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Body Part-Level Domain Alignment for
Domain-Adaptive Person Re-Identification

With Transformer Framework
Yiming Wang , Guanqiu Qi , Shuang Li , Yi Chai , and Huafeng Li

Abstract— Although existing domain-adaptive person1

re-identification (re-ID) methods have achieved competitive per-2

formance, most of them highly rely on the reliability of pseudo-3

label prediction, which seriously limits their applicability as4

noisy labels cannot be avoided. This paper designs a Transformer5

framework based on body part-level domain alignment to solve6

the above-mentioned issues in domain-adaptive person re-ID.7

Different parts of the human body (such as head, torso, and8

legs) have different structures and shapes. Therefore, they9

usually exhibit different characteristics. The proposed method10

makes full use of the dissimilarity between different human body11

parts. Specifically, the local features from the same body part12

are aggregated by the Transformer to obtain the corresponding13

class token, which is used as the global representation of14

this body part. Additionally, a Transformer layer-embedded15

adversarial learning strategy is designed. This strategy can16

simultaneously achieve domain alignment and classification of17

the class token for each human body part in both target and18

source domains by an integrated discriminator, thereby realizing19

domain alignment at human body part level. Compared with20

existing domain-level and identity-level alignment methods, the21

proposed method has a stronger fine-grained domain alignment22

capability. Therefore, the information loss or distortion that23

may occur in the feature alignment process can be effectively24

alleviated. The proposed method does not need to predict pseudo25

labels of any target sample, so the negative impact caused by26

unreliable pseudo labels on re-ID performance can be effectively27

avoided. Compared with state-of-the-art methods, the proposed28

method achieves better performance on the datasets that are in29

line with real-world scene settings.30

Index Terms— Person re-ID, domain adaptation, body part-31

level, domain alignment.32
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I. INTRODUCTION 33

PERSON re-ID is used to associate a single pedestrian 34

image captured by one camera with a/multiple pedestrian 35

images captured by another/other cameras in a camera moni- 36

toring network, thereby realizing the positioning and tracking 37

of the target pedestrian across time and space. Since person 38

re-ID has high practical values, it has attracted considerable 39

attention of researchers and a series of effective related meth- 40

ods have been proposed [1], [2]. These methods can achieve 41

excellent recognition performance on the testing set consistent 42

with the domain information of the corresponding training set. 43

However, a large number of labeled samples are often required 44

for supervised model training. When a domain shift occurs 45

between testing set and training set, the corresponding re-ID 46

performance drops sharply. In practical applications, the time 47

and labor costs of manually labeling large-scale training sam- 48

ples on the target dataset are unacceptable [3]. According to 49

the above-mentioned factors, it is difficult to apply supervised 50

person re-ID methods to real-world surveillance scenes. 51

Unsupervised domain adaptation (UDA) is an effective 52

method to solve the above-mentioned issues. Compared with 53

both unsupervised person re-ID methods of domain general- 54

ization and unsupervised person re-ID methods without the 55

participation of source-domain data (i.e. fully unsupervised 56

methods), UDA method has better stability. Therefore, UDA 57

person re-ID methods [4], [5] have attracted the attention of 58

researchers. They usually apply both labeled source-domain 59

data and unlabeled target-domain training data to model 60

training. UDA method based on pseudo-label prediction and 61

domain alignment are two main categories. UDA methods 62

based on pseudo-label prediction usually perform pseudo- 63

label prediction on training samples in the unlabeled target 64

domain first [6]. Then, the predicted pseudo labels are used to 65

further supervise model training. Therefore, the trained model 66

is generally more adaptive to target data distribution. 67

Although UDA methods based on pseudo-label prediction 68

show excellent re-ID performance on well-constructed train- 69

ing sets (each sample has at least a positive sample across 70

multiple camera views), they have weak applicability in real- 71

world surveillance scenes. As a main reason, these methods 72

highly rely on pseudo-label prediction. When the accuracy 73

of the predicted pseudo labels increases, the corresponding 74

model performance on target data is improved. In real-world 75

surveillance scenes, many pedestrians may only move in a 76
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Fig. 1. Different parts of the human body.

small-range local area and pedestrian destination directions77

vary. Some pedestrians may be involved in the images captured78

by only one camera in a local camera network. Therefore, the79

corresponding pseudo-label prediction is seriously affected,80

resulting in a lot of noisy labels. In addition, when the distance81

between different cameras is relatively large (such as across82

distant scenes), it is highly possible that no pedestrian with83

the same identity appears in different cameras [7]. In this84

case, the predicted pseudo labels will all be noisy labels. As a85

main factor, the performance of pseudo-label prediction-based86

methods decreases considerably in such scenes.87

Domain alignment-based feature learning solves domain88

shift by making both source-domain and target-domain sam-89

ple features have the same distribution. In this process, the90

corresponding model performance can be improved without91

pseudo-label prediction. Therefore, the negative impact of92

noisy labels is avoided. Existing domain alignment-based93

methods often make the learned features achieve distribution94

consistency at domain level (between different datasets or95

between different cameras) or identity level (between different96

pedestrians). Although these methods finally achieve domain97

alignment, unexpected consequences may occur, such as the98

related information is only extracted from a local pedestrian99

image region or identity-related clues are sacrificed to satisfy100

the alignment of feature distribution.101

To alleviate the above-mentioned issues, a novel domain102

alignment-based feature learning method is proposed. Com-103

pared with existing methods, the proposed method explores104

more fine-grained domain alignment. As shown in Fig. 1,105

different parts of the human body (such as head, torso,106

and legs) show different shapes and structures in a single107

pedestrian image. Different human body parts are essentially108

dissimilar (without considering the same color of both tops and109

pants). Therefore, this paper proposes a body part-level domain110

alignment method embedded in the Transformer layer to solve111

the issues of UDA person re-ID. Local features from the112

same body part are first aggregated through the Transformer113

to obtain class tokens for different body parts. Then, the 114

aggregated features are used as a global representation of the 115

corresponding body part. The class token for a body part in 116

both source and target domains is aligned to achieve domain 117

alignment at body-part level. 118

Specifically, this paper achieves body part-level domain 119

alignment by the cooperation of two discriminators. Each 120

discriminator is composed of four Transformer layers with the 121

same structure (the related parameters are not shared) and four 122

fully connected (FC) layers with different structures. This can 123

ensure that the two discriminators can discriminate the features 124

extracted by the backbone network from different views. 125

In addition, the discriminators can simultaneously identify the 126

class token for each pedestrian part belonging to the body part 127

category and the corresponding original domain. 128

The integrated design avoids mode collapse caused by the 129

independent design of identity and domain classifiers [8]. 130

In the above-mentioned design, the input of the Transformer 131

layer is the local features classified according to pedestrian 132

body parts. As the main purpose, all the local features of the 133

same human body part are used to further refine the class 134

token of each body part. Additionally, the domain information 135

is simultaneously extracted from the input features to prepare 136

for the subsequent classification. Through the cooperative 137

adversarial training between the backbone network and two 138

discriminators, the main network is encouraged to extract the 139

identity features consistent with source-domain distribution 140

from target-domain samples, which ensures that the extracted 141

features have strong capability to distinguish body parts. This 142

is conducive to alleviating the loss and distortion of the 143

identity information of different parts in the domain alignment 144

process. 145

This paper has three main contributions as follows. 146

• A fine-grained domain alignment method embedded in 147

the Transformer layer is proposed to solve the domain 148

shift between the source and target domains. Features 149

extracted from image patches of the same body part are 150

input into the Transformer layer to obtain class tokens for 151

different body parts and support subsequent body part- 152

level domain alignment. 153

• The adversarial learning mechanism embedded in the 154

Transformer layer is designed to align the class tokens of 155

source-domain and target-domain samples from pedes- 156

trian bodies. Moreover, a priori knowledge based on 157

the dissimilarity of different pedestrian parts is used to 158

facilitate domain alignment at the body-part level. 159

• The proposed body part-level domain alignment enables 160

the network to focus on discriminative features from 161

different pedestrian body parts. Additionally, the potential 162

loss of feature information or the distortion of identity- 163

related clues can be effectively avoided in the domain 164

alignment process. 165

The rest of this paper is organized as follows. Section II 166

discusses related work; Section III elaborates the proposed 167

method; Section IV analyzes the comparative experimental 168

results; and Section V concludes this paper. 169
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II. RELATED WORK170

A. Pseudo-Label Prediction-Based UDA Person Re-ID171

UDA methods based on pseudo-label prediction perform172

model training in a supervised manner on unlabeled target173

data samples (training set), so the trained model has strong174

adaptability to the target dataset. As the core problem, this type175

of method needs to solve how to assign reliable pseudo labels176

to unlabeled target samples participating in model training.177

Although clustering is a commonly used method, it is easy178

to introduce noisy labels. In order to suppress the negative179

impact of noisy labels, Yang et al. [9] proposed an asymmet-180

ric collaborative teaching framework to suppress the genera-181

tion of noisy labels through the cooperation of two networks.182

Ge et al. [10] proposed a mutual mean-teaching (MMT)183

method, which used both offline refining of hard pseudo labels184

and online refining of soft pseudo labels. Additionally, an alter-185

nate training method was applied to soft refining of pseudo186

labels in target domain. Zhai et al. [11] proposed a new aug-187

mented discriminative clustering method to achieve pseudo-188

label prediction. Both hierarchical clustering and hard-batch189

triplet loss (HCT) were integrated to improve pseudo-label190

prediction performance by Zeng et al. [12]. Zhao et al. [13]191

applied two networks to collaborative clustering and interac-192

tive instance selection to predict pseudo labels in the training193

process. Luo et al. [14] proposed to first cluster target data194

according to camera views and then predict and refine sample195

labels across camera views, so the reliability of confident196

labels was improved.197

The above-mentioned methods achieve excellent perfor-198

mance on manually constructed datasets. Due to the limited199

range of pedestrian activities in real-world scenes, the different200

directions of entering and exiting a local camera network and201

a long distance between cameras can cause a large number of202

interference samples (the samples without cross-camera pairs203

of the same pedestrian) to be mixed in the training data. The204

existence of these samples inevitably causes the introduction205

of noisy labels, thereby reducing the corresponding re-ID206

performance of such methods.207

B. Domain Alignment Based UDA Person Re-ID208

UDA person re-ID methods based on domain alignment209

mainly solve the issues of domain shift by aligning the210

distribution of source and target domains. They do not use any211

pseudo label of the target dataset to supervise model training.212

The number and scale of cross-camera paired pedestrian213

samples do not have much impact on model performance.214

Therefore, the trained model has a strong generalization capa-215

bility. In order to achieve domain alignment, PT-GAN [15],216

SPGAN [16], ATNet [17] and CR-GAN [18] first transfer the217

labeled source-domain samples to target domain, and then use218

the transferred samples to supervise model training.219

Although these methods can alleviate domain shift, they220

ignore the intra-domain changes of samples, thereby limit-221

ing re-ID performance improvement. To alleviate this prob-222

lem, Zhong et al. [19] conducted a comprehensive study on223

the intra-domain changes of target domain and proposed to224

assign three basic invariances (i.e. sample invariance, camera225

invariance, and neighborhood invariance) to re-ID models 226

for achieving model performance improvement. Li et al. [20] 227

integrated pedestrian pose information into an adversarial 228

generation mechanism to obtain pose-invariant features after 229

domain information alignment. Qi et al. [21] proposed 230

a camera-aware domain-adaptive person re-ID framework. 231

The data distribution discrepancy between source and target 232

domains is addressed from different representation learning 233

perspective. Aiming at the extraction of robust features for 234

cross-domain person re-ID, Zou [22] proposed to improve 235

model’s domain adaptability by purifying the representation 236

space to be adapted. Li et al. [23] made full use of the 237

domain invariance of pedestrian features to guide the learning 238

of domain-invariant features, which ensured the consistency 239

of the distribution of both source-domain and target-domain 240

features. 241

Most of the above-mentioned methods achieve domain 242

alignment on the entire training sample space. Nevertheless, 243

it is difficult to ensure the domain alignment between samples 244

with the same identity. Although Li et al. [24] proposed an 245

effective solution, the negative impact of domain alignment on 246

feature quality was not considered. According to the dissimi- 247

larity of different pedestrian body parts, this paper proposes a 248

body part-level fine-grained domain alignment framework to 249

eliminate the domain difference between source domain and 250

target domain. This method considers both domain alignment- 251

related issues and the change of identity clues during the align- 252

ment process, and introduces the consistency classification of 253

both body parts and domains to implementation. 254

C. Transformer in Person Re-ID 255

As a deep learning model, Transformer was designed for 256

machine translation by Vaswani et al. [25]. Unlike convo- 257

lutional neural networks, this method uses a self-attention 258

mechanism to extract features from the entire input data. 259

Inspired by the great success of the Transformer in natural 260

language processing, researchers have applied the Transformer 261

to image processing [26], object detection [27], semantic 262

segmentation [28], object tracking [29], which achieves good 263

performance. He et al. [30] first proposed a Transformer- 264

based framework, which initiated the trend of Transformer- 265

related applications in person re-ID. Lai et al. [31] proposed 266

a Transformer-based framework for local fine-grained fea- 267

ture extraction,which can adaptively generate non-overlapping 268

masks for robust part division. Zhu et al. [32] proposed an 269

automatic alignment-based Transformer framework to real- 270

ize the semantic alignment of features for person re-ID. 271

Ma et al. [33] proposed a gesture-guided inter-part and intra- 272

part relational Transformer to solve the issues of occluded 273

person re-ID. The Transformer was mainly used to establish 274

part-aware long-term correlations in this method. Li et al. [34] 275

proposed an end-to-end part-aware Transformer to solve 276

the negative impact of obstructions on pedestrian identity 277

matching. Due to the lack of image-to-image attention, 278

the Vision Transformer (ViT) and the vanilla Transformer 279

with decoder are not able to achieve the matching of 280

pedestrian images. Liao et al. [35] introduced query-gallery 281
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Fig. 2. The framework of the proposed method. The input image is first partitioned into different patches, and then the partitioned patches are convolved
to obtain feature vectors in the convolution layer. The feature vectors of these local regions are input into the backbone network composed of Transformer
layers to extract class tokens for global features. The last layer of the backbone network has two Transformer layers that share the same parameters. One is
used for the global class token extraction of pedestrian bodies. The other is used for the class token extraction of pedestrian body parts. According to the
position of the local feature output from the penultimate layer of the backbone network, each local feature is first classified into the category corresponding
to the body part, and then input into the last Transformer layer Em of the backbone network to extract the class token for each pedestrian body part. The
class token for each body part is used to realize body part-level domain alignment of pedestrian samples.

concatenation and query-gallery cross-attention to VIT and282

vanilla Transformer respectively. Liang et al. [36] introduced283

Transformer to cross-modality person re-ID and achieved284

excellent performance in visible-infrared person re-ID.285

Different from existing methods, this paper embeds trans-286

former layers into both feature extraction backbone network287

and discriminators respectively. The backbone network is used288

to extract the class tokens describing each single pedestrian289

part. The discriminators are used to assist the backbone290

network in extracting the features of domain distribution291

alignment.292

III. THE PROPOSED METHOD293

Preliminary. UDA person re-ID aims to obtain the model294

by training on the labeled source-domain dataset and the295

unlabeled target-domain dataset, thereby achieving good re-ID296

performance on the target dataset. Suppose the source domain297

dataset is S = {xs,i , ys,i , cs,i }|Ns
i=1, where xs,i represents the298

i -th pedestrian image in S, ys,i ∈ {1, 2 . . . , ns} and cs,i ∈299

{1, 2, . . . , ks} represent both identity label and camera label300

of xs,i respectively, Ns is the total sample size, ns is the301

number of pedestrians, and ks is the total number of cameras302

in source domain. Additionally, T = {xt,i , ct,i }|Nt
i=1 is set as303

the target dataset sample, Nt is the total number of sample304

images, ct,i ∈ {1, 2, . . . , kt } represents the camera label of305

xt,i , and kt represents the total number of cameras in target306

domain.307

A. Overview308

As shown in Fig.2, the proposed method consists of global309

and body-part feature extraction (GBFE) and body part-310

level domain alignment (BPDA). Specifically, the network of311

GBFE as the backbone network is composed of global feature 312

extraction (GFE) and body-part feature extraction (BFE). GFE 313

is mainly used to obtain the global features of the entire 314

pedestrian body. BFE is mainly used to obtain the features 315

of each pedestrian body part and build the foundation for the 316

subsequent realization of part-level domain alignment based 317

on the dissimilarity of body parts. BPDA is mainly composed 318

of two discriminators. Each discriminator is embedded with 319

four Transformer layers to extract the domain information 320

contained in each body part. The dual adversarial learning 321

is introduced between the backbone network and the two 322

discriminators to realize the domain alignment of each class 323

token for target-domain samples with the corresponding class 324

token in source domain. 325

B. Global and Body-Part Feature Extraction 326

1) Global Feature Extraction: The backbone network Em 327

consists of a convolution layer and 12 transformer layers. 328

Em is used in GFE and BFE to extract global and local 329

appearance features, respectively. The convolutional layer is 330

used to convert the input image into tokens to be processed 331

by Transformer layers. Each Transformer layer consists of 332

a multi-head self-attention (MHSA) layer and a multilayer 333

perception (MLP). There is a layer norm (LN) in front of each 334

MLP and MHSA layer. Each sample xs,i in source domain and 335

its corresponding identity label ys,i are known. In addition, 336

similar to [7], [37], the identity labels of intra-camera samples 337

can be assumed to be known, because they can be easily 338

obtained various target tracking techniques. Therefore, the 339

samples in T are grouped as T c = {xc
t,i , yc

t,i }nc
t

i=1 according to 340

the camera labels, where xc
t,i denotes the i -th image collected 341

by the c-th camera, yc
t,i is the label identity of xc

t,i , nc
t is 342
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the total sample size of the c-th camera. The source-domain343

samples and target-domain intra-camera samples are used to344

train Em in a supervised manner, which ensures that the345

global features extracted by Em are discriminative. Similar346

to [30], this paper uses cross-entropy loss and soft triple loss347

to optimize Em as follows:348

Lg,ce(Em, W g, W c) = − 1

nb

( nb∑
i=1

qs,i log(W g(Em(xs,i)))349

+ 1

kt

kt∑
c=1

nb∑
i=1

qc
t,i log(Wc(Em(xc

t,i)))

)
,350

(1)351

Lg,tri(Em) = 1

nb

( nb∑
i=1
log[1+ exp(‖Em(xs,i)352

−Em(x p
s,i)‖2 − ‖Em(xs,i)353

−Em(xn
s,i)‖2)] + 1

kt

kt∑
c=1

nb∑
i=1
log[1354

+ exp(‖Em(xc
t,i) − Em(xc,p

t,i )‖2355

−‖Em(xc
t,i) − Em(xc,n

t,i )‖2)]
)

, (2)356

where nb is the batch size. qs,i ∈ R
ns×1(qc

t,i ∈ R
nc

s×1) is the357

one-hot vector, if and only if the ys,i(yc
t,i )-th element are 1.358

W g is the source domain pedestrian identity classifier and Wc359

is the pedestrian identity classifier of the samples captured by360

the c-th camera of target domain. x p
s,i (x

c,p
t,i ) and xn

s,i (x
c,n
t,i ) are361

the hard positive samples and hard negative samples in a batch362

size corresponding to xs,i (xc
t,i ).363

2) Body-Part Feature Extraction: Since different pedestrian364

body parts (such as head, torso, legs) have different shapes365

and structures, they show strong dissimilarity. According to the366

above-mentioned a priori knowledge, body part-level domain367

alignment is proposed to avoid the loss or distortion of feature368

information in the domain alignment process. The proposed369

method needs to extract the features of different body parts.370

As shown in Fig. 2, a Transformer layer is copied from the371

last layer of Em and used to extract body-part features. The372

input features of the last layer of Em are listed as follows:373

Zl,11 = [z0l,11; z1l,11, z2l,11, . . . , zN
l,11], (3)374

which come from the input of the 11-th Transformer layer of375

Em (the penultimate layer of the backbone network). In Eq.(3),376

N is the number of partitioned patches. l ∈ {s, t} indicates that377

the input sample comes from either source domain or target378

domain. z0l,11 represents the class token for global features.379

zi
l,11, (i = 1, 2, . . . , N) is the feature vector corresponding to380

the i -th local patch.381

According to the feature dissimilarity of different parts of382

the human body, the entire pedestrian image is partitioned into383

three parts, head, torso, and legs. In this paper, local feature384

vectors are categorized into head, torso, and legs according to385

their positions in the source image. Then, they are spliced with386

the class token zk
l,11(k = hea, tor, leg) of the corresponding387

Fig. 3. Structure diagram of two discriminators.

body parts as follows: 388

Zhea
l,11 = [zhea

l,11; z1l,11, z2l,11, . . . , z24l,11] 389

Ztor
l,11 = [ztor

l,11; z25l,11, z26l,11, . . . , z68l,11] 390

Zleg
l,11 = [zleg

l,11; z69l,11, z70l,11, . . . , z128l,11], (4) 391

392

Next, Zhea
l,11, Ztor

l,11, and Zleg
l,11 are input into the last Trans- 393

former layer of Em to obtain Zhea
l,12, Ztor

l,12, and Zleg
l,12. Addi- 394

tionally, the corresponding class tokens zhea
l,12, ztor

l,12, and zleg
l,12 395

are obtained. For the source domain image xs,i (xc
t,i ), the 396

corresponding hard positive sample is denoted as x p
s,i (x

c,p
t,i ) 397

and the hard negative sample is denoted as xn
s,i (x

c,n
t,i ). The 398

class tokens of different body parts of xs,i obtained by Em 399

are expressed as (zhea
s,i , ztor

s,i , zleg
s,i ), (zhea,p

s,i , ztor,p
s,i , zleg,p

s,i ) and 400

(zhea,n
s,i , ztor,n

s,i , zleg,n
s,i ). Similarly, the class tokens of different 401

body parts of xc
t,i are expressed as (zc,hea

t,i , zc,tor
t,i , zc,leg

t,i ), 402

(zc,hea,p
t,i , zc,tor,p

t,i , zc,leg,p
t,i ) and (zc,hea,n

t,i , zc,tor,n
t,i , zc,leg,n

t,i ). The 403

parameters of Em are optimized by the following loss to 404

make the class tokens of various body parts discriminative, 405

(5) and (6), as shown at the bottom of the next page, where 406

Whea(Wc,hea), W tor (Wc,tor ), and W leg (Wc,leg) represent the 407

local feature classifiers corresponding to different body parts 408

in source-domina (c-th camera of target domain). To simplify 409

the discussion, this paper only considers the cases of the 410

pedestrian detection frame standard. 411

C. Body Part-Level Domain Alignment 412

Since the pedestrian body parts are essentially dissimilar, the 413

class tokens zhea
s,i , ztor

s,i , and zleg
s,i describing different pedestrian 414

body parts should not be similar to each other. A self- 415

dissimilarity domain alignment method embedded in the 416

Transformer layer is proposed to obtain the features of domain 417

alignment. This method is mainly realized by the cooperation 418

between the backbone network and two discriminators. 419
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1) Self-Dissimilarity Domain Alignment Embedded in the420

Transformer Layer: In domain alignment, two discriminators421

are mainly used to check whether the class tokens zhea
t,i ,422

ztor
t,i , and zleg

t,i contain target-domain information. As shown423

in Fig.3, each of the two discriminators is composed of four424

Transformer layers and four fully connected layers. The first425

discriminator denoted as D1b,c is obtained by integrating the426

source-domain body part classifier and the camera identity427

classifier of the target-domain sample into one classifier.428

In other words, D1b,c can simultaneously differentiate the body429

part category of the source-domain sample feature and the430

camera identity of the target-domain sample. Therefore, the431

output dimension of D1b,c is kt + 3, where kt is the number of432

cameras of the target domain, and 3 represents the number of433

pedestrian body parts. This integrated design is conducive to434

avoiding mode collapse caused by the independent design of435

task and domain classifiers [8].436

During the optimization of D1b,c, the input source-domain437

features are expected to be correctly classified into the cor-438

responding body part categories. D1b,c is expected to clas-439

sify the input features of the target-domain sample into the440

camera category (identity) corresponding to the sample. Since441

different body parts contain the domain information that is442

inconsistent with source domain, the input features of the443

target-domain sample cannot be classified into the category444

of the corresponding body part. This process can be achieved445

by minimizing the loss function shown in Eq. (7):446

Lb,ce1(D1b,c) = − 1

3nb

nb∑
i=1

[qhea
s,i log(D1b,c(Zhea

s,i,12))447

+ qtor
s,i log(D1b,c(Ztor

s,i,12)) + qleg
s,i log(D1b,c448

× (Zleg
s,i,12))] + [chea

t,i log(D1b,c(Zhea
t,i,12)) 449

+ ctor
t,i log(D1b,c(Ztor

t,i,12)) 450

+ cleg
t,i log(D1b,c(Zleg

t,i,12))], (7) 451

where qhea
s,i ∈ R

(kt +3)×1, qtor
s,i ∈ R

(kt +3)×1, and qleg
s,i ∈ 452

R
(kt +3)×1 are the label vectors of head, torso, and lower 453

body categories, respectively. The values of qhea
s,i , qtor

s,i , and 454

qleg
s,i at the first, second, and third element positions are 1, 455

and the values at other element positions are 0. chea
t,i ∈ 456

R
(kt +3)×1, ctor

t,i ∈ R
(kt +3)×1, and cleg

t,i ∈ R
(kt +3)×1 indicate 457

the corresponding camera labels of different parts. If and only 458

if the (ct,i +3)-th element is 1, other elements are zero, where 459

ct,i is the camera label of the input target-domain sample. 460

The target-domain sample is input into the backbone net- 461

work. If the features consistent with the domain information 462

of the source-domain sample can be extracted, D1b,c can 463

classify the input target-domain features into the categories 464

corresponding to body parts. To achieve this, the discriminator 465

D1b,c is fixed to update the backbone network by minimizing 466

Lb1 as follows: 467

Lb,ce2(Em) = − 1

nb

nb∑
i=1

[qhea
t,i log(D1b,c(Zhea

t,i,12)) 468

+ qtor
t,i log(D1b,c(Ztor

t,i,12)) 469

+ qleg
t,i log(D1b,c(Zleg

t,i,12))], (8) 470

Same as qhea
s,i , qtor

s,i , and qleg
s,i , the values of qhea

t,i , q tor
t,i , and 471

qleg
t,i at the first, second, and third element positions are 472

1 respectively, and the elements at other positions are 0. 473

Lb,ce(Em, Whea, W tor , W leg, W c,hea, Wc,tor , Wc,leg)

= − 1

3nb

( nb∑
i=1

qs,i [log(Whea(zhea
s,i ) + log(W tor (ztor

s,i )

+ log(W leg(zleg
s,i )] + 1

kt

kt∑
c=1

nb∑
i=1

qc
t,i [log(Wc,hea(zc,hea

t,i )

+ log(Wc,tor(zc,tor
t,i ) + log(Wc,leg(zc,leg

t,i )]
)

, (5)

Lb,tri (Em) = 1

3nb

×
( nb∑

i=1
log[1+ exp(‖zhea

s,i − zhea,p
s,i ‖2 − ‖zhea

s,i − zhea,n
s,i ‖2)]

+ log[1+ exp(‖ztor
s,i − ztor,p

s,i ‖2 − ‖ztor
s,i − ztor,n

s,i ‖2)]
+ log[1+ exp(‖zleg

s,i − zleg,p
s,i ‖2 − ‖zleg

s,i − zleg,n
s,i ‖2)]

+
Kt∑

c=1

nb∑
i=1
log[1+ exp(‖zc,hea

t,i − zc,hea,p
t,i ‖2 − ‖zc,hea

t,i − zc,hea,n
t,i ‖2)]

+ log[1+ exp(‖zc,tor
t,i − zc,tor,p

t,i ‖2 − ‖zc,tor
t,i − zc,tor,n

t,i ‖2)]
+ log[1+ exp(‖zc,leg

t,i − zc,leg,p
t,i ‖2 − ‖zc,leg

t,i − zc,leg,n
t,i ‖2)]

)
, (6)
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Zhea
t,i,12, Ztor

t,i,12, Zleg
t,i,12 are the output of the last Transformer474

layer of Em .475

2) Domain Alignment Based on Cooperation of Dual Dis-476

criminators: In the above process, the domain alignment477

ability of the backbone network depends on the discrim-478

inator D1b,c. When the discriminability of D1b,c increases,479

the domain alignment capability of the backbone network480

improves. This paper introduces the second discriminator D2b,c481

that is different from the structure of the discriminator D1b,c to482

further enhance the domain alignment ability of the backbone483

network through collaborative training. Specifically, D2b,c is484

composed of four Transformer layers and four fully connected485

layers. Like the Transformer layer in D1b,c, it is used to486

determine whether the information input into D2b,c contains487

target-domain information. In the optimization process, the488

parameters of the backbone network are fixed, and the function489

shown in Eq. (9) is used to optimize the parameters of D2b,c as490

follows:491

Lb,ce3(D2b,c) = − 1

3nb

nb∑
i=1

[qhea
s,i log(D2b,c(Zhea

s,i,12))492

+ qtor
s,i log(D2b,c(Ztor

s,i,12)) + qleg
s,i log(D2b,c493

× (Zleg
s,i,12))]+ [chea

t,i log(D2b,c(Zhea
t,i,12))494

+ ctor
t,i log(D2b,c(Ztor

t,i,12))495

+ cleg
t,i log(D2b,c(Zleg

t,i,12))], (9)496

In the training process of the backbone network, this paper497

proposes the adversarial loss of the cooperation of two dis-498

criminators, which ensures that the backbone network extracts499

the discriminative features consistent with source domain.500

Therefore, the domain alignment between source domain and501

target domain is realized on feature representation. For this502

loss, the output results of D1b,c and D2b,c are added together503

as the final body part classification result. When updating504

the backbone network, the loss shown in Eq. (10) can be505

minimized, if and only if D1b,c and D2b,c output consistent506

discrimination results:507

Lb,ce4(Em) = − 1

nb

nb∑
i=1

[qhea
t,i log

1

2
(D1b,c(Zhea

t,i,12)508

+ D2b,c(Zhea
t,i,12)) + q tor

t,i log
1

2
(D1b,c(Ztor

t,i,12)509

+ D2b,c(Ztor
t,i,12)) + qleg

t,i log
1

2
(D1b,c(Zleg

t,i,12)510

+ D2b,c(Zleg
t,i,12))], (10)511

In the proposed method, Eq. (10) is substituted for Eq. (8).512

Due to the different structures of the two discriminators,513

the above process allows discriminators to discriminate the514

input features from two different views [38]. When the dis-515

crimination results of the two discriminators are consistent, the516

loss function can be minimized. This facilitates the backbone517

network to extract both features after domain alignment, and518

fine-grained features of different pedestrian parts, thereby519

enhancing the comprehensiveness and expression ability of the520

corresponding features. Additionally, the domain alignment of521

Algorithm 1 Body Part-Level Domain Alignment (BPDA)
for Domain-Adaptive Person Re-ID

Input: Labeled source samples Xs = {xs,i}N
i=1, correspond-

ing pedestrian labels Y s = {ys,i}Ns
i=1. Unlabeled target sam-

ples X t = {xt,i}Nt
i=1, corresponding intra-camera pedestrian

labels Y t = {yc
t,i}nc

t
i=1 and camera labels C t = {ct,i}Kt

i=1.
Output: The trained encoder Em .
Step I: Global and Body-part Feature Extraction
(Sec.III.B)
1:Sample a batch of labeled source data.
2:for c = 1, · · · , Kt do
3: Sample a batch of c-th camera target data.
4:Initialize Em , W g , Wc, Whea , W tor , W leg , Wc,hea ,

W c,tru and Wc,leg .
5:for iter=1, · · · , Iteration1 do
6: Update Em , Wc and W g by minimizing the loss in

Eqs.(1) and (2).
7: Update Em , Whea , W tru , W leg , W c,hea , Wc,tru and

W c,leg by
minimizing the loss in Eqs.(5) and (6).

8:end for
Step II: Body-part level Domain Alignment (Sec.III.C)
9:Sample a batch of labelled source data.
10:Sample a batch of unlabeled source data.
11:Load the learned Em , W g , W c, Whea , W tor , W leg ,
W c,hea , Wc,tru and Wc,leg .
12:Initialize the classifier D1b,c, D2b,c;
13: for iter=1, · · · , Iteration2 do
14: Update D1b,c and D2b,c by minimizing the loss in
Eqs.(7)

and (9).
15: Update Em , W g , Wc, W hea , W tor , W leg , Wc,hea ,
W c,tru

and Wc,leg by minimizing the loss in
Eqs.(1),(2),(5),(6)

and (10).
16: end for

pedestrian body parts is realized in the same discriminator. 522

Mode collapse caused by the independent design of task and 523

domain classifiers can be avoided. The loss or distortion of 524

features that may occur in the domain alignment process can 525

also be alleviated. 526

D. Entire Loss Function 527

The total loss function of network parameter optimization 528

in this paper can be formulated as follows: 529

L = Lg,id + Lg,ce + Lb,ce + Lb,tri 530

+ λ1Lb,ce1 + λ2Lb,ce3 + λ3Lb,ce4, (11) 531

where λ1, λ2 and λ3 are hyperparameters. The above process 532

is summarized in Algo. 1. 533
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TABLE I

THE SETTINGS OF DIFFERENT PERSON RE-ID DATASETS. PN: NUMBER OF PEDESTRIANS, IN: NUMBER OF IMAGES, CN: NUMBER
OF CAMERAS, POCN: NUMBER OF PEDESTRIANS CAPTURED BY ONLY ONE CAMERA

IV. EXPERIMENTS534

A. Datasets and Evaluation Protocol535

This paper uses five challenging datasets as the target dataset536

to verify the effectiveness and superiority of the proposed537

method, including Market1501-new [39], DukeMTMC-reID-538

new (Duke-new) [39], MSMT17-new [39], Market-SCT [7],539

and DukeMTMC-SCT (Duke-SCT) [7]. The training sets540

in Market1501-new, Duke-new and MSMT17-new are set541

according to the probability of pedestrians appearing under542

different cameras in a local camera network, Market-SCT543

and Duke-SCT are partitioned by Zhang et al [7]. These two544

datasets assume that the span between different cameras is545

relatively large, and each pedestrian in the training set appears546

in only one camera.547

1) Market1501-New: The training set in Market1501-new is548

reset from the samples in the training set of Market1501 [40].549

Specifically, the dataset assumes that pedestrians appear on550

one road. There are several intersections on this road. Since551

person re-ID focuses on pedestrian identity matching between552

cameras without overlapping, only one camera is installed at553

each intersection. According to the moving direction of each554

pedestrian, there is a 25% probability that pedestrians captured555

by each camera appear in other adjacent cameras. Therefore,556

the training set of Market1501-new contains 3,197 images557

of 617 pedestrians. Since many pedestrians change moving558

direction at one or multiple intersections, some of them are not559

captured by more than one camera. Therefore, 1,732 images560

of 458 pedestrians in the training set were captured by a561

single camera. This setting is close to the real-world scenes562

where pedestrians appear in each camera, so it is considerably563

challenging. In addition, the testing in Market1501-new is the564

same as that of Market1501.565

2) Duke-New: The testing set in Duke-new is the same as566

the testing set in DukeMTMC-reID (Duke) [41]. As the main567

difference, the training set in Duke-new is reset by the samples568

in the training set of Duke according to the probability of569

pedestrians appearing under each camera in the local camera570

network. This dataset assumes that a camera is installed at571

each intersection and any pedestrian captured by each camera572

has a 25% probability of appearing in other adjacent cameras.573

As a result, the training set in Duke-new contains 5,300 images574

of 553 pedestrians, in which 3,184 images of 413 pedestrians575

were captured by a single camera.576

3) MSMT17-New: The training set in MSMT17-new is577

re-partitioned according to the setting of Duke-new training578

set. As the main difference, the samples of MSMT17-new579

training set come from the samples of MSMT17 [42] testing 580

set. Since the number of samples in the testing set of MSMT17 581

is more than that in the training set, the MSMT17 testing 582

set samples are used to construct the MSMT17-new training 583

set, thereby obtaining the MSMT17-new training set with a 584

large sample size. Correspondingly, all the training samples of 585

MSMT17 are used as the testing set samples of MSMT17-new. 586

MSMT17-new contains 47,977 images of 2,831 pedestrians 587

in total, of which the training set contains 15,356 images of 588

1,790 pedestrians, and the testing set contains 32,621 images 589

of 1,041 pedestrians. In the training set, 8,376 images are 590

composed of 1,335 pedestrians captured by only one camera. 591

4) Market-SCT: The training set of Market-SCT is also con- 592

structed by using the Market1501 training set samples under 593

the new setting. Different from the above-mentioned training 594

set construction method, each pedestrian in the Market-SCT 595

training set is captured by only one camera. Since no pedes- 596

trian was captured by two or more cameras, all cross-camera 597

samples in the Market-SCT training set come from different 598

pedestrians. In this case, the Market-SCT training set contains 599

3,561 images of 751 pedestrians. According to the partition 600

setting of the Market1501 testing set, the Market-SCT testing 601

set consists of 19,281 images of 750 pedestrians. 602

5) Duke-SCT: The training set of Duke-SCT is composed 603

of pedestrian samples in the Duke training set under the 604

new partition setting. According to the Market-SCT partition 605

setting, each pedestrian in the Duke-SCT training set was 606

captured by only one camera. Therefore, each sample in the 607

Duke-SCT training set does not have any positive sample 608

across cameras. Therefore, the training set of Duket-SCT 609

contains 5,993 images of 702 pedestrians in total. According 610

to the original Duke partition setting, the testing set consists of 611

19,889 images of 702 pedestrians. The details of each dataset 612

are shown in Tab.I. 613

6) Evaluation Protocol: Cumulative match characteristic 614

(CMC) [43] and mean average precision (mAP) [40] are used 615

to evaluate the performance of each method under a single 616

query setting. They are also used to measure the accuracy of 617

identity matching at each rank and the accuracy of overall 618

retrieval, respectively. 619

B. Implementation Details 620

1) Network Settings: In the training process, the size of all 621

images is uniformly adjusted to 256×128. Similar to [44], data 622

augmentation is achieved through random cropping, random 623

horizontal flipping, and image padding. In the experiments, 624
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the batch size is set to 16 and each pedestrian has four images625

in a batch. All networks use SGD optimizer [45]. Momentum626

is set to 0.9. Weight decay is set to 1 × 10−4. The learning627

rate of Em , Wc, W g , Whea , W tor , W leg , Wc,hea , Wc,tor and628

Wc,leg is set to 1.6×10−3. The learning rate of the classifiers629

D1b,c and D2b,c is set to 1.2 × 10−3. All hyperparameters630

λ1, λ2, and λ3 are set to 1.0, 0.5, 2, respectively. The pro-631

posed method is implemented on the pytorch framework [46].632

All experiments were done on a platform equipped with a633

single NVIDIA GeForce RTX 2080 Ti GPU.634

2) Optimization: The entire model is totally trained for635

180 epochs. In the 0∼10 epochs, the learning rate is linearly636

adjusted through the warm-up strategy [47]. In the 40-th637

epoch, the learning rate is decayed again at a 10% rate. In the638

training process, the first 50 epochs are used to update the639

parameters of Em by minimizing the loss functions shown640

in Eqs. 1, 2, 5 and 6. In the remaining 130 epochs, the641

loss functions shown in Eqs. 7 and 9 are used to train the642

classifiers D1b,c and D2b,c, and the loss functions shown in643

Eqs. 1, 2, 5, 6 and 10 are used to further update the parameters644

of Em . In the testing process, Euclidean distance is used to645

match pedestrian identity. The specific optimization algorithm646

is shown in Algo.1.647

C. Comparison With State-of-the-Art Methods648

In this section, the proposed method is compared with649

state-of-the-art unsupervised person re-ID methods to verify650

its effectiveness and superiority. There are three main types651

of methods involved in performance comparison: fully unsu-652

pervised person re-ID (FUPR) methods, person re-ID meth-653

ods based on domain generalization (DG), and unsupervised654

domain-adaptive (UDA) person re-ID methods. For FUPR655

methods, source-domain data is not generally available. There-656

fore, the related models are only obtained by unsupervised657

training on target dataset. For person re-ID methods based on658

DG, the target dataset is unknown, and only the labeled source-659

domain data can be applied to model training. For UDA person660

re-ID methods, both source-domain and target-domain data is661

known. But only the source-domain data is already labeled.662

The target-domain data is not labeled. Generally, UDA person663

re-ID methods can achieve stable performance because both664

source-domain and unlabeled target-domain data participates665

in model training. The performance comparison between this666

method and the above two types of method is mainly used667

to illustrate the advantages of UDA. The proposed method668

is compared with state-of-the-art UDA methods to verify its669

effectiveness and superiority over existing methods.670

Market1501-new and Duke-new are set to verify model671

performance in the local monitoring networks. In the above672

two scenes, there are cross-camera paired training samples673

between different adjacent cameras. However, as the span674

between cameras increases, the number of pedestrians with the675

same identity appearing across cameras gradually decreases,676

which is highly consistent with the situation in real-world677

scenes. Tab.II shows the re-ID performance obtained by678

different methods on both Market1501-new and Duke-new679

datasets. The results listed in Tab.II were obtained by using680

the codes provided by the corresponding original authors 681

and retraining the corresponding models under the original 682

parameter settings. All comparative experiments only used a 683

set of optimal preset parameters provided by their authors in 684

their papers. 685

For FUPR methods, IICS obtained the best re-ID per- 686

formance on Duke→Market1501-new (Market1501→Duke- 687

new), and the corresponding re-ID accuracy of rank-1 and 688

mAP reached 61.5% and 34.2% (54.5% and 33.7%), respec- 689

tively. In contrast, the re-ID accuracy of the proposed method 690

on rank-1 and mAP reached 78.1% and 51.7% (68.7% and 691

48.2%) respectively, which was significantly better than the 692

corresponding re-ID performance of IICS. There are two 693

main reasons. On one hand, UDA methods apply source- 694

domain samples to model training, so they naturally have a 695

certain expansion capability. On the other hand, the number 696

of cameras that can capture the same pedestrian is different in 697

Market1501-new and Duke-new, resulting in an imbalance in 698

the number of cross-camera samples of different pedestrians 699

in the training set. In addition, pedestrians only appearing in 700

a single camera increase the risk of noisy label introduction. 701

These factors limit the performance of the FUPR methods. 702

Since DG-based methods assume that the target dataset is 703

unknown, the above problems do not affect their performance. 704

However, the methods based on DG require multiple source- 705

domain datasets on model training. If only a single dataset is 706

applied to model training, only 69.2% and 35.9%(55.2% and 707

33.1%) re-ID accuracy can be obtained on rank-1 and mAP. 708

The proposed method is a domain-adaptive method. 709

In this paper, the performance of the proposed method is 710

compared with the corresponding ones of state-of-the-art 711

domain-adaptive methods. According to Tab.II, on Duke→ 712

Market1501-new (Market1501→ Duke-new), the re-ID accu- 713

racy obtained by the proposed BPDA on Rank-1 and mAP 714

reached 78.1% and 51.7% (68.7% and 48.2%) respectively. 715

When the intra-camera sample labels are involved in model 716

training, the performance of the proposed method (BPDA+) 717

is further improved. However, the highest re-ID accuracy 718

obtained by domain-adaptive methods based on pseudo-label 719

prediction is only 59.7% and 33.7%(50.5% and 30.7%) on 720

Rank-1 and mAP, respectively. The re-ID accuracy of the 721

latest IDM method only reached 47.5% and 25.5% (32.6% 722

and 20.3%) on Rank-1 and mAP, respectively. The proposed 723

BPDA exceeds the re-ID accuracy of IDM by 30.6% and 724

26.2% (36.1% and 27.9%) on Rank-1 and mAP, respectively. 725

The main reason is that a large number of pedestrians only 726

appearing under a single camera and the imbalance of different 727

pedestrian samples in both Market1501-new and Duke-new 728

datasets. The above results confirm that the proposed method 729

has stronger practical value than existing methods. To further 730

verify the above statement, this paper tests the performance of 731

different algorithms on Duke→ MSMT-new (Market1501→ 732

MSMT-new). According to Tab. III, the same conclusion 733

consistent with the above statement can be drawn, which 734

further verifies the effectiveness of the proposed method and 735

its superiority over existing methods. 736

To further verify the practicability of the proposed method, 737

the following experiments use Market1501 and Duke as the 738
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TABLE II

THE PERFORMANCE COMPARISONBETWEEN THE PROPOSEDMETHOD AND STATE-OF-THE-ARTMETHODS WHEN MARKET1501-NEW AND DUKE-NEW
ARE USED AS TARGET DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE

MARKED IN BOLD FONT. BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN
INTRA-CAMERA SAMPLE LABELS, BPDA+ INDICATES THAT THE TARGET-DOMAIN INTRA-CAMERA

SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

TABLE III

THE PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS WHEN MSMT-NEW USED AS TARGET
DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE MARKED IN BOLD FONT.
BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN INTRA-CAMERA SAMPLE LABELS,

BPDA+ INDICATES THAT THE TARGET-DOMAIN INTRA-CAMERA SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

source domain and Duke-SCT and Market-SCT as the target739

domain. Both Duke-SCT and Market-SCT are set to simulate740

large-scale camera networks. As three assumptions, the dis-741

tance span between different cameras is large, each pedestrian742

in the training set appears in a single camera, and there is743

no sample of the same pedestrian across cameras. In such744

training sets, the labels predicted by clustering-based pseudo-745

label prediction methods are all noisy labels. The following746

experiments use such datasets as the target datasets to evaluate747

the adaptability of different methods in different large-scale748

surveillance networks.749

As shown in Tab. IV, except IICS, the overall performance750

of FUPR methods and UDA-based methods decreased. The751

methods based on clustering pseudo-label prediction are weak752

in adapting to this type of scene. In contrast, the proposed753

method has stronger stability. On Duke→ Market-SCT, the 754

re-ID accuracy of rank-1 and mAP obtained by the proposed 755

method can still reach 77.2% and 51.3%, respectively. Addi- 756

tionally, on Marke→ Duke-SCT, the re-ID accuracy of rank-1 757

and mAP obtained by the proposed method reached 68.6% and 758

47.8%, respectively. As a specially designed method MCNL 759

for the problems involved in both Market-SCT and Duke-SCT, 760

its performance is surpassed by the proposed method. 761

D. Ablation Study 762

The proposed method is composed of a global and body 763

part feature extraction module (GBFE) and a body part level 764

domain alignment module (BPDA). GBFE consists of GFE 765

and BFE. In this paper, the GEF trained by minimizing 766

Lg,ce(Em, W g) and Lg,tri (Em) is regarded as the baseline. 767
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TABLE IV

THE PERFORMANCE COMPARISONBETWEEN THE PROPOSEDMETHOD AND STATE-OF-THE-ARTMETHODS WHEN MARKET1501-NEW AND DUKE-NEW
ARE USED AS TARGET DOMAIN DATA. BOTH CMC AND MAP RATE (%) OBTAINED BY EACH METHOD ARE LISTED. THE BEST RESULTS ARE

MARKED IN BOLD FONT. BPDA INDICATES THAT THE PROPOSED MODEL WAS NOT TRAINED USING THE TARGET-DOMAIN
INTRA-CAMERA SAMPLE LABELS, BPDA+ INDICATES THAT THE TARGET-DOMAIN

INTRA-CAMERA SAMPLE LABELS ARE INVOLVED IN MODEL TRAINING

TABLE V

COMPARISON OF EXPERIMENTAL PERFORMANCE ON DUKE→MARKET1501-NEW AND MARKET1501→DUKE-NEW
AFTER ADDING DIFFERENT MODULES. DUKE IS SHORT FOR DUKEMTMC

The model after adding discriminator D1b,c and BFE to768

the baseline is denoted as Baseline+BFE. The cooperation769

training of dual discriminators (CDD) is introduced into770

the Baseline, and the corresponding model is denoted as771

Baseline+CDD. The model obtained by introducing the CDD772

into Baseline+BFE is denoted as Baseline+BFE+CDD. The773

model Baseline+BFE+CDD with the intra-camera sample774

labels (ICL) of the target-domain dataset involved in train-775

ing is denoted as Baseline+BFE+CDD+ICL. Tab.V shows776

the experimental results of different models on Duke→777

Market1501-new and Market1501 →Duke-new under differ-778

ent settings.779

1) Effectiveness of BFE: Baseline+BFE and Baseline are780

compared to verify the effectiveness of BFE. According781

to Tab.V, the fine-grained domain alignment at part level782

can effectively improve model performance. Specifically,783

on Duke→Market1501-new (Market1501→Duke-new), the784

Rank-1 recognition accuracy increases from 70.1% (66.6%) to785

75.3% (67.9%), and the mAP recognition accuracy increases786

from 42.5% (45.7%) to 49.4% (47.6%). With the assistance787

of a single discriminator D1b,c, BFE can improve model’s788

adaptability in target domain to a certain extent, so that the789

model achieves better performance.790

2) Effectiveness of CDD: To verify the validity of CDD, 791

CDD is added to baseline and Baseline+BFE. According 792

to Tab. V, on Duke→Market1501-new (Market1501→Duke- 793

new), compared with Baseline+BFE, Baseline+BFE+CDD 794

improves the recognition accuracy of Rank-1 from 75.3% 795

(67.9%) to 78.1% (68.7%), and also improves the recognition 796

accuracy of mAP from 49.4% (47.6%) to 51% (48.2%). 797

The introduction of the CDD-based adversarial mechanism 798

effectively improves the discriminator’s discriminating ability, 799

so the feature distribution alignment is achieved in both source 800

and target domains, and the model’s adaptability is improved 801

in target domain. 802

3) Effectiveness of ICL: To verify the effectiveness of intra- 803

camera sample label (ICL), Baseline+BFE+CDD+ICL is 804

compared with Baseline+BFE+CDD. According to Tab. V, 805

Baseline+BFE+CDD+ICL improves the Rank-1 recognition 806

accuracy from 78.1% (68.7%) to 83.4% (82.5%), and also 807

improves the mAP recognition accuracy from 51.7% (48.2%) 808

to 64.6% (67.7%). It confirms that the intra-camera label 809

participation in training can effectively improve model’s fea- 810

ture representation ability. Fig.4 further shows the pedestrian 811

retrieval results under different ablation settings. The contri- 812

bution of each module is intuitively demonstrated. 813
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Fig. 4. From top to bottom, the first row to the fifth row represent the results
retrieved by Baseline, Baseline+BFE, Baseline+CDD, Baseline+BFE+CDD,
and Baseline+BFE+CDD+ICL, respectively.

TABLE VI

COMPARISON OF EXPERIMENTAL PERFORMANCE ON
DUKE→MARKET1501-NEW AND MARKET1501→DUKE-NEW

AFTER ADDING DIFFERENT MODULES. DUKE IS
SHORT FOR DUKEMTMC

E. Further Discussion814

According to the dissimilarity of different pedestrian parts,815

the proposed method divides pedestrian features into three816

parts: head, torso, and legs to achieve part-level domain align-817

ment. Compared with the traditional vertical average dividing818

features, two experiments “D6” and “D3” are designed in this819

section to verify the superiority of dividing pedestrian features820

by parts. “D6” and “D3” indicate that the pedestrian features821

are divided into 6 blocks and 3 blocks on average, respectively.822

As shown in Tab.VI, the more blocks are evenly divided in823

vertical direction, the lower performance is exhibited. Vertical824

average division ignores the dissimilarity of different parts,825

resulting in the loss of some key features of the same parts826

of different blocks during the model training process. This827

reduces the discriminability of features. Since the proposed828

method considers the dissimilarity of different body parts,829

it achieves better performance than the above two experiment830

settings. None of the experiments shown in Tab.VI involves831

target-domain intra-camera labels.832

Additionally, the proposed body-part-level domain align-833

ment facilitates the network to extract features from the834

entire pedestrian image. The first and second rows in Fig. 5835

give the attention maps (heatmaps) of Baseline+CDD and836

Baseline+BFE+CDD, respectively, where red indicates that837

the model pays more attention to this region. According to838

these results, Baseline+CDD cannot always pay attention to839

Fig. 5. The impact of pedestrian body part alignment on feature extraction.
The first row shows the attention maps (heat maps) of Baseline+CDD, and the
second row shows the attention maps (heat maps) of Baseline+BFE+CDD.
The strong activation regions are marked in red.

Fig. 6. The result of Rank-1 and mAP under the changes of different para-
meters. D→M-new denotes DukeMTMC→Market1501-new and M→D-new
denotes Market1501→DukeMTMC-new. (a) shows the result of λ1,(b) shows
the result of λ2,(c) shows the result of λ3.

the entire pedestrian body without the division of pedestrian 840

body parts. In this case, the extracted features are not complete, 841

which are not conducive to improving the discriminability of 842

pedestrian features. When dividing the body parts of pedestrian 843

images, in order to achieve correct classification of different 844

parts, the network is encouraged to extract discriminative 845

features from different pedestrian parts, which makes the 846

pedestrian features extracted by Baseline+BFE+CDD more 847

complete. Therefore, Baseline+BFE+CDD achieves higher 848

recognition performance than Baseline+CDD. 849

F. Parameter Selection and Analysis 850

The proposed method contains three hyperparameters λ1, 851

λ2 and λ3. According to Eq. (11), they adjust Lb,ce1(D1b,c), 852
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Lb,ce3(D2b,c) and Lb,ce4(Em) respectively. In hyperparameter853

analysis, two parameters are fixed to analyze the effect of854

another parameter on experimental performance.855

1) The influence of λ1: Fig.6(a) shows the change in model856

performance when λ1 ∈ [0.01, 100]. On D→M-new, when857

λ1 = 1, the proposed method achieves the highest recogni-858

tion accuracy of Rank-1 and mAP, and when λ1 > 1, the859

performance of the proposed method decreases slightly. For860

M→D-new, when λ1 = 1, the proposed method also achieves861

the highest recognition accuracy of Rank-1 and mAP. There-862

fore, λ1 = 1 is the optimal choice.863

2) The influence of λ2: Fig.6(b) shows the effect of different864

values of λ2 on the recognition accuracy of Rank-1 and865

mAP on D→M-new and M→D-new. When λ2 ∈ [0.01, 0.5],866

the recognition accuracy of Rank-1 and mAP obtained by867

the proposed method on the two tasks shows an overall868

improvement. When λ2 ∈ [0.5, 2], the recognition accuracy869

of Rank-1 and mAP obtained by the proposed method on the870

two tasks decreases. Therefore, λ2 = 0.5 is the optimal choice.871

3) The influence of λ3: The hyperparameters λ1 and λ2872

are fixed. λ3 is taken values within the range of [0.5, 3].873

On D→M-new and M→D-new, the changes in the recog-874

nition accuracy of Rank-1 and mAP with different values875

of are shown in Fig. 6(c). When λ3 = 2, the proposed876

method achieves the best performance on both D→M-new877

and M→D-new. Therefore, it is reasonable to set λ3 to 2.878

V. CONCLUSION879

To get rid of the dependence of pseudo-label prediction-880

based domain-adaptive methods on the reliability of pseudo881

labels, this paper designs a Transformer framework for domain882

alignment at body part level. This framework aggregates the883

local features from the same body part by the Transformer884

to obtain the classification token for the body part, and885

uses it as the global representation of different body parts.886

Additionally, an adversarial strategy embedded in Transformer887

layer is designed. This strategy makes full use of the different888

structures and morphologies of different pedestrian body parts889

(e.g., head, torso, and legs) to achieve pedestrian body-part-890

level domain alignment. Additionally, the proposed method891

does not need to perform pseudo-label prediction for target892

samples, and gets rid of the influence of noisy labels on recog-893

nition performance. The proposed method shows excellent894

performance on the datasets that are in line with the actual895

scene settings, which proves that the proposed method has896

strong applicability.897
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