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Abstract

Despite their remarkable performance, LLMs’
ability to provide transparent and faithful expla-
nations for their predictions remains a challenge.
We investigate the influence of different types of
natural language explanations on LLM predic-
tions, focusing on four different datasets present-
ing tasks that involve leveraging implicit knowl-
edge. We conduct experiments on three SOTA
LLMs on 8 types of explanations, both written
by humans or machine-generated, through three
generation methods: label-agnostic, label-aware,
and counterfactual (label-contradicting) explana-
tion generation. Our results consistently demon-
strate that providing explanations significantly
improves the accuracy of LLM predictions, even
when the models are not explicitly trained to gen-
erate explanations, and propose a method to study
the relationship between implicitness and expla-
nation effectiveness. !

1 Introduction

Large Language Models (LLMs) excel at various nat-
ural language processing tasks, including text gener-
ation, translation, and question answering (Touvron
etal., 2023; OpenAl, 2023). However, understanding
their reasoning remains challenging, hindering trust
and adoption in high-stakes domains (Hase et al.,
2020; Kaneko and Okazaki, 2023; Kotonya and Toni,
2020; Atanasova et al., 2020). One approach is to
train LLLMs to generate explanations for their pre-
dictions. Existing methods, like pipeline models
(Wiegreffe et al., 2020) and self-rationalizing models
(Lei et al., 2016), often focus on extractive ratio-
nales suitable for information extraction tasks (Ja-
covi et al., 2021). However, complex reasoning tasks
require free-text explanations, especially when im-
plicit knowledge is involved (Wiegreffe et al., 2021).

'Code and data will be publicly released upon acceptance.

Generating explanations raises concerns about faith-
fulness, as LLMs might produce plausible-sounding
explanations without genuine connection to their rea-
soning (Narang et al., 2020). This is particularly
problematic for implicit knowledge, which relies
on the model’s internal representations of the world
(McClelland et al., 2020).

This study investigates the impact of different nat-
ural language explanations on LLM predictions, fo-
cusing on the role of implicit knowledge. We an-
alyze human-written and LLM-generated explana-
tions across three experimental setups (label-aware,
label-agnostic, and label-contradicting) (Sections 3
and 2) and four tasks requiring implicit knowledge
(Section 4).

We hypothesize that the effectiveness of explana-
tions, measured by downstream task performance,
correlates with the degree of implicitness, i.e. novel,
yet relevant, information they provide. Section 7
explores this hypothesis by examining the relation-
ship between explanation effectiveness and metrics
approximating novelty and relatedness.

The main contributions of this paper are the fol-
lowing:

* We categorize types of explanations and pro-
pose a methodology to test their impact on LLM
predictions across tasks and languages.

* We demonstrate that providing explanations can
boost prediction accuracy, even without explicit
training.

* We propose a method to measure the correla-
tion between explanation effectiveness and the
conveyed implicit knowledge, presenting pre-
liminary metrics and results.



2 Methodology
2.1 Problem definition

We address the problem of explaining the semantic
relationship between two textual fragments, under
the assumption that the relationship involves implicit
or world knowledge, and the hypothesis that expla-
nations eliciting more implicit knowledge represent
higher quality explanations.

For our study we define an explanatory task in
the following way. Consider a pair of sentences
< 81,82 >, and a semantic relation r holding be-
tween s1 and s2 (e.g., s; temporally precedes s2, S1
is caused by so, s1 contradicts so, etc.). The task
consists in a model M generating an explanation
e; given the relation r, and then in a model M> that
uses the explanation e; to predict the relation r for
the same sentence pair, when 7 is not given. Given
this setting, the goal is to support the hypothesis that
using explanations results in better predictions, and
to investigate the correlation between explanation
quality, implicit information elicitation, and relation
prediction.

We consider different semantic relations, expla-
nation types and generation modalities, as well as
different large language models.

2.2 Explanatory pipeline

More in detail, to investigate explanation quality, we
propose a three-step methodology, described in the
following.

Step 1: explanation generation. First, given an
explanatory task, we ask a model M; to generate a
set of possible explanations E for the semantic rela-
tion 7 for the sentence pair < s1, so >. We assume
ground truth relations R, from human annotators, as
they guarantee explanations are consistent with the
actual semantic relations of the sentence pair.

Ml(sl, SQ,?“C) = F

To keep under control our experimental setting, we
assume that there is only one semantic relation 7. for
a given sentence pair.

As we are interested in comparing different expla-
nations F = {e1, ea,...e,} for the same sentence
pair and the same relation 7. (e.g., a counterfactual
explanation vs. a why-explanation) each explanation

e; is generated independently, prompting a gener-
ative model for each specific explanation type. In
Section 3 we define in detail the set E of explanation

types.

Step 2: model prediction. Here, model M> is
asked to predict a semantic relation 7, between s1
and so given one individual explanation e; in F, in-
jected into the input along with the sentence pair.
Adding one explanation e; is meant to potentially
add new information, implicit in s; and s9, that can
help the model My to predict the correct relation r..

MQ(Sl, S9, ei) = Tp

The two models used in step 1 and step 2, M7 and
M, might be the same model, in which case the goal
is to assess the self consistency of the model (gen-
erate the explanation and then use it for prediction),
or two different models, in which case the goal is to
have an independent assessment of the explanation
quality. M has to be a generative model, as it has to
produce the set of explanations E, while the model
Ms is typically a classification model, or a genera-
tive one performing a classification task (as in our
experimental setup).

Step 3: quality assessment. At this step we as-
sess the quality of the explanations in F generated
by M;. Intuitively, the quality of an explanation e;
depends on its ability to provide useful content to
solve a relation prediction task: the more e; is useful
to the model M, to predict the correct relation 7,
the better its effectiveness, taken as a proxy of the
quality of e;. Accordingly, here we assume that the
Ms performance is an indicator of the explanation
effectiveness, such that better explanations are those
that contribute to better prediction accuracy. Given
an explanation e; in the set E, its effectiveness rel-
ative to a model M> is given by the ability of the
model to predict a relation 7, that approximates the
correct relation r. for a given sentence pair.

Ef fectivness(e;, Ma) =1, = 1¢

Practically, the accuracy of the model M2 on a
relation prediction task is used as the main metric for
explanation effectiveness. There are two interesting
aspects to be considered. First, the delta between the
relation prediction of the My model without and with



e;: this is an indicator of the absolute effectiveness
of a certain explanation. Second, the relative ranking
of all explanations in F given by the M5 accuracy:
this will give us a metric to assess if one explanation
type is better (i.e., more effective) than another.

2.3 Measuring implcitness

While effectiveness is relative to a certain model,
explanation type or relation, we want to explore
whether better explanations are those that are able
to introduce highly relevant implicit knowledge, i.e.,
not present in the sentence pair < s1, so >, that the
M5 model can use of for predicting 7. Intuitively,
a good explanation for an implicit knowledge-based
relationship should maximize both its novelty, i.e.,
it has to bring new, implicit content with respect
to < s1,s2 >, and its relevance with respect to
< s1,82 >, i.e. it has to be grounded to entities
and events mentioned in the sentences.

As a preliminary step towards validating this hy-
pothesis, we define the amount of implicitness of an
explanation e; as the combination of the relevance
and the novelty of e; with respect to a sentence pair
< 81,82 >.

Impl(si,s2,e;) = Rel(e;, s1,82) * Nov(e;, s1, S2)

In Section 7, we propose some preliminary metrics
to estimate these measures and assess them using
implicitness as a direct evaluation measure for expla-
nations assessed against effectiveness as computed
in the first set of experiments.

3 Types of Explanations

In this section we present the types of explanations
used by model M, with different characteristics
(for a characterization of explanations in NLP, see
(Jansen et al., 2016)). The explanations are free-
text and can be generated either by a human or by a
model M7, so that E' is representative both of how
humans provide explanations in real contexts, and of
the generative capacities and prompting techniques
of current Large Language Models. To exemplify
the various types, suppose the following working
example:

s1 = The sky is cloudy today.

so = I'll take an umbrella.
. = S1 causes So

Human explanations. These (called human in
our experiments) are explanations directly generated
or manually checked by humans, given the correct
relation r. and can virtually take any of the type
described in the later sections. While the quality
of human generated explanations can be considered
high (e.g., we expect that they point out relevant
and implicit information), there is no guarantee that,
when used by a model My, they perform better than
model generated explanations. For the purposes of
this paper, we carefully select datasets that provide
reference human-generated or human-edited expla-
nations.

Why explanations. This kind of explanation
(why) is the most typical way to provide an expla-
nation, i.e., as an answer to a why question (). In
our setting, a why explanation is an answer to Why
is r¢ the relation holding between s1 and s ?. Then,
a common why explanation would be:

Cloudy skies indicate it might be raining,
and the umbrella prevents one from getting
wet.

Why-not explanations. This type of explanation
(why-not) argues that the alternative relation(s)
cannot hold as correct between s and s1. The ratio-
nale is based on reasoning by exclusion, a common
strategy in argumentation. In our setting, where we
have binary or three-way relations, a why-not ex-
planation is a why explanation for the relation —r,:
Why is —r. a relation not holding between s, and
s27. Suppose the same example as above. Then, a
common why-not explanation would be:

Cloudy skies indicate it might be raining,
and not taking an umbrella could result in
getting wet, which is undesirable.

Example-based explanation. This kind of expla-
nation (ex—exp) asks for a supplementary or equiv-
alent example, or a specific instance of s; and s
holding relation 7.. The rationale is that making ex-
amples is considered a useful communicative instru-
ment to improve understanding (Kim et al., 2016). In
our setting, an example-based explanation would be



Provide a supplementary, equivalent or specific ex-
ample of s3 and s, where the relation r. still holds..
For our case, a common example-based explanation
would be:

Yesterday it was raining in Rome and 1
went to work with an umbrella to not get
wet.

Self-rationalizing explanations. This kind of ex-
planation does not assume knowledge of 7., and asks
to either (i) explain the reasoning then predict 7.
(pre-hoc), or (ii) first predict r, then explain the
prediction (post-hoc). These explanations are re-
spectively inspired by “explain-then-predict” strate-
gies in NLP, using techniques such as as chain-of-
thought in-context learning (Wei et al., 2022), and
“predict-then-explain” strategy , using post-hoc self-
rationalisations(Lei et al., 2016).

Counterfactual explanations. This kind of expla-
nation, in its classical formulation, asks for what
(minimal) changes are needed to be made on s; and
so in order to falsify the relation r.. Then, in a coun-
terfactual situation, the negation of a binary relation
r. holds between the modified s; and sy. The ratio-
nale for a counterfactual explanation is that forcing
changes on s; and s9 forces to change r. into -,
(Wachter et al., 2017; Verma et al., 2022). In our
setting, a counterfactual (c-factual) explanation
originates from the following question: What are the
conditions in which relation r. may not hold for s,
and sy ?. Let’s use again our example, for which a
common counterfactual explanation would be:

If  were deciding whether to take an um-
brella for a trip to the desert, a cloudy sky
would not be a reason to take an umbrella
in my backpack.

For the sake of our experiments, we also con-
sider a more shallow interpretation of counterfac-
tual (not (why—exp)) that simply represents the
falsification of a why question.

Cloudy skies indicate it might be raining,
but an umbrella does not prevent one from
getting wet.

4 Experiments on explanation effectiveness

4.1 Models

For Step 1, explanation generation, we used GPT-
3.5, a proprietary large language model from Ope-
nAl (OpenAl, 2023), known for its high performance
in text generation and reasoning tasks. For Step 2,
model prediction, as M5 we use another instance of
GPT-3.5, to assess the effect of generated explana-
tions on the same model,and two different models to
which we apply Step 1’s output: Llama-2 13B (Tou-
vron et al., 2023), a large language model from Meta
Al, distinguished by its open-source nature and wide
training data, and Mixtral 8x7B (Jiang et al., 2024),
a recently released open-source mixture-of-expert ar-
chitecture from Mistral Al, notable for its strong per-
formance on benchmarks while being smaller than
other competing models.

4.2 Datasets

We use 4 datasets that propose tasks involving differ-
ent kinds of reasoning and eliciting implicit or exter-
nal knowledge to different extents. All the datasets
provide either human-generated or human-collected
and curated explanations explanations, which we use
as the human explanation type.

¢ e-RTE-3-it (Zaninello et al., 2023): a dataset
in Italian for Recognizing Textual Entailment
(RTE), featuring pairs of texts-hypotheses and
human-written explanations for the entailment
relation. The dataset consists of 1,600 sen-
tence pairs and is annotated for three entailment
classes: entailment (YES), contradiction (NO),
and neutrality (UNKNOWN).

¢ e-SNLI (Camburu et al., 2018), a version of the
Stanford Natural Language Inference (SNLI)
corpus enriched with human-written natural lan-
guage explanations. The dataset includes 570k
sentence pairs labeled for the same three entail-
ment classes as e-RTE-3-ITA.

¢ e-CARE (Du et al., 2022): a dataset focused
on causal reasoning questions, featuring human-
annotated explanations for the causal questions,
The dataset consists of 21k causal reasoning
questions with both correct and incorrect an-
swers. We accommodate this dataset into our



experimental setup by pairing each question
(s1) with either the correct answer (s1, label:
YES) or the incorrect answer (s, label: NO).

* (e-)StrategyQA (Gevaetal.,2021): A question-
answering dataset designed to require multiple
steps strategic reasoning or implicit knowledge
to answer. The dataset comprises 2,780 strat-
egy question (which we use as s2) with answer
"YES" or "NO" (labels), its decomposition into
multi-step reasoning paths (which we use as ex-
planation) and evidence paragraphs giving the
context of the question (which we use as s3).

4.3 Generation and inference setups

In this section we describe how the explanation types
presented in Section 3 can practically be produced
and introduced in our explanatory and prediction
pipelines (Section 2.2). We then present our ex-
perimental setup and results grouping explanations
by whether they are produced by assuming either 1.
knowledge of the correct relation label marked as
correct (4.5); 2. no knowledge of the correct relation
label (4.6); 3. knowledge of the correct label, marked
as incorrect (4.7).

To ensure that the explanations do not simply sug-
gest the right answer but are not informative, we
“anonimize” them by substituting each explicit refer-
ence to the labels or other obvious suggestions with
a placeholder. To include the explanations in Step
2, we prompt M to use a “hint” to give its answer,
represented by the explanation?.

4.4 Baseline Generation

We use two baselines in our experiments: no-
explanation (no-exp), where the model M5 per-
forms 0-shot relation 7, prediction; dummy expla-
nation (dummy), where we use a copy of s2 as the
explanation, to ensure virtually zero new information
given, and that results may not be due simply to data
augmentation/larger contexts.

4.5 Relation Aware Explanations

In this setup, we are assuming a relation aware ap-
proach, where the generation process is driven by the
correct relation 7, holding between s; and s». In this

2All the code, prompts and the data will be made publicly
available in the camera-ready version.

setup we include both human generated (human)
and model generated explanations (why, why-not,
ex—exp) (see Section 3). To generate the expla-
nations, we prompted GPT-3.5 differently for each
explanation type, providing it with the golden label
during explanation generation. We prompt the model
to return some structure in the output, and parse it
with regular expressions to collect the explanations.
Similarly, we parse the output of Ms with regular
expressions to extract the label, and resolve manu-
ally conflicting cases. Results for this setup, as the
accuracy on test sets, are reported in Table 1.

4.6 Relation Agnostic Explanations

In Section 4.5 we have assumed that most explana-
tions are generated knowing the correct relation 7,
holding between s; and so, i.e., referred as relation-
aware. However, we are also interested in experi-
menting on a relation-agnostic, self-supervised gen-
eration, where a model M7 generates an explanation
while contextually being asked to predict the rela-
tion. We call this modality label agnostic generation,
which makes use of the pre—hoc and post-hoc
explanation types.

In Table 2 we report accuracy for this setup. For
the sake of comparison, we also report (in brackets)
the results that consider the label that M, contextu-
ally outputted in Step 1. Note that, being predicted
contextually with the explanation generation in Step
1, the relation r, explained can be either correct or
wrong, with potential error propagation in Step 2.

4.7 Relation Contradicting Explanations

In this final setup, we use counterfactual explana-
tions, i.e. explanations that are explicitly contradict-
ing the golden label c-factual or that are falsify-
ing the explanation for a correct label 7 (why—exp)
to test the robustness of models to potentially false
or misleading information, as well as highlight how
different model may be differently sensitive to ex-
planation injection. For this setup, we also report
accuracy, but we interpret higher accuracy as an in-
dicator of less effectiveness of this special type of
explanations (Table 3).

5 Results and Discussion

This study reveals that explanations, even without
explicit training, enhance LLMs’ semantic relation



prediction accuracy, as shown in Tables 1, 2, and
3. Across various models, datasets, and explanation
types, label-aware explanations consistently yield the
greatest improvement, while even relation-agnostic
explanations surpass baseline performance.

Label-Aware Explanations significantly boost
LLM accuracy. Models with access to explana-
tions, particularly "why" explanations, perform best,
demonstrating the utility of providing detailed rea-
soning steps. "Why-not" explanations also effec-
tively refine decision-making processes, typically
ranking second in performance.

Relation-Agnostic Explanations enhance accu-
racy even without targeting specific relations, under-
scoring the value of generic explanations. Pre-hoc
explanations (generated before predictions) tend to
outperform post-hoc ones (generated afterward). The
accuracy of these explanations varies with the contex-
tually predicted label, emphasizing the risk of error
propagation from incorrect predictions.

Relation-Contradicting Explanations show that
LLM:s struggle with misleading information, as seen
with lower performance from "c-factual”" and "—(why-
exp)" explanations compared to baselines. This indi-
cates the need for accuracy and validation in expla-
nation content to aid LLMs effectively.

Model sensitivity to explanation types varies; for
instance, GPT-3.5 excels with "why" explanations,
while Llama 13b prefers "why-not." Dataset char-
acteristics also influence explanation effectiveness,
with StrategyQA showing lower gains compared to
e-CARE, highlighting the impact of the complexity
and type of reasoning required.

In summary, explanations significantly enhance
LLM performance, though their effectiveness varies
with the explanation type, model architecture, and
dataset complexity. Further research is essential to
optimize explanation use and improve LLM reason-
ing capabilities.

6 Related work

Explainable Al (XAI) aims to make complex mod-
els more understandable, with various types of ex-
planations contributing to this goal. The concept
of "explanation" has been interpreted differently in
XAI literature, each serving distinct purposes and
applying to different aspects of model interpretation.

A comprehensive review of these techniques can be
found in Molnar et al. (2020). Local explanations
focus on providing insights into the decision-making
process for individual predictions, with techniques
like LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017) being prominent examples. Fea-
ture importance explanations aim to identify which
features are most influential in a model’s decision-
making process, while global explanations seek to
convey an understanding of the model’s behavior
across all predictions. Friedman (2001) provides
significant contributions to understanding ensemble
models’ global behavior. Counterfactual explana-
tions offer a different perspective by illustrating how
changes in the input text could alter the prediction
(Wachter et al., 2017; Verma et al., 2022; Tolkachev
et al., 2022). Example-based explanations utilize
specific instances from the dataset to explain how
the model behaves under certain conditions (Kim
et al., 2016). Attention mechanisms, since the in-
troduction of the Transformer model (Vaswani et al.,
2017), have been utilized for model interpretation.
Howeyver, there is debate on whether attention can
effectively serve as a proxy for explanations, with
some arguing for its limitations (Jain and Wallace,
2019), while others challenge this claim (Wiegreffe
and Pinter, 2019). An overview of this topic can
be found in Bibal et al. (2022). Causal inference
methods, as detailed by Pearl (2009), offer a deeper
level of explanation by understanding the causal re-
lationships within the data that the model leverages
for predictions.

The role of explanations in NLP models has been
explored by various researchers. Paranjape et al.
(2021) focuses on template-based contrastive expla-
nations, while our work delves into different types of
explanations and their connection to implicit knowl-
edge in language models. Lampinen et al. (2022) and
Ye and Durrett (2022) demonstrate the benefits of
in-context explanations for large models in challeng-
ing reasoning tasks. Similar to our approach, Pruthi
et al. (2022) measure explanation quality based on
downstream performance. Their methodology in-
volves training a student model on explanations gen-
erated by a teacher, resembling our generation-and-
evaluation setup. However, they utilize automatic
explanation generation techniques and train the stu-
dent for the end task. Finally, Cambria et al. (2023)



LABEL-AWARE EXPLANATIONS

MODEL | no-exp dummy | human why why-not ex-exp
e-RTE-3-ITA
GPT-3.5 65 57 69 80 75 72
LLama 13b 57 45 75 91 84 82
Mistral 8x7b 76 64 88 90 85 86
e-SNLI
GPT-3.5 65 64 69 88 86 88
LLama 13b 53 44 75 84 79 87
Mistral 8x7b 74 69 89 87 84 93
e-CARE
GPT-3.5 52 65 81 90 88 93
LLama 13b 30 48 62 95 89 90
Mistral 8x7b 62 63 77 91 78 93
e-Strategy-QA
GPT-3.5 45 47 50 71 72 44
LLama 13b 45 26 57 74 64 68
Mistral 8x7b 39 43 57 49 44 41

Table 1: Accuracy of LLMs on test sets of the selected datasets with label-aware explanations. We boldface the best

scoring type of explanation for each model.

provides a comprehensive survey of approaches for
generating natural language explanations, while Hart-
mann and Sonntag (2022) examines the benefits of
explanations for NLP models.

7 Experiments on measuring implicitness

In Section 7 we have defined the amount of implic-
itness of an explanation e; as the combination of
relatedness and novelty of e; with respect to a sen-
tence pair < sp, S2 >.

This set of experiments aims to propose a prelim-
inary study to quantify the degree of implicit infor-
mation brought up by the explanation, and how it
correlates with explanation effectiveness.

We define two simple metrics to capture differ-
ent degrees of explanation relatedness and one for
novelty, measuring implicitness as the product of
relatedness and novelty.

7.1 Relatedness

Semantic Similarity. We leverage cosine sim-
ilarity between the sentence embeddings of the
combined text-hypothesis pair and the explanation.
Given an input sentence s, the model outputs a fixed-
dimensional vector e, representing its contextualized
embedding. The sentence-transformers/all-mpnet-
base-v2 model (Reimers and Gurevych, 2019) was

used to generate semantically rich sentence represen-
tations.

Entailment. We use a pre-trained NLI model to
determine the degree to which the explanation is
implied by the combined text-hypothesis pair. A
sigmoid function was applied to the entailment score
Pent Output by the NLI model. Higher scores indicate
stronger entailment relation between combined text-
hypothesis pairs (¢t and h, respectively) and their
corresponding explanations (e), suggesting that the
explanation is likely to be related to the input. For
calculations, we use the roberta-large-mnli model
(Liu et al., 2019), fine-tuned on the Multi-Genre NLI
dataset (Williams et al., 2018).

7.2 Novelty

Novelty: This metric, inspired by classical work on
surprisal in information theory (Shannon, 1948), cap-
tures the unexpectedness of words in the explanation
given the combined text-hypothesis context. We cal-
culated the average word surprisal of an explanation
as:

Novelty(¢, h, €)

T

wEE

log P(wlt,h) (1)



LABEL-AGNOSTIC EXPLANATIONS

MODEL | no-exp dummy | pre-hoc post-hoc
e-RTE-3-ITA
GPT3.5 | 65 57 55(56) 55 (63)
LLama 13b 57 45 61 60
Mistral 8x7b 76 64 66 66
e-SNLI
GPT-3.5 65 63 64 66
LLama 13b 53 44 58 65
Mistral 8x7b 73 69 74 71
e-CARE
GPT-3.5 51 64 67 69
LLama 13b 29 48 62 63
Mistral 8x7b 61 63 63 65
Strategy-QA
GPT-3.5 45 46 48 47
LLama 13b 44 26 45 46
Mistral 8x7b 39 43 42 43

Table 2: Accuracy on test sets for the setup using label
agnostic explanations.

where P(wlt, h) is the probability of a word w in
the explanation to occur in the input, estimated using
the word frequencies in the combined text-hypothesis
context. We define an empirical smoothing param-
eter alpha = 0.1 as the frequency of words non
occurring in the input.

7.3 Preliminary results

The analysis of the correlation among implicitness
measures and the prediction outcomes in the datasets
highlights some common trends, which we report in
detail for the Mixtral model results on the e-CARE
dataset (Table 4).

The correlation coefficient between similarity and
prediction and entailment and prediction are moder-
ately strong (r = 0.53, r = 0.49), indicating that
higher relatedness often correlates with a higher like-
lihood of a correct prediction. Novelty alone exhibits
a negative correlation with prediction (r = 0.36),
indicating that higher novelty often may lead to in-
correct predictions.

However, considering feature interaction, the in-
teraction between similarity and novelty shows a
positive correlation with predictions (r=0.55), sug-
gesting that the interaction between the two has a
potential predictive power that needs to be further
investigated. The interaction of entailment with nov-

LABEL-CONTRADICTING EXPLANATIONS

MODEL | no-exp dummy | c-factual -(why-exp)
e-RTE-3-ITA
GPT-3.5 65 57 15 30
LLama 13b 57 45 18 10
Mistral 8x7b 76 64 36 33
e-SNLI
GPT-3.5 65 64 28 42
LLama 13b 53 44 13 12
Mistral 8x7b 74 69 42 52
e-CARE
GPT-3.5 52 65 6 27
LLama 13b 30 48 1 16
Mistral 8x7b 62 63 4 26
Strategy-QA
GPT-3.5 45 47 37 37
LLama 13b 45 26 37 27
Mistral 8x7b 39 43 39 31

Table 3: Accuracy on test sets of the tested models for the
label-contradicting explanations.

elty correlates positively with prediction (r=0.51),
confirming the potential influence of implicitness in
the prediction phase. These findings encourage us
to further explore the dimension of implicitness in
explanations.

8 Conclusion

In this study, we tested the effects of explanations
on LLMs, showing that they can significantly im-
prove their accuracy in predicting relations between
sentences. This improvement is consistent across
different models, datasets, and explanation types.
Our experiments also show a correlation between
explanation effectiveness and the degree of implicit
knowledge conveyed by the explanations, suggesting
that explanations that introduce novel and relevant in-
formation are more likely to be helpful to LLMs. Fur-
thermore, our analysis reveals that different LLMs
exhibit varying sensitivity to different explanation
types. Our findings contribute to research on the role
of explanations in enhancing LLM performance. By
understanding the nuances of model sensitivity to
different explanation types and the ways in which
explanations contribute to implicit knowledge acqui-
sition, we can develop more effective techniques for
explaining and improving the reasoning capabilities
of LLMs.



Limitations

This study has several limitations that should be con-
sidered.

Limited Scope: We focus on a specific type of NLP
task involving implicit knowledge and investigate the
impact of explanations on relation prediction. Fur-
ther research is needed to extend these findings to a
broader range of NLP tasks and model architectures.

Artificial Setting: We utilize a controlled experi-
mental setup, where explanations are provided in a
specific format and injected into the model during
inference. Real-world applications might involve
more complex scenarios with less controlled input
and output formats.

Simplification of Implicitness: Our measurement
of implicitness relies on basic metrics like cosine
similarity and novelty, which may not fully capture
the nuanced nature of implicit knowledge in lan-
guage. More sophisticated techniques are needed for
a comprehensive evaluation of implicitness. Data De-
pendence: Our results are based on specific datasets
with curated explanations. Further exploration with
different datasets is required to assess the generaliz-
ability of our findings.
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Table 4: Correlation Matrix for Features from the e-CARE dataset based on the Mistral label-aware predictions.

Feature Similarity | Entailment | Novelty | Sim x Nov | Ent x Nov | Prediction
Similarity 1.00 0.45 -0.20 0.86 0.42 0.53
Entailment 0.45 1.00 -0.25 0.40 0.95 0.49

Novelty -0.20 -0.25 1.00 -0.18 -0.22 -0.36
Sim x Nov 0.86 0.40 -0.18 1.00 0.38 0.55
Ent x Nov 0.42 0.95 -0.22 0.38 1.00 0.51
Prediction 0.53 0.49 -0.36 0.55 0.51 1.00
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