they wearing wetsuits?
Answerer: yes
Questioner: what color are they?
Answerer: 1 is black and other is white
Questioner: are they wearing swimsuits?
Answerer: yes they are
Questioner: are they wearing wetsuits?
Answerer: yes they are
Questioner: are they wearing sunglasses?
Answerer: no they are not
Questioner: are there any other people around?
Answerer: no there are not
Questioner: are there any animals?
Answerer: no animals
Questioner: is it sunny?
Answerer: yes it is

Image Caption: Colorful vehicles in roadway near large building in city.
Questioner: how many cars are there?
Answerer: i see 3
Questioner: are there any people?
Answerer: yes, there are people
Questioner: are there any cars parked?
Answerer: yes, there are cars

example standard reward Visual Dialogues

Figure 10: Example dialogues produced by the best performing ILQL agent on the Visual Dialogue
“standard” reward.
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Image Caption: Yellow and blue passenger train rounding a curve.
Questioner: how many cars on train?
Answerer: i can only see 1
Questioner: is it day or night?
Answerer: day
Questioner: is it sunny or cloudy?
Answerer: sunny
Questioner: is there anything else on tracks?
Answerer: no, just birds
Questioner: how many birds are there?
Answerer: 2
Questioner: what color are birds?
Answerer: black
Questioner: what color is sky?
Answerer: blue
Questioner: what time of day is it?
Answerer: it is daytime
Questioner: what time of year is it?
Answerer: i can't tell
Questioner: what else can you see?
Answerer: trees, sky, sky, sky

Image Caption: A person flying a kite over a sand dune.
Questioner: what color is kite?
Answerer: it's black and white
Questioner: is person male or female?
Answerer: can't tell
Questioner: what is person wearing?
Answerer: i can't tell
Questioner: what color is sand?
Answerer: dark brown
Questioner: is person flying kite flying in air?
Answerer: yes
Questioner: what color is kite?
Answerer: black

Image Caption: Little girl reaching through fence to pet a giraffe.
Questioner: how old is girl?
Answerer: maybe 3
Questioner: what color is her hair?
Answerer: dark brown
Questioner: what is she wearing?
Answerer: i can only see her from waist up
Questioner: what color is her hair?
Answerer: dark brown
Questioner: what is her eye color?
Answerer: i can't tell, it's covered with white and black and red
Questioner: what is fence made of?
Answerer: wood
Questioner: what color is fence?
Answerer: it's metal fence with black metal fence
Questioner: is giraffe full grown?
Answerer: yes

Image Caption: a number of people in a field with a kite in the air
Questioner: how many people are there?
Answerer: i see 4
Questioner: what color is kite?
Answerer: it's hard to tell, but it looks black
Questioner: are they male or female?
Answerer: both are male
Questioner: what are they wearing?
Answerer: they are wearing shorts and t shirts
Questioner: what color are shorts?
Answerer: black

example y/n reward Visual Dialogues

Figure 11: Example dialogues produced by the best performing ILQL agent on the Visual Dialogue
“y/n” reward.
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Image Caption: Tour buses are lined up on the street waiting for people.
Questioner: how many buses?
Answerer: 2
Questioner: what color are buses?
Answerer: white and red
Questioner: how many people?
Answerer: 2
Questioner: what gender are people?
Answerer: 1 is male and 1 is female
Questioner: what are they wearing?
Answerer: 1 is wearing shorts and other is wearing shorts and shirt
Questioner: what color is their hair?
Answerer: dark brown
Questioner: what color is their shirt?
Answerer: black
Questioner: what color is their pants?
Answerer: black
Questioner: what color is their shirt?
Answerer: black
Questioner: what color is their pants?
Answerer: black

Image Caption: a living room with a table couch guitar and some pictures
Questioner: what color is couch?
Answerer: brown
Questioner: what kind of pictures are on couch?
Answerer: 1 is UNK other is not sure
Questioner: what color is guitar?
Answerer: black
Questioner: what color is table?
Answerer: brown
Questioner: what color is table?
Answerer: brown
Questioner: what color is guitar?
Answerer: black
Questioner: what color are walls?
Answerer: white

Image Caption: Little girl reaching through fence to pet a giraffe.
Questioner: what is little girl wearing?
Answerer: she is wearing long sleeved shirt and jeans
Questioner: what color is fence?
Answerer: it's metal fence with black metal fence
Questioner: what is giraffe doing?
Answerer: it is just standing there

Image Caption: Pictures of living room, dining room, kitchen and bedroom.
Questioner: how many people are there?
Answerer: 2
Questioner: what are they doing?
Answerer: 1 is on top of other 1 is on other side of fridge
Questioner: what color is fridge?
Answerer: silver

example conservative y/n reward Visual Dialogues

Figure 12: Example dialogues produced by the best performing ILQL agent on the Visual Dialogue
“conservative y/n” reward.
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Figure 13: Top: Histogram of the fraction of yes/no questions asked per dialogue by Visual Dialogue
agents trained on the “y/n” reward. Here yes/no questions are determined by the same exact match
heuristic used by the “y/n” reward. ILQL agents ask fewer questions triggered as being yes/no than
baselines. The best performing agent is used for all methods. Bottom: Histogram of the fraction
of yes/no questions asked per dialogue by Visual Dialogue agents trained on the “conservative
y/n” reward. Here yes/no questions are determined by the same exact match heuristic used by the
“conservative y/n” reward. ILQL agents ask fewer questions triggered as being yes/no than baselines.
The best performing agent is used for all methods.
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method toxicity noised toxicity
ILQL τ = 0.6, β = 1 -2.15±0.10 / 289.97±10.92 -1.89±0.12 / 260.34±10.35
ILQL τ = 0.6, β = 2 -1.16±0.08 / 222.18±9.68 -0.99±0.09 / 202.09±8.99
ILQL τ = 0.6, β = 4 -0.47±0.05 / 151.46±7.86 -0.53±0.07 / 156.85±7.80
ILQL τ = 0.6, β = 8 -0.12±0.02 / 79.20±5.38 -0.23±0.05 / 73.12±4.88

ILQL τ = 0.6, β = 16 -0.01±0.01 / 15.46±1.76 -0.03±0.02 / 22.05±1.51
ILQL τ = 0.6, β = 32 0.00±0.00 / 2.00±0.35 0.00±0.00 / 9.24±0.16
single-step RL β = 1 -1.60±0.09 / 240.21 ± 10.10 -1.72±0.12 / 233.17±9.89
single-step RL β = 2 -0.96±0.07 / 199.04±9.24 -1.06±0.10 / 187.36±8.82
single-step RL β = 4 -0.34±0.04 / 111.13±6.76 -0.41±0.06 / 108.76±6.53
single-step RL β = 8 -0.07±0.019 / 37.59±3.47 -0.13±0.03 / 41.61±3.52

single-step RL β = 16 0.00±0.00 / 4.38±0.54 0.00±0.0 / 1.09±0.38
single-step RL β = 32 0.00±0.00 / 0.03±0.01 0.00±0.00 / 0.00±0.00

Filtered Fine-tuning -0.74±0.07 / 80.84±3.19 -1.61±0.11 / 90.75±3.29
Fine-tuning -3.51±0.13 / 137.70±5.82 -3.48±0.15 / 126.54±5.26

method upvotes real upvotes model
ILQL τ = 0.6, β = 1 6.29±0.15 / 39.11±1.99 8.38±0.12 / 25.15±1.43
ILQL τ = 0.6, β = 2 7.01±0.14 / 21.47±1.56 9.53±0.07 / 7.82±0.88
ILQL τ = 0.6, β = 4 7.47±0.14 / 7.91±0.63 9.99±0.01 / 1.38±0.09
ILQL τ = 0.6, β = 8 9.05±0.09 / 1.55±0.07 10.00±0.00 / 0.78±0.02

ILQL τ = 0.6, β = 16 9.73±0.05 / 0.55±0.14 10.00±0.00 / 0.54±0.02
ILQL τ = 0.6, β = 32 9.83±0.04 / 0.18±0.02 10.00±0.00 / 0.22±0.02
single-step RL β = 1 6.23±0.15 / 33.75±1.64 7.82±0.13 / 28.80±1.87
single-step RL β = 2 4.66±0.16 / 15.81±0.82 8.96±0.10 / 9.34±0.64
single-step RL β = 4 0.81±0.09 / 2.38±0.28 9.93±0.03 / 0.43±0.09
single-step RL β = 8 0.09±0.03 / 0.00±0.00 10.00±0.00 / 0.01±0.01

single-step RL β = 16 0.09±0.03 / 0.00±0.00 10.00±0.00 / 0.00±0.00
single-step RL β = 32 0.09±0.03 / 0.00±0.00 10.00±0.00 / 0.00±0.00

Filtered Fine-tuning 7.06±0.14 / 100.77±4.15 7.86±0.13 / 97.51±3.90
Fine-tuning 4.87±0.16 / 127.65±5.48 4.87±0.16 / 127.65±5.48

Table 13: All hyper-parameter settings evaluated across all Reddit Comment tasks, abalations, and
baselines. The best performing setting for each baseline of abalation is bolded. The left result in
each cell the the agent’s average reward and the right result is the estimated entropy of the agent’s
policy, measured in nats. As β is turned up, performance increases, but the entropy (or diversity) of
the policy’s outputs decreases. ILQL generally learns better performing and more diverse policies
than baselines.
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method score
ILQL τ = 0.7, β = 4 -2.23±0.03
ILQL τ = 0.7, β = 8 -2.18±0.03

ILQL τ = 0.7, β = 16 -2.18±0.03
ILQL τ = 0.7, β = ∞ -6.00±0.00
ILQL τ = 0.8, β = 4 -2.13±0.02
ILQL τ = 0.8, β = 8 -2.13±0.03

ILQL τ = 0.8, β = 16 -2.31±0.03
ILQL τ = 0.8, β = ∞ -6.00±0.00
ILQL τ = 0.9, β = 4 -2.30±0.03
ILQL τ = 0.9, β = 8 -2.26±0.03

ILQL τ = 0.9, β = 16 -2.36±0.03
ILQL τ = 0.9, β = ∞ -6.00±0.00
single-step RL β = 4 -2.24±0.03
single-step RL β = 8 -2.26±0.03

single-step RL β = 16 -2.23±0.03
single-step RL β = ∞ -6.00±0.00

10% Filtered Fine-tuning -2.93±0.06
30% Filtered Fine-tuning -3.01±0.06
50% Filtered Fine-tuning -2.38±0.03

Fine-tuning -2.61±0.03

Table 14: All hyper-parameter settings and baselines evaluated on the human Wordle dataset scraped
from Tweets (see Section A.5). The best performing setting for each baseline of abalation is bolded.
β = ∞ refers to greedily selecting actions with just the Q function. ILQL is generally better
performing than baselines.
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