
Published as a conference paper at ICLR 2023

OVER-PARAMETERIZED MODEL OPTIMIZATION WITH
POLYAK-ŁOJASIEWICZ CONDITION

Yixuan Chen1, Yubin Shi1, Mingzhi Dong1,*, Xiaochen Yang2,*, Dongsheng Li3,
Yujiang Wang4, Robert P. Dick5, Qin Lv6, Yingying Zhao1, Fan Yang7, Ning Gu1, Li Shang1

{yixuanchen20,ybshi21}@fudan.edu.cn

ABSTRACT

This work pursues the optimization of over-parameterized deep models for su-
perior training efficiency and test performance. We first theoretically emphasize
the importance of two properties of over-parameterized models, i.e., the conver-
gence gap and the generalization gap. Subsequent analyses unveil that these two
gaps can be upper-bounded by the ratio of the Lipschitz constant and the Polyak-
Łojasiewicz (PL) constant, a crucial term abbreviated as the condition number.
Such discoveries have led to a structured pruning method with a novel pruning
criterion. That is, we devise a gating network that dynamically detects and masks
out those poorly-behaved nodes of a deep model during the training session. To
this end, this gating network is learned via minimizing the condition number of the
target model, and this process can be implemented as an extra regularization loss
term. Experimental studies demonstrate that the proposed method outperforms
the baselines in terms of both training efficiency and test performance, exhibiting
the potential of generalizing to a variety of deep network architectures and tasks.

1 INTRODUCTION

Most practical deep models are over-parameterized with the model size exceeding the training sam-
ple size and can perfectly fit all training points (Du et al., 2018; Vaswani et al., 2019). Recent
empirical and theoretical studies demonstrate that over-parameterization plays an essential role
in model optimization and generalization (Liu et al., 2021b; Allen-Zhu et al., 2019). Indeed, a
plethora of state-of-the-art models that are prevalent in the community are over-parameterized, such
as Transformer-based models for natural language modeling tasks (Brown et al., 2020; Devlin et al.,
2018; Liu et al., 2019) and wide residual networks for computer vision tasks (Zagoruyko & Ko-
modakis, 2016). However, training over-parameterized models is usually time-consuming and can
take anywhere from hours to weeks to complete. Notwithstanding some prior works (Liu et al.,
2022; Belkin, 2021) on theoretical analyses of the over-parameterized models, those findings re-
main siloed from the common practices of training those networks.

The work seeks to optimize over-parameterized models, in pursuit of superior training efficiency
and generalization capability. We first analyze two key theoretical properties of over-parameterized
models, namely the convergence gap and the generalization gap, which can be quantified by the con-
vergence rate and the sample complexity, respectively. Theoretical analysis of over-parameterized
models is intrinsically challenging as the over-parameterized optimization landscape is often non-
convex, limiting convexity-based analysis. Inspired by recent research on the convergence analysis
of neural networks and other non-linear systems (Bassily et al., 2018; Gupta et al., 2021; Oymak
& Soltanolkotabi, 2019), we propose to use the Polyak-Łojasiewicz (PL) condition (Polyak, 1963;
Karimi et al., 2016; Liu et al., 2022) as the primary mathematical tool to analyze convergence rate
and sample complexity for over-parameterized models, along with the widely used Lipschitz con-

1China and Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University,
Shanghai, China. 2School of Mathematics Statistics, The University of Glasgow, Glasgow, UK. 3Microsoft
Research Asia, Shanghai, China. 4Department of Engineering Science, University of Oxford, Oxford, Eng-
land. 5Department of Electrical Engineering and Computer Science, University of Michigan, Michigan, United
States. 6Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States.
7School of Microelectronics, Fudan University, Shanghai, China. *The corresponding author.

1

Published as a conference paper at ICLR 2023

Figure 1: Benefits of PL regularization for BERT optimization. Figure (a-c) shows that models with
a smaller condition number (e.g., T2 < T1 in general) achieve faster training convergence and better
test performance. In addition, pruning heads with a large condition number, i.e., Masked T , reduces
the condition number, leading to more rapid and accurate training. Figure (d) shows T2 heads have
different condition numbers. The largest ones are pruned to produce Masked T in Figure (a-c).

dition (Allen-Zhu et al., 2019). Our theoretical analysis shows that the aforementioned properties
can be controlled by the ratio of the Lipschitz constant to the PL constant, which is referred to as
the condition number (Gupta et al., 2021). A small condition number indicates a large decrease in
training loss after parameter updates and high algorithmic stability relative to data perturbation, i.e.,
fast convergence and good generalization ability. More promisingly, such pattern can be observed
in empirical studies. As shown in Figure 1(a-c), where BERT models were applied to WikiText-2
for language modeling, the training loss of the model with a small condition number (T2) decreases
much faster than the model with a large condition number (T1), especially when the differences in
condition numbers are pronounced (between 40 and 80 epochs); its test performance also improves
much faster and is ultimately better. Such theoretical and empirical findings motivate us to formulate
a novel regularized optimization problem which adds the minimization of condition number to the
objective function; we call this new additional term PL regularization. In this way, we can directly
regularize the condition number while training over-parameterized models, thereby improving their
convergence speed and generalization performance.

Our empirical analysis further reveals that, given an over-parameterized model, different model
components exhibit distinct contributions to model optimization. Figure 1(d) plots the heatmap
of the condition number for all model heads at epoch-10 and it shows that the condition number
varies considerably between model heads. Given the fact that over-parameterized models contain a
large number of redundant parameters, we argue that it is possible to reduce the condition number
of an over-parameterized network during training by identifying and masking out poorly-behaved
sub-networks with large condition numbers. Figure 1(a-c) illustrates the potential efficacy of this ap-
proach. After disabling 75% heads of the BERT model T2 according to the condition number ranking
at epoch-10, the masked BERT (Masked T) possesses a smaller condition number and achieves faster
convergence and better test performance. This phenomenon motivates us to impose PL regulariza-
tion, and hence improve model optimization, by adopting a pruning approach. More specifically,
we introduce a binary mask for periodically sparsifying parameters, and the mask is learned via a
gating network whose input summarizes the optimization dynamics of sub-networks in terms of PL
regularization. An overview of the proposed method is provided in Appendix E.1.

The proposed pruning approach to enforcing PL regularization is related to the structured pruning
works, which focuses on compressing model size while maintaining model accuracy. The significant
difference lies in that we utilize the condition number to identify the important components, which
thus can simultaneously guarantee the convergence and generalization of model training. More
importantly, as a consequence of this difference, compared with most pruning works which obtain
a sparse model at a slight cost of degraded accuracy, our method is found to achieve even better
test performance than the dense model when no more than 75% of the parameters were pruned.
Experimental results demonstrate that our method outperforms state-of-the-art pruning methods in
terms of training efficiency and test performance. The contributions of this work are threefold:

• We are the first to propose using PL regularization in the training objective function of
over-parameterized models. Such proposal is founded on the theoretical analysis of opti-
mization and generalization properties of over-parameterized models, which shows that a
small condition number implies fast convergence and good generalization.

• We describe a PL regularization-driven structured pruning method for over-parameterized
model optimization. Specifically, we introduce a learnable mask, guided by the PL-based
condition number, to dynamically sparsify poorly-behaved sub-networks during model
training to optimize training efficiency and test performance.

2

Published as a conference paper at ICLR 2023

• The proposed analysis framework and optimization method can be applied to a wide range
of deep models and tasks. Experimental studies using three widely used deep models,
namely BERT , Switch-Transformer , and VGG-16 , demonstrate that the proposed method
outperforms the baselines on both training efficiency and test performance.

2 ANALYSIS OF OVER-PARAMETERIZED MODELS WITH PL CONDITION

In this section, we first show that, in the context of over-parameterized models, the optimal test
error can be decomposed into convergence gap and generalization gap, which can be quantified
via convergence rate and sample complexity, respectively. Next, using the tool of PL∗ condition, we
show that both convergence rate and sample complexity are upper-bounded by the condition number
and thus can be improved by using a small condition number.

2.1 OPTIMIZATION PROPERTIES OF OVER-PARAMETERIZED MODELS

Let X denote the input space and Y the target space. The standard optimization problem can be
formulated as finding a minimizer of the expected risk: f∗ = argminf :f∈YX R(f), where the
expected risk is defined as R(f) := E(x,y)∼D[L(f(x),y)], D denotes an unknown data distri-
bution over X × Y , and L denotes a non-negative loss function. To restrict the search space,
f is typically chosen from a hypothesis class H ⊂ YX ; the minimizer in this case is given by
f∗
H = argminf :f∈H R(f). In practice, the data distribution is unknown and thus the minimizer is

found by minimizing the empirical risk: f∗
H,S = argminf :f∈H RS(f), where the empirical risk is

defined as RS(f) :=
1
n

∑n
i=1 L(f(xi),yi), and S denotes the training set S = {(xi,yi)}ni=1 drawn

i.i.d. from D. The empirical risk minimization problem is often solved by using algorithms such as
gradient descent; the optimal solution found by these algorithms is denoted by f̂H,S . Finally, when
f is parameterized by w ∈ Rm, we denote the loss function by L(x,y;w), or simply L(w), and
also use LS(w) to denote the empirical risk.
Definition 1 (Over-parameterized model Liu et al. (2020a)). A model is an over-parameterized
model if the number of parameters m is larger than the number of data.
Motivated by the previous work (Gühring et al., 2020), the Bayes error, i.e., the optimal test error,
can be decomposed into five components: empirical error, convergence gap, generalization gap,
estimation error and approximation error. In the over-parameterized setting, following previous
works (Brutzkus et al., 2017; Belkin, 2021; Liu et al., 2022), we assume that the optimal function
f∗
H,S fits or interpolates the training data exactly. Therefore, for over-parameterized models, the

Bayes error decomposition can be simplified as
R(f∗) ≤ 2|RS(f̂H,S)−RS(f

∗
H,S)|+ 3 sup

f∈H
|R(f)−RS(f)|. (1)

The first and second terms refer to the convergence gap and the generalization gap, respectively. (The
detailed decomposition can be found in Appendix A.) Thus, the Bayes error can be better approxi-
mated if we restrict the convergence gap and generalization gap. Furthermore, the convergence gap
can be quantified in proportion to the reciprocal of convergence rate, and the number of instances
required by specific generalization gap can be quantified in proportion to sample complexity.

Definition 2 (Convergence Rate (Alzubi et al., 2018)). If the model sequences f(w0), . . . , f(wt)
during optimization converge to the optimal solution f(w∗), convergence rate can be defined as:

lim
t→∞

f (wt+1)− f (w∗)

f (wt)− f (w∗)
= γ, (2)

where γ is a real number in range [0, 1]. The convergence rate is measured by the limit of the ratio
of successive differences. The sequence converges sublinearly, linearly, or superlinearly depending
on whether γ = 1, γ ∈ (0, 1), or γ = 0, respectively. For an algorithm with a linear rate of
convergence, RS(f(wt)) ≤ exp(−tγ) (RS(f(w0))).
Definition 3 (Sample Complexity (Alzubi et al., 2018)). For any ε, δ ∈ (0, 1), the sample complexity
n(ε, δ) is defined as the smallest n < ∞ for which there exists a learning algorithm f such that, for
any distribution D on training dataset S with the data sample x1, . . . ,xn of size n,

Pr (|R(fS)−RS(fS)| ≤ ϵ) ≥ 1− δ. (3)

The sample complexity denotes the number of required examples to guarantee a generalization gap
smaller than ϵ with a probability 1− δ.

3

Published as a conference paper at ICLR 2023

2.2 PL∗ CONDITION AND THEORETICAL PROPERTIES

The previous subsection explains that faster convergence and better generalization are crucial to the
test performance of over-parameterized models and these measures can be quantified by the con-
vergence rate and sample complexity, respectively. In this subsection, we show that both quantities
can be analyzed through the PL∗ condition and Lipschitz continuity, whose results suggest that en-
couraging an over-parameterized model to have a smaller condition number will generally result in
faster convergence and better generalization.

Definition 4 (Lipschitz Continuity (Nesterov, 2003)). The function f is Lf -Lipschitz with re-
spect to parameters w if there exists a constant Lf , such that: |f(w2) − f(w1)| ≤ Lf∥w1 −
w2∥,∀w1,w2 ∈ W , where W indicates the hypothesis set.

Definition 5 (Polyak-Łojasiewicz∗ Condition (Polyak, 1963)). The function f(w) satisfies the
Polyak-Łojasiewicz∗ (PL∗) condition with parameter µ > 0 if ∀w ∈ W , ∥∇f(w)∥2 ≥ µ · f(w).

The inequality in the PL∗ condition implies that every stationary point is a global minimizer, which
is also a property of strong convexity. However, unlike strong convexity, the PL∗ condition does not
assume the uniqueness of the minimizer (Bassily et al., 2018). Such difference makes PL∗ a more
appropriate mathematical framework to analyze the theoretical properties of over-parameterization
as the optimization of over-parameterized models results in manifolds of global minima.
Following the original argument from Liu et al. (2022); Charles & Papailiopoulos (2018), we use
the PL∗ condition and Lipschitz continuity to analyze the convergence rate and sample complexity
of over-parameterized models trained using gradient descent (GD).

Theorem 6 Suppose the loss function L(w) and its first derivative are both Lf -Lipschitz
continuous and the loss function satisfies the µ-PL∗ condition in the ball B(w0, R) :=
{w ∈ Rm : ∥w −w0∥ ≤ R} with R > 0, then we have the following:
(a) Convergence Rate of GD (Karimi et al., 2016): Gradient descent with a step size η = 1

Lf

converges to a global solution with an exponential convergence rate: LS(wt) ≤ (1− µ
Lf

)tLS(w0).

(b) Sample Complexity: Suppose an algorithm A has pointwise hypothesis stability γ with respect to
a bounded loss function such that 0 ≤ L(w) ≤ M . The model f parameterized by w is the output of
algorithm A trained on dataset S. Then, for any ϵ, δ, we have Pr (|R(fS)−RS(fS)| ≤ ϵ) ≥ 1− δ,

with the sample complexity n(ϵ, δ) ≤ 6L2
fM

µϵ2δ + M2

2ϵ2δ .

The proof of the theorem is deferred to Appendix B. The theorem indicates that 1) a smaller Lf/µ
would result in a faster convergence rate and decrease the convergence gap; and 2) a smaller Lf/µ
would result in a smaller sample complexity, i.e., fewer samples required to obtain a generalization
gap smaller than ϵ with a probability higher than 1 − δ. In other words, the theorem suggests that
the convergence rate and generalization ability of an over-parameterized model can be improved
by encouraging the model to have a smaller Lf/µ, which is referred to as the condition number
in (Nesterov, 2003; Gupta et al., 2021). Following the previous work, we call the ratio of the Lips-
chitz constant Lf to the PL constant µ as the condition number.
Definition 7 (Condition Number (Gupta et al., 2021)). Suppose the loss function L satisfies the PL∗

condition and has Lf -Lipschitz continuous gradients, the condition number is defined as Lf

µ .

3 MODEL OPTIMIZATION WITH PL CONDITION

Based on the analysis in the previous section, we advocate optimizing the condition number Lf

µ of
over-parameterized models by adding it as a regularization term to the optimization problem; this
technique is termed PL regularization. In this section, we first introduce the analytic form of PL
regularization. Then, we propose a PL regularization-driven structured pruning method.

3.1 FORMULATION OF PL REGULARIZED OPTIMIZATION

To minimize the condition number, we propose the following regularized risk minimization problem,
which adds the condition number to the training error:

4

Published as a conference paper at ICLR 2023

min
w∈W

LS(w) + α
Lf

µ
, (4)

where µ indicates the PL constant of the neural network with respect to parameters w; Lf is the
Lipschitz constant with respect to parameters w; LS(w) indicates the training error of the neural
network with parameters w; α is a trade-off parameter.

While it is desirable to train a network with a small condition number term, directly optimizing µ is
often difficult. Following the uniform conditioning developed in previous works (Liu et al., 2022;
Scaman et al., 2022) for an over-parameterized model f with a Lipschitz continuous loss function,
e.g., the mean square error loss, the analysis of µ could reduce to calculating and optimizing the
minimal eigenvalue of the neural tangent kernel (NTK) associated to f . Denote the NTK matrix of
the function f as K(w) = DF(w)DFT (w) ∈ Rn×n, where DF represents the differentiable map
of f at w, and the smallest eigenvalue of K as λmin(K(w)); and denote µ∗ = infw∈W λmin(K(w))
based on the uniform conditioning (Liu et al., 2022; 2020a; Scaman et al., 2022). Consequently, the
objective function (4) is represented as:

min
w∈W

LS(w) + α
Lf

µ∗ . (5)

Following the previous works (Liu et al., 2022; 2020b), the following proposition shows that
the condition number is upper bounded by Hessian norm ∥Hf∥2, which is defined as ∥Hf∥2 =

maxi ∥Hfi∥2, where Hfi =
∂2fi
∂w2 . ∥Hf∥2 is termed the Hessian norm of f hereinafter.

Proposition 8 Given a point w0, B(w0, R) denotes a ball centered at w0 with radius R >
0. Suppose the loss function satisfies the µ∗-PL∗ condition and has Lf -Lipschitz gradi-
ents, for all w ∈ B(w0, R). Then the condition number is upper bounded by Lf

µ∗ ≤
∥DF(w0)∥2+supw∈B

√
nR·∥Hf (w)∥2

infw∈B λmin(K(w)) .

The proof can be found in Appendix C. Proposition 8 motivates us to optimize the upper bound of
condition number for PL regularization optimization.

3.2 IMPLEMENTATION OF PL-REGULARIZED OPTIMIZATION VIA PRUNING

In this subsection, we adopt a pruning approach controlled by Hessian norm to solve the new regu-
larized risk minimization problem.

3.2.1 LEARNING OBJECTIVE OF PL REGULARIZATION-DRIVEN PRUNING ALGORITHM

First, we propose the following theorem to show that pruning parameters governed by minimizing
the Hessian norm ∥Hf∥2 is able to decrease the upper bound of the condition number.

Theorem 9 Suppose the neural network f parameterized by w (w ∈ B (w0, R)) and its loss func-
tion L have the same assumptions as in Proposition 8. Pruning parameters from the parameter set
governed by minimizing the Hessian norm ∥Hf∥2 can decrease the upper bound of the condition
number.

Proof sketch. Based on the Taylor expansion around initialization w0, we show that the pruning
parameters controlled by minimizing the Hessian norm ∥Hf∥2 is able to minimize the upper bound
of Lipschitz (according to Proposition 8); and based on the matrix theory, pruning parameter is able
to maximize the minimal eigenvalue of NTK (Proposition 14); details can be found in Appendix D.

To disable unnecessary or harmful parameters, we introduce a binary pruning mask to implement
structured pruning, i.e., each element in the mask controls a subset of parameters. This design
is particularly suitable for parameters with inherent structures, e.g., some parameters are from the
same convolutional filter in a CNN or head in a Transformer. Suppose the parameters w consists
of p subsets of parameters and let w[i] denote the ith subset of the parameters. Then the mask m, a
Boolean vector of length p, sparsifies the parameters as follows: w[i] is disabled, i.e., all elements
of w[i] equal to 0, if mi = 0; otherwise, w[i] remains the same. With the introduction of the pruning
mask, Eq. 5 can be transformed to the following optimization problem, which additionally learns
the binary mask to prune the network:

min
w,m

Lprune = LS(m ∗w) + α∥Hf (m ∗w)∥2, (6)

5

Published as a conference paper at ICLR 2023

where ∗ denotes the Khatri-Rao product, i.e., m ∗w =
[
m1w[1] · · · mpw[p]

]⊤
; and ∥Hf (m ∗

w)∥2 denotes the Hessian norm w.r.t. the pruned model. In practice, we optimize the Hessian
norm by minimizing the trace of the Hessian which can be efficiently approximated; details can be
found in Appendix E.2. We further conduct an empirical analysis to show that pruning parameters
controlled by penalizing the trace of Hessian leads to a decrease in the condition number; the result
is included in Figure 5 of Appendix D.

Directly solving Eq. 6 to obtain m is difficult, and therefore we adopt a gating network to learn a
binary mask and perform structured pruning. The mask is defined as a differentiable gating function:
m = g(dw;v), where dw and v are the input and parameter of the function g; dw, dubbed as
the parameter features, encodes the optimization dynamics characterized by the PL∗ condition. In
the following two subsections, we explain the details of the parameter features dw and the gating
function g. Algorithm 2 summarizes the proposed pruning algorithm.

3.2.2 PARAMETER FEATURES

dw[i]
(dw[i]

∈ R2) is designed to encode two pieces of information about the optimization dynamics
for each w[i]. According to the discussion in Section 3.1, the PL∗ condition at w can be analyzed
through the minimum eigenvalue of the corresponding NTK. Therefore, the first parameter feature
about w[i] is chosen as λmin(K(w[i])).

The second parameter feature is empirically set as the entropy of the eigenvalue distribution of the
corresponding tangent kernel, which provides a measure to summarize the distribution envelope.
Given the NTK matrix K(w[i]), the entropy, denoted by ρ, is defined as:

ρ
(
K
(
w[i]

))
= −

n∑
i=1

λ̄i

(
K
(
w[i]

))
log

(
λ̄i

(
K
(
w[i]

)))
, (7)

where λ̄i = λi/
∑

j λj is the normalized eigenvalue. ρ is maximal when the eigenvalues are all
equal and small when a single eigenvalue is much larger than all others.

3.2.3 GATING NETWORK

The gating network is implemented by a two-layer feedforward network (FN) with parameters v,
which outputs a scalar between 0 and 1 to indicate the importance of w[i]:

g(dw;v) = softmax
([
FN v(dw[1]

); · · · ;FN v(dw[p]
)
])

∈ [0, 1]p, (8)

The parameter v is updated according to the pre-defined pruning times and pruning ratios
{tj , rj}qj=1. For example, under the one-shot pruning schedule, i.e., {t, r}, we update v once at
epoch t to prune r% of parameters; under the linear pruning schedule, i.e., {tj , rf/tmax}tmax

j=1 where
tmax denotes the maximum number of training iterations and rf denotes the target pruning ratio, we
update v at every epoch to prune rf/tmax% of parameters (Hoefler et al., 2021).

Once the update of v is complete, we apply the TopK function to generate the binary mask m:

m = TopK (g(dw;v), k), where mi =

{
1, if g(dw;v)i is in the top k elements of g(dw;v),

0, otherwise.
(9)

At pruning time tj , the hyperparameter k is set according to the pruning ratio: k = (1 − rj)p. By
utilizing such a learnable gating function, the mask is capable of adaptively inducing sparsity on the
network, till the pruned network produces good accuracy and fulfills the target pruning ratio. The
final output mtq is used to produce the sparse over-parameterized model f(mtq ∗w).

4 RELATED WORK

Over-parameterized Model. Deep models used in practice are often heavily over-
parameterized (Zhang et al., 2021; Nakkiran et al., 2021). Recent progress has been made in
convergence analysis of over-parameterized models optimized by (stochastic) gradient descent al-
gorithms (Du et al., 2018; Liu et al., 2020b; Oymak & Soltanolkotabi, 2019). In particular, the

6

Published as a conference paper at ICLR 2023

PL condition (Polyak, 1963) and its slight variant – the PL∗ condition (Liu et al., 2022) – have
attracted interest in connection with the convergence guarantees. Some works prove that for over-
parameterized models with the proper random initialization, gradient descent-based methods prov-
ably find the global minimum with a global polynomial time convergence (Du et al., 2018; Belkin,
2021; Karimi et al., 2016; Liu et al., 2022). Furthermore, the work (Charles & Papailiopoulos, 2018)
shows the generalization bound of models satisfying the PL condition via stability hypothesis (Bous-
quet & Elisseeff, 2002). Inspired by the success of recent theoretical analysis, this work uses PL∗

condition to analyze the convergence and generalization ability, which is then used to guide the
training of practical over-parameterized models.

Network Pruning. Network pruning aims to minimize network parameters while maintaining the
model performance. Most existing structured pruning methods rely on approximations of loss differ-
ences resulting from parameter perturbation. There are three classes of pruning techniques. The first
uses zeroth-order information such as the magnitude of weight and activation values with respect to
the running model, e.g., adding L1 or L2 penalty norm to the objective function (Han et al., 2015b;a;
He et al., 2018) or using the Lottery Ticket Hypothesis and its extensions (Frankle & Carbin, 2018;
Frankle et al., 2019; Morcos et al., 2019; You et al., 2020; Yu et al., 2020; Liu et al., 2021b). The
second uses gradient-based first-order methods to approximate loss change via the first-order Tay-
lor expansion of the training loss (Liu & Wu, 2019; You et al., 2019; Mozer & Smolensky, 1988;
Molchanov et al., 2016; Sanh et al., 2020). The third uses the Hessian or Fisher information of the
loss to select weights for deletion (Hassibi et al., 1993; Hassibi, 1992; Cun et al., 1990; Molchanov
et al., 2019; Liu et al., 2021a). Different from structured pruning works often accompanied with
negative impacts on model generalization, the proposed pruning method based on PL regularization
simultaneously improves convergence and generalization ability.

5 EXPERIMENTS

This section presents experiments on three over-parameterized models, namely BERT (Devlin et al.,
2018), Switch-Transformer (Fedus et al., 2021), and VGG-16 (Simonyan & Zisserman, 2014). De-
tailed ablation experiments can be found in Appendix F.

Evaluation Measure. We evaluate the effectiveness of our algorithm for model optimization in
terms of training efficiency and generalization ability. Training efficiency is measured by the training
error of the model trained with fixed training iterations (or epochs) (Shazeer et al., 2017; Fedus
et al., 2021). Generalization ability is measured by the test performance (Liu et al., 2021b). For
fair comparisons, all models are evaluated with the same pruning ratio, which is computed as the
number of disabled parameters divided by the parameter counts of the corresponding structure.

5.1 RESULTS ON BERT

This experiment focuses on the Multi-Head Attention (MHA) component of BERT-Base (Devlin
et al., 2018), as MHA plays a critical role in the success of BERT. Following the basic setup
of (Devlin et al., 2018), we train BERT with self-supervised masked language modeling (MLM)
task (Devlin et al., 2018) on WikiText-2 (Merity et al., 2016). The baseline methods contain vanilla
BERT (Wang et al., 2019), two Transformer-based pruning methods, namely BERT-LTH (Chen
et al., 2020) and Att-Score (Michel et al., 2019), and two pruning approaches, namely SNIP (Lee
et al., 2018) and GraSP (Wang et al., 2020). More experimental details can be found in Ap-
pendix E.3.

Table 1: Results of BERT on WikiText-2. We denote perplexity as PPL, and ∆PPL represents the
perplexity difference between training and test. Boldface indicates the best result.

Method Criterion Training PPL Test PPL
∆PPL@8 k iters @10 k iters @15 k iters Final

BERT - 39.37 14.79 6.35 75.57 7.49
BERT-LTH Magnitude 36.97 13.07 7.92 81.21 7.20
Att-Score Gradient 23.10 11.35 5.53 79.84 7.36
SNIP Gradient 16.33 9.91 4.32 72.39 8.09
GraSP Hessian 39.96 12.22 6.28 81.61 8.21
Ours PL 15.72 9.63 4.24 63.18 6.84

7

Published as a conference paper at ICLR 2023

Table 1 shows the performance of all models on WikiText-2 with the {5, 75%} pruning policy, i.e.,
we prune 75% heads at epoch-5 during training. Our method shows better training efficiency and
generalization ability than all baselines. In particular, our method improves test perplexity over
vanilla BERT, and improves training perplexity by 60%, 29%, and 33% after 8 k, 10 k, and 15 k
iterations, demonstrating the effectiveness of PL regularization for BERT model optimization. We
also evaluate the training efficiency by measuring the number of iterations required for converging
to a fixed training error status. Compared to vanilla BERT, our method requires only 0.7× iterations
to achieve satisfactory test perplexity (see Appendix F.2). Other pruning methods, on the other hand,
can improve training efficiency but at a cost of sacrificing test performance, as their pruning criteria
focus on training loss, ignoring the measurement of generalization ability.

Furthermore, we analyze the effect of pruning times of mask for BERT optimization (shown in
Appendix F.3). It is interesting to find that compared with the model applying PL regularization
iteratively throughout training, the model that applies PL regularization during the early stages of
training has better training efficiency and test performance. This phenomenon indicates that impor-
tant heads for BERT optimization can potentially be discovered in the early stages of training.

5.2 RESULTS ON SWITCH-TRANSFORMER

Switch-Transformer (Fedus et al., 2021) is a representative implementation of Mixture-of-
Expert (MoE) architecture (Shazeer et al., 2017), which has shown excellent performance in NLP
tasks recently. For comparison, the baseline methods include vanilla Switch-Transformer, Switch-
LTH (Chen et al., 2020), Exp-Score (Michel et al., 2019), SNIP (Lee et al., 2018), and GraSP (Wang
et al., 2020). All experiments are conducted on WikiText-103 (Merity et al., 2016) with the masked
language modeling task. More experimental details can be found in Appendix E.3.

Table 2: Results of Switch-Transformer on WikiText-103 (Best results in Boldface).

Method Training PPL Test PPL
∆PPL@50 k iters @60 k iters @70 k iters Final

Switch-Transformer 18.62 7.50 7.27 8.96 1.56
Switch-LTH 19.97 10.08 7.61 10.72 1.59
Exp-Score 18.45 10.56 8.17 9.18 1.49
SNIP 12.12 8.99 7.99 9.88 1.46
GraSP 18.93 8.17 7.81 8.84 1.52
Ours (experts only) 7.11 5.62 5.53 7.68 1.51
Ours (experts & heads) 6.97 5.86 5.23 7.78 1.45

Table 2 lists the performance of Switch-Transformer on WikiText-103 with the {5, 50%} prun-
ing policy. Our method (Ours (experts only)) significantly outperforms all the baselines in both
training efficiency and generalization ability, demonstrating our method can be applicable to MoE
architecture. In particular, compared with the vanilla Switch-Transformer, when used on the MoE
architecture, our method improves training perplexity by 62%, 41%, 24% in 50 k, 60 k, and 70 k
iterations, while improving test performance by 13%. This phenomenon indicates that while the
sparsely-activated MoE architecture selects different experts for each data point, there also exist cer-
tain poorly-behaved experts. By modeling the optimization dynamics which guarantee the conver-
gence and generalization ability, the proposed PL regularization-driven pruning method can disable
under- or over-specialized experts and keep well-behaved experts.

We also investigate the benefits of implementing PL regularization on both heads of MHA and
experts of MoE, as shown in the last line in Table 2. Compared with the vanilla Switch-Transformer,
implementing PL regularization on both heads and experts presents a 28% improvement in training
perplexity after 70 k iterations and a 13% improvement in test performance. This result further
demonstrates the proposed PL regularization is flexible and applicable to different architectures.

5.3 RESULTS ON VGG-16

This experiment focuses on VGG-16 (Simonyan & Zisserman, 2014) trained on CIFAR-10 and
CIFAR-100 datasets. The baselines include vanilla VGG-16 (Li et al., 2016) three filter pruning
methods, namely FPGM (He et al., 2019), CHIP (Sui et al., 2021), and DPFPS (Ruan et al., 2021),
and three general pruning approaches, namely LTH (Frankle & Carbin, 2018), SNIP (Lee et al.,

8

Published as a conference paper at ICLR 2023

2018), and GraSP (Wang et al., 2020). All models are trained from scratch and are pruned with a
linear schedule where starting from epoch-15, we prune the same number of filters at each epoch
until the target sparsity is reached. More details of baselines and experimental settings can be found
in Appendix E.4. Additional experimental results of ResNet-56 can be found in Appendix F.1.

Table 3 shows the performance of all methods trained on CIFAR-10 and CIFAR-100 with a 50%
pruning ratio. As we can see, our method outperforms all pruning baselines in terms of training
efficiency and test accuracy on both datasets. Especially, compared with the vanilla VGG-16, our
method achieves a higher accuracy with fewer parameters, demonstrating the effectiveness of PL
regularization implemented as structured pruning for VGG-16 optimization.

Table 3: Results of VGG-16 on CIFAR-10 and CIFAR-100 (Best results in Boldface).
Method

& Dataset

CIFAR-10 CIFAR-100
Train Loss (@ epochs) Test Accuracy (@ epochs) Train Loss (@ epochs) Test Accuracy (@ epochs)
@100 @150 @100 @150 Final @100 @150 @100 @150 Final

VGG-16 0.1091 0.0075 92.46 93.25 93.85 0.4826 0.0459 72.21 72.28 73.86
LHT 0.1206 0.0106 92.41 93.12 93.59 0.5342 0.0507 71.78 71.86 73.11
SNIP 0.1106 0.0098 92.35 93.21 93.85 - - - - -
FPGM 0.1144 0.0146 90.80 91.70 93.50 0.4964 0.0709 68.00 68.30 68.90
GraSP 0.2150 0.0420 91.13 92.83 93.70 0.8380 0.1240 69.33 71.74 72.92
CHIP 0.2585 0.0841 87.00 90.38 93.71 1.0581 0.4508 58.44 67.28 72.80
DPFPS 0.1224 0.0101 92.54 93.11 93.99 0.5222 0.0430 71.69 73.17 73.88
Ours 0.1040 0.0068 92.70 93.55 94.27 0.5175 0.0428 72.31 73.26 74.08

5.4 QUANTITATIVE ANALYSIS

Figure 2: Heatmaps of condition number of
the remained experts determined by LTH, Exp-
Score, SNIP, GraSP, and our method. Baselines
fail to identify the well-behaved experts (The ex-
perts marked in red are the ones that are well-
behaved but missed by baselines).

This experiment aims to understand why the
baselines perform differently in terms of train-
ing efficiency and test performance. Theo-
rem 6 states that the condition number con-
trols the convergence and generalization ability
of a model. Thus, we take a trained Switch-
Transformer as an example and compare the
condition number of important experts identi-
fied by different pruning criteria, including the
weight magnitude of LTH, the gradient-based
score of Exp-Score, the gradient value of SNIP,
and the Hessian value of GraSP.

Figure 2 presents heatmaps of the condi-
tion number and marks important experts by
squares. It shows that our method has the abil-
ity to retain well behaved experts with small
condition number while the baselines fail to retain these experts. The reason is that these base-
lines bias towards training loss, adversely affecting generalization. This observation confirms the
importance of simultaneously considering both the convergence gap and the generalization gap for
over-parameterized model optimization. Furthermore, the criteria of recent pruning works can be re-
garded as the parameter features and fed into the proposed gating network, which may help optimize
PL regularization by providing rich information of parameters. We leave it for future works.

6 CONCLUSION

This paper establishes a principled connection between model optimization and the PL condition
and advocates utilizing this theoretical finding when optimizing over-parameterized models. A new
optimization problem is therefore formulated with the proposed PL regularization, and we illustrate
that it can be solved via a structured pruning method. We postulate that the effect of such regu-
larization may be achieved in other ways, e.g., by using more advanced optimization algorithms
which induce implicit regularization. Moreover, experiments demonstrate the superiority of the pro-
posed PL regularization-driven pruning algorithm, unveiling the potential of adopting theoretically
founded measures as the pruning criteria.

9

Published as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine learning from theory to algorithms: an
overview. In Journal of physics: conference series, volume 1142, pp. 012012. IOP Publishing,
2018.

Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit sym-
metric positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of SGD in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 30:203–248, 2021.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning the-
ory. In Summer school on machine learning, pp. 169–207. Springer, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms
that converge to global optima. In International Conference on Machine Learning, pp. 745–754.
PMLR, 2018.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in Neural
Information Processing Systems, 33:15834–15846, 2020.

Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. Advances in Neural Information
Processing Systems 2, 1990.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks. arXiv
preprint arXiv:2007.04759, 2020.

Chirag Gupta, Sivaraman Balakrishnan, and Aaditya Ramdas. Path length bounds for gradient
descent and flow. J. Mach. Learn. Res., 22(68):1–63, 2021.

10

Published as a conference paper at ICLR 2023

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015b.

B. Hassibi. Second order derivatives for network pruning: Optimal brain surgeon. In CiteSeer, pp.
164–171, 1992.

B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4340–4349, 2019.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(241):1–124, 2021.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on ma-
chine learning and knowledge discovery in databases, pp. 795–811. Springer, 2016.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-
parameterized systems of non-linear equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 2020a.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020b.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Congcong Liu and Huaming Wu. Channel pruning based on mean gradient for accelerating convo-
lutional neural networks. Signal Processing, 156:84–91, 2019.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning, pp. 7021–7032. PMLR,
2021a.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021b.

11

Published as a conference paper at ICLR 2023

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in Neural Information Processing Systems, 32, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11264–11272, 2019.

Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: general-
izing lottery ticket initializations across datasets and optimizers. Advances in Neural Information
Processing Systems, 32, 2019.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in Neural Information Processing Systems, 1, 1988.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient descent
takes the shortest path? In International Conference on Machine Learning, pp. 4951–4960.
PMLR, 2019.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Xiaofeng Ruan, Yufan Liu, Bing Li, Chunfeng Yuan, and Weiming Hu. Dpfps: dynamic and pro-
gressive filter pruning for compressing convolutional neural networks from scratch. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 2495–2503, 2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
look at the hessian eigenspectrum of deep neural networks and its applications to regularization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9481–9488,
2021.

Kevin Scaman, Cédric Malherbe, and Ludovic Dos Santos. Convergence rates of non-convex
stochastic gradient descent under a generic lojasiewicz condition and local smoothness. In In-
ternational Conference on Machine Learning, pp. 19310–19327. PMLR, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel
independence-based pruning for compact neural networks. Advances in Neural Information Pro-
cessing Systems, 34:24604–24616, 2021.

12

Published as a conference paper at ICLR 2023

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for over-
parameterized models and an accelerated perceptron. In International Conference on Artificial
Intelligence and Statistics, pp. 1195–1204. PMLR, 2019.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Chenguang Wang, Mu Li, and Alexander J Smola. Language models with transformers. arXiv
preprint arXiv:1904.09408, 2019.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training
of deep networks. In International Conference on Learning Representations, 2020.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter prun-
ing method for accelerating deep convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp. In International Conference on Learning
Representations, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

13

Published as a conference paper at ICLR 2023

A BAYES ERROR DECOMPOSITION

Motivated by the previous work (Gühring et al., 2020), the Bayes error, i.e., the optimal test error,
can be decomposed as:

R(f∗) ≤ RS(f̂H,S)︸ ︷︷ ︸
empirical error

+ |RS(f
∗
H,S)−RS(f̂H,S)|︸ ︷︷ ︸
convergence gap

+ |R(f∗
H,S)−RS(f

∗
H,S)|︸ ︷︷ ︸

generalization gap

+ |R(f∗
H)−R(f∗

H,S)|︸ ︷︷ ︸
estimation error

+ |R(f∗
H)−R(f∗)|︸ ︷︷ ︸

approximation error

.
(10)

In the over-parameterized setting, we assume that the optimal function f∗
H,S fits or interpo-

lates the training data exactly, i.e., RS(f
∗
H,S) = 0. Thus the empirical error equals the con-

vergence gap. Moreover, the estimation error can be associated with the generalization gap:
|R(f∗

H,S) − RS(f
∗
H,S)| ≤ 2 supf∈H |R(f) − RS(f)| (Bousquet et al., 2003). Furthermore, as

over-parameterization refers to manifolds of potential interpolating predictors, H for the over-
parameterized model can be omitted, i.e., R(f∗

H) = R(f∗). Therefore, for over-parameterized
models, Eq. 10 can be simplified as

R(f∗) ≤ 2 |RS(f̂H,S)−RS(f
∗
H,S)︸ ︷︷ ︸

0

|

︸ ︷︷ ︸
convergence gap

+3 sup
f∈H

|R(f)−RS(f)|︸ ︷︷ ︸
generalization gap

. (11)

B PROOF OF THEOREM 6

B.1 CONVERGENCE RATE

The convergence rate of the over-parameterized model has been studied by many works (Liu et al.,
2022; Karimi et al., 2016; Allen-Zhu et al., 2019).

We assume that the loss function has the Lf -Lipschitz continuous gradient, i.e., for all parameters
w and v, such that:

L(w) ≤ L(v) + ⟨∇L(v),w − v⟩+ Lf

2
∥w − v∥2, (12)

Using the assumption, we have that:

LS (wt+1)− LS (wt) ≤ ⟨∇LS(wt),wt+1 −wt⟩+
Lf

2
∥wt+1 −wt∥2 (13)

Given the gradient method with a learning rate η = 1
Lf

, such that wt+1 = wt − η∇LS(wt) =

wt − 1
Lf

∇LS(wt), we have

LS(wt+1)− LS(wt) ≤ − 1

2Lf
∥∇LS(wt)∥2 (14)

Under the PL∗ condition at point wt, we have

LS (wt+1)− LS (wt) ≤ − µ

Lf
(LS(wt)) (15)

Therefore, we have

LS(wt) ≤ (1− µ

Lf
)(LS(wt−1)) ≤ (1− µ

Lf
)t(LS(w0)) (16)

B.2 SAMPLE COMPLEXITY

Following previous work (Charles & Papailiopoulos, 2018), we first calculate the generalization
bound ϵ for the function f with the pointwise hypothesis stability γ. Then, we analyze the point-
wise hypothesis stability γ for model trained on the loss function satisfying the PL∗ condition with
parameter µ. Finally, given the pointwise hypothesis stability γ, and the generalization bound ϵ, we
bound the sample complexity of f .

14

Published as a conference paper at ICLR 2023

B.2.1 GENERALIZATION ANALYSIS VIA POINTWISE HYPOTHESIS STABILITY

A useful approach to analyzing the generalization performance of learning algorithms is algorithmic
stability (Bousquet & Elisseeff, 2002). A learning algorithm A is stable if small changes in the
training set result in small differences in the output predictions of the trained model. Following
the foundational works, we analyze the generalization bound from the perspective of pointwise
hypothesis stability.

Given a data set S = {x1, . . . ,xn} where xi ∼ D, we define dataset Si as S\xi, i.e., Si =
{x1, . . . ,xi−1,xi+1, . . . ,xn}. For our purposes, f is the output of learning algorithm A, parame-
terized by w. For the model f parameterized by w, we denote the model trained on the dataset S
and Si as wS and wSi , respectively. Accordingly, the loss functions are represented as L(wS ;x)
and L(wSi ;x), respectively. Especially, for a given dataset S, the empirical loss on a dataset S is
denoted as LS(wS) and given by LS(wS) =

1
n

∑n
i=1 L(f(xi;wS),yi)).

Definition 10 (Pointwise Hypothesis Stability (Bousquet & Elisseeff, 2002)). An algorithm A has
pointwise hypothesis stability γ with respect to a loss function L if

∀i ∈ {1, . . . , n}, ES [|L (wS ;xi)− L (wSi ;xi)|] ≤ γ. (17)

Then we can use the pointwise hypothesis stability to establish the generalization bounds as

Theorem 11 Bousquet & Elisseeff (2002). Suppose we have a learning algorithm A with pointwise
hypothesis stability γ with respect to a bounded loss function L such that 0 ≤ L(w;x) ≤ M . For
any δ, we have with probability at least 1− δ,

R(wS) ≤ RS(wS) +

√
M2 + 12Mnγ

2nδ
. (18)

In the following, we derive stability bounds for models trained on risk functions satisfying the PL∗

condition.

B.2.2 POINTWISE HYPOTHESIS STABILITY WITH PL∗ CONDITION

Theorem 12 Assume that for all training sets S and models f parameterized by w, the loss func-
tion L is PL∗ with parameter µ. In addition, assume that the over-parameterized model f with
parameter wS trained on S is capable of converging to some global minimizer w∗

S . Then for all S,
if |LS (wS)− LS (w∗

S)| ≤ ϵf , then f has pointwise hypothesis stability with parameter γ as:

γ ≤
L2
f

µn
. (19)

Proof. For a training set S, let wS denote the parameters of f on S, and let wSi denote the pa-
rameters of f on Si, where Si denotes S\xi. Let w∗

S and w∗
Si denote the corresponding optimal

solutions, respectively. We then have,

|L (wS ;xi)− L (wSi ;xi)|
≤ |L (wS ;xi)− L (w∗

S ;xi)|+ |L (w∗
S ;xi)− L (w∗

Si ;xi)|+ |L (w∗
Si ;xi)− L (wSi ;xi)| .

(20)

The three terms can be separately bounded.

The first and third term.

As discussed in previous work (Karimi et al., 2016), the PL∗ condition implies that the quadratic
growth (QG) condition

µ

2
∥wS −w∗

S∥
2 ≤ |LS (wS)− LS (w∗

S)| . (21)

Using the fact that |LS (wS)− L (w∗
S)| ≤ ϵf by the assumption, it implies

∥wS −w∗
S∥ ≤

√
2

√
µ

√
|LS (wS)− LS (w∗

S)| =
√

2ϵf
µ

. (22)

15

Published as a conference paper at ICLR 2023

Since that loss function L is Lf -Lipschitz, we can bound the first and third term as:

|L (wS ;xi)− L (w∗
S ;xi)| ≤ Lf ∥wS −w∗

S∥ ≤ Lf

√
ϵf
µ
;

|L (wSi ;xi)− L (w∗
Si ;xi)| ≤ Lf ∥wSi −w∗

Si∥ ≤ Lf

√
ϵf
µ
;

(23)

In the over-parameterized settings, the model f optimized by the loss function enables a global
optimizer w∗ and has a small ϵf constant, thus the first term and third term equal to 0.

The second term. PL∗ condition implies that L (w∗
S ;xi) = 0, and LSi

(
w∗

Si

)
= 0 thus the second

term can be manipulated as:

|L (w∗
S ;xi)− L (w∗

Si ;xi)| = |L (w∗
Si ;xi) |

= |nLS (w∗
Si)− (n− 1)LSi (w∗

Si) |
= n|LS (w∗

Si) |.
(24)

Note that since ∇LSi

(
w∗

Si

)
= 0, we get:

∥∇LS (w∗
Si)∥2 =

1

n2
∥∇L (w∗

Si ;xi)∥2 ≤
L2
f

n2
. (25)

Furthermore, PL∗ condition implies µLS

(
w∗

Si

)
≤ ∥∇LS

(
w∗

Si

)
∥2, we can obtain

n |LS (w∗
Si)| ≤

n

µ
∥∇LS(w

∗
Si)∥2 ≤ n

µ

L2
f

n2
≤

L2
f

µn
. (26)

The overall bound. Plugging Eqs. 23 and 26 into Eq. 20, we can obtain the desired result: Assume
that for all S and w, the loss function L is PL∗ with parameter µ, algorithm A has pointwise
hypothesis stability with parameter γ as:

γ ≤
L2
f

µn
. (27)

■

B.2.3 BOUND OF SAMPLE COMPLEXITY

Based on the above subsection, if the loss function L of model f is PL∗ condition with parameter µ,

and the algorithm A has the pointwise hypothesis stability with parameter γ ≤ L2
f

µn , the generaliza-

tion gap ϵ of the obtained model f can be bound as: ϵ =
√

M2+12Mnγ
2nδ . Therefore, we can compute

the sample complexity as:

n(ϵ, δ) ≤
6L2

fM

µϵ2δ
+

M2

2ϵ2δ
(28)

C PROOF OF PROPOSITION 8

Proof. Consider an arbitrary point w ∈ B(w0, R). For all sample i in dataset S, we have

DF i(w) = DF i (w0) +

∫ 1

0

Hfi (w0 + τ (w −w0)) (w −w0) dτ. (29)

Since τ ∈ [0, 1], the point w0 + τ(w−w0) is inside of the ball, thus ∥Hfi(w0 + τ (w −w0))∥2 ≤
∥Hf (w)∥2 . Therefore, Eq. 29 can be bounded as:

∥DF i(w)−DF i(w0)∥2 ≤ sup
τ∈[0,1]

∥Hfi(w0 + τ (w −w0))∥2 · ∥w −w0∥2

≤ R · ∥Hf (w)∥2.
(30)

16

Published as a conference paper at ICLR 2023

By triangle inequality, we have,

∥DF(w)∥2 − ∥DF(w0)∥2 ≤ ∥DF(w)−DF(w0)∥2
≤ ∥DF(w)−DF(w0)∥F

=

√∑
i

∥DF i(w)−DF i (w0)∥2

≤
√
nR · ∥Hf (w)∥2.

(31)

By re-arranging Eq. 31, we have

∥DF(w)∥2 ≤ ∥DF(w0)∥2 +
√
nR · ∥Hf (w)∥2. (32)

Using the definition of Lf , we have

Lf = sup
w∈B

∥DF(w)∥2 ≤ ∥DF(w0)∥2 +
√
nR · sup

w∈B
∥Hf (w)∥2. (33)

Combining Eq. 33 and definition of µ∗, we have

Lf

µ∗ ≤
∥DF(w0)∥+ supw∈B ∥Hf (w)∥ ·R

infw∈B λmin(K(w))
. (34)

■

D PROOF OF THEOREM 9

To prove that minimizing the upper bound of condition number can be achieved by pruning param-
eters controlled by Hessian norm ∥Hf∥2, we separately analyze the impact of pruning parameters
controlled by Hessian norm ∥Hf∥2 on the Lipschitz constant; and the impact of pruning parameters
on the minimal eigenvalue of NTK (Proposition 14).

Proof. Using the same argument in Proposition 8, as shown in Eq. 33 where

Lf = sup
w∈B

∥DF(w)∥2 ≤ ∥DF(w0)∥2 +
√
nR · sup

w∈B
∥Hf (w)∥2,

we can conclude that pruning parameters reduces the parameter size, leading to the decrease of the
∥w − w0∥ (i.e., the radius of the ball, R); and pruning parameters governed by minimizing the
Hessian norm ∥Hf∥2 can decrease the upper bound of the Lipschitz constant. In summary, the
pruning operation with controlling of Hessian norm is able to minimize the upper bound of Lf . ■

Then we use matrix analysis to show that maximizing the minimal eigenvalue of NTK can be
achieved via pruning.

Let us denote the matrix G = DFDF⊤. The matrix G and NTK matrix (K = DF⊤DF) shares
the same non-zero eigenvalues, thus we analyze the effect of pruning on the eigenvalues of NTK via
the matrix G ∈ Rm×m where m denotes the parameter size.

Pruning any parameter wp from the weight set w corresponds to deleting the corresponding p-th row
and the corresponding p-th column from G, i.e, G̃p. According to the Cauchy Interlacing Theorem,
increasing the minimal eigenvalue of G can be achieved by pruning the parameter wm. We first
summarize the Cauchy Interlacing Theorem as follows:

Theorem 13 (Cauchy Interlacing Theorem Horn & Johnson (2012)). Let B ∈ Mm be Hermitian,

let y ∈ Cm and a ∈ R be given, and let A =

[
B y
y∗ a

]
∈ Mm+1. Then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ · · · ≤ λm(A) ≤ λm(B) ≤ λm+1(A). (35)

Theorem 13 allows us to conclude that if we remove the parameter wm, the corresponding G̃m ⊆ G,
then λmin(G̃m) ≥ λmin(G).

17

Published as a conference paper at ICLR 2023

Proposition 14 For an over-parameterized model f parameterized by w ∈ W , pruning operation
on the parameter set w increases the minimal eigenvalue of NTK matrix associated to f .

Proof. For parameter wp and matrix G, let Gp→m denote the permuted matrix obtained by permut-
ing p-th row and p-th column of matrix G to m-th row and m-th column. Then pruning parameter
wp is equivalent to pruning wm of Gp→m matrix.

Following Theorem 13, pruning parameter wm of Gp→m will increase its minimal eigenvalue.
Moreover, using the fact that Gp→m = PGP⊤ = PGP−1 where P denotes the permutation
matrix, we have Gp→m and G are similar matrix with same eigenvalues. Thus, the minimal eigen-
value of G is increased. In summary, pruning any parameter wp will increase the minimal eigenvalue
of G. ■

Proof of Theorem 9. Proposition 8 shows that pruning operation controlled by minimizing Hessian
norm ∥Hf∥2 is able to minimize the upper bound of Lipschitz constant Lf ; and Proposition 14
shows that pruning parameter is able to maximize the minimal eigenvalue of NTK. Combining these
two propositions, we can conclude that pruning parameters controlled by minimizing the Hessian
norm ∥Hf∥2 is able to minimize the condition number of the model. ■

To further verify the claim of theories, we empirically investigate the evolution of condition num-
ber of the pruned model and vanilla model. We apply a small BERT with 4 Transformer layers to
WikiText-2 for the language modeling task. We prune the heads of vanilla BERT by using a strategy
of pruning 5% heads every 10 epochs, controlled by minimizing the Hessian trace (details can be
found in Appendix E.2); the pruned network is denoted as Masked-BERT. As shown in Figure 3,
compared with vanilla BERT, Masked-BERT presents a smaller value of condition number 1. Espe-
cially, we can observe a sharp decrease in the condition number of Masked-BERT after each pruning
operation; to highlight this, red lines are included in the figure which indicate the condition number
before and after pruning.

Figure 3: The evolution of condition number of the vanilla BERT and the pruned BERT (denoted as
Masked-BERT).

E EXPERIMENTAL DETAILS

E.1 ALGORITHM OVERVIEW

Figure 4 shows the overview of the proposed method. We impose PL regularization for model opti-
mization by adopting a pruning approach. More specifically, we introduce a binary mask for period-
ically sparsifying parameters, and the mask is learned via a gating network whose input summarizes

1Condition number is computed as λmax(K)
λmin(K)

, where λmax and λmin denote the largest and smallest eigen-
value, respectively.

18

Published as a conference paper at ICLR 2023

the optimization dynamics of sub-networks in terms of the PL condition. Algorithm 2 summarizes
the proposed pruning algorithm.

Figure 4: Algorithm overview. The gating network generates binary mask m based on the parame-
ter features dw. PL Regularization helps pruned model obtain a smaller condition number Lf

µ .

E.2 IMPLEMENTATION OF LEARNING OBJECTIVE

Based on the Theorem 9, minimizing the upper bound of condition number can be achieved by
pruning parameters controlled by minimizing the Hessian norm.

In practice, we minimize the Hessian norm by minimizing the trace of the corresponding Hessian
where Trace(Hf (w)) =

∑n
i Trace(Hi(w)). Consequently, the learning objective of the gating

network is approximated as:

min
w,v

LS(m ∗w) + αTrace (Hf (g (dw;v) ∗w)) . (36)

Specifically, we use the Hutchinson method (Sankar et al., 2021; Avron & Toledo, 2011), a tool from
randomized numerical linear, to efficiently compute the trace of Hessian without explicitly forming
the Hessian matrix. The details are summarized in Algorithm 1.

To further verify pruning parameters controlled by minimizing Hessian trace is capable to decrease
the condition number of the model, we empirically investigate the evolution of the trace of Hessian
and the condition number. Here a small BERT with 4 Transformer layers is applied to WikiText-2 for
language modeling. As shown in Figure 5, Masked-BERT where we prune 50% heads at epoch-10
controlled by minimizing the trace of Hessian presents a small value of Hessian trace, accompa-
nied with a smaller value of condition number. The phenomenon demonstrates that minimizing the
Hessian trace is an effective way to control the condition number of the model.

Figure 5: Connection between the trace of Hessian Trace(Hf (m ∗w)) and the condition number
Lf/µ.

19

Published as a conference paper at ICLR 2023

Algorithm 1 Hessian Trace Computation.
Input: Model Parameter: m ∗w, Model logits: f , Number of iteration: n
Output: Hessian trace of f : Trace

1: Trace = 0
2: for i = 1, 2, . . . , n do
3: Sample vector a from a standard normal: a ∼ N (0, I)

4: Compute differential map of f with respect to w: DF = ∂f
∂w .

5: Compute trace: Trace = Trace + a⊤ ∂(DF⊤a)
∂w

6: end for
7: return Trace/n

Algorithm 2 PL Regularization-Driven Pruning Algorithm.
Input: Training set S, pruning time and ratio {tj , rj}qj=1, maximum iterations tmax

1: Initialize: m = 1
2: while not converged do
3: for t = t0, . . . , tmax do
4: if t = tj then
5: Calculate dwtj = [λmin(K(w

tj
[1])), ρ(K(w

tj
[1])), . . . , λmin(K(w

tj
[p])), ρ(K(w

tj
[p]))]

6: for each batch in S do
7: v = v − η∇vLtotal with α = 1 ▷ Update v according to Eq. 36
8: end for
9: mtj = TopK(g(dw;v), (1− rj)p) ▷ Generate binary mask m

10: wtj = mtj ∗wtj ▷ Reparameterize w
11: end if
12: for each batch in S do
13: wt+1 = wt − η∇wLtotal with α = 0 ▷ Update w according to Eq. 36
14: end for
15: end for
16: end while

E.3 EXPERIMENTAL DETAILS OF BERT AND SWITCH-TRANSFORMER

BERT and Switch Transformer are trained from scratch by self-supervised Masked Language
Model (MLM) task. The MLM objective is a cross-entropy loss on predicting the masked tokens.
The models uniformly select 15% of the input tokens for possible replacement.

Considering the model capacity and computational resources, we train BERT on WikiText-2 and
Switch Transformer on WikiText-103 datasets. The training hyperparameters are presented in Ta-
ble 4. All baseline models, including our method, are trained by the same training setup. These
experiments are conducted on 8 × GPUs of NVIDIA GeForce RTX 3090.

We follow the original basic settings when training baseline models. For BERT-LTH and Switch-
LTH, we use iterative magnitude pruning (IMP) (Chen et al., 2020) to target sparsity with rewinding
step of 5% maximum training epochs. For Att-Score and Exp-Score, all the attention heads and
experts across the model are sorted by gradient-based proxy importance score (Michel et al., 2019).
Then they are pruned by the same iterative strategy as IMP. For SNIP and GraSP, we implement them
in a structured way, i.e., we sum up the relative indicators in those components, and the attention
heads and experts are pruned at the initialization stage of the training process (Lee et al., 2018; Wang
et al., 2020). A protecting strategy is used for the pruning operation of all baselines and our model.
We keep at least one head or expert in each of the layers to keep the activation across the model.

E.4 EXPERIMENTAL DETAILS OF VGG-16

First, we summarize the architecture-specific pruning baselines, including FPGM, CHIP, and
DPFPS. FPGM (He et al., 2019) compresses CNN models by pruning filters with norm- and
distance-based criteria, which prunes all the weighted layers with the same pruning rate at the same

20

Published as a conference paper at ICLR 2023

Table 4: Hyperparameters for training BERT and Switch Transformer
Hyperparameter BERT Switch Transformer
Number of layers 12 12
Hidden size 768 768
Attention heads 12 12
Dropout 0.1 0.1
Sequence length 512 512
Batch size 8 8
Warmup steps 0% 6%
Weight decay 0 1e-2
Peak learning rate 1e-4 2e-4
Learning rate decay Linear Cosine
Adam [ϵ, β1, β2] [0, 0, 0] [1e-6, 0.9, 0.999]
Number of experts 4
Capacity factor 1.5

time. CHIP (Sui et al., 2021) first extracts feature maps from a pre-trained model and calculates
channel independence, which is used to sort and prune the filters, and then it fine-tunes the sparse
pre-trained model. DPFPS (Ruan et al., 2021) prunes structured parameters in a dynamic sparsity
manner, where the sparsity allocation ratios are distributed differently over layers in the training
process.

Then, we report the detailed experimental settings. For training VGG-16 on CIFAR-10 and CIFAR-
100, we use similar configurations as (Wang et al., 2020) does. For all baselines, the network is
trained with Kaiming initialization (He et al., 2015) using SGD for 200 epochs. The learning rate is
decayed from the initial value 0.1 by a factor of 0.1 at 1/2 and 3/4 of the total number of epochs. To
obtain more stable results, we conduct each experiment in 3 trials.

In this paper, we evaluate the performance of all models on VGG-16 with 50% and 90% pruning
ratios, respectively. The pruning policy of our method is the linear pruning schedule where starting
from the epoch-15, we prune the same number of filters at each epoch until the target pruning ratio
is reached. The pruning policy of baselines follows their origin settings given a target pruning ratio.
In detail, for LTH, SNIP and GraSP, we conduct unstructured pruning with the target pruning ratio
at the initialization stage. For FPGM, we utilize the norm-based criterion when given the 50% target
pruning ratio. When given the 90% target pruning ratio, we first prune 50% filters by the norm-based
criteria and then prune 40% filters by the distance-based criteria. For CHIP, given the 50% pruning
ratio, following the original work, we assign the pruning ratio of the previous 7 layers as 20% and
the ratio of remaining layers as 60%; while given the 90% pruning ratio, the ratio of the previous 7
layers is assigned as 75% and remaining layer as 95%.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental results.

F.1 RESULTS ON RESNET-56

This experiment focuses on ResNet-56 (Simonyan & Zisserman, 2014) trained on the CIFAR-
10 dataset. The baselines include five filter pruning methods, namely FPGM (He et al., 2019),
DPFPS (Ruan et al., 2021), LTH (Frankle & Carbin, 2018), SNIP (Lee et al., 2018), and
GraSP (Wang et al., 2020). All models are trained from scratch and are pruned with a linear sched-
ule, which starts from epoch-5 and prune the same number of filters per epoch until the target sparsity
is reached.

21

Published as a conference paper at ICLR 2023

Table 5 shows the performance of all methods trained on CIFAR-10 with a 25% pruning ratio. As
we can see, our method outperforms all pruning baselines in terms of training efficiency and test
accuracy.

Table 5: Results of ResNet-56 on CIFAR-10 (Best results in Boldface).

Method
CIFAR-10

Train Loss (@ epochs) Test Accuracy (@ epochs)
@100 @150 @100 @150 Final

ResNet-56 0.1441 0.0148 91.76 92.80 93.43
LHT 0.1395 0.0178 92.18 92.98 93.50
SNIP 0.1509 0.0196 92.00 92.98 93.41
FPGM 0.1931 0.0689 91.27 92.60 93.41
GraSP 0.1453 0.0187 92.27 93.20 93.39
DPFPS 0.1507 0.0218 91.50 92.16 92.75

Ours 0.1380 0.0158 92.46 93.46 93.78

F.2 TRAINING EFFICIENCY

This subsection shows the comparison of training efficiency by measuring the number of training
iterations required for converging to a given test perplexity. We also evaluate the wall-clock time
saved when the model converges to a given test perplexity. The calculation of parameter features
and the training of the gating network are included in the statistic.

As shown in Figure 6, compared to vanilla BERT trained on WikiText-2, our model achieves the
same test perplexity as the vanilla BERT at iterations 10k at iterations 8k, which is a 1.3× speedup in
terms of step time, i.e., our method only requires 0.7× iterations to achieve the same test perplexity.
As for the saved wall-clock time, as shown in Table 6, where the first row shows the wall-clock
time in seconds and the second row shows the time saved compared with the vanilla BERT. We can
observe that our method saves more wall-clock times compared with other baselines. In particular, it
saves 29% wall-clock time of vanilla BERT. Furthermore, the training of the gating network accounts
for only 2-3% of the total training time of BERT, demonstrating the efficiency of our method with
the loop for pruning.

Table 6: Comparison of saved clock time on BERT.

Methods BERT BERT-LTH Att-Score SNIP GraSP Ours

Wall-Clock Time (s) 4112 4534 6683 3370 3563 2916
Time Saved 0% -10% -23% 18% 13% 29%

We find similar results in Switch-Transformer trained on WikiText-103. As shown in Figure 7 and
Table 7, compared to vanilla Switch-Transformer, our method yields a 2x speedup, requiring 44%
less clock time.

Table 7: Comparison of clock time saved when model achieves a given test perplexity. The symbol
∗ denotes expert pruning, and ∗∗ denotes expert and head pruning.

Methods BERT Switch-LTH Exp-Score SNIP GraSP Ours∗ Ours∗∗

Time Saved
(Approximately)

0% - -9% 19% 8% 32% 44%

22

Published as a conference paper at ICLR 2023

Figure 6: Training efficiency comparison of vanilla BERT and our model.

Figure 7: Training efficiency comparison of vanilla Switch-Transformer and our model.

F.3 THE EFFECT OF PRUNING TIME

This subsection studies the influence of pruning time on the performance of our method on BERT.
For a fixed target sparsity 75%, we compare the one-shot pruning schedule on epoch-0 (initializa-
tion), epoch-5, and epoch-50.

Table 8: Performance comparison on WikiText-2. For simplicity, we denote perplexity as PPL, and
∆PPL represents the perplexity difference between training and test. Boldface indicates the best
result.

Method
Training PPL

Test PPL ∆PPL
@8 k iters @10 k iters @15 k iters

[0] 13.26 10.43 3.90 67.49 6.27
[5] 15.72 9.63 4.24 63.18 6.84
[50] 37.86 15.4 5.63 87.18 7.19

As shown in Table 8, we empirically observe that it is sufficient to implement PL regularization on
BERT in the early stages of training, i.e., important heads for BERT optimization can be discovered
in the first 5 epochs.

We also evaluate the impact of one-shot pruning and linear pruning schedule for BERT. Specifically,
we compare the performance of one-shot pruning and iterative pruning strategy on the heads of

23

Published as a conference paper at ICLR 2023

Table 9: Comparsion of one-shot pruning and linear pruning schedule for BERT.

Method
Training PPL

Test PPL ∆PPL
@8 k iters @10 k iters @15 k iters

Bert(Baseline) 39.37 13.49 6.35 75.57 0%
One-Shot 15.72 9.63 4.24 63.18 29%
Iterative 14.01 10.43 4.77 60.34 23%

BERT with the same 75% pruning ratio. As shown in Table 9, the one-shot pruning strategy achieves
competitive performance compared to the linear pruning schedule while saving more computational
costs.

F.4 THE EFFECT OF PRUNING RATIO

This subsection evaluates the performance of the proposed PL regularization-driven structured prun-
ing method with varying pruning ratios.

Table 10 and Table 11 show the performance of BERT with the 50% and 90% pruning ratio, respec-
tively.

Table 10: Performance Comparison of BERT on Wikitext-2. All models are pruned by 50% sparsity.
Boldface indicates the best result among pruned models.

Method
Training PPL

Test PPL ∆PPL
@8 k iters @10 k iters @15 k iters

BERT 39.37 13.49 6.35 75.57 7.49
BERT-LTH 21.98 12.48 4.41 74.44 8.48
Att-Score 19.09 12.81 4.75 73.55 7.28
SNIP 21.61 11.09 5.19 74.89 6.70
GraSP 19.47 10.82 4.34 78.34 8.71

Ours 13.82 7.82 3.51 67.49 6.49

Table 11: Performance Comparison of BERT on Wikitext-2. All models are pruned by 90% sparsity.
Boldface indicates the best result among pruned models.

Method
Training PPL

Test PPL ∆PPL
@8 k iters @10 k iters @15 k iters

BERT 39.37 13.49 6.35 75.57 7.49
BERT-LTH 75.64 14.86 6.32 81.78 6.74
Att-Score 33.05 17.08 8.16 84.61 5.88
SNIP 229.06 122.00 14.50 139.49 9.85
GraSP 91.38 22.44 8.32 94.25 8.00

Ours 24.24 11.27 5.46 72.68 5.45

Table 12 and Table 13 show the performance of VGG-16 with the 75% and 90% pruning ratio, re-
spectively. We can observe that with a high pruning ratio, our method outperforms pruning baselines
in terms of training efficiency and test performance.

24

Published as a conference paper at ICLR 2023

Table 12: Performance Comparison of VGG-16 on CIFAR-10 and CIFAR-100. All models are
pruned by 75% sparsity. Boldface indicates the best result among pruned models. Models without
results mean that these models cannot converge under the current setting.

Method & Dataset VGG-16 LHT SNIP FPGM GraSP CHIP DPFPS Ours

CIFAR-10
Train Loss @ 100 epochs 0.1090 0.1516 0.1046 0.2359 0.2220 0.3091 0.1037 0.1098

Test Accuracy @ 100 epochs 92.46 91.53 92.41 89.00 91.03 86.91 92.41 92.63
Train Loss @ 150 epochs 0.0075 0.0171 0.0095 0.0833 0.0470 0.1272 0.0090 0.0082
Test Accuracy @ 150 epochs 93.25 92.52 92.90 89.20 92.52 89.92 93.26 93.69
Test Accuracy 93.85 93.10 93.62 89.60 93.52 93.23 93.93 93.96

CIFAR-100
Train Loss @ 100 epochs 0.4826 0.6250 - - 1.108 1.2402 0.6399 0.6378

Test Accuracy @ 100 epochs 72.21 71.52 - - 64.38 64.57 70.96 71.00

Train Loss @ 150 epochs 0.0459 0.0762 - - 0.2601 0.6711 0.0755 0.0717
Test Accuracy @ 150 epochs 72.28 71.68 - - 71.14 63.84 71.64 71.80
Test Accuracy 73.86 72.66 - - 72.27 69.83 72.77 72.91

Table 13: Performance Comparison of VGG-16 on CIFAR-10 and CIFAR-100. All models are
pruned by 90% sparsity. Boldface indicates the best result among pruned models. Models without
results mean that these models cannot converge under the current setting.

Method & Dataset VGG-16 LHT SNIP FPGM GraSP CHIP DPFPS Ours

CIFAR-10
Train Loss @ 100 epochs 0.1091 0.1867 0.1301 - 0.2530 0.3510 0.1417 0.1280
Test Accuracy @ 100 epochs 92.46 91.38 92.14 - 90.39 86.70 92.15 92.49
Train Loss @ 150 epochs 0.0075 0.0302 0.0132 - 0.0600 0.1871 0.0134 0.0122
Test Accuracy @ 150 epochs 93.25 91.83 93.07 - 92.40 89.02 92.97 93.11
Test Accuracy 93.85 93.19 93.56 - 93.18 93.18 93.59 93.61

CIFAR-100
Train Loss @ 100 epochs 0.4826 0.8089 - - 0.9990 1.7605 0.8767 0.8889

Test Accuracy @ 100 epochs 72.21 68.24 - - 67.09 38.66 68.27 68.70
Train Loss @ 150 epochs 0.0459 0.1632 - - 0.2460 1.2694 0.2050 0.2072

Test Accuracy @ 150 epochs 72.28 69.73 - - 69.90 52.63 70.31 70.85
Test Accuracy 73.86 70.60 - - 71.16 62.90 71.24 71.36

F.5 FURTHER STUDY

Artificial deep learning models are typically over-parameterized, coming at the heavy computation
effort during model training and inference. This work, drawing on theoretical insights, finds an
efficient optimization strategy for the over-parameterized model to achieve a faster convergence
time and a better test performance.

In practice, in order to find the optimal model, researchers usually train multiple models with varying
parameter initializations. In over-parameterized settings, such a process requires too many computa-
tional resources and time efforts. Our method can not only reduce the computational cost for training
one model, but also reduce the sensitivity to initialization and thus less models need to be trained.

To verify the latter benefit, we conduct experiments on two BERT models with different parame-
ter initializations: BERT-A and BERT-B denote the BERT model with good initialization and bad
initialization, respectively. Table 14 and Figure 8 show that imposing our method on the BERT-B
can significantly improve its original performance; it outperforms the vanilla BERT-A and slightly
underperforms the masked BERT-A model implemented with PL regularization. This phenomenon
suggests the potential of our method in avoiding multiple initializations and meanwhile saving com-
putation and time efforts.

25

Published as a conference paper at ICLR 2023

Figure 8: Training error and testing performance of BERT models with different parameter initial-
ization.

Table 14: Results of BERT with different parameter initialization.

Method Training PPL Test PPL Wall-Clock
@8 k iters @10 k iters @15 k iters Final Time Saved

BERT-A 31.91 11.16 4.55 74.44
Masked BERT-A 19.01 7.78 3.89 57.97 29.2%

BERT-B 59.44 13.37 5.09 83.93
Masked BERT-B 19.65 8.01 4.03 63.43 33.6%

26

	Introduction
	Analysis of Over-Parameterized Models with PL Condition
	Optimization Properties of Over-Parameterized Models
	PL* condition and Theoretical Properties

	Model Optimization with PL Condition
	Formulation of PL Regularized Optimization
	Implementation of PL-regularized Optimization via Pruning
	Learning Objective of PL Regularization-Driven Pruning Algorithm
	Parameter Features
	Gating Network

	Related work
	Experiments
	Results on BERT
	Results on Switch-Transformer
	Results on VGG-16
	Quantitative Analysis

	Conclusion
	Bayes Error Decomposition
	Proof of Theorem 6
	Convergence Rate
	Sample Complexity
	Generalization analysis via pointwise hypothesis stability
	Pointwise hypothesis stability with PL* condition
	Bound of sample complexity

	Proof of Proposition 8
	Proof of Theorem 9
	Experimental Details
	Algorithm Overview
	Implementation of Learning Objective
	Experimental Details of BERT and Switch-Transformer
	Experimental Details of VGG-16

	Additional Experimental Results
	Results on ResNet-56
	Training Efficiency
	The Effect of Pruning Time
	The Effect of Pruning Ratio
	Further Study

