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Body Part-Level Domain Alignment for
Domain-Adaptive Person Re-Identification
With Transformer Framework

Yiming Wang ', Guanqgiu Qi

Abstract— Although  existing  domain-adaptive  person
re-identification (re-ID) methods have achieved competitive per-
formance, most of them highly rely on the reliability of pseudo-
label prediction, which seriously limits their applicability as
noisy labels cannot be avoided. This paper designs a Transformer
framework based on body part-level domain alignment to solve
the above-mentioned issues in domain-adaptive person re-ID.
Different parts of the human body (such as head, torso, and
legs) have different structures and shapes. Therefore, they
usually exhibit different characteristics. The proposed method
makes full use of the dissimilarity between different human body
parts. Specifically, the local features from the same body part
are aggregated by the Transformer to obtain the corresponding
class token, which is used as the global representation of
this body part. Additionally, a Transformer layer-embedded
adversarial learning strategy is designed. This strategy can
simultaneously achieve domain alignment and classification of
the class token for each human body part in both target and
source domains by an integrated discriminator, thereby realizing
domain alignment at human body part level. Compared with
existing domain-level and identity-level alignment methods, the
proposed method has a stronger fine-grained domain alignment
capability. Therefore, the information loss or distortion that
may occur in the feature alignment process can be effectively
alleviated. The proposed method does not need to predict pseudo
labels of any target sample, so the negative impact caused by
unreliable pseudo labels on re-ID performance can be effectively
avoided. Compared with state-of-the-art methods, the proposed
method achieves better performance on the datasets that are in
line with real-world scene settings.

Index Terms—Person re-ID, domain adaptation, body part-
level, domain alignment.
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I. INTRODUCTION

ERSON re-ID is used to associate a single pedestrian
image captured by one camera with a/multiple pedestrian
images captured by another/other cameras in a camera moni-
toring network, thereby realizing the positioning and tracking
of the target pedestrian across time and space. Since person
re-ID has high practical values, it has attracted considerable
attention of researchers and a series of effective related meth-
ods have been proposed [1], [2]. These methods can achieve
excellent recognition performance on the testing set consistent
with the domain information of the corresponding training set.
However, a large number of labeled samples are often required
for supervised model training. When a domain shift occurs
between testing set and training set, the corresponding re-ID
performance drops sharply. In practical applications, the time
and labor costs of manually labeling large-scale training sam-
ples on the target dataset are unacceptable [3]. According to
the above-mentioned factors, it is difficult to apply supervised
person re-ID methods to real-world surveillance scenes.
Unsupervised domain adaptation (UDA) is an effective
method to solve the above-mentioned issues. Compared with
both unsupervised person re-ID methods of domain general-
ization and unsupervised person re-ID methods without the
participation of source-domain data (i.e. fully unsupervised
methods), UDA method has better stability. Therefore, UDA
person re-ID methods [4], [S] have attracted the attention of
researchers. They usually apply both labeled source-domain
data and unlabeled target-domain training data to model
training. UDA method based on pseudo-label prediction and
domain alignment are two main categories. UDA methods
based on pseudo-label prediction usually perform pseudo-
label prediction on training samples in the unlabeled target
domain first [6]. Then, the predicted pseudo labels are used to
further supervise model training. Therefore, the trained model
is generally more adaptive to target data distribution.
Although UDA methods based on pseudo-label prediction
show excellent re-ID performance on well-constructed train-
ing sets (each sample has at least a positive sample across
multiple camera views), they have weak applicability in real-
world surveillance scenes. As a main reason, these methods
highly rely on pseudo-label prediction. When the accuracy
of the predicted pseudo labels increases, the corresponding
model performance on target data is improved. In real-world
surveillance scenes, many pedestrians may only move in a
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Fig. 1. Different parts of the human body.

small-range local area and pedestrian destination directions
vary. Some pedestrians may be involved in the images captured
by only one camera in a local camera network. Therefore, the
corresponding pseudo-label prediction is seriously affected,
resulting in a lot of noisy labels. In addition, when the distance
between different cameras is relatively large (such as across
distant scenes), it is highly possible that no pedestrian with
the same identity appears in different cameras [7]. In this
case, the predicted pseudo labels will all be noisy labels. As a
main factor, the performance of pseudo-label prediction-based
methods decreases considerably in such scenes.

Domain alignment-based feature learning solves domain
shift by making both source-domain and target-domain sam-
ple features have the same distribution. In this process, the
corresponding model performance can be improved without
pseudo-label prediction. Therefore, the negative impact of
noisy labels is avoided. Existing domain alignment-based
methods often make the learned features achieve distribution
consistency at domain level (between different datasets or
between different cameras) or identity level (between different
pedestrians). Although these methods finally achieve domain
alignment, unexpected consequences may occur, such as the
related information is only extracted from a local pedestrian
image region or identity-related clues are sacrificed to satisfy
the alignment of feature distribution.

To alleviate the above-mentioned issues, a novel domain
alignment-based feature learning method is proposed. Com-
pared with existing methods, the proposed method explores
more fine-grained domain alignment. As shown in Fig. 1,
different parts of the human body (such as head, torso,
and legs) show different shapes and structures in a single
pedestrian image. Different human body parts are essentially
dissimilar (without considering the same color of both tops and
pants). Therefore, this paper proposes a body part-level domain
alignment method embedded in the Transformer layer to solve
the issues of UDA person re-ID. Local features from the
same body part are first aggregated through the Transformer
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to obtain class tokens for different body parts. Then, the
aggregated features are used as a global representation of the
corresponding body part. The class token for a body part in
both source and target domains is aligned to achieve domain
alignment at body-part level.

Specifically, this paper achieves body part-level domain
alignment by the cooperation of two discriminators. Each
discriminator is composed of four Transformer layers with the
same structure (the related parameters are not shared) and four
fully connected (FC) layers with different structures. This can
ensure that the two discriminators can discriminate the features
extracted by the backbone network from different views.
In addition, the discriminators can simultaneously identify the
class token for each pedestrian part belonging to the body part
category and the corresponding original domain.

The integrated design avoids mode collapse caused by the
independent design of identity and domain classifiers [8].
In the above-mentioned design, the input of the Transformer
layer is the local features classified according to pedestrian
body parts. As the main purpose, all the local features of the
same human body part are used to further refine the class
token of each body part. Additionally, the domain information
is simultaneously extracted from the input features to prepare
for the subsequent classification. Through the cooperative
adversarial training between the backbone network and two
discriminators, the main network is encouraged to extract the
identity features consistent with source-domain distribution
from target-domain samples, which ensures that the extracted
features have strong capability to distinguish body parts. This
is conducive to alleviating the loss and distortion of the
identity information of different parts in the domain alignment
process.

This paper has three main contributions as follows.

o A fine-grained domain alignment method embedded in
the Transformer layer is proposed to solve the domain
shift between the source and target domains. Features
extracted from image patches of the same body part are
input into the Transformer layer to obtain class tokens for
different body parts and support subsequent body part-
level domain alignment.

o The adversarial learning mechanism embedded in the
Transformer layer is designed to align the class tokens of
source-domain and target-domain samples from pedes-
trian bodies. Moreover, a priori knowledge based on
the dissimilarity of different pedestrian parts is used to
facilitate domain alignment at the body-part level.

o The proposed body part-level domain alignment enables
the network to focus on discriminative features from
different pedestrian body parts. Additionally, the potential
loss of feature information or the distortion of identity-
related clues can be effectively avoided in the domain
alignment process.

The rest of this paper is organized as follows. Section II
discusses related work; Section III elaborates the proposed
method; Section IV analyzes the comparative experimental
results; and Section V concludes this paper.
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II. RELATED WORK
A. Pseudo-Label Prediction-Based UDA Person Re-ID

UDA methods based on pseudo-label prediction perform
model training in a supervised manner on unlabeled target
data samples (training set), so the trained model has strong
adaptability to the target dataset. As the core problem, this type
of method needs to solve how to assign reliable pseudo labels
to unlabeled target samples participating in model training.
Although clustering is a commonly used method, it is easy
to introduce noisy labels. In order to suppress the negative
impact of noisy labels, Yang et al. [9] proposed an asymmet-
ric collaborative teaching framework to suppress the genera-
tion of noisy labels through the cooperation of two networks.
Ge et al. [10] proposed a mutual mean-teaching (MMT)
method, which used both offline refining of hard pseudo labels
and online refining of soft pseudo labels. Additionally, an alter-
nate training method was applied to soft refining of pseudo
labels in target domain. Zhai et al. [11] proposed a new aug-
mented discriminative clustering method to achieve pseudo-
label prediction. Both hierarchical clustering and hard-batch
triplet loss (HCT) were integrated to improve pseudo-label
prediction performance by Zeng et al. [12]. Zhao et al. [13]
applied two networks to collaborative clustering and interac-
tive instance selection to predict pseudo labels in the training
process. Luo et al. [14] proposed to first cluster target data
according to camera views and then predict and refine sample
labels across camera views, so the reliability of confident
labels was improved.

The above-mentioned methods achieve excellent perfor-
mance on manually constructed datasets. Due to the limited
range of pedestrian activities in real-world scenes, the different
directions of entering and exiting a local camera network and
a long distance between cameras can cause a large number of
interference samples (the samples without cross-camera pairs
of the same pedestrian) to be mixed in the training data. The
existence of these samples inevitably causes the introduction
of noisy labels, thereby reducing the corresponding re-ID
performance of such methods.

B. Domain Alignment Based UDA Person Re-ID

UDA person re-ID methods based on domain alignment
mainly solve the issues of domain shift by aligning the
distribution of source and target domains. They do not use any
pseudo label of the target dataset to supervise model training.
The number and scale of cross-camera paired pedestrian
samples do not have much impact on model performance.
Therefore, the trained model has a strong generalization capa-
bility. In order to achieve domain alignment, PT-GAN [15],
SPGAN [16], ATNet [17] and CR-GAN [18] first transfer the
labeled source-domain samples to target domain, and then use
the transferred samples to supervise model training.

Although these methods can alleviate domain shift, they
ignore the intra-domain changes of samples, thereby limit-
ing re-ID performance improvement. To alleviate this prob-
lem, Zhong et al. [19] conducted a comprehensive study on
the intra-domain changes of target domain and proposed to
assign three basic invariances (i.e. sample invariance, camera
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invariance, and neighborhood invariance) to re-ID models
for achieving model performance improvement. Li ef al. [20]
integrated pedestrian pose information into an adversarial
generation mechanism to obtain pose-invariant features after
domain information alignment. Qi et al. [21] proposed
a camera-aware domain-adaptive person re-ID framework.
The data distribution discrepancy between source and target
domains is addressed from different representation learning
perspective. Aiming at the extraction of robust features for
cross-domain person re-ID, Zou [22] proposed to improve
model’s domain adaptability by purifying the representation
space to be adapted. Li er al. [23] made full use of the
domain invariance of pedestrian features to guide the learning
of domain-invariant features, which ensured the consistency
of the distribution of both source-domain and target-domain
features.

Most of the above-mentioned methods achieve domain
alignment on the entire training sample space. Nevertheless,
it is difficult to ensure the domain alignment between samples
with the same identity. Although Li e al. [24] proposed an
effective solution, the negative impact of domain alignment on
feature quality was not considered. According to the dissimi-
larity of different pedestrian body parts, this paper proposes a
body part-level fine-grained domain alignment framework to
eliminate the domain difference between source domain and
target domain. This method considers both domain alignment-
related issues and the change of identity clues during the align-
ment process, and introduces the consistency classification of
both body parts and domains to implementation.

C. Transformer in Person Re-ID

As a deep learning model, Transformer was designed for
machine translation by Vaswani et al. [25]. Unlike convo-
lutional neural networks, this method uses a self-attention
mechanism to extract features from the entire input data.
Inspired by the great success of the Transformer in natural
language processing, researchers have applied the Transformer
to image processing [26], object detection [27], semantic
segmentation [28], object tracking [29], which achieves good
performance. He et al. [30] first proposed a Transformer-
based framework, which initiated the trend of Transformer-
related applications in person re-ID. Lai et al. [31] proposed
a Transformer-based framework for local fine-grained fea-
ture extraction,which can adaptively generate non-overlapping
masks for robust part division. Zhu et al. [32] proposed an
automatic alignment-based Transformer framework to real-
ize the semantic alignment of features for person re-ID.
Ma et al. [33] proposed a gesture-guided inter-part and intra-
part relational Transformer to solve the issues of occluded
person re-ID. The Transformer was mainly used to establish
part-aware long-term correlations in this method. Li et al. [34]
proposed an end-to-end part-aware Transformer to solve
the negative impact of obstructions on pedestrian identity
matching. Due to the lack of image-to-image attention,
the Vision Transformer (ViT) and the vanilla Transformer
with decoder are not able to achieve the matching of
pedestrian images. Liao et al. [35] introduced query-gallery
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Fig. 2. The framework of the proposed method. The input image is first partitioned into different patches, and then the partitioned patches are convolved

to obtain feature vectors in the convolution layer. The feature vectors of these local regions are input into the backbone network composed of Transformer
layers to extract class tokens for global features. The last layer of the backbone network has two Transformer layers that share the same parameters. One is
used for the global class token extraction of pedestrian bodies. The other is used for the class token extraction of pedestrian body parts. According to the
position of the local feature output from the penultimate layer of the backbone network, each local feature is first classified into the category corresponding
to the body part, and then input into the last Transformer layer E,, of the backbone network to extract the class token for each pedestrian body part. The
class token for each body part is used to realize body part-level domain alignment of pedestrian samples.

concatenation and query-gallery cross-attention to VIT and
vanilla Transformer respectively. Liang et al. [36] introduced
Transformer to cross-modality person re-ID and achieved
excellent performance in visible-infrared person re-ID.

Different from existing methods, this paper embeds trans-
former layers into both feature extraction backbone network
and discriminators respectively. The backbone network is used
to extract the class tokens describing each single pedestrian
part. The discriminators are used to assist the backbone
network in extracting the features of domain distribution
alignment.

III. THE PROPOSED METHOD

Preliminary. UDA person re-ID aims to obtain the model
by training on the labeled source-domain dataset and the
unlabeled target-domain dataset, thereby achieving good re-1D
performance on the target dataset. Suppose the source domain
dataset is S = {x;;, ys,i Cs,i}|?i1’ where x;; represents the
i-th pedestrian image in S, y;; € {1,2...,ng} and ¢;; €
{1,2,..., ks} represent both identity label and camera label
of x,; respectively, Ny is the total sample size, ng is the
number of pedestrians, and k; is the total number of cameras
in source domain. Additionally, T = {x;;, ct’i}|£v:’1 is set as
the target dataset sample, N; is the total number of sample
images, ¢;; € {l1,2,...,k:} represents the camera label of
X:,i, and k; represents the total number of cameras in target

domain.

A. Overview

As shown in Fig.2, the proposed method consists of global
and body-part feature extraction (GBFE) and body part-
level domain alignment (BPDA). Specifically, the network of

GBFE as the backbone network is composed of global feature
extraction (GFE) and body-part feature extraction (BFE). GFE
is mainly used to obtain the global features of the entire
pedestrian body. BFE is mainly used to obtain the features
of each pedestrian body part and build the foundation for the
subsequent realization of part-level domain alignment based
on the dissimilarity of body parts. BPDA is mainly composed
of two discriminators. Each discriminator is embedded with
four Transformer layers to extract the domain information
contained in each body part. The dual adversarial learning
is introduced between the backbone network and the two
discriminators to realize the domain alignment of each class
token for target-domain samples with the corresponding class
token in source domain.

B. Global and Body-Part Feature Extraction

1) Global Feature Extraction: The backbone network E,,
consists of a convolution layer and 12 transformer layers.
E,, is used in GFE and BFE to extract global and local
appearance features, respectively. The convolutional layer is
used to convert the input image into tokens to be processed
by Transformer layers. Each Transformer layer consists of
a multi-head self-attention (MHSA) layer and a multilayer
perception (MLP). There is a layer norm (LN) in front of each
MLP and MHSA layer. Each sample x; ; in source domain and
its corresponding identity label ys; are known. In addition,
similar to [7], [37], the identity labels of intra-camera samples
can be assumed to be known, because they can be easily
obtained various target tracking techniques. (.Therefore, the
samples in T are grouped as 7 = {x/;, y; 7’21 according to
the camera labels, where x; ; denotes the i-th image collected

by the c-th camera, yy; is the label identity of x;;, ng is

Authorized licensed use limited to: Kunming Univ of Science and Tech. Downloaded on September 30,2022 at 00:21:10 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: BODY PART-LEVEL DOMAIN ALIGNMENT FOR DOMAIN-ADAPTIVE PERSON re-ID

the total sample size of the c-th camera. The source-domain
samples and target-domain intra-camera samples are used to
train E,;, in a supervised manner, which ensures that the
global features extracted by E,, are discriminative. Similar
to [30], this paper uses cross-entropy loss and soft triple loss
to optimize E,, as follows:

1 (&
L coe(Ep, Wy, W) = _E(qu’ log(Wg (Ep (x5.i)))
i=1

ki np
1
+k_t Z Z qg,i log(Wo(Epn (XZC,)))),
c=1i=1
()

1 (&
Lgyi(Em) = %(Zlog[l + exp(|| Em (xs.i)
i=1
_Em(x£5)||2 - ”Em(xs,i)
ke np
1
—En(xg )l2)] + o Z Zlog[l
T e=1i=1

+exp(||Em(x;C,i) - Em(xz’,‘p)||2

—NEm(x;;) — Em(xtc,’,-")llz)]), @)

where ny, is the batch size. ¢, ; € R""Xl(qu e R"*1) is the
one-hot vector, if and only if the y;;(y;;)-th element are 1.
W is the source domain pedestrian idenﬁty classifier and W,
is the pedestrian identity classifier of the samples captured by
the c-th camera of target domain. x”(x;"") and x”; (x") are
the hard positive samples and hard négative sample,s in a batch
size corresponding to xs,,-(xf, -

2) Body-Part Feature Extraction: Since different pedestrian
body parts (such as head, torso, legs) have different shapes
and structures, they show strong dissimilarity. According to the
above-mentioned a priori knowledge, body part-level domain
alignment is proposed to avoid the loss or distortion of feature
information in the domain alignment process. The proposed
method needs to extract the features of different body parts.
As shown in Fig. 2, a Transformer layer is copied from the
last layer of E,, and used to extract body-part features. The
input features of the last layer of E,, are listed as follows:

aZ;Y]]]a (3)

which come from the input of the 11-th Transformer layer of
E,, (the penultimate layer of the backbone network). In Eq.(3),
N is the number of partitioned patches. [ € {s, t} indicates that
the input sample comes from either source domain or target
domain. 2?,11 represents the class token for global features.
z;,ll’ i=1,2,...,N) is the feature vector corresponding to
the i-th local patch.

According to the feature dissimilarity of different parts of
the human body, the entire pedestrian image is partitioned into
three parts, head, torso, and legs. In this paper, local feature
vectors are categorized into head, torso, and legs according to
their positions in the source image. Then, they are spliced with
the class token zﬁ"“(k = hea,tor,leg) of the corresponding

0o .1 2
Zl,ll = [11’11, 11’11, zl,ll""
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Fig. 3. Structure diagram of two discriminators.

body parts as follows:

hea __ . hea. 1 2 24

2 = z50 2 2 - 2

tor __ . tor ., 25 26 68
Zi =z 2 2 - 2l

leg [ _leg . _69 70 128
Z =z vz 2 2 “)

Next, Zf‘el“l Z!°l,, and Z;efl are input into the last Trans-
former layer of E, to obtain Z;’fl“z, fo{z, and Zf]gz. Adldi-
tionally, .the corresponding class tok.ens. zf’fl‘é, z;’o]rz’ apd zf‘fz
are obtained. For the source domain image x;; (x;;), the

. .. . p’, cp
corresponding hard positive sample is denoted as Xy (i)
and the hard negative sample is denoted as x7; (xtC ’i"). The
class tokens of different body parts of x;; obtained by E,,

le hea, tor, leg,

are expressed as (', 217, 2 %), (2.7, 2777, z57) and
eossi 2 Cai L, , i

(Z?eia’”, 2" 2. 8"). Similarly, the class tokens of different

c c,hea _c,tor
body parts of x;, are expressed as (z;;",z,;

, > Lpi

(Zf’,ihea,p’ f,,itor,p,ztc:ileg,P) and (ztc:lfzea,;z’ztc:;or,n’ztc,,l{eg,z1). The
parameters of E, are optimized by the following loss to
make the class tokens of various body parts discriminative,
(5) and (6), as shown at the bottom of the next page, where
Wiea(We,nea)s Wior(We sor), and Wleg(Wc,leg) represent the
local feature classifiers corresponding to different body parts
in source-domina (c-th camera of target domain). To simplify
the discussion, this paper only considers the cases of the
pedestrian detection frame standard.

c,leg)

C. Body Part-Level Domain Alignment

Since the pedestrian body }?arts are essentially dissimilar, the
class tokens z?ﬁ”, z;‘,’i’ ,and sz describing different pedestrian
body parts should not be similar to each other. A self-
dissimilarity domain alignment method embedded in the
Transformer layer is proposed to obtain the features of domain
alignment. This method is mainly realized by the cooperation

between the backbone network and two discriminators.
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1) Self-Dissimilarity Domain Alignment Embedded in the
Transformer Layer: In domain alignment, two discriminators
are mainly used to check whether the class tokens zﬁ’jf“,
z:olr, and z § contain target-domain information. As shown
in Fig.3, each of the two discriminators is composed of four
Transformer layers and four fully connected layers. The first
discriminator denoted as Db is obtained by integrating the
source-domain body part classifier and the camera identity
classifier of the target -domain sample into one classifier.
In other words, D} b, can simultaneously differentiate the body
part category of the source-domain sample feature and the
camera identity of the target -domain sample. Therefore, the
output dimension of D . 18 k; + 3, where k; is the number of
cameras of the target domaln and 3 represents the number of
pedestrian body parts. This integrated design is conducive to
avoiding mode collapse caused by the independent design of
task and domain classifiers [8].

During the optimization of Db the input source-domain
features are expected to be correctly classified into the cor-
responding body part categories. Db . 1s expected to clas-
sify the input features of the target-domain sample into the
camera category (identity) corresponding to the sample. Since
different body parts contain the domain information that is
inconsistent with source domain, the input features of the
target-domain sample cannot be classified into the category
of the corresponding body part. This process can be achieved
by minimizing the loss function shown in Eq. (7):

Lb cel (Db c P Z[qhea 1Og(Db C(ZheaIZ))

!
* qg(:ir log(Db’c(zf“ru)) +¢,%log(D},,
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z
x (Zse§12)) hea 10g(Db (Z ?5712))
mr log(Db c (Z;Olfrz))

I [
Flog(Dy, (Z,55 )], (7
e RKi+3)x1 qgor c R*i+3)x 1 and qleg c

R(k’+3)X1 are the label vectors of head, torso, and lower
hea tor and

body categories, respectively. The values of ¢{%", ¢.%,
qief at the first, second, and third element positions are 1,
and the values at other element positions are O. che“ €
R(k,+3)x1 c;or c R(kt+3)><1’ and cleg e R&+3)x1 mdlcate
the corresponding camera labels of dlfferent parts. If and only
if the (c;,; +3)-th element is 1, other elements are zero, where
¢;; is the camera label of the input target-domain sample.

The target-domain sample is input into the backbone net-
work. If the features consistent with the domain information
of the source-domain sample can be extracted, D},,C can
classify the input target-domain features into the categories
corresponding to body parts. To achieve this, the discriminator
Db is fixed to update the backbone network by minimizing
Lbl as follows:

where q

Lh ceZ(Em) = - Z[qhea 10g(D117,c(Z?,‘§?12))

1_1
+q§"i’ log(D}, (Z{% 1))

+4,% log(D} (Z)% )], ®)

hea tor

hea tor leg
and q5i» the values of q:5" 4,5

; 455 455 and
qtef at the first, second, and third element positions are
1 respectively, and the elements at other positions are O.

Same as

Lb,ce (E}’H9 Wheas Wior, Wlega Wc hea> Wc tors Wc,leg)

(2

+log(Wieg (22%)] +

i=1

c=

th i10g(Whea (225") + 1og(W 10r (24)

)

Z > g 0g(Weea z71Y)

1i=1

+10g(We tor (251 ") + 102(W e 1eg (27 fg)]) Q)
1
Lb,tri(Em) = 5
3np
np
(Zlog [+ exp(lzys = 205 ll2 = 245 — 25"
i=1
+logl1 +exp(llz,% — 2,77l — 2% — 2,77 " 12)]
+log[1 +exp(llzi¥ — 2.7 |1, ||z’€g 2" )]
K; np
+Zzlog 1 +CXp(||ZC Jhea Chea p” ” chea Lhea n” )]
c=1 i=1
+10g[ —|—exp(||z° tor_ ctorp” ” ctar_ Llorn” )]
+log[1 + exp(llz; — 20 Py — 112071 — 201" 12 )1) 6)
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Zf‘f“lz, Z;"lrlz, Zﬁefm are the output of the last Transformer

layer of E,,

2) Domain Alignment Based on Cooperation of Dual Dis-
criminators: In the above process, the domain alignment
ability of the backbone network depends on the discrim-
inator D,l7 .- When the discriminability of D increases,
the domain alignment capability of the backbone network
improves. This paper introduces the second discriminator D
that is different from the structure of the discriminator Dl
further enhance the domain alignment ability of the backbone
network through collaborative training. Specifically, D b . s
composed of four Transformer layers and four fully connected
layers. Like the Transformer layer in Db o it is used to
determine whether the information input into D2 b.c contains
target-domain information. In the optimization process, the
parameters of the backbone network are fixed, and the function
shown in Eq. (9) is used to optimize the parameters of D%’( as
follows:

Ly ces(D) ——Z[qhe“log(D A(Z55)

+q\ log(D (217 1)) + 41 log(D7

X (22 NI+ [ log(D3 (Z]%)))
+¢} log(Dj; C(Zi"l 12))

+ cleg log(D? .(Z,% 1)), ©)

In the training process of the backbone network, this paper
proposes the adversarial loss of the cooperation of two dis-
criminators, which ensures that the backbone network extracts
the discriminative features consistent with source domain.
Therefore, the domain alignment between source domain and
target domain is realized on feature representation. For this
loss, the output results of Dll7 . and D% . are added together
as the final body part classification result. When updating
the backbone network, the loss shown in Eq. (10) can be
minimized, if and only if Di . and DIZ) . output consistent
discrimination results: , ,

1 np
Lb,ce4(Em) = _E Z q?ia log (Db L(Z?iflIZ)
i=1

Dlzy,c(zfl,ezalz)) + ¢;% log = (Dh SZE 1)

1
Di,c(zi,oiflz))+ ‘It ?log = (Db c(Ztefu)
leo
+ D (Z5 )], (10)

In the proposed method, Eq. (10) is substituted for Eq. (8).
Due to the different structures of the two discriminators,
the above process allows discriminators to discriminate the
input features from two different views [38]. When the dis-
crimination results of the two discriminators are consistent, the
loss function can be minimized. This facilitates the backbone
network to extract both features after domain alignment, and
fine-grained features of different pedestrian parts, thereby
enhancing the comprehensiveness and expression ability of the
corresponding features. Additionally, the domain alignment of
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Algorithm 1 Body Part-Level Domain Alignment (BPDA)
for Domain-Adaptive Person Re-ID

Input: Labeled source samples X = {xsji}iN: 1» correspond-
ing pedestrian labels Y = {y;, i}NS
ples X; = {x;, ,}lN | corresponding intra-camera pedestrlan

labels Y, = {yt l} L, and camera labels C; = {c, ,}
Output: The trained encoder E
Step I: Global and Body-part Feature Extraction
(Sec.II1.B)
1:Sample a batch of labeled source data.
2forc=1,---, K; do
3:  Sample a batch of c-th camera target data.
4:Initialize E;, Wo, We, Wiea, Wior, Wieg, W
Wty and Wc,leg~
5:for iter=1, ---, Iteration; do
6: Update E,,, W, and W, by minimizing the loss in
Egs.(1) and (2).
7: Update E;, Whea, Wiy, Wleg’ Weheas We,rry and
Wc,leg by
minimizing the loss in Eqs.(5) and (6).
8:end for
Step II: Body-part level Domain Alignment (Sec.III.C)
9:Sample a batch of labelled source data.
10:Sample a batch of unlabeled source data.
11:Load the learned E,;,, Wg, We, Wiea, Wior, Wieg,
Wc,heu: Wc,tru and Wc,leg~
12:Initialize the classifier D},,C, DZ)C;
13: for iter=1, - - -, Iteration, do
14:  Update Dll,’ . and Di, . by minimizing the loss in
Eqgs.(7)
and (9).
15: Update E,,, Wg7 We, Whea, Wior, Wleg, Wc,hea,
Wc,tru
and W, ;.. by minimizing the loss in
Eqgs.(1),(2),(5),(6)
and (10).
16: end for

Unlabeled target sam-

c,heas

pedestrian body parts is realized in the same discriminator.
Mode collapse caused by the independent design of task and
domain classifiers can be avoided. The loss or distortion of
features that may occur in the domain alignment process can
also be alleviated.

D. Entire Loss Function

The total loss function of network parameter optimization
in this paper can be formulated as follows:

L = Lg,id + Lg,ce + Lb,ce + Lb,tri

+ ilLb,cel + /12Lb,ce3 + A3Lb,ce4, (1 1)

where A1, A2 and 13 are hyperparameters. The above process
is summarized in Algo. 1.
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TABLE I

THE SETTINGS OF DIFFERENT PERSON RE-ID DATASETS. PN: NUMBER OF PEDESTRIANS, IN: NUMBER OF IMAGES, CN: NUMBER
OF CAMERAS, POCN: NUMBER OF PEDESTRIANS CAPTURED BY ONLY ONE CAMERA

Training Query(Testing) | Gallery(Testing)
Datasets CN PNP OCNIN Other PN | Other IN | PN | IN | PN IN
Market1501-new 6 458 1732 159 1465 750 3368 750 15913
Duke-new 8 413 | 3184 140 2116 702 2228 1110 17661
MSMT17-new 15 1335 | 8376 455 6980 1041 2900 1041 29721
Market-SCT 6 751 3561 0 0 750 3368 750 15913
Duke-SCT 8 702 | 5993 0 0 702 2228 1110 17661

IV. EXPERIMENTS
A. Datasets and Evaluation Protocol

This paper uses five challenging datasets as the target dataset
to verify the effectiveness and superiority of the proposed
method, including Market1501-new [39], DukeMTMC-relD-
new (Duke-new) [39], MSMT17-new [39], Market-SCT [7],
and DukeMTMC-SCT (Duke-SCT) [7]. The training sets
in Market1501-new, Duke-new and MSMTI17-new are set
according to the probability of pedestrians appearing under
different cameras in a local camera network, Market-SCT
and Duke-SCT are partitioned by Zhang et al [7]. These two
datasets assume that the span between different cameras is
relatively large, and each pedestrian in the training set appears
in only one camera.

1) Market1501-New: The training set in Market1501-new is
reset from the samples in the training set of Market1501 [40].
Specifically, the dataset assumes that pedestrians appear on
one road. There are several intersections on this road. Since
person re-ID focuses on pedestrian identity matching between
cameras without overlapping, only one camera is installed at
each intersection. According to the moving direction of each
pedestrian, there is a 25% probability that pedestrians captured
by each camera appear in other adjacent cameras. Therefore,
the training set of Market1501-new contains 3,197 images
of 617 pedestrians. Since many pedestrians change moving
direction at one or multiple intersections, some of them are not
captured by more than one camera. Therefore, 1,732 images
of 458 pedestrians in the training set were captured by a
single camera. This setting is close to the real-world scenes
where pedestrians appear in each camera, so it is considerably
challenging. In addition, the testing in Market1501-new is the
same as that of Market1501.

2) Duke-New: The testing set in Duke-new is the same as
the testing set in DukeMTMC-reID (Duke) [41]. As the main
difference, the training set in Duke-new is reset by the samples
in the training set of Duke according to the probability of
pedestrians appearing under each camera in the local camera
network. This dataset assumes that a camera is installed at
each intersection and any pedestrian captured by each camera
has a 25% probability of appearing in other adjacent cameras.
As a result, the training set in Duke-new contains 5,300 images
of 553 pedestrians, in which 3,184 images of 413 pedestrians
were captured by a single camera.

3) MSMTI17-New: The training set in MSMTI17-new is
re-partitioned according to the setting of Duke-new training
set. As the main difference, the samples of MSMT17-new

training set come from the samples of MSMT17 [42] testing
set. Since the number of samples in the testing set of MSMT17
is more than that in the training set, the MSMT17 testing
set samples are used to construct the MSMT17-new training
set, thereby obtaining the MSMT17-new training set with a
large sample size. Correspondingly, all the training samples of
MSMT17 are used as the testing set samples of MSMT17-new.
MSMT17-new contains 47,977 images of 2,831 pedestrians
in total, of which the training set contains 15,356 images of
1,790 pedestrians, and the testing set contains 32,621 images
of 1,041 pedestrians. In the training set, 8,376 images are
composed of 1,335 pedestrians captured by only one camera.

4) Market-SCT: The training set of Market-SCT is also con-
structed by using the Market1501 training set samples under
the new setting. Different from the above-mentioned training
set construction method, each pedestrian in the Market-SCT
training set is captured by only one camera. Since no pedes-
trian was captured by two or more cameras, all cross-camera
samples in the Market-SCT training set come from different
pedestrians. In this case, the Market-SCT training set contains
3,561 images of 751 pedestrians. According to the partition
setting of the Market1501 testing set, the Market-SCT testing
set consists of 19,281 images of 750 pedestrians.

5) Duke-SCT: The training set of Duke-SCT is composed
of pedestrian samples in the Duke training set under the
new partition setting. According to the Market-SCT partition
setting, each pedestrian in the Duke-SCT training set was
captured by only one camera. Therefore, each sample in the
Duke-SCT training set does not have any positive sample
across cameras. Therefore, the training set of Duket-SCT
contains 5,993 images of 702 pedestrians in total. According
to the original Duke partition setting, the testing set consists of
19,889 images of 702 pedestrians. The details of each dataset
are shown in Tab.L.

6) Evaluation Protocol: Cumulative match characteristic
(CMC) [43] and mean average precision (mAP) [40] are used
to evaluate the performance of each method under a single
query setting. They are also used to measure the accuracy of
identity matching at each rank and the accuracy of overall
retrieval, respectively.

B. Implementation Details

1) Network Settings: In the training process, the size of all
images is uniformly adjusted to 256 x 128. Similar to [44], data
augmentation is achieved through random cropping, random
horizontal flipping, and image padding. In the experiments,
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the batch size is set to 16 and each pedestrian has four images
in a batch. All networks use SGD optimizer [45]. Momentum
is set to 0.9. Weight decay is set to 1 x 10~*. The learning
rate of E,,;,, We, Wg, Wheas Wiors Wlega W hea> We,ror and
W eq is set to 1.6 x 1073, The learning rate of the classifiers
Dl]m and Di’c is set to 1.2 x 1073, All hyperparameters
A1, A2, and A3 are set to 1.0, 0.5, 2, respectively. The pro-
posed method is implemented on the pytorch framework [46].
All experiments were done on a platform equipped with a
single NVIDIA GeForce RTX 2080 Ti GPU.

2) Optimization: The entire model is totally trained for
180 epochs. In the 0~10 epochs, the learning rate is linearly
adjusted through the warm-up strategy [47]. In the 40-th
epoch, the learning rate is decayed again at a 10% rate. In the
training process, the first 50 epochs are used to update the
parameters of E, by minimizing the loss functions shown
in Egs. 1, 2, 5 and 6. In the remaining 130 epochs, the
loss functions shown in Eqs. 7 and 9 are used to train the
classifiers Dé . and Di .» and the loss functions shown in
Egs. 1,2,5,6 and 10 are used to further update the parameters
of E,. In the testing process, Euclidean distance is used to
match pedestrian identity. The specific optimization algorithm
is shown in Algo.1.

C. Comparison With State-of-the-Art Methods

In this section, the proposed method is compared with
state-of-the-art unsupervised person re-ID methods to verify
its effectiveness and superiority. There are three main types
of methods involved in performance comparison: fully unsu-
pervised person re-ID (FUPR) methods, person re-ID meth-
ods based on domain generalization (DG), and unsupervised
domain-adaptive (UDA) person re-ID methods. For FUPR
methods, source-domain data is not generally available. There-
fore, the related models are only obtained by unsupervised
training on target dataset. For person re-ID methods based on
DG, the target dataset is unknown, and only the labeled source-
domain data can be applied to model training. For UDA person
re-ID methods, both source-domain and target-domain data is
known. But only the source-domain data is already labeled.
The target-domain data is not labeled. Generally, UDA person
re-ID methods can achieve stable performance because both
source-domain and unlabeled target-domain data participates
in model training. The performance comparison between this
method and the above two types of method is mainly used
to illustrate the advantages of UDA. The proposed method
is compared with state-of-the-art UDA methods to verify its
effectiveness and superiority over existing methods.

Market1501-new and Duke-new are set to verify model
performance in the local monitoring networks. In the above
two scenes, there are cross-camera paired training samples
between different adjacent cameras. However, as the span
between cameras increases, the number of pedestrians with the
same identity appearing across cameras gradually decreases,
which is highly consistent with the situation in real-world
scenes. Tab.Il shows the re-ID performance obtained by
different methods on both Market1501-new and Duke-new
datasets. The results listed in Tab.Il were obtained by using
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the codes provided by the corresponding original authors
and retraining the corresponding models under the original
parameter settings. All comparative experiments only used a
set of optimal preset parameters provided by their authors in
their papers.

For FUPR methods, IICS obtained the best re-ID per-
formance on Duke—Market1501-new (Market1501— Duke-
new), and the corresponding re-ID accuracy of rank-1 and
mAP reached 61.5% and 34.2% (54.5% and 33.7%), respec-
tively. In contrast, the re-ID accuracy of the proposed method
on rank-1 and mAP reached 78.1% and 51.7% (68.7% and
48.2%) respectively, which was significantly better than the
corresponding re-ID performance of IICS. There are two
main reasons. On one hand, UDA methods apply source-
domain samples to model training, so they naturally have a
certain expansion capability. On the other hand, the number
of cameras that can capture the same pedestrian is different in
Market1501-new and Duke-new, resulting in an imbalance in
the number of cross-camera samples of different pedestrians
in the training set. In addition, pedestrians only appearing in
a single camera increase the risk of noisy label introduction.
These factors limit the performance of the FUPR methods.
Since DG-based methods assume that the target dataset is
unknown, the above problems do not affect their performance.
However, the methods based on DG require multiple source-
domain datasets on model training. If only a single dataset is
applied to model training, only 69.2% and 35.9%(55.2% and
33.1%) re-ID accuracy can be obtained on rank-1 and mAP.

The proposed method is a domain-adaptive method.
In this paper, the performance of the proposed method is
compared with the corresponding ones of state-of-the-art
domain-adaptive methods. According to Tab.Il, on Duke—
Market1501-new (Market1501— Duke-new), the re-ID accu-
racy obtained by the proposed BPDA on Rank-1 and mAP
reached 78.1% and 51.7% (68.7% and 48.2%) respectively.
When the intra-camera sample labels are involved in model
training, the performance of the proposed method (BPDA+)
is further improved. However, the highest re-ID accuracy
obtained by domain-adaptive methods based on pseudo-label
prediction is only 59.7% and 33.7%(50.5% and 30.7%) on
Rank-1 and mAP, respectively. The re-ID accuracy of the
latest IDM method only reached 47.5% and 25.5% (32.6%
and 20.3%) on Rank-1 and mAP, respectively. The proposed
BPDA exceeds the re-ID accuracy of IDM by 30.6% and
26.2% (36.1% and 27.9%) on Rank-1 and mAP, respectively.
The main reason is that a large number of pedestrians only
appearing under a single camera and the imbalance of different
pedestrian samples in both Market1501-new and Duke-new
datasets. The above results confirm that the proposed method
has stronger practical value than existing methods. To further
verify the above statement, this paper tests the performance of
different algorithms on Duke— MSMT-new (Market1501—
MSMT-new). According to Tab. III, the same conclusion
consistent with the above statement can be drawn, which
further verifies the effectiveness of the proposed method and
its superiority over existing methods.

To further verify the practicability of the proposed method,
the following experiments use Market1501 and Duke as the
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TABLE IT

THE PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS WHEN MARKET1501-NEW AND DUKE-NEW
ARE USED AS TARGET DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE
MARKED IN BOLD FONT. BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN
INTRA-CAMERA SAMPLE LABELS, BPDA+ INDICATES THAT THE TARGET-DOMAIN INTRA-CAMERA
SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

Target: Market1501-new

Target: Duke-new

Methods Source | Rank-1 | Rank-5 | Rank-10 | mAP Source Rank-1 | Rank-5 | Rank-10 | mAP
FUPR
[ICS(CVPR’21) [48] None 61.5 80.1 86.2 342 None 54.5 68.7 744 337
STS(arXiv'21) [49] None 20.9 34.0 40.3 8.7 None 375 49.7 56.4 213
ICE(ICCV’21) [50] None 352 50.3 56.4 16.0 None 293 40.7 46.1 17.5
DG
MetaBIN(CVPR’21) [51] | Duke 69.2 83.1 87.8 359 | Marketl501 | 552 69.0 744 33.1
Mixstyle(ICLR21) [52] | Duke 58.2 74.9 80.9 29.0 | Market1501 | 482 62.7 68.4 27.2
UDA
MMT-500(ICLR’20) [10] | Duke 59.7 75.1 80.9 337 | Marketl501 | 45.4 61.0 67.6 30.8
MMT-700(ICLR’20) [10] | Duke 573 73.5 80.2 320 | Marketl501 | 452 60.5 67.0 30.5
MMT-900(ICLR’20) [10] | Duke 58.4 743 80.3 32.5 | Marketl501 | 43.9 61.0 67.1 30.8
SPCL(NeurIPS’20) [53] | Duke 14.1 26.1 33.0 5.6 | Marketl50l | 132 215 25.3 55
Meb-Net(ECCV'20) [54] | Duke 57.3 73.0 79.1 334 | Marketl501 | 44.2 59.1 65.4 30.7
CAC(INS’21) [55] Duke 58.9 75.0 80.2 28.2 | Marketl501 | 50.5 65.0 70.4 30.7
IDM (ICCV’21) [4] Duke 47.5 62.8 68.9 25.5 | Marketl501 | 326 47.0 54.5 203
Dual-Refine(TIP’21) [5] Duke 56.1 70.2 76.2 34.3 | Marketl501 | 41.9 55.9 63.3 29.8
BPDA (Proposed) Duke 78.1 89.2 92.6 517 | Market!50l | 68.7 80.7 84.5 48.2
BPDA +(Proposed) Duke 834 92.5 95,5 64.6 | Market50l | 825 90.4 93.0 67.7
TABLE I

THE PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS WHEN MSMT-NEW USED AS TARGET
DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE MARKED IN BOLD FONT.
BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN INTRA-CAMERA SAMPLE LABELS,
BPDA+ INDICATES THAT THE TARGET-DOMAIN INTRA-CAMERA SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

Methods MSMT17-new MSMT17-new
Source | Rank-1 Rank-5 | Rank-10 | mAP Source Rank-1 Rank-5 | Rank-10 | mAP
FUPR
TICS(CVPR’21) [48] None 45.1 58.3 64.0 20.4 None 45.1 58.3 64.0 20.4
STS(arXiv’'21) [49] None 429 56.0 61.3 18.7 None 429 56.0 61.3 18.7
ICE(ICCV’21) [50] None 37.9 49.2 559 17.6 None 37.9 49.2 55.9 17.6
DG
MetaBIN(CVPR’21) [51] Duke 44.7 58.2 63.5 17.2 | Market1501 39.9 52.7 58.1 15.2
Mixstyle(ICLR’21) [52] Duke 314 454 51.3 12.2 | Market1501 25.3 39.2 44.7 9.8
UDA
MMT-1000(ICLR’20) [10] Duke 36.5 50.4 559 16.3 | Market1501 30.7 439 50.9 13.7
MMT-2000(ICLR’20) [10] Duke 37.8 51.7 57.5 17.2 | Market1501 339 47.5 54.9 15.4
SPCL(NeurIPS’20) [53] Duke 19.8 31.7 37.7 8.8 Market1501 18.8 30.4 36.6 9.0
Meb-Net(ECCV’20) [54] Duke 33.9 46.5 52.2 15.9 | Market1501 26.1 37.3 43.5 12
CAC(INS’21) [55] Duke 33.5 44.1 50.1 12.4 | Market1501 20.7 32.7 38.1 7.6
IDM(ICCV’21) [4] Duke 32.5 433 50.0 147 | Market1501 31.0 42.7 48.6 14.6
Dual-Refine(TIP’21) [5] Duke 28.0 40.0 454 12.1 Market1501 27.2 39.2 46.1 12.3
BPDA (Proposed) Duke 50.9 63.9 69.4 25.2 | Market1501 48.0 61.3 67.2 23.0
BPDA+(Proposed) Duke 65.7 76.9 81.6 41.3 | Market1501 67.6 77.9 82.1 42.1

source domain and Duke-SCT and Market-SCT as the target
domain. Both Duke-SCT and Market-SCT are set to simulate
large-scale camera networks. As three assumptions, the dis-
tance span between different cameras is large, each pedestrian
in the training set appears in a single camera, and there is
no sample of the same pedestrian across cameras. In such
training sets, the labels predicted by clustering-based pseudo-
label prediction methods are all noisy labels. The following
experiments use such datasets as the target datasets to evaluate
the adaptability of different methods in different large-scale
surveillance networks.

As shown in Tab. IV, except IICS, the overall performance
of FUPR methods and UDA-based methods decreased. The
methods based on clustering pseudo-label prediction are weak
in adapting to this type of scene. In contrast, the proposed

method has stronger stability. On Duke— Market-SCT, the
re-ID accuracy of rank-1 and mAP obtained by the proposed
method can still reach 77.2% and 51.3%, respectively. Addi-
tionally, on Marke— Duke-SCT, the re-ID accuracy of rank-1
and mAP obtained by the proposed method reached 68.6% and
47.8%, respectively. As a specially designed method MCNL
for the problems involved in both Market-SCT and Duke-SCT,
its performance is surpassed by the proposed method.

D. Ablation Study

The proposed method is composed of a global and body
part feature extraction module (GBFE) and a body part level
domain alignment module (BPDA). GBFE consists of GFE
and BFE. In this paper, the GEF trained by minimizing
Lg ce(Epn, Wg) and Lg i (E,,) is regarded as the baseline.
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TABLE IV

THE PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS WHEN MARKET1501-NEW AND DUKE-NEW
ARE USED AS TARGET DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE
MARKED IN BOLD FONT. BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN
INTRA-CAMERA SAMPLE LABELS, BPDA+ INDICATES THAT THE TARGET-DOMAIN
INTRA-CAMERA SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

Methods Market-SCT Duke-SCT
Source | Rank-1 Rank-5 | Rank-10 | mAP Source Rank-1 Rank-5 | Rank-10 | mAP
FUPR
MCNL(AAAT20) [7] None 67.0 82.8 87.9 41.6 None 67.1 80.9 84.7 45.2
TICS(CVPR’21) [48] None 64.3 81.2 86.8 36.4 None 477 62.1 68.1 26.5
STS(arXiv’21) [49] None 21.1 34.3 41.3 8.5 None 33.0 45.8 50.9 18.4
ICE(ICCV’21) [50] None 29.3 41.1 472 13.4 None 20.4 28.2 33.0 11.6
CCFP(ACMMM’21) [37] None 82.4 92.6 95.4 63.9 None 80.3 89.0 91.9 64.5
DG
MetaBIN(CVPR’21) [51] Duke 69.2 83.1 87.8 35.9 | Market1501 55.2 69.0 74.4 33.1
Mixstyle(ICLR’21) [52] Duke 58.2 74.9 80.9 29.0 | Market1501 48.2 62.7 68.4 27.2
UDA
MMT-500(ICLR’20) [10] Duke 50.0 68.0 75.9 27.8 | Market1501 38.9 56.3 63.5 26.8
MMT-700(ICLR’20) [10] Duke 49.1 66.9 74.3 27.7 | Market1501 40.9 58.1 65.5 29.2
MMT-900(ICLR’20) [10] Duke 51.0 70.0 76.9 28.5 | Market1501 423 59.6 67.6 304
SPCL(NeurIPS’20) [53] Duke 11.5 23.5 30.2 4.5 Market1501 12.3 19.7 24.2 5.6
Meb-Net(ECCV’20) [54] Duke 54.4 71.1 78.1 30.7 | Market1501 41.6 58.1 64.0 27.8
CAC(INS’21) [55] Duke 62.1 76.6 81.8 30.6 | Market1501 49.6 64.0 69.8 30.0
IDM (ICCV’21) [4] Duke 32.3 48.3 56.1 14.3 Market1501 379 51.2 58.4 23.6
Dual-Refine(TIP’21) [5] Duke 47.7 63.4 70.1 233 Market1501 39.8 53.4 60.2 28.1
BPDA (Proposed) Duke 77.2 89.0 92.2 51.3 | Market1501 68.6 80.7 84.1 47.8
BPDA+(Proposed) Duke 84.0 92.9 96.0 66.0 | Market1501 81.6 89.9 92.8 67.8
TABLE V

COMPARISON OF EXPERIMENTAL PERFORMANCE ON DUKE—MARKET1501-NEW AND MARKET1501—DUKE-NEW
AFTER ADDING DIFFERENT MODULES. DUKE IS SHORT FOR DUKEMTMC

Methods Duke—Market1501-new Market1501—Duke-new
Rank-1 Rank-5 | Rank-10 | mAP | Rank-1 Rank-5 | Rank-10 | mAP
Baseline 70.1 83.5 88.2 42.5 66.6 71.3 82.3 457
Baseline+BFE 75.3 87.5 91.3 49.4 67.9 79.8 83.2 47.6
Baseline+CDD 75.4 88.1 92.0 49.1 67.9 79.9 83.8 48.1
Baseline+BFE+CDD 78.1 89.2 92.6 51.7 68.7 80.7 84.5 48.2
Baseline+BFE+CDD+ICL 83.4 92.5 95.5 64.6 82.5 90.4 93.0 67.7

The model after adding discriminator Dllh . and BFE to
the baseline is denoted as Baseline+BFE. The cooperation
training of dual discriminators (CDD) is introduced into
the Baseline, and the corresponding model is denoted as
Baseline+CDD. The model obtained by introducing the CDD
into Baseline+BFE is denoted as Baseline+-BFE+4-CDD. The
model Baseline+BFE+CDD with the intra-camera sample
labels (ICL) of the target-domain dataset involved in train-
ing is denoted as Baseline+BFE+CDD+ICL. Tab.V shows
the experimental results of different models on Duke—
Market1501-new and Market1501 —Duke-new under differ-
ent settings.

1) Effectiveness of BFE: Baseline+BFE and Baseline are
compared to verify the effectiveness of BFE. According
to Tab.V, the fine-grained domain alighment at part level
can effectively improve model performance. Specifically,
on Duke— Market1501-new (Marketl501— Duke-new), the
Rank-1 recognition accuracy increases from 70.1% (66.6%) to
75.3% (67.9%), and the mAP recognition accuracy increases
from 42.5% (45.7%) to 49.4% (47.6%). With the assistance
of a single discriminator D}7 .» BFE can improve model’s
adaptability in target domain to a certain extent, so that the
model achieves better performance.

2) Effectiveness of CDD: To verify the validity of CDD,
CDD is added to baseline and Baseline+BFE. According
to Tab. V, on Duke—Market1501-new (Market1501— Duke-
new), compared with Baseline+BFE, Baseline+BFE+CDD
improves the recognition accuracy of Rank-1 from 75.3%
(67.9%) to 78.1% (68.7%), and also improves the recognition
accuracy of mAP from 49.4% (47.6%) to 51% (48.2%).
The introduction of the CDD-based adversarial mechanism
effectively improves the discriminator’s discriminating ability,
so the feature distribution alignment is achieved in both source
and target domains, and the model’s adaptability is improved
in target domain.

3) Effectiveness of ICL: To verify the effectiveness of intra-
camera sample label (ICL), Baseline+BFE+CDD+ICL is
compared with Baseline4+BFE+CDD. According to Tab. V,
Baseline+BFE+CDD+ICL improves the Rank-1 recognition
accuracy from 78.1% (68.7%) to 83.4% (82.5%), and also
improves the mAP recognition accuracy from 51.7% (48.2%)
to 64.6% (67.7%). It confirms that the intra-camera label
participation in training can effectively improve model’s fea-
ture representation ability. Fig.4 further shows the pedestrian
retrieval results under different ablation settings. The contri-
bution of each module is intuitively demonstrated.
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Rank-1 >

Fig. 4. From top to bottom, the first row to the fifth row represent the results
retrieved by Baseline, Baseline+BFE, Baseline+CDD, Baseline+BFE+CDD,
and Baseline+BFE+CDD+ICL, respectively.

TABLE VI

COMPARISON OF EXPERIMENTAL PERFORMANCE ON
DUKE—MARKET1501-NEW AND MARKET1501—DUKE-NEW
AFTER ADDING DIFFERENT MODULES. DUKE IS
SHORT FOR DUKEMTMC

Methods Duke—Market1501-new Market1501—Duke-new
Rank-1 | Rank-5 | mAP | Rank-1 | Rank-5 | mAP
D6 76.5 38.8 514 67.2 79.0 46.9
D3 71.3 89.1 51.0 68.4 79.9 47.9
Proposed 78.1 89.2 51.7 68.7 80.7 48.2

E. Further Discussion

According to the dissimilarity of different pedestrian parts,
the proposed method divides pedestrian features into three
parts: head, torso, and legs to achieve part-level domain align-
ment. Compared with the traditional vertical average dividing
features, two experiments “D6” and “D3” are designed in this
section to verify the superiority of dividing pedestrian features
by parts. “D6” and “D3” indicate that the pedestrian features
are divided into 6 blocks and 3 blocks on average, respectively.
As shown in Tab.VI, the more blocks are evenly divided in
vertical direction, the lower performance is exhibited. Vertical
average division ignores the dissimilarity of different parts,
resulting in the loss of some key features of the same parts
of different blocks during the model training process. This
reduces the discriminability of features. Since the proposed
method considers the dissimilarity of different body parts,
it achieves better performance than the above two experiment
settings. None of the experiments shown in Tab.VI involves
target-domain intra-camera labels.

Additionally, the proposed body-part-level domain align-
ment facilitates the network to extract features from the
entire pedestrian image. The first and second rows in Fig. 5
give the attention maps (heatmaps) of Baseline4+CDD and
Baseline+BFE+CDD, respectively, where red indicates that
the model pays more attention to this region. According to
these results, Baseline+CDD cannot always pay attention to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 5. The impact of pedestrian body part alignment on feature extraction.
The first row shows the attention maps (heat maps) of Baseline+CDD, and the
second row shows the attention maps (heat maps) of Baseline+-BFE+4CDD.

The strong activation regions are marked in red.
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Fig. 6. The result of Rank-1 and mAP under the changes of different para-
meters. D—M-new denotes DukeMTMC— Market1501-new and M— D-new
denotes Market1501—DukeMTMC-new. (a) shows the result of 11,(b) shows
the result of 1,,(c) shows the result of 13.

the entire pedestrian body without the division of pedestrian
body parts. In this case, the extracted features are not complete,
which are not conducive to improving the discriminability of
pedestrian features. When dividing the body parts of pedestrian
images, in order to achieve correct classification of different
parts, the network is encouraged to extract discriminative
features from different pedestrian parts, which makes the
pedestrian features extracted by Baseline+BFE+CDD more
complete. Therefore, Baseline+BFE+CDD achieves higher
recognition performance than Baseline4+CDD.

F. Parameter Selection and Analysis

The proposed method contains three hyperparameters A1,
A2 and A3. According to Eq. (11), they adjust Lb,cel(D[l, o)
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Lp,ce3 (Dg’ o) and Ly co4(Ey) respectively. In hyperparameter
analysis, two parameters are fixed to analyze the effect of
another parameter on experimental performance.

1) The influence of 11: Fig.6(a) shows the change in model
performance when 41 € [0.01, 100]. On D—M-new, when
A1 = 1, the proposed method achieves the highest recogni-
tion accuracy of Rank-1 and mAP, and when A; > 1, the
performance of the proposed method decreases slightly. For
M—D-new, when 11 = 1, the proposed method also achieves
the highest recognition accuracy of Rank-1 and mAP. There-
fore, A1 =1 is the optimal choice.

2) The influence of 1,: Fig.6(b) shows the effect of different
values of A on the recognition accuracy of Rank-1 and
mAP on D—M-new and M— D-new. When 4, € [0.01,0.5],
the recognition accuracy of Rank-1 and mAP obtained by
the proposed method on the two tasks shows an overall
improvement. When A, € [0.5, 2], the recognition accuracy
of Rank-1 and mAP obtained by the proposed method on the
two tasks decreases. Therefore, A, = 0.5 is the optimal choice.

3) The influence of Az: The hyperparameters A1 and A,
are fixed. /3 is taken values within the range of [0.5,3].
On D—M-new and M— D-new, the changes in the recog-
nition accuracy of Rank-1 and mAP with different values
of are shown in Fig. 6(c). When A3 = 2, the proposed
method achieves the best performance on both D—M-new
and M— D-new. Therefore, it is reasonable to set A3 to 2.

V. CONCLUSION

To get rid of the dependence of pseudo-label prediction-
based domain-adaptive methods on the reliability of pseudo
labels, this paper designs a Transformer framework for domain
alignment at body part level. This framework aggregates the
local features from the same body part by the Transformer
to obtain the classification token for the body part, and
uses it as the global representation of different body parts.
Additionally, an adversarial strategy embedded in Transformer
layer is designed. This strategy makes full use of the different
structures and morphologies of different pedestrian body parts
(e.g., head, torso, and legs) to achieve pedestrian body-part-
level domain alignment. Additionally, the proposed method
does not need to perform pseudo-label prediction for target
samples, and gets rid of the influence of noisy labels on recog-
nition performance. The proposed method shows excellent
performance on the datasets that are in line with the actual
scene settings, which proves that the proposed method has
strong applicability.
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