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Abstract

Without access to the source data, source-free domain adaptation (SFDA) transfers knowl-
edge from a source-domain trained model to target domains. Recently, SFDA has gained
popularity due to the need to protect the data privacy of the source domain, but it suffers
from catastrophic forgetting on the source domain due to the lack of data. To systematically
investigate the mechanism of catastrophic forgetting, we first reimplement previous SFDA
approaches within a unified framework and evaluate them on four benchmarks. We observe
that there is a trade-off between adaptation gain and forgetting loss, which motivates us to
design a consistency regularization to mitigate forgetting. In particular, we propose a contin-
ual source-free domain adaptation approach named CoSDA, which employs a dual-speed
optimized teacher-student model pair and is equipped with consistency learning capability.
Our experiments demonstrate that CoSDA outperforms state-of-the-art approaches in con-
tinuous adaptation. Notably, our CoSDA can also be integrated with other SFDA methods
to alleviate forgetting.

1 Introduction

Domain adaptation (DA) (Ben-David et al., 2010) aims to transfer features from a fully-labeled source
domain to multiple unlabeled target domains. Prevailing DA methods perform the knowledge transfer by
consolidating data from various domains and minimizing the domain distance (Ganin et al., 2016; Hoffman
et al., 2018; Long et al., 2015; Saito et al., 2018). However, due to the privacy policy, we cannot access source
domain data in most cases, where all data and computations must remain local and only the trained model is
available (Al-Rubaie & Chang, 2019; Mohassel & Zhang, 2017).

Source-free domain adaptation (SFDA) (Kundu et al., 2020; Li et al., 2020; Liang et al., 2020; 2022b) maintains
the confidentiality of the domain data by transferring knowledge straight from a source-domain-trained model
to target domains. SFDA also allows for spatio-temporal separation of the adaptation process since the model-
training on source domain is independent of the knowledge transfer on target domain. However, due to the lack
of alignment with prior domain features, typical SFDA methods tend to overfit the current domain, resulting
in catastrophic forgetting on the previous domains (Bobu et al., 2018; Tang et al., 2021; Yang et al., 2021a).
This forgetting can lead to severe reliability and security issues in many practical scenarios such as autonomous
driving (Shaheen et al., 2022) and robotics applications (Lesort et al., 2020). To address this issue, a possible
solution is to preserve a distinct model for each domain, but this solution is impractical since (1) the model pool
expands with the addition of new domains, and (2) obtaining the specific domain ID for each test sample is hard.

In this paper, we introduce a practical DA task named continual source-free domain adaptation (continual
SFDA), with the primary goal of maintaining the model performance on all domains encountered during
adaptation. The settings of continual SFDA are presented in Figure 1I. We initiate the adaptation process by
training a model in the fully-labeled source domain, and then subsequently transfer this off-the-shelf model
in a sequential manner to each of the target domains. During the testing phase, data is randomly sampled
from previously encountered domains, thereby rendering it impossible to determine the specific domain ID in
advance.

To systematically investigate the mechanism of catastrophic forgetting, we reimplement previous SFDA
approaches within a unified framework and conduct a realistic evaluation of these methods under the
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Figure 1: Illustration of continuous source-free domain adaptation. Left: Comparing typical DA (a) and
continuous DA (b). In typical DA, models are trained on both source and target domains, but tested only
on the target domain. In contrast, continuous DA sequentially trains on each target domain and tests on
all previously seen domains. Right: The pipeline of the proposed CoSDA method, utilizing a dual-speed
optimized teacher-student model pair to adapt to new domains while avoiding forgetting.

continual SFDA settings on four multi-domain adaptation benchmarks, i.e. DomainNet (Peng et al., 2019),
Office31 (Saenko et al., 2010), OfficeHome (Venkateswara et al., 2017) and VisDA (Peng et al., 2017). To
ensure the representativeness of our evaluation, we select six commonly used SFDA methods as follows:
SHOT (Liang et al., 2020), SHOT++ (Liang et al., 2022b), NRC (Yang et al., 2021b), AaD (Yang et al.,
2022), DaC (Zhang et al., 2022) and EdgeMix (Kundu et al., 2022). For further comparison, we also consider
two well-performed continual DA methods: GSFDA (Yang et al., 2021a) and CoTTA (Wang et al., 2022).
We measure the extent of forgetting exhibited by the aforementioned methods in both single-target and
multi-target sequential adaptation scenarios.

As shown in Figure 2, our experiments reveal two main findings: (1) the accuracy gain in the target domain
often comes at the cost of huge forgetting in the source domain, especially for hard domains like quickdraw;
(2) the catastrophic forgetting can be alleviated with data augmentations (e.g., DaC and Edgemix) and
domain information preservation (e.g., GSFDA and CoTTA). Our investigation also finds some limitations of
current continual DA techniques, such as GSFDA, which relies on domain ID information for each sample
during testing, and CoTTA, which has a tendency to overfit the source domain and learn less plastic features,
leading to suboptimal adaptation performance.

In light of the above findings, we introduce CoSDA, a new Continual Source-free Domain Adaptation approach
that reduces forgetting on all encountered domains and keeps adaptation performance on new domains through
teacher-student consistency learning. CoSDA employs a dual-speed optimized teacher-student model pair:
a slowly-changing teacher model to retain previous domain knowledge and a fast optimized student model to
transfer to new domain. During adaptation, the teacher model infers on target domain to obtain knowledge
that matches previous domain features, and the student model learns from this knowledge with consistency loss.
We also incorporate mutual information loss to enhance the transferability and robustness to hard domains.
Extensive experiments show that CoSDA significantly outperforms other SFDA methods in terms of forgetting
index. Moreover, CoSDA does not require prior knowledge such as domain ID and is highly robust to hard
domains. CoSDA is easy to implement and can be integrated with other SFDA methods to alleviate forgetting.

2 Preliminaries and Related Works
Preliminaries. Let DS and DT denote the source domain and target domain. In domain adaptation, we have
one fully-labeled source domain DS and K unlabeled target domains {DTk

}K
k=1. To ensure confidentiality, all

data computations are required to remain local and only the global model h is accessible, which is commonly
referred to as source-free domain adaptation (Li et al., 2020; Liang et al., 2020). With this setting, continual
DA starts from training an off-the-shelf model h on the source domain, and subsequently transfer it to all
target domains. The goal of continual DA is to sustain the model’s performance on all previous domains after
adaptation. We summarize two adaptation scenarios based on the number of target domains, as depicted in
Figure 1I:

2



Under review as submission to TMLR

CoSDA CoSDA (+) NRC CoSDA (+) AaD

SHOT

CoTTA

NRC

BWT
−35.11

BWT
−39.48

BWT
−36.79

BWT
−31.09

BWT
−37.05

BWT
−8.60

BWT
−8.44

BWT
−10.01

BWT
−32.41

BWT
−6.47

AaD DaC EdgeMix

GSFDA

Figure 2: Multi-target sequential adaptation on the DomainNet with the adaptation order of Real→
Infograph→ Clipart→ Painting→ Sketch→ Quickdraw. The accuracy matrix measures the transferability,
with the value in position (i, j) denotes the accuracy on the i-th domain after adaptation on the j-th domain.
Backward transfer (BWT) measures the total degree of forgetting with range −100 to 0, where a larger BWT
value indicates a smaller degree of forgetting and 0 indicates no forgetting.

Single-target adaptation. We start from K = 1, which is most common for current SFDA studies. In this
setting, A source pre-trained model is transferred to one target domain and test data is arbitrarily sampled
from both source and target domain without prior knowledge such as domain ID.

Multi-target sequential adaptation. We extend to K ≥ 2, where the model is sequentially transferred to each
target domain and test data is drawn from all seen domains.

Related Works. Current SFDA methods adopt self-training techniques to address domain shift as fol-
lows: SHOT (Liang et al., 2020) uses entropy regularization for adaptation; NRC (Yang et al., 2021b)
and AaD (Yang et al., 2022) generate pseudo-labels with nearest-neighbor; DaC (Zhang et al., 2022) and
EdgeMix (Kundu et al., 2022) adopt data augmentation as consistency loss and SHOT++ (Liang et al., 2022b)
designs auxiliary tasks to learn domain-generalized features. Despite the above methods, we further survey
two types of methods closely related to CoSDA: knowledge distillation-based methods and continual DA.

Knowledge distillation-based methods. Knowledge distillation (Hinton et al., 2015), which transfers knowledge
from a well-trained teacher model to a student model, has been widely used in domain adaptation. To enhance
adaptation performance, bi-directional distillation is applied in TSML (Li et al., 2023) while SSNLL (Chen
et al., 2022) utilizes the mean-teacher (Tarvainen & Valpola, 2017) structure. DINE (Liang et al., 2022a)
introduces a memory-bank to store historical inference results, providing better pseudo-labels for the student
model. However, in contrast to the dual-speed optimization strategy used in CoSDA, these distillation-based
methods update both the teacher and student models simultaneously, leading to the forgetting of previous
domain features.

Continual DA. A few works have explored continual domain adaptation by incorporating continual learning
techniques, which can be summarized into three categories: feature replay (Bobu et al., 2018), dynamic archi-
tecture (Mallya & Lazebnik, 2018; Mancini et al., 2019; Yang et al., 2021a) and parameter regularizations (Niu
et al., 2022; Wang et al., 2022). CUA (Bobu et al., 2018) and ConDA (Taufique et al., 2021) samples a subset
from each target domain as replay data. PackNet (Mallya & Lazebnik, 2018) separates a subset neurons
for each task. Aadgraph (Mancini et al., 2019) encodes the connection of previous domains into one dynamic
graph and uses it to select features for new domain. GSFDA (Yang et al., 2021a) assigns specific feature masks
to different domains. EATA (Niu et al., 2022) uses the elastic-weight consolidation (EWC) (Kirkpatrick et al.,
2017) as the regularization loss. CoTTA (Wang et al., 2022) ensures knowledge preservation by stochastically
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preserving a subset of the source model’s parameters during each update. Distinct from the above methods,
CoSDA adopts a dual-speed optimized teacher-student model pair, inspired by LSTM (Hochreiter & Schmid-
huber, 1997), to mitigate forgetting. Specifically, a slowly-changing teacher model is utilized to preserve
long-term features, while a fast optimized student model is employed to learn domain-specific features.

3 CoSDA: An Approach for Continual SFDA

Overview. CoSDA is a continual source-free domain adaptation method that achieves multi-target sequential
adaptation through pseudo-label learning. For continual learning, CoSDA uses the features learned from
previous domains to construct pseudo-labels, which are then used for both adapting to new target domains and
preventing forgetting on previously encountered domains. Inspired by knowledge distillation (Hinton et al.,
2015), CoSDA utilizes a dual-speed optimized teacher-student model pair, consisting of the teacher model
hθ which retains the knowledge of previous domains, and the student model hψ that learns domain-specific
features. The teacher model generates pseudo-labels for the student model during training, and the student
model learns from both the target data and the pseudo-labels using a consistency loss. After adaptation,
the teacher model serves as the global model. The framework of CoSDA is presented in Figure 1II, and the
details are discussed below.

3.1 Consistency Learning with Teacher Knowledge

For each data point X from current target domain DTk
, we obtain the classification score from the teacher

model hθ(X), and use it as the pseudo-label to train the student model. However, directly learning from
hθ(X) may lead to overfitting to the teacher model. To address this issue, we introduce a consistency loss
that consists of three steps. First, we compress the soft-label hθ(X) into a hard-label p with a temperature
parameter τ as p := softmax (hθ(X)/τ). Next, we augment X and train the student model to be consistent
with the hard-label p for the augmented samples. Among existing methods (Chen et al., 2020; Cubuk et al.,
2019), We choose mixup (Zhang et al., 2018) as the augmentation strategy for three advantages: (1) Mixup has
the lowest computation cost. Non-mixup augmentation methods typically require k× data-augmentations and
model inferences for each sample (e.g., k = 4 for MixMatch (Berthelot et al., 2019) and 32 for CoTTA (Wang
et al., 2022)), while mixup works with k = 1 and therefore does not require any extra computations. (2) Mixup
can be applied to other data modalities, such as NLP (Guo et al., 2019) and Audio (Meng et al., 2021), while
other methods are specifically designed for image data. (3) Mixup facilitates the learning of domain-invariant
features. Recent studies (Carratino et al., 2022; Zhang et al., 2021) point out that mixup can contract the
data points towards their domain centroid, thereby holistically reducing the domain distance (details are
provided in Appendix A.1). With mixup augmentation, we construct the consistency loss as follows:

Consistency learning with mixup. For a random-sampled data pair (Xi, Xj) with hard-labels (pi, pj). We
sample λ ∼ Beta(a, a) and construct the mixed data point as

X̃ = λXi + (1− λ)Xj ; p̃ = λpi + (1− λ)pj , (1)

then the consistency loss for hψ is

ℓcons(X̃, p̃;ψ) := DKL
(
p̃∥hψ(X̃)

)
. (2)

Consistency loss helps student model to learn from both previous domain knowedge and the target domain
features. However, when the target data is extremely different from the previous domains, the consistency
loss may cause the model collapse. To improve the robustness of the model and enable it to learn from hard
domains, we employ the mutual information (MI) loss as the regularization:

Mutual information maximization. For a batch of mixed data {X̃i}B
i=1, we obtain the marginal inference

results as h̄ψ = 1
B

∑B
i=1 hψ(X̃i) and formalize the MI as follows:

MI
(
{hψ(X̃i)}B

i=1
)

:= − 1
B

B∑
i=1

DKL
(
hψ(X̃i)∥h̄ψ

)
. (3)
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Algorithm 1 Adaptation process of CoSDA for DTk

1: Inputs: global model h, unlabeled training set DTk
.

2: Hypars: total epochs E, learning rate η, temperature τ , mixup Beta(a, a), loss weight α, EMA momentum
m.

3: Initialize θ ← h,ψ ← h, (µ, Var)← h;
4: for t = 0 to E−1 do
5: for every mini-batch X in DTk

do
6: Init. p = softmax (hθ(X)/τ), λ ∼ Beta(a, a);
7: Mixup. (X̃, p̃) = λ(X, p) + (1− λ)Shuffle(X, p);
8: Infer. ℓ(X̃, p̃;ψ) = ℓcons(X̃, p̃;ψ) + αℓMI(X̃;ψ);
9: SGD. ψ ← ψ − η · ∇ψℓ(X̃, p̃;ψ); # Student

10: end for
11: EMA. θ ← m · θ + (1−m) ·ψ; # Teacher
12: EMA. µ← m · µ+ (1−m) · µψ;
13: EMA. Var← m ·Var + (1−m) ·Varψ.
14: end for
15: Return: new global model h with params (θ,µ, Var).

Our goal is to maximize mutual information during training, which is achieved through the related MI loss
as ℓMI := −MI(·). Based on previous studies (Hu et al., 2017; Liang et al., 2020), ℓMI can be decomposed
into two components: maximizing the instance entropy and minimizing the marginal inference entropy.
The former encourages the model to learn distinct semantics for each data sample, while the latter prevents
the model from overfitting to only a few classes (see Appendix A.2 for detailed analysis). Experimental
results demonstrate that using the MI loss enables CoSDA to adapt to hard domains (such as Quickdraw
on DomainNet) without experiencing catastrophic forgetting. The total loss is obtained by combining the
consistency loss and MI loss, i.e., ℓψ = ℓcons + α · ℓMI.

3.2 Dual-Speed Optimization Strategy

In continual domain adaptation, the global model adapts to each target domain in sequence. To prevent
forgetting of previously learned features, we are inspired by LSTM for sequence data processing and adopt
a dual-speed strategy to optimize the student and teacher models separately, with the student learning
short-term features specific to the current domain and the teacher filtering out long-term domain-invariant
features. Specifically, the student model is updated rapidly using SGD with loss ℓψ after every batch, while the
teacher model is slowly updated by performing exponential moving average (EMA) between the previous-step
teacher model and the current-step student model at the end of each epoch, as depicted in Figure 1II. This
dual-speed strategy allows for a smooth knowledge transition between the two models, preventing abrupt
changes during adaptation and maintaining the model’s performance on previous domains.

Updating the mean and variance in BatchNorm. BatchNorm is a widely-used normalization technique in deep
learning models, which estimates the mean and variance of the overall dataset as (µ, Var) and utilizes these
statistics to normalize the data. As the µ-Var statistics can exhibit significant variation across different
domains, prior DA methods, such as FedBN (Li et al., 2021) and DSBN (Chang et al., 2019), typically assign
distinct statistics to different domains. However, these methods are not applicable to continual DA since the
test data randomly comes from all previously encountered domains without prior knowledge of the domain
ID. To unify the BN statistics among different domains, we propose a dual-speed updating method for the
mean and variance values. During the training process, the student model estimates the mean and variance
of the target domain data as µψ and Varψ respectively. After each epoch, the teacher model updates its
BN statistics using the EMA method as:

µ← mµ+ (1−m)µψ; Var← mVar + (1−m)Varψ. (4)

During testing, the teacher model applies the global (µ, Var) parameters to BatchNorm layers.
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3.3 Algorithm and Hyper-Parameters

Based on the concepts of consistency learning and dual-speed optimization, we present the operating flow
of our CoSDA method in Algorithm 1 as follows: at first, we initialize the teacher and student models with
the global model that has been trained on previous domains. During each epoch, we employ consistency
learning to train the student model while keeping the teacher model frozen. When an epoch is finished,
we use EMA to update the teacher model as well as the mean and variance statistics of BatchNorm. After
adaptation, the teacher model serves as the new global model.

CoSDA is easy to integrate with other SFDA methods to further mitigate the forgetting. As outlined in
Section 3.1, the pseudo-labels for the student model are simply generated by compressing the soft-label
from the teacher model. The quality of these pseudo-labels can be further enhanced with advanced SFDA
methods such as the memory bank (Yang et al., 2021b; Liang et al., 2022a), kNN (Yang et al., 2022), and
graph clustering (Yang et al., 2020). By further refining the inference results from the teacher model, these
pseudo-label-based methods can be seamlessly integrated with CoSDA. The results on both single-target
(Figures 2,3) and multi-target sequential adaptation (Table 1,2, and 3) extensively show that the integration
of CoSDA significantly reduces forgetting while maintaining adaptation performance.

Implementation details of CoSDA. We introduce four hyper-parameters: label compression temperature
(τ), mixup distribution (a), loss weight (α) and EMA momentum (m). Following prior research on knowledge
distillation and mixup (Berthelot et al., 2019), we fix τ = 0.07 and a = 2 for all experiments. Our findings
suggest that the mutual information (MI) loss function performs well on datasets with a small number of
well-defined classes and clear class boundaries, but it may lead to incorrect classification on datasets with
a large number of classes exhibiting semantic similarity. Therefore, we set α empirically to 1 for OfficeHome,
Office31 and VisDA, and 0.1 for DomainNet. To apply the EMA strategy, we follow the settings in MoCo (He
et al., 2020) and BYOL (Grill et al., 2020) and increase the momemtum from 0.9 to 0.99 using a cosine
schedule as: mt = 0.99− 0.1×

[
cos

(
t
E π

)
+ 1

]
/2.

4 Experiments

We investigate the mechanisms of catastrophic forgetting through a systematic analysis of various continual
DA scenarios. First, we conduct extensive experiments on representative methods from SFDA and continual
DA, and report their forgetting on several benchmarks. Then we demonstrate the effectiveness of CoSDA in
reducing forgetting under both single and multi-target sequential adaptation scenarios. We also analyze the
robustness of CoSDA to hard domains. To ensure fairness in comparison, we reimplement the selected methods
in a unified framework. The code used to reproduce our results is provided as supplementary materials.

4.1 Realistic Evaluation of Current Methods

To avoid unfair comparisons that can arise from variations in the backbones, pretraining strategies, total bench-
mark datasets, etc., we implemented several representative SFDA methods in a unified framework and evaluated
them on four benchmarks: DomainNet (Peng et al., 2019), OfficeHome (Venkateswara et al., 2017), Of-
fice31 (Saenko et al., 2010), and VisDA (Peng et al., 2017). In detail, we employ the ImageNet-pretained ResNet
with a weight-normed feature bottleneck (Liang et al., 2022b) as the backbone, utilize the dual-lr pre-training
strategy proposed in SHOT (Liang et al., 2020), and adopt mini-batch SGD with momentum 0.9 as the opti-
mizer. The total number of epochs is set to 20 and batch size is 64. For model-specific hyperparameters, please
refer to Appendix A.4. Without loss of generality, we selected six representative methods: (1) SHOT (Liang
et al., 2020) and SHOT++ (Liang et al., 2022b) as they are the first to propose the SFDA setting and have been
followed by many works such as DINE (Liang et al., 2022a) and Decision (Ahmed et al., 2021). (2) NRC (Yang
et al., 2021b) and AaD (Yang et al., 2022) as they perform the best on all benchmarks and can integrate with
CoSDA. (3) DaC (Zhang et al., 2022) and Edgemix (Kundu et al., 2022) as they both use data augmentations
to construct consistency loss for adaptation, which is similar to our approach. For comparison, we consider
two well-performed continual DA methods: GSFDA (Yang et al., 2021a) and CoTTA (Wang et al., 2022).
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Table 1: Single target adaptation on DomainNet with six domains. Vanilla refers to the accuracy before
adaptation. (-) MI refers to removing the mutual information loss from CoSDA. (+) NRC and (+) AaD
refer to integrating CoSDA with NRC and AaD. Results are reported as: Adaptation accuracy (upper) and
Accuracy drop (lower).

DA Vanilla SHOT SHOT++ NRC AaD DaC EdgeMix GSFDA CoTTA CoSDA CoSDA (-) MI CoSDA (+) NRC CoSDA (+) AaD

I2R 44.99 59.89 60.14 59.64 60.19 54.86 60.07 52.12 48.00 55.75 55.64 59.19 58.21
13.69 15.95 14.44 14.18 9.21 12.87 7.50 0.64 3.27 4.95 4.34 2.73

C2R 50.83 62.80 62.47 64.14 63.20 58.83 64.70 55.26 53.60 60.31 59.92 61.29 61.04
18.03 17.51 20.40 23.33 13.47 19.06 2.59 0.87 4.16 6.14 4.13 3.66

P2R 57.20 62.94 62.62 64.50 64.15 60.97 65.36 58.18 58.24 61.56 61.37 63.21 62.84
14.76 13.68 14.22 17.94 6.91 15.67 2.78 0.26 1.22 3.46 3.37 3.21

S2R 45.41 61.84 62.32 62.83 62.29 59.26 63.64 56.25 51.56 60.62 60.22 60.32 60.11
21.43 19.03 15.66 25.61 9.95 22.00 6.12 0.33 4.42 7.02 5.54 4.38

Q2R 5.17 33.55 34.62 35.59 38.74 25.76 35.19 20.53 14.09 19.93 — 24.58 24.99
55.87 58.96 60.46 62.29 34.91 55.61 25.29 14.13 19.54 20.69 16.44

Avg. 40.72 56.20 56.43 57.34 57.71 51.94 57.79 48.47 45.10 51.63 — 53.72 53.44
24.76 25.03 25.04 28.67 14.89 25.04 8.86 3.25 6.52 7.61 6.08

R2I 17.36 18.30 18.72 21.74 23.06 19.61 21.45 17.37 18.41 18.68 19.77 20.18 20.55
18.11 18.46 21.05 22.91 12.32 21.92 11.41 2.60 0.38 2.22 1.25 1.13

C2I 14.59 15.51 15.97 17.88 19.92 15.31 17.94 14.21 15.87 16.73 — 20.78 20.44
22.47 21.71 31.70 24.24 23.78 26.29 8.99 2.08 3.74 6.24 7.29

P2I 15.23 16.86 16.64 18.28 19.65 17.18 18.46 15.84 16.33 17.76 17.87 20.27 20.65
17.21 18.06 21.60 20.31 15.17 22.25 12.47 2.50 2.82 2.01 5.73 8.51

S2I 11.86 16.72 16.53 18.89 20.04 16.69 18.43 14.66 14.70 12.94 15.18 20.22 20.33
20.81 23.77 16.14 17.29 18.12 20.43 13.66 3.05 2.62 3.06 9.39 9.60

Q2I 1.09 3.38 4.47 5.98 6.96 4.03 7.18 3.03 2.54 2.05 — 5.66 5.43
46.04 55.57 43.99 48.47 49.38 56.35 50.07 19.73 4.24 13.34 10.27

Avg. 12.03 14.15 14.47 16.55 17.93 14.56 16.69 13.02 13.57 13.63 — 17.42 17.48
24.93 27.51 26.90 26.64 23.75 29.45 19.32 5.99 2.76 7.19 7.36

R2C 45.62 54.82 56.09 56.42 57.54 52.12 57.66 49.53 48.26 56.37 55.83 56.64 56.85
21.71 21.17 20.64 26.62 12.52 21.23 6.97 1.13 6.29 6.11 6.92 7.98

I2C 30.46 45.67 46.32 44.13 47.12 39.35 46.06 32.81 33.12 41.57 40.97 45.65 46.42
14.82 14.80 18.01 13.43 10.40 13.79 8.00 1.14 6.02 8.07 6.68 7.13

P2C 40.74 50.84 50.77 51.82 53.40 45.61 52.87 44.19 43.92 50.88 50.49 52.73 52.05
23.33 22.41 22.39 22.91 14.48 21.50 9.61 2.23 7.66 6.53 7.53 7.62

S2C 47.48 57.26 58.19 58.93 60.28 55.79 59.35 54.06 52.00 61.28 60.60 59.24 60.22
15.98 14.72 14.16 15.51 9.48 12.66 5.73 0.09 5.49 5.32 5.44 6.10

Q2C 10.13 33.67 35.92 38.44 39.19 31.54 38.61 26.94 23.20 32.96 32.88 34.13 34.55
34.80 38.95 44.27 43.13 30.98 43.81 20.68 8.98 14.58 26.88 14.39 15.07

Avg. 34.89 48.45 49.46 49.95 51.51 44.88 50.91 41.51 40.10 48.61 48.15 49.68 50.02
22.13 22.41 23.89 24.32 15.57 22.60 10.20 2.71 8.01 10.58 8.19 8.78

R2P 45.54 50.74 50.65 52.94 53.34 50.94 53.05 49.22 47.50 54.29 53.78 54.44 53.96
7.73 7.77 14.06 19.85 5.46 12.68 3.71 0.35 4.47 5.03 4.67 6.71

I2P 29.09 41.57 42.38 41.80 44.47 39.61 43.18 35.71 32.40 42.40 42.52 44.69 44.27
12.34 14.75 12.99 13.42 7.15 13.90 5.72 0.74 4.61 5.30 4.86 4.76

C2P 33.13 42.92 43.64 44.72 45.09 41.32 44.68 37.92 36.44 44.12 44.39 45.27 45.52
18.16 16.26 18.65 19.68 14.49 16.30 3.59 1.17 4.42 6.19 4.66 6.60

S2P 32.81 46.51 46.91 48.11 48.59 47.04 47.85 43.96 40.13 50.62 49.90 48.52 48.32
14.13 11.39 13.27 12.78 9.14 13.68 5.95 0.42 4.85 5.44 6.04 6.56

Q2P 1.79 15.27 18.55 18.87 23.52 14.48 21.04 10.03 6.53 9.47 — 14.81 16.70
47.94 51.85 62.80 63.75 37.73 63.47 31.70 16.29 14.32 13.47 14.20

Avg. 28.47 39.40 40.43 41.29 43.00 38.68 41.96 35.37 32.60 40.18 — 41.55 41.75
20.06 20.40 24.35 25.90 14.79 24.01 10.13 3.79 6.53 6.74 7.77

R2S 32.42 40.04 40.96 44.19 43.87 40.52 44.37 41.70 36.44 43.35 43.77 46.07 45.15
24.19 23.46 22.56 31.27 18.97 24.43 14.03 2.17 8.81 8.60 8.18 10.00

I2S 24.44 32.45 35.17 34.37 37.73 30.04 35.19 27.52 27.40 32.32 32.53 36.61 37.07
18.99 19.37 17.27 16.77 14.04 17.31 16.41 1.78 6.05 11.17 5.56 6.11

C2S 38.40 43.86 44.59 46.25 47.14 41.41 45.98 41.70 40.53 46.11 46.43 47.67 47.21
16.25 12.95 14.30 15.94 13.10 18.61 7.53 1.39 4.05 4.93 3.95 5.72

P2S 33.89 40.07 41.14 43.64 43.39 41.05 42.93 39.04 37.45 43.29 43.81 44.86 44.38
21.53 19.95 16.17 23.70 12.77 19.71 15.41 3.25 6.01 6.77 5.61 8.13

Q2S 8.23 23.43 24.49 29.54 27.65 22.20 30.31 14.58 13.68 17.14 — 23.48 24.34
35.69 35.29 47.71 48.55 27.02 45.97 43.90 7.20 10.06 13.77 14.81

Avg. 27.48 35.97 37.27 39.60 39.96 35.04 39.76 32.91 31.10 36.44 — 39.74 39.63
23.33 22.20 23.60 27.25 17.18 25.21 19.46 3.16 7.00 7.41 8.95

R2Q 4.54 7.08 8.32 8.14 10.81 8.73 7.62 6.15 6.40 6.01 — 7.04 8.58
69.33 70.96 72.13 66.83 55.82 73.35 61.61 7.49 2.95 5.34 5.71

I2Q 2.36 4.97 5.21 4.28 6.89 3.38 4.91 2.89 3.20 2.97 — 3.07 5.11
28.45 31.29 31.28 30.99 28.18 31.53 27.20 8.41 1.80 2.99 8.96

C2Q 9.56 14.31 14.07 15.19 18.23 12.02 14.47 11.86 11.57 11.58 8.50 12.72 15.89
57.27 62.85 62.36 52.51 50.44 64.73 65.98 6.11 2.07 7.97 2.20 8.24

P2Q 3.40 8.14 9.52 9.19 12.10 8.16 9.61 6.50 6.19 5.12 — 5.70 8.99
61.03 60.04 59.95 63.10 51.93 64.70 57.15 12.41 3.77 2.98 9.00

S2Q 11.11 14.55 14.65 15.37 18.59 14.32 15.32 14.73 12.62 12.66 10.56 16.34 17.61
49.63 45.13 37.25 42.09 36.74 38.15 34.21 4.59 2.61 8.66 10.57 6.84

Avg. 6.19 9.81 10.35 10.43 13.32 9.32 10.39 8.43 8.00 7.67 — 8.97 11.24
53.14 54.05 52.59 51.10 44.62 54.49 49.23 7.80 2.64 4.82 7.75
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Table 2: Single target adaptation on OfficeHome (with A (art), C (clipart), P (product) and R (real-world))
and Office31 (with A (amazon), D (dslr) and W (webcam)). Results are reported as: Adaptation accuracy
(upper) and Accuracy drop (lower).

OfficeHome Office31Method C2A P2A R2A A2C P2C R2C A2P C2P R2P A2R C2R P2R Avg. D2A W2A A2D W2D A2W D2W Avg.
Vanilla 48.98 67.09 74.57 50.68 63.14 64.15 50.89 42.27 73.26 63.82 48.66 77.90 60.45 78.11 71.82 94.34 98.59 57.29 61.06 76.87

SHOT 66.96 65.10 72.89 58.01 57.34 60.25 75.60 76.21 82.95 79.50 76.11 81.39 71.03 73.30 74.12 88.76 100.00 89.81 97.99 87.33
17.66 9.85 6.84 17.00 11.49 12.32 11.54 16.38 6.61 7.96 15.48 7.62 11.73 8.23 6.79 6.14 0.13 7.10 0.20 4.77

SHOT++ 67.04 65.84 72.31 59.59 58.76 62.70 76.19 76.44 83.49 79.57 76.75 81.89 71.71 74.62 75.65 88.76 100.00 92.08 97.99 88.18
16.28 11.47 8.79 15.50 12.03 12.11 12.61 16.70 8.19 8.90 16.74 7.57 12.24 7.03 9.18 6.95 0.25 6.95 0.40 5.13

NRC 66.05 64.81 72.19 60.16 58.28 61.56 77.61 75.76 83.40 80.15 76.61 78.56 71.26 75.68 74.72 93.57 100.00 92.70 98.24 89.15
22.58 20.37 20.17 16.65 23.66 25.29 12.53 22.29 10.69 14.26 19.08 15.43 18.58 11.24 8.18 9.55 0.00 8.73 0.20 6.32

AaD 70.91 67.57 73.75 60.25 60.60 60.94 78.46 76.41 84.46 81.75 78.91 81.59 72.97 75.43 75.61 93.57 99.80 92.20 98.49 89.18
23.82 17.87 12.48 19.66 16.06 15.95 14.55 21.19 8.35 12.16 18.69 11.38 16.01 10.64 14.21 8.52 0.00 7.10 0.00 6.74

DaC 66.71 65.22 72.31 58.76 57.18 61.35 74.82 74.75 82.16 80.19 76.25 80.56 70.86 73.91 75.36 89.75 100.00 90.57 98.49 88.01
12.64 7.55 6.86 11.95 8.13 9.34 8.90 9.87 4.84 4.49 9.16 4.03 8.15 5.42 3.65 4.40 0.00 4.08 0.00 2.93

EdgeMix 66.50 63.95 71.24 58.03 54.73 60.92 77.25 74.41 83.28 79.73 75.05 79.41 70.37 75.04 72.42 91.57 99.80 91.07 98.36 88.04
12.25 11.02 4.45 5.61 5.97 10.51 9.15 7.99 5.30 7.34 12.32 9.69 8.47 7.63 17.86 9.72 0.00 7.38 0.00 7.10

GSFDA 68.97 65.55 72.39 57.04 54.27 59.66 77.18 74.54 83.98 80.47 76.47 81.71 71.02 72.17 73.30 88.55 100.00 88.43 98.97 86.90
8.52 4.66 2.80 5.03 2.18 2.80 1.77 5.52 1.77 0.83 4.67 1.55 3.51 1.00 0.63 3.19 0.13 2.48 0.00 1.24

CoTTA 53.73 53.32 64.98 50.45 45.59 51.68 67.45 63.14 77.79 74.87 62.79 74.23 61.67 66.88 65.53 86.14 99.80 85.16 97.74 83.54
1.58 1.01 0.13 0.17 0.25 0.59 0.00 0.04 0.02 0.00 1.03 0.02 0.40 0.00 0.38 0.64 0.00 1.77 0.00 0.46

CoSDA 67.86 64.94 73.34 58.85 54.75 61.15 75.44 74.50 82.83 79.78 75.03 80.65 70.76 74.90 74.16 86.75 100.00 89.43 98.62 87.31
4.42 2.73 2.41 2.97 3.06 2.96 1.36 4.58 2.06 0.99 4.42 1.76 2.81 3.61 2.14 1.03 0.00 1.63 0.00 1.40

CoSDA
(-) MI

61.19 58.43 68.97 53.33 49.31 57.14 71.16 70.13 80.78 77.14 70.23 76.70 66.21 70.96 68.90 84.34 99.80 85.79 97.74 84.59
1.76 0.81 0.82 0.58 0.97 1.33 0.29 1.69 0.59 0.00 1.35 0.65 0.90 0.40 0.13 1.17 0.00 1.42 0.00 0.52

CoSDA
(+) NRC

67.41 65.84 71.82 58.51 53.86 58.53 77.49 75.56 83.89 81.89 75.14 81.20 70.93 75.93 74.26 91.37 100.00 91.37 98.49 88.57
8.31 7.93 6.67 4.58 10.70 7.59 2.06 5.20 3.60 2.56 7.03 2.70 5.74 2.21 3.65 2.27 0.00 2.41 0.00 1.76

CoSDA
(+) AaD

67.12 66.05 73.51 58.44 55.21 61.40 76.86 74.70 83.62 80.51 75.63 80.65 71.14 76.29 76.39 92.97 100.00 93.71 98.49 89.64
4.88 5.14 3.94 1.90 2.57 4.40 1.73 3.84 2.14 0.95 4.17 1.12 3.07 2.81 3.90 2.48 0.00 3.16 0.00 2.06

We report the adaptation performance and forgetting loss of the above methods on both single-target and
multi-target sequential adaptation settings:

For single-target adaptation, we traverse all domain combinations and report both the adaptation accuracy
on the target domain and the accuracy drop on the source domain.

For multi-target adaptation, we follow the studies on the domain distances (Peng et al., 2019; Zhang et al.,
2019) and select the shortest path for sequential adaptation, i.e., Real → Infograph → Clipart → Painting
→ Sketch → Quickdraw for DomainNet and Art → Clipart → Product → Real-world for OfficeHome.
Following the continual learning protocols (Lopez-Paz & Ranzato, 2017; Hadsell et al., 2020), we construct
an accuracy matrix R ∈ RK×K over K target domains, where Ri,j is the accuracy on the i-th domain
after adaptation on the j-th domain. The accuracy matrix R is reported to measure the transferability
of the features. Moreover, we use backward transfer (BWT) to measure the degree of forgetting, which
is calculated as BWT = 1

K−1
∑K−1

i=1 Ri,K −Ri,i. BWT ranges from −100 to 0, with −100 indicating the
complete forgetting and 0 indicating no forgetting.

4.2 Single-Target Adaptation

Extensive experiments on DomainNet (Table 1), OfficeHome, Office31 (Table 2), and VisDA (Table 3) reveal
a widespread trade-off between the adaptation performance and the forgetting for commonly used SFDA
methods, with the accuracy gain on the target domain coming at the cost of significant accuracy drop on the
source domain. For example, NRC and AaD achieve the best adaptation performance among all benchmarks,
but they also suffer from the highest levels of catastrophic forgetting. We also find that consistency learning
can alleviate catastrophic forgetting in methods such as DaC and EdgeMix. Specifically, DaC applies both
weak and strong augmentations on the target data and establishes a consistency loss to align the features
of the augmented data, while EdgeMix employs a pretrained DexiNed (Soria et al., 2020) model to extract
edge information and uses these features as domain-invariant features by fusing them into input data using
mixup. However, these methods heavily rely on pre-determined data augmentation strategies, which may not
generalize well to all domains. For instance, EdgeMix failed to mitigate catastrophic forgetting on DomainNet,
and DaC exhibited significant forgetting on the infograph and quickdraw of DominNet. Compared to these
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methods, CoSDA exhibits a significant reduction in forgetting across all adaptation pairs and does not rely
on pre-determined data-augs. The experimental results on DomainNet, OfficeHome, and VisDA demonstrate
that CoSDA outperforms SHOT, SHOT++, and DaC in most adaptation scenarios, while reducing the
average forgetting to approximately 1

3 on DomainNet. Moreover, as mentioned in Section 3.1, CoSDA can
be combined with pseudo-label-based methods to alleviate forgetting. Results on the four benchmarks
demonstrate that CoSDA can be used in conjunction with NRC and AaD to reduce their forgetting to
approximately 1

10 to 1
3 while incurring only a slight decrease in target accuracy (about 1% on average).

Furthermore, by incorporating CoSDA, we achieve the best performance on the C,P,S→I, R,I,C→P, and
R,C,P→S adaptation pairs of DomainNet, while significantly mitigating forgetting.

Comparison among continual DA methods. GSDA and CoTTA reduce the forgetting by restoring the prior
domain information: GSFDA assigns specific feature masks to different domains and CoTTA adapts parameter
regularization by stochastically preserving a subset of the source model in each update. The experiments
reveal some limitations of the above two methods: GSFDA relies on domain ID for each sample during testing,
and CoTTA tends to overfit the source domain and learn less plastic features, leading to poor adaptation
performance. CoSDA outperforms these methods by obviating the requirement of domain ID and preserving
high adaptation performance on the target domain.

Table 3: Single target domain on VisDA. Results are reported on each of the 12 classes separately, and the
ablation study of CoSDA is conducted by successively removing the four components of the method.

Method P
la

ne

B
cy

cl

B
us

C
ar

H
or

se

K
ni

fe

M
cy

cl

Pe
rs

on

P
la

nt

Sk
tb

rd

Tr
ai

n

Tr
uc

k

Avg.
Vanilla 62.84 16.59 58.6 64.59 66.31 3.71 80.33 29.56 65.78 24.17 89.86 12.41 47.9

SHOT 95.58 85.64 85.44 71.22 95.84 96.19 85.85 85.65 91.25 89.00 84.47 48.41 84.55
1.33 0.68 51.45 31.88 2.84 1.33 52.48 0.58 0.46 20.21 19.75 3.33 15.53

NRC 95.56 87.54 82.11 63.11 95.01 93.44 88.52 80.43 95.25 88.46 87.69 62.18 84.94
0.08 0.20 27.39 34.81 11.23 0.36 16.77 7.60 1.67 9.82 34.04 13.90 13.16

AaD 95.39 86.35 82.87 69.63 95.18 95.13 89.77 82.52 91.58 90.92 90.20 57.60 85.60
1.30 1.17 59.10 13.58 11.51 9.84 26.62 8.28 0.71 10.53 21.97 33.29 16.49

DaC 95.78 81.93 83.69 80.20 96.83 97.06 94.10 81.40 94.77 94.21 90.82 45.28 86.34
0.10 0.34 40.44 30.15 9.08 1.66 14.13 7.20 0.33 1.52 13.97 2.58 10.12

EdgeMix 95.07 88.05 84.72 70.89 95.48 93.44 83.16 78.14 92.37 89.30 88.40 48.47 83.96
0.65 0.94 28.31 31.11 7.84 0.32 33.45 14.30 0.54 7.68 24.74 16.69 13.88

GSFDA 96.32 90.73 83.73 69.20 96.53 92.34 86.09 80.58 93.76 92.81 88.62 45.17 84.66
0.07 2.04 -0.24 29.30 5.05 0.00 33.99 1.07 0.19 4.28 15.44 9.79 8.41

CoTTA 94.50 60.14 92.62 71.20 96.08 38.41 96.13 81.39 94.61 85.39 84.57 30.81 77.15
0.42 0.38 2.72 29.78 10.49 2.16 14.59 6.51 0.05 -0.02 15.07 19.48 8.47

CoSDA
(+) NRC

94.99 80.69 86.99 73.41 94.75 85.97 93.58 79.72 93.11 85.75 90.25 37.71 83.08
0.24 0.18 24.44 17.19 2.18 4.24 9.08 2.59 0.08 1.26 6.68 14.86 6.92

CoSDA
(+) AaD

95.29 83.29 82.46 68.65 95.33 90.69 91.66 80.80 93.45 85.05 89.91 54.27 84.24
0.23 0.16 31.43 25.83 1.70 1.30 18.15 1.78 0.11 9.53 8.94 9.75 9.08

Ablation Study

CoSDA 95.04 86.76 86.69 75.13 95.58 90.98 91.95 82.66 93.38 88.99 90.01 51.30 85.71
0.19 0.65 27.59 34.61 3.11 1.55 17.91 11.50 0.46 5.40 14.30 12.84 10.84

(-) Teacher 89.22 77.61 73.89 28.45 64.97 34.19 79.11 58.75 73.76 71.35 66.94 60.32 64.88
0.49 95.93 86.19 98.04 89.28 96.45 93.02 99.41 87.89 96.03 94.62 87.23 85.38

(-) Dual-Speed 94.55 84.72 86.09 63.01 94.11 94.84 89.04 81.53 92.19 90.18 86.64 53.44 84.19
1.08 9.63 28.29 57.40 21.86 12.25 49.08 37.74 2.40 9.59 33.68 32.48 24.62

(-) Mixup & MI 93.36 55.94 85.52 74.07 94.33 61.40 95.20 80.25 92.72 75.00 86.75 34.62 77.43
0.06 0.43 0.70 17.23 4.69 0.06 5.35 7.23 0.06 -0.04 10.79 12.13 4.89

(-) Mixup 94.26 78.10 85.05 71.23 94.78 84.58 91.97 82.17 92.58 87.02 85.86 42.03 82.47
0.24 1.10 10.34 25.21 8.71 0.21 16.65 9.22 0.35 0.37 19.03 13.06 8.71

(-) MI 94.45 72.94 89.16 76.90 95.99 74.87 94.22 79.21 93.82 72.41 88.86 29.68 80.21
0.10 1.07 25.14 39.05 3.63 0.06 17.44 8.12 0.40 0.38 6.66 8.04 9.17

Comparison with Continual Learning Baselines. As CoSDA can be integrated into existing SFDA methods
to alleviate forgetting, we explore its integration impact relative to two established continual learning
methodologies, namely Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Synaptic Intelligence
(SI) (Zenke et al., 2017). We integrates these methods with NRC and AaD, and compare the results. As
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illustrated in Table 4, the integration with CoSDA exhibits a significantly reduced average forgetting by
approximately 10 while achieving similar results on the target domain. These findings underscore the
effectiveness of CoSDA in reducing forgetting, thereby reinforcing its potential utility in SFDA paradigms.

Table 4: Comparison of the integration of typical continual learning methods (EWC, SI) and CoSDA with
NRC and AaD on the OfficeHome dataset.

Method C2A P2A R2A A2C P2C R2C A2P C2P R2P A2R C2R P2R Avg.

NRC (+) EWC 67.24 66.5 72.93 60.11 58.17 62.59 79.07 78.04 83.89 81.00 76.31 80.72 72.21
15.12 13.34 11.61 22.05 13.28 18.70 14.75 19.22 9.98 11.70 20.92 7.73 14.87

NRC (+) SI 67.33 66.05 71.98 58.92 58.79 62.20 78.44 78.64 83.49 80.31 79.50 81.59 72.27
24.14 20.32 13.52 21.35 15.91 13.58 10.34 21.31 9.78 8.12 20.14 12.06 16.23

NRC (+) CoSDA 67.41 65.84 71.82 58.51 53.86 58.53 77.49 75.56 83.89 81.89 75.14 81.20 70.93
8.31 7.93 6.67 4.58 10.70 7.59 2.06 5.20 3.60 2.56 7.03 2.70 5.74

AaD (+) EWC 69.47 67.78 73.47 61.24 60.64 63.67 79.84 78.08 85.24 82.30 78.84 80.77 73.45
24.5 21.11 13.24 19.08 16.41 15.31 11.00 18.15 7.89 8.45 19.78 10.26 15.43

AaD (+) SI 68.31 68.52 73.51 61.81 59.45 62.25 78.69 77.59 85.02 81.41 79.27 81.46 73.11
21.16 14.58 11.77 17.18 14.90 13.01 15.04 18.74 9.11 10.30 20.12 9.54 14.62

AaD (+) CoSDA 67.12 66.05 73.51 58.44 55.21 61.40 76.86 74.70 83.62 80.51 75.63 80.65 71.14
4.88 5.14 3.94 1.90 2.57 4.40 1.73 3.84 2.14 0.95 4.17 1.12 3.07

Robustness to hard domains. The infograph and quickdraw in DomainNet are considered hard and typically
exhibit low adaptation performance (Peng et al., 2019; Feng et al., 2021). Results in Table 1 show that
CoSDA exhibits robust performance on both hard domains, reducing the forgetting from ≥ 23% to 2.76%
and from ≥ 44% to 2.64%, respectively. Additionally, by integrating CoSDA, the robustness of NRC and
AaD methods is significantly improved.

4.3 Multi-Target Sequential Adaptation

We use two metrics to evaluate multi-target sequential adaptation: feature transferability and degree of
forgetting. As mentioned in Section 4.1, we utilize the diagonal entries of the accuracy matrix to measure
transferability and BWT to measure the degree of forgetting. As shown in Figure 2 and 3, the BWT indices
of prior SFDA methods are remarkably low, indicating severe catastrophic forgetting. For instance, the BWT
of SHOT, NRC, and AaD in DomainNet are all below −35, which corresponds to a continuous decrease
in accuracy from 81.31% to ≤ 10% on the real domain. As observed in the single-target adaptation, the
forgetting in EdgeMix and DaC is alleviated due to the adoption of consistency loss. For example, DaC
alleviates forgetting with the BWT value of −31 on DomainNet and −8 on OfficeHome. Compared to these
methods, CoSDA exhibits a significant reduction in forgetting, with BWT values of −8.6 on DomainNet and
−2.24 on OfficeHome.

Furthermore, we find that catastrophic forgetting not only leads to a decrease in accuracy on previous domains
but also impairs the model’s ability to adapt to new domains. For single-target adaptation, although NRC
and AaD suffer from catastrophic forgetting, they still achieve the best performance on the target domain.
However, in multi-domain settings, their performance on subsequent domains becomes much lower than
CoSDA. By integrating CoSDA with other SFDA methods, we can simultaneously mitigate catastrophic
forgetting and enhance the model’s transferability to new domains. For example, by integrating CoSDA
with NRC, we improve the BWT from −39.48 to −8.44 on DomainNet, accompanied by an average increase
of 12.34% adaptation accuracy on the clipart, painting, and sketch. Similarly, integrating CoSDA with
AaD resulted in an increase in BWT from −36.79 to −10.01 on DomainNet, accompanied by an average
improvement of 11.31% in adaptation accuracy.

Comparison among continual DA methods. In single domain adaptation (Sec 4.2), we discuss the
limitations of GSFDA and CoTTA, with GSFDA relying on domain ID during testing and CoTTA
having suffered from limited transferability. These limitations become more severe in multi-domain
settings. For instance, GSFDA needs to store features for each domain, leading to a decrease in
transferability and difficulty in fitting to hard domains in large-scale datasets with many categories,
such as DomainNet. However, in benchmarks with a small number of categories such as OfficeHome,
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GSFDA performs well in both transferability and mitigating catastrophic forgetting. CoTTA tends
to overfit to the source domain, leading to a continuous drop in performance on the target domain
until it becomes unfeasible for transfer. In contrast, CoSDA exhibits superior transferability, surpassing
GSFDA by 4.02% on average and CoTTA by 5.23%, and also outperforms GSFDA in terms of BWT.

SHOT NRC AaD

DaC GSFDA CoTTA

CoSDA CoSDA (+) NRC CoSDA (+) AaD

BWT
−9.31

BWT
−9.58

BWT
−8.00

BWT
−14.26

BWT
−4.68

BWT
−4.45

BWT
−2.24

BWT
−4.39

BWT
−2.47

Figure 3: Multi-target sequential adapta-
tion on the OfficeHome with the order of
Art→Clipart→Product→Real_world.

4.4 Ablation Study: Why CoSDA Works

In this section, we perform several ablation studies
to investigate the mechanisms underlying CoSDA’s
transferability and forgetting prevention. We ap-
proach this through both quantitative and qualita-
tive analysis, focusing on the adaptation performance
and feature visualization. As discussed in Section 3,
we design a teacher-student structure as well as a
consistency loss to enable adaptation and utilize dual-
speed optimization to prevent forgetting. Specifically,
we employ mixup to generate pseudo-labels for the
consistency loss and introduce MI loss to enhance
robustness to hard domains.

First, we conduct domain adaptation on the Office-
Home dataset to investigate the impact of momentum
values and teacher update frequency on the dual-
speed optimization strategy described in Section 3.2.
As illustrated in Table 5, a lower momentum value,
exemplified by m = 0.9, yields an average adaptation
accuracy of 71.65, surpassing the 70.76 achieved by
CoSDA. However, this setting also leads to more
pronounced average forgetting in the source domain,
at 5.74, noticeably higher than CoSDA’s forgetting
rate of 2.81. Conversely, a higher momentum value
of m = 0.99 significantly reduces forgetting to 0.33,
but at the cost of reduced adaptation capability, evidenced by a much lower average accuracy of 63.88. These
findings underscore the role of momentum in balancing the trade-off between adaptation gain and forgetting
loss. In CoSDA, we incrementally adjust the momentum from 0.9 to 0.99 employing a cosine scheduler to
optimize this trade-off.

Table 5: Ablation study investigating the impact of momentum values on the dual-speed optimization strategy
on the OfficeHome dataset. Specifically, in CoSDA, we increase the momentum from 0.9 to 0.99 using a
cosine scheduler.

Momentum m C2A P2A R2A A2C P2C R2C A2P C2P R2P A2R C2R P2R Avg.

0.90 67.90 67.45 74.00 58.90 56.20 62.13 76.17 75.15 83.64 80.67 76.08 81.55 71.65
6.05 6.24 3.92 7.38 7.01 7.71 4.08 8.57 3.92 3.01 7.03 3.95 5.74

0.99 56.00 55.58 67.10 52.76 46.55 53.77 69.00 66.41 78.76 76.02 68.69 75.97 63.88
0.87 0.32 0.25 0.25 0.19 0.34 0.21 0.44 0.16 0.17 0.67 0.14 0.33

m increases 67.86 64.94 73.34 58.85 54.75 61.15 75.44 74.50 82.83 79.78 75.03 80.65 70.76
from 0.9 to 0.99 4.42 2.73 2.41 2.97 3.06 2.96 1.36 4.58 2.06 0.99 4.42 1.76 2.81

In a similar vein, the update frequency of the teacher model can also impact the trade-off, as shown in Table 6.
When the teacher model is updated with a higher frequency, specifically twice per epoch, we observe an
increase in the average forgetting within the source domain, escalating from 2.81 to 5.54, while maintaining
comparable adaptation accuracy in the target domain. Conversely, adopting a lower update frequency, such
as updating the teacher model once every four epochs, significantly mitigates the average forgetting to 0.50.
However, this adjustment also results in a decrease in the average adaptation accuracy on the target domain,
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Table 6: Ablation study investigating the impact of teacher update frequency on the dual-speed optimization
strategy on the OfficeHome dataset. Specifically, In CoSDA, we update the teacher model once per epoch.

Frequency C2A P2A R2A A2C P2C R2C A2P C2P R2P A2R C2R P2R Avg.

Once / 4 epochs 60.77 61.10 70.33 54.18 51.00 55.60 72.81 70.87 81.46 78.86 71.15 78.26 67.20
0.73 0.18 0.50 0.46 0.50 0.83 0.09 0.87 0.48 0.13 0.92 0.32 0.50

Once / 2 epochs 65.55 63.82 72.18 56.88 53.47 58.44 74.99 73.17 82.50 79.64 73.70 79.76 68.57
2.04 1.09 1.22 1.20 1.47 1.65 0.54 2.27 0.76 0.41 1.90 0.77 1.32

Once / epoch 67.86 64.94 73.34 58.85 54.75 61.15 75.44 74.50 82.83 79.78 75.03 80.65 70.76
4.42 2.73 2.41 2.97 3.06 2.96 1.36 4.58 2.06 0.99 4.42 1.76 2.81

Twice / epoch 68.40 65.51 73.47 58.14 55.37 61.28 75.38 74.30 83.55 79.60 75.19 80.77 70.02
9.26 5.43 3.49 7.09 5.10 6.13 2.79 7.95 2.68 1.69 7.97 3.68 5.54

from 70.76 to 67.20. These findings substantiate the efficacy of the proposed dual-speed strategy and illustrate
the impact of these two hyperparameters on the performance of CoSDA.

Figure 4: The t-SNE visualizations of the fea-
tures on VisDA extracted by Vanilla, CoSDA and
CoSDA w.o. dual-speed. Red color denotes the
source feature and Blue color denotes the target
feature. The foreground points denote the data
feature, while the background lattice represent the
overall feature distributions.

Then, we conduct domain adaptation on VisDA to
further validate our claims. As shown in the lower part of
Table 3, we investigate the contributions of each part in
our method by successively removing the teacher model,
dual-speed optimization, mixup, and MI loss. The
first row of the table shows that removing the teacher
model and using only the student model for predictions
leads to overfitting to certain classes and complete
failure of adaptation, highlighting the importance of the
teacher-student structure. The second row shows that
removing dual-speed optimization and simultaneously
updating both teacher and student models hardly affects
adaptation accuracy, but leads to severe catastrophic
forgetting. This highlights the crucial role of dual-speed
optimization in preventing forgetting. The next three
rows of the table illustrate the results of removing mixup,
MI loss, and both mixup and MI loss, and the results
indicate that both mixup and MI loss contribute significantly to improving the adaptation performance.
We further conduct ablation study of MI loss on DomainNet. The results in Table 1 show that the removal
of MI loss leads to training failure on hard domains, highlighting its crucial role in maintaining robustness.

Moreover, we visualize the features of source and target domains under three settings: vanilla, CoSDA, and
CoSDA without dual-speed optimization, as shown in Figure 4. Vanilla shows significant distribution shift
between source and target domains. After adaptation with CoSDA, we observe that the model learns a
shared feature space for both source and target domains, indicating its ability to achieve transferability and
prevent catastrophic forgetting. However, without the application of dual-speed optimization, we observe
that while some distances between source-target features decrease, others remain distant, suggesting the
occurrence of catastrophic forgetting.

5 Conclusions and Limitations

In summary, this work conducts a systematic investigation into the issue of catastrophic forgetting on
existing domain adaptation methods and introduce a practical DA task named continual source-free domain
adaptation. CoSDA, a dual-speed optimized teacher-student consistency learning method, is proposed to
mitigate forgetting and enable multi-target sequential adaptation. Extensive evaluations show that CoSDA
outperforms state-of-the-art methods with better transferability-stability trade-off, making it a strong baseline
for future studies. In addition, our open-source unified implementation framework designed for different
SFDA methods can serve as a foundation for further explorations. However, our investigation is currently
confined to image classification tasks, further work is needed to extend these findings to other domains.
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A Appendix

A.1 The Rationale of Selecting Mixup as Data Augmentation Strategy
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Figure 5: An overview of mixup process on VisDA. Red color denotes the source feature and Blue color
denotes the target feature. The centroids of source and target features are denoted by X̄S and X̄T . For
CoSDA, we set the value of β(a, a) to a = 2 and use λ̄ = 2

3 . The mixup process results in data points
shrinking to their centroids, thereby reducing the domain distance.

In Section 3.1, we introduce mixup as a data augmentation strategy used in CoSDA, which is claimed to
holistically reduce the domain distance and thereby facilitating the learning of domain-invariant features. In
this section, We provide evidence to support this claim. We start with summarizing an equivalent form of
mixup proposed by (Carratino et al., 2022) which establishes a connection with label-smoothing techniques
as follows:
Theorem 1. Let DT be the target domain with N training samples Xi and their corresponding pseudo-labels
pi. Suppose the mixup augmentation with distribution β[0,1](a, a) are used for the student model hψ with the
consistency loss ℓcons(·). Then, the empirical risk of the consistency loss can be approximated as:

ξmixup(ℓcons, hψ) := 1
N

N∑
i=1

E
j,θ

[
ℓcons(X̃i + δi, p̃i + ϵi;ψ)

]
, (5)

where j ∼ Unif(1, . . . , N), θ ∼ β[ 1
2 ,1](a, a), and (X̃i, p̃i, δi, ϵi) can be formulated by squeezing the samples

towards their centroid X̄ = 1
N

∑N
i=1 Xi as follows:
X̃i = θ̄(Xi − X̄) + X̄,

p̃i = θ̄(pi − p̄) + p̄,

δi = (θ − θ̄)Xi + (1− θ)Xj − (1− θ̄)X̄,

ϵi = (θ − θ̄)pi + (1− θ)pj − (1− θ̄)p̄,

(6)

where δi, ϵi are zero-mean random perturbations, ∥δi∥2 ≪ ∥Xi∥2 and θ̄ = 2 − a(a−1)
a− 1

2
is the expectation of

distribution θ ∼ β[1/2,1](a, a). For CoSDA, we have θ̄ = 2
3 with a = 2.

Proof. We recap the format of ξmixup as follows:

ξmixup(ℓcons, hψ) := 1
N2

N∑
i=1

N∑
j=1

E
λ

[ℓcons (hψ(λXi + (1− λ)Xj , λpi + (1− λ)pj))] , (7)
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where λ ∼ β[0,1](a, a). To investigate the impact of λ on Eq. (7), we construct a function that relates the
value of λ to mixup data pairs as mi,j(λ):

mi,j(λ) = ℓcons (hψ(λXi + (1− λ)Xj , λpi + (1− λ)pj)) . (8)

Denoting λ = (1− π)θ + πθ′, θ ∼ β[ 1
2 ,1](a, a), θ′ ∼ β[0, 1

2 ](a, a), π ∼ Ber( 1
2 ), we can rewrite mi,j(λ) as

Eλ [mi,j(λ)] = Eθ,θ′,π [mi,j ((1− π)θ + πθ′)] = 1
2 (Eθ [mi,j(θ)] + Eθ′ [mi,j(θ′)]) . (9)

Since θ′ = 1− θ, we have Eθ [mi,j(θ)] = Eθ′ [mi,j(θ′)]. Substituting it into Eq. (7), we obtain:

ξmixup(ℓcons, hψ) = 1
N2

N∑
i=1

N∑
j=1

Eθ [mi,j(θ)] = 1
N

N∑
i=1

 1
N

N∑
j=1

Eθ [mi,j(θ)]

 . (10)

Denote ξi = 1
N

∑N
j=1 Eθ [mi,j(θ)], we have ξi = Eθ,j [ℓcons (hψ(θXi + (1− θ)Xj), θpi + (1− θ)pj)]. Notably,

(X̃i, p̃i) has the following relation with ξi:

X̃i = θ̄(Xi − X̄) + X̄ = Eθ,j [θXi + (1− θ)Xj ]; p̃i = θ̄(pi − p̄) + p̄ = Eθ,j [θpi + (1− θ)pj ]. (11)

With the relations in Eq. (11), we denote ϵ, δ and prove Eq. (5) as follows

δi = θXi + (1− θ)Xj − X̃i; ϵi = θpi + (1− θ)pj − p̃i; ξi = Eθ,j

[
ℓcons

(
hψ(X̃i + δi), p̃i + ϵi

)]
, (12)

Combining the equations Eq. (11) and Eq. (12), we can obtain E[δi] = 0 and E[ϵi] = 0. Furthermore, following
the empirical study in (Carratino et al., 2022), we can conclude that the ℓ2-norm of δi is much smaller than
that of Xi.

We conduct the following analysis of Theorem 1. Since the magnitude of the perturbation ∥δ∥2 is
much smaller than the norm of the mixed samples ∥X̃∥2 (Carratino et al., 2022), we can interpret the mixup
augmentation as squeezing the samples towards their centroid, i.e., X → X̃. In domain adaptation, the
cluster distance between source and target domains (Deng et al., 2019) is often used to measure the degree
of distribution shift. As shown in Figure 5, a source-domain-trained model has a clear boundary in the
distributions of source and target domains (as shown in (a)). However, the centroids of the source and target
domains are much closer than the sample points. By using the mixup method, all sample points are squeezed
towards the centroids (as shown in (b)), thereby heuristically reducing the domain distance and facilitating
the learning of domain-invariant features.

A.2 The Analysis of Mutual Information Loss

Mutual information (MI) is a concept used to quantify the degree of dependence between two random
variables. It measures the reduction in uncertainty of one variable by knowing the value of the other variable,
indicating the amount of information they share. The mutual information between two random variables X
and y is defined as follows:

MI(X, y) = DKL (p(X, y)∥p(X)p(y)) . (13)
During the training process of CoSDA, we use y to denote the label and use hψ(X) as the label distribution
p(y|X). For B samples in a mini-batch, we estimate the distribution of data X using empirical distribution
as p(X) = 1

B . Then we estimate p(y) as p(y) =
∑

X p(y|X)p(X) = 1
B

∑B
i=1 hψ(Xi) := h̄ψ. Based on the

definitions above, the mutual information for CoSDA can be expressed as follows:

MI({Xi}B
i=1,ψ) = − 1

B

B∑
i=1

DKL
(
hψ(Xi)∥h̄ψ

)
, (14)

and the mutual information loss is ℓMI := −MI({Xi}B
i=1,ψ).

In Section 3.2, we claim the mutual information loss can improve the robustness of the model and enable it
to learn from hard domains. We provide evidence to support this claim. Based on previous studies (Liang
et al., 2020; Hu et al., 2017), ℓMI can be decomposed into two components: minimizing the instance entropy
and maximizing the marginal inference entropy:
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Table 7: Hyperparameters for all the methods evaluated in the experiments.

Method Shared hyperparameters Dataset specific hyperparameters

SHOT&SHOT++

learning rate: 1 × 10−3˜2 × 10−4 for backbone;
learning rate: 1 × 10−2˜2 × 10−3 for bottleneck and classifier;

cls_loss weight: 0.3;
ent_loss weight: 1.0;

ssl_loss weight: 0.6 (for SHOT++).

Same for all datasets.

NRC learning rate: 2 × 10−3˜1 × 10−3;
k = 4, m = 3.

For VisDA, set learning rate: 2 × 10−3˜1 × 10−4,k = 8, m = 8;
For DomainNet, set k = 6, m = 4.

AaD learning rate: 2 × 10−3˜1 × 10−3;
α = 0.4, decay γ = 0.96.

For VisDA, set learning rate: 2 × 10−3˜1 × 10−4;
k = 2, 3, 4, 8 For Office-Home, Office31, DomainNet, VisDA.

DaC

learning rate: 2 × 10−3˜2 × 10−4;
temperature: 0.05, K: 40, k: 5;

momentum: 0.8, threshold: 0, gate: 0.97;
coefficients for cls, im, con and mmd: (0.02, 0.25, 0.03, 0.15).

For VisDA, set learning rate: 5 × 10−4˜6 × 10−5;
K: 300, momentum: 0.2;

coefficients for cls, im, con and mmd: (0.39, 0.1, 1.0, 0.3) ;
For DomainNet, set learning rate: 1 × 10−3˜2 × 10−4.

EdgeMix learning rate: 1 × 10−3˜2 × 10−4;
λ = 0.9, finetune epochs: 2.

For Office31, learning rate: 2 × 10−3˜1 × 10−3;
For VisDA, learning rate: 2 × 10−3˜1 × 10−4.

GSFDA
learning rate: 1 × 10−3˜2 × 10−4 for backbone;

learning rate: 1 × 10−4˜2 × 10−5 for bottleneck and classifier;
k = 2, s = 100, λgen : 1.

For VisDA, set k = 10;
For DomainNet, set backbone learning rate: 5 × 10−4˜1 × 10−5;

bottleneck and classifier learning rate: 5 × 10−5˜1 × 10−6;
k = 10, λgen = 2 .

CoTTA
source model preserve ratio (rst): 0.01;

average predictive prob (ap): 0.92;
aug times: 32.

For Office31and VisDA, set ap to 0.5 and rst to 0.001.

CoSDA

learning rate: 2 × 10−3˜1 × 10−3;
temperature: τ = 0.07;

mixup: β(2, 2); loss weight α = 1;
EMA momentum: m = [0.9, 0.99].

For DomainNet, set α = 0.1 and m = [0.95, 0.99];
For VisDA, set learning rate: 4 × 10−3˜2 × 10−3.

1. Minimize instance entropy:

min
ψ

1
B

B∑
i=1

ent(hψ(Xi)) := min
ψ

1
B

B∑
i=1

C∑
c=1
−hψ(Xi)i,c log hψ(Xi)i,c. (15)

2. Maxmizie marginal entropy:

max
ψ

ent(h̄ψ) := max
ψ

C∑
c=1
−h̄ψ,c log h̄ψ,c. (16)

By minimizing instance entropy, the model learns to assign distinct semantics for each data, resulting in a
concentrated classification distribution. This enables the model to learn classification information even in
the presence of inaccurate pseudo-labels in hard domains. By maximizing the marginal entropy, we ensure
that the model learns a uniform marginal distribution, which allows it to learn information from all classes
in a broad and balanced manner, rather than overfitting to a few specific classes. Based on the above two
advantages, we demonstrate that integrating mutual information loss into the training objective can lead to
good properties such as improved robustness and effective learning from hard domains.

A.3 Training Paradigm

In our experiments, we follow previous settings (Long et al., 2015; Ganin et al., 2016; Liang et al., 2020;
Yang et al., 2021b; Zhang et al., 2022) and utilize two common training paradigms: inductive learning and
transductive learning. For DomainNet that provides an official train-test split, we use the inductive learning
pipeline to train models on the training set and report model performance on the test set. On the other hand,
for OfficeHome, Office31, and VisDA, which do not provide an official train-test split, most methods adopt
the transductive learning based adaptation pipeline. In this pipeline, the training and testing datasets are
identical. Specifically, models are trained on the entire source domain and adapted to the entire unlabeled
target domain. During testing, the models are evaluated on the same training dataset to report the adaptation
performance as well as the degree of catastrophic forgetting. It is important to note that, since the inductive
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learning paradigm is more practical, we primarily focus on the analysis and discussion of our results based
on the DomainNet experiments, supplemented by the transductive learning performance on the other three
benchmarks.

A.4 Hyperparameters

We build a unified implementation for all methods with the following settings: we use ResNet50 as the
backbone for DomainNet, OfficeHome, and Office31, and ResNet101 for VisDA. We apply cyclic cosine
annealing as the learning rate schedule, set the weight decay to 5× 10−3, and use random horizontal flip as
regular data augmentations, except for DaC, EdgeMix, and CoTTA. Specifically, EdgeMix uses a pretrained
DexiNed (Soria et al., 2020) to extract and confuse edge features, while DaC and CoTTA use AutoAug (Cubuk
et al., 2019) as augmentation strategies.

In addition, we construct a validation dataset to select suitable model-specific hyperparameters. Specifically,
we split 5% of the data from the current target domain’s training set as the validation dataset. In the
CoSDA setting, we are not allowed to access the data from previous domains. Therefore, we do not
construct a validation dataset on the source domain or previously encountered target domains. The details
of hyperparameter selection for each method are presented in Table 7.
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