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Abstract

We propose an evaluation procedure based on the simulation of realistic abnormal images
to validate pseudo-healthy reconstruction methods when no ground truth is available. We
apply this framework to the reconstruction of 3D brain FDG PET using a convolutional
variational autoencoder. This work has recently been published at MELBA.
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1. Introduction

Unsupervised anomaly detection (UAD) using deep generative models (Chen and Konukoglu,
2022; Zhang et al., 2023) is an active field of research in medical imaging, especially in neu-
roimaging, where it has been widely applied to the detection of tumors and white matter
hyper-intensities on structural magnetic resonance images (MRI) (Baur et al., 2021). We
here focus on brain 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET),
a relevant modality to study Alzheimer’s disease (AD), as it allows imaging brain areas
with hypometabolism (Herholz, 1995). However, when applying UAD in this context (Choi
et al., 2019; Baydargil et al., 2021), we do not have access to ground truth masks of the
anomalies to evaluate the models.

We introduce a framework for the evaluation of pseudo-healthy reconstruction ap-
proaches in the absence of ground truth. It consists in simulating anomalies on images
of healthy subjects to generate pairs of pathology-free and pathological (e.g., mimicking
dementia-like lesions) images. We complement the framework by defining a new healthiness
metric that measures whether the reconstructed image is of healthy appearance. We finally
evaluate a VAE (Kingma and Welling, 2014) trained on 3D brain PET using the framework.

2. Methods

In addition to evaluating the quality of the generated images using reconstruction met-
rics that are common in the image synthesis literature (Nečasová et al., 2022), there is a
need to evaluate if the reconstructions are looking healthy and allow detecting anomalies.
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In most of the cases, datasets include lesion masks used as ground truth. However, for
neurodegenerative disease studies using FDG PET, these masks are not available.

We propose to simulate hypometabolism on healthy images to have pairs of healthy
(considered as ground truth) and abnormal images. We designed a mask corresponding to
regions associated with AD (parietal and temporal lobes) (Landau et al., 2012). We then
reduced the intensity of the PET signal within the region defined by the mask by different
factors to simulate various degrees of hypometabolism as illustrated in Figure 1.

Figure 1: Hypometabolism simulation pipeline. The intensity of the image from a healthy
subject is reduced by a chosen factor in a region associated with a dementia.

Furthermore, we define the “healthiness” metric H = µM
µM̄

to measure if the model is

able to reconstruct images that are looking healthy. µM is the average uptake in the region
of the mask M used to simulate the anomaly, and µM̄ is the average uptake of voxels in the
brain excluding the mask M .

3. Experiments and results

FDG PET scans used in this study were obtained from the ADNI database (Jagust et al.,
2010, 2015). After curating the dataset, we have 739 images from 378 cognitively normal
(CN) subjects. We use the 60 baseline sessions from 60 CN subjects used for the test set to
build new test sets by using our simulation method with different hypometabolism intensity
degrees, resulting in a total of 8 simulated test sets.

We use a 3D convolutional VAE as VAEs have already shown their efficacy for UAD in
medical imaging (Baur et al., 2021; Chen and Konukoglu, 2022).

We observe in Figure 2 that the input and output images of the CN subject are quite
similar, both the shape of the brain and the uptake distribution look alike. The differences
are due to the model imperfect reconstruction and correspond to the minimal error that it
can achieve. When feeding the simulated hypometabolic image x′ to the model, we observe
that the reconstructed image x̂′ looks healthier than the input image. The areas highlighted
in blue in the residual map correspond to the regions where hypometabolism was simulated.

We can see in Figure 3 that the healthiness of simulated images x′ is lower than for
PET scans from CN subjects (the ground truth). However, the healthiness score of the
reconstruction x̂′ is always superior to the one of the simulated image x′. We can see that
it is even really close to the healthiness of the original image x.
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Figure 2: Results obtained from a real image of a CN subject (top row) and an image
simulating AD hypometabolism based on the same CN subject (bottom row).

Figure 3: Distribution of the healthiness metric for the ground truth healthy images, their
corresponding simulated images and their pseudo-healthy reconstructions when
increasing the percentage of AD-like simulated hypometabolism.

4. Discussion and conclusion

To overcome the absence of ground truth for the evaluation of the model, we introduced
a framework to simulate dementias related diseases from images of healthy subjects. This
framework has been applied to a 3D VAE that is suited to detect anomalies due to dementia
on brain FDG PET. Thanks to simulated test sets and the defined healthiness metric, we
could evaluate the model ability to reconstruct healthy looking images. This work has
recently been published at MELBA (Hassanaly et al., 2024).
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