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Abstract
Despite their remarkable performance, LLMs’001
ability to provide transparent and faithful expla-002
nations for their predictions remains a challenge.003
We investigate the influence of different types of004
natural language explanations on LLM predic-005
tions, focusing on four different datasets present-006
ing tasks that involve leveraging implicit knowl-007
edge. We conduct experiments on three SOTA008
LLMs on 8 types of explanations, both written009
by humans or machine-generated, through three010
generation methods: label-agnostic, label-aware,011
and counterfactual (label-contradicting) explana-012
tion generation. Our results consistently demon-013
strate that providing explanations significantly014
improves the accuracy of LLM predictions, even015
when the models are not explicitly trained to gen-016
erate explanations, and propose a method to study017
the relationship between implicitness and expla-018
nation effectiveness.1019

1 Introduction020

Large Language Models (LLMs) excel at various nat-021

ural language processing tasks, including text gener-022

ation, translation, and question answering (Touvron023

et al., 2023; OpenAI, 2023). However, understanding024

their reasoning remains challenging, hindering trust025

and adoption in high-stakes domains (Hase et al.,026

2020; Kaneko and Okazaki, 2023; Kotonya and Toni,027

2020; Atanasova et al., 2020). One approach is to028

train LLMs to generate explanations for their pre-029

dictions. Existing methods, like pipeline models030

(Wiegreffe et al., 2020) and self-rationalizing models031

(Lei et al., 2016), often focus on extractive ratio-032

nales suitable for information extraction tasks (Ja-033

covi et al., 2021). However, complex reasoning tasks034

require free-text explanations, especially when im-035

plicit knowledge is involved (Wiegreffe et al., 2021).036

1Code and data will be publicly released upon acceptance.

Generating explanations raises concerns about faith- 037

fulness, as LLMs might produce plausible-sounding 038

explanations without genuine connection to their rea- 039

soning (Narang et al., 2020). This is particularly 040

problematic for implicit knowledge, which relies 041

on the model’s internal representations of the world 042

(McClelland et al., 2020). 043

This study investigates the impact of different nat- 044

ural language explanations on LLM predictions, fo- 045

cusing on the role of implicit knowledge. We an- 046

alyze human-written and LLM-generated explana- 047

tions across three experimental setups (label-aware, 048

label-agnostic, and label-contradicting) (Sections 3 049

and 2) and four tasks requiring implicit knowledge 050

(Section 4). 051

We hypothesize that the effectiveness of explana- 052

tions, measured by downstream task performance, 053

correlates with the degree of implicitness, i.e. novel, 054

yet relevant, information they provide. Section 7 055

explores this hypothesis by examining the relation- 056

ship between explanation effectiveness and metrics 057

approximating novelty and relatedness. 058

The main contributions of this paper are the fol- 059

lowing: 060

• We categorize types of explanations and pro- 061

pose a methodology to test their impact on LLM 062

predictions across tasks and languages. 063

• We demonstrate that providing explanations can 064

boost prediction accuracy, even without explicit 065

training. 066

• We propose a method to measure the correla- 067

tion between explanation effectiveness and the 068

conveyed implicit knowledge, presenting pre- 069

liminary metrics and results. 070
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2 Methodology071

2.1 Problem definition072

We address the problem of explaining the semantic073

relationship between two textual fragments, under074

the assumption that the relationship involves implicit075

or world knowledge, and the hypothesis that expla-076

nations eliciting more implicit knowledge represent077

higher quality explanations.078

For our study we define an explanatory task in079

the following way. Consider a pair of sentences080

< s1, s2 >, and a semantic relation r holding be-081

tween s1 and s2 (e.g., s1 temporally precedes s2, s1082

is caused by s2, s1 contradicts s2, etc.). The task083

consists in a model M1 generating an explanation084

ei given the relation r, and then in a model M2 that085

uses the explanation ei to predict the relation r for086

the same sentence pair, when r is not given. Given087

this setting, the goal is to support the hypothesis that088

using explanations results in better predictions, and089

to investigate the correlation between explanation090

quality, implicit information elicitation, and relation091

prediction.092

We consider different semantic relations, expla-093

nation types and generation modalities, as well as094

different large language models.095

2.2 Explanatory pipeline096

More in detail, to investigate explanation quality, we097

propose a three-step methodology, described in the098

following.099

Step 1: explanation generation. First, given an
explanatory task, we ask a model M1 to generate a
set of possible explanations E for the semantic rela-
tion rc for the sentence pair < s1, s2 >. We assume
ground truth relations Rc from human annotators, as
they guarantee explanations are consistent with the
actual semantic relations of the sentence pair.

M1(s1, s2, rc) ⇒ E

To keep under control our experimental setting, we100

assume that there is only one semantic relation rc for101

a given sentence pair.102

As we are interested in comparing different expla-103

nations E = {e1, e2, . . . en} for the same sentence104

pair and the same relation rc (e.g., a counterfactual105

explanation vs. a why-explanation) each explanation106

ei is generated independently, prompting a gener- 107

ative model for each specific explanation type. In 108

Section 3 we define in detail the set E of explanation 109

types. 110

Step 2: model prediction. Here, model M2 is
asked to predict a semantic relation rp between s1
and s2 given one individual explanation ei in E, in-
jected into the input along with the sentence pair.
Adding one explanation ei is meant to potentially
add new information, implicit in s1 and s2, that can
help the model M2 to predict the correct relation rc.

M2(s1, s2, ei) ⇒ rp

The two models used in step 1 and step 2, M1 and 111

M2, might be the same model, in which case the goal 112

is to assess the self consistency of the model (gen- 113

erate the explanation and then use it for prediction), 114

or two different models, in which case the goal is to 115

have an independent assessment of the explanation 116

quality. M1 has to be a generative model, as it has to 117

produce the set of explanations E, while the model 118

M2 is typically a classification model, or a genera- 119

tive one performing a classification task (as in our 120

experimental setup). 121

Step 3: quality assessment. At this step we as- 122

sess the quality of the explanations in E generated 123

by M1. Intuitively, the quality of an explanation ei 124

depends on its ability to provide useful content to 125

solve a relation prediction task: the more ei is useful 126

to the model M2 to predict the correct relation rc, 127

the better its effectiveness, taken as a proxy of the 128

quality of ei. Accordingly, here we assume that the 129

M2 performance is an indicator of the explanation 130

effectiveness, such that better explanations are those 131

that contribute to better prediction accuracy. Given 132

an explanation ei in the set E, its effectiveness rel- 133

ative to a model M2 is given by the ability of the 134

model to predict a relation rp that approximates the 135

correct relation rc for a given sentence pair. 136

Effectivness(ei,M2) = rp ≈ rc

Practically, the accuracy of the model M2 on a 137

relation prediction task is used as the main metric for 138

explanation effectiveness. There are two interesting 139

aspects to be considered. First, the delta between the 140

relation prediction of the M2 model without and with 141
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ei: this is an indicator of the absolute effectiveness142

of a certain explanation. Second, the relative ranking143

of all explanations in E given by the M2 accuracy:144

this will give us a metric to assess if one explanation145

type is better (i.e., more effective) than another.146

2.3 Measuring implcitness147

While effectiveness is relative to a certain model,148

explanation type or relation, we want to explore149

whether better explanations are those that are able150

to introduce highly relevant implicit knowledge, i.e.,151

not present in the sentence pair < s1, s2 >, that the152

M2 model can use of for predicting rp. Intuitively,153

a good explanation for an implicit knowledge-based154

relationship should maximize both its novelty, i.e.,155

it has to bring new, implicit content with respect156

to < s1, s2 >, and its relevance with respect to157

< s1, s2 >, i.e. it has to be grounded to entities158

and events mentioned in the sentences.159

As a preliminary step towards validating this hy-160

pothesis, we define the amount of implicitness of an161

explanation ei as the combination of the relevance162

and the novelty of ei with respect to a sentence pair163

< s1, s2 >.164

Impl(s1, s2, ei) = Rel(ei, s1, s2) ∗Nov(ei, s1, s2)

In Section 7, we propose some preliminary metrics165

to estimate these measures and assess them using166

implicitness as a direct evaluation measure for expla-167

nations assessed against effectiveness as computed168

in the first set of experiments.169

3 Types of Explanations170

In this section we present the types of explanations171

used by model M2 with different characteristics172

(for a characterization of explanations in NLP, see173

(Jansen et al., 2016)). The explanations are free-174

text and can be generated either by a human or by a175

model M1, so that E is representative both of how176

humans provide explanations in real contexts, and of177

the generative capacities and prompting techniques178

of current Large Language Models. To exemplify179

the various types, suppose the following working180

example:181

s1 = The sky is cloudy today.182

s2 = I’ll take an umbrella. 183

rc = s1 causes s2 184

Human explanations. These (called human in 185

our experiments) are explanations directly generated 186

or manually checked by humans, given the correct 187

relation rc and can virtually take any of the type 188

described in the later sections. While the quality 189

of human generated explanations can be considered 190

high (e.g., we expect that they point out relevant 191

and implicit information), there is no guarantee that, 192

when used by a model M2, they perform better than 193

model generated explanations. For the purposes of 194

this paper, we carefully select datasets that provide 195

reference human-generated or human-edited expla- 196

nations. 197

Why explanations. This kind of explanation 198

(why) is the most typical way to provide an expla- 199

nation, i.e., as an answer to a why question (). In 200

our setting, a why explanation is an answer to Why 201

is rc the relation holding between s1 and s2?. Then, 202

a common why explanation would be: 203

Cloudy skies indicate it might be raining, 204

and the umbrella prevents one from getting 205

wet. 206

Why-not explanations. This type of explanation 207

(why-not) argues that the alternative relation(s) 208

cannot hold as correct between s1 and s1. The ratio- 209

nale is based on reasoning by exclusion, a common 210

strategy in argumentation. In our setting, where we 211

have binary or three-way relations, a why-not ex- 212

planation is a why explanation for the relation ¬rc: 213

Why is ¬rc a relation not holding between s1 and 214

s2?. Suppose the same example as above. Then, a 215

common why-not explanation would be: 216

Cloudy skies indicate it might be raining, 217

and not taking an umbrella could result in 218

getting wet, which is undesirable. 219

Example-based explanation. This kind of expla- 220

nation (ex-exp) asks for a supplementary or equiv- 221

alent example, or a specific instance of s1 and s2 222

holding relation rc. The rationale is that making ex- 223

amples is considered a useful communicative instru- 224

ment to improve understanding (Kim et al., 2016). In 225

our setting, an example-based explanation would be 226
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Provide a supplementary, equivalent or specific ex-227

ample of s3 and s4 where the relation rc still holds..228

For our case, a common example-based explanation229

would be:230

Yesterday it was raining in Rome and I231

went to work with an umbrella to not get232

wet.233

Self-rationalizing explanations. This kind of ex-234

planation does not assume knowledge of rc, and asks235

to either (i) explain the reasoning then predict rc236

(pre-hoc), or (ii) first predict rc then explain the237

prediction (post-hoc). These explanations are re-238

spectively inspired by “explain-then-predict” strate-239

gies in NLP, using techniques such as as chain-of-240

thought in-context learning (Wei et al., 2022), and241

“predict-then-explain” strategy , using post-hoc self-242

rationalisations(Lei et al., 2016).243

Counterfactual explanations. This kind of expla-244

nation, in its classical formulation, asks for what245

(minimal) changes are needed to be made on s1 and246

s2 in order to falsify the relation rc. Then, in a coun-247

terfactual situation, the negation of a binary relation248

rc holds between the modified s1 and s2. The ratio-249

nale for a counterfactual explanation is that forcing250

changes on s1 and s2 forces to change rc into ¬rc251

(Wachter et al., 2017; Verma et al., 2022). In our252

setting, a counterfactual (c-factual) explanation253

originates from the following question: What are the254

conditions in which relation rc may not hold for s1255

and s2?. Let’s use again our example, for which a256

common counterfactual explanation would be:257

If I were deciding whether to take an um-258

brella for a trip to the desert, a cloudy sky259

would not be a reason to take an umbrella260

in my backpack.261

For the sake of our experiments, we also con-262

sider a more shallow interpretation of counterfac-263

tual (not(why-exp)) that simply represents the264

falsification of a why question.265

Cloudy skies indicate it might be raining,266

but an umbrella does not prevent one from267

getting wet.268

4 Experiments on explanation effectiveness 269

4.1 Models 270

For Step 1, explanation generation, we used GPT- 271

3.5, a proprietary large language model from Ope- 272

nAI (OpenAI, 2023), known for its high performance 273

in text generation and reasoning tasks. For Step 2, 274

model prediction, as M2 we use another instance of 275

GPT-3.5, to assess the effect of generated explana- 276

tions on the same model,and two different models to 277

which we apply Step 1’s output: Llama-2 13B (Tou- 278

vron et al., 2023), a large language model from Meta 279

AI, distinguished by its open-source nature and wide 280

training data, and Mixtral 8x7B (Jiang et al., 2024), 281

a recently released open-source mixture-of-expert ar- 282

chitecture from Mistral AI, notable for its strong per- 283

formance on benchmarks while being smaller than 284

other competing models. 285

4.2 Datasets 286

We use 4 datasets that propose tasks involving differ- 287

ent kinds of reasoning and eliciting implicit or exter- 288

nal knowledge to different extents. All the datasets 289

provide either human-generated or human-collected 290

and curated explanations explanations, which we use 291

as the human explanation type. 292

• e-RTE-3-it (Zaninello et al., 2023): a dataset 293

in Italian for Recognizing Textual Entailment 294

(RTE), featuring pairs of texts-hypotheses and 295

human-written explanations for the entailment 296

relation. The dataset consists of 1,600 sen- 297

tence pairs and is annotated for three entailment 298

classes: entailment (YES), contradiction (NO), 299

and neutrality (UNKNOWN). 300

• e-SNLI (Camburu et al., 2018), a version of the 301

Stanford Natural Language Inference (SNLI) 302

corpus enriched with human-written natural lan- 303

guage explanations. The dataset includes 570k 304

sentence pairs labeled for the same three entail- 305

ment classes as e-RTE-3-ITA. 306

• e-CARE (Du et al., 2022): a dataset focused 307

on causal reasoning questions, featuring human- 308

annotated explanations for the causal questions, 309

The dataset consists of 21k causal reasoning 310

questions with both correct and incorrect an- 311

swers. We accommodate this dataset into our 312
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experimental setup by pairing each question313

(s1) with either the correct answer (s1, label:314

YES) or the incorrect answer (s1, label: NO).315

• (e-)StrategyQA (Geva et al., 2021): A question-316

answering dataset designed to require multiple317

steps strategic reasoning or implicit knowledge318

to answer. The dataset comprises 2,780 strat-319

egy question (which we use as s2) with answer320

"YES" or "NO" (labels), its decomposition into321

multi-step reasoning paths (which we use as ex-322

planation) and evidence paragraphs giving the323

context of the question (which we use as s2).324

4.3 Generation and inference setups325

In this section we describe how the explanation types326

presented in Section 3 can practically be produced327

and introduced in our explanatory and prediction328

pipelines (Section 2.2). We then present our ex-329

perimental setup and results grouping explanations330

by whether they are produced by assuming either 1.331

knowledge of the correct relation label marked as332

correct (4.5); 2. no knowledge of the correct relation333

label (4.6); 3. knowledge of the correct label, marked334

as incorrect (4.7).335

To ensure that the explanations do not simply sug-336

gest the right answer but are not informative, we337

“anonimize” them by substituting each explicit refer-338

ence to the labels or other obvious suggestions with339

a placeholder. To include the explanations in Step340

2, we prompt M2 to use a “hint” to give its answer,341

represented by the explanation2.342

4.4 Baseline Generation343

We use two baselines in our experiments: no-344

explanation (no-exp), where the model M2 per-345

forms 0-shot relation rp prediction; dummy expla-346

nation (dummy), where we use a copy of s2 as the347

explanation, to ensure virtually zero new information348

given, and that results may not be due simply to data349

augmentation/larger contexts.350

4.5 Relation Aware Explanations351

In this setup, we are assuming a relation aware ap-352

proach, where the generation process is driven by the353

correct relation rc holding between s1 and s2. In this354

2All the code, prompts and the data will be made publicly
available in the camera-ready version.

setup we include both human generated (human) 355

and model generated explanations (why, why-not, 356

ex-exp) (see Section 3). To generate the expla- 357

nations, we prompted GPT-3.5 differently for each 358

explanation type, providing it with the golden label 359

during explanation generation. We prompt the model 360

to return some structure in the output, and parse it 361

with regular expressions to collect the explanations. 362

Similarly, we parse the output of M2 with regular 363

expressions to extract the label, and resolve manu- 364

ally conflicting cases. Results for this setup, as the 365

accuracy on test sets, are reported in Table 1. 366

4.6 Relation Agnostic Explanations 367

In Section 4.5 we have assumed that most explana- 368

tions are generated knowing the correct relation rc 369

holding between s1 and s2, i.e., referred as relation- 370

aware. However, we are also interested in experi- 371

menting on a relation-agnostic, self-supervised gen- 372

eration, where a model M1 generates an explanation 373

while contextually being asked to predict the rela- 374

tion. We call this modality label agnostic generation, 375

which makes use of the pre-hoc and post-hoc 376

explanation types. 377

In Table 2 we report accuracy for this setup. For 378

the sake of comparison, we also report (in brackets) 379

the results that consider the label that M1 contextu- 380

ally outputted in Step 1. Note that, being predicted 381

contextually with the explanation generation in Step 382

1, the relation rp explained can be either correct or 383

wrong, with potential error propagation in Step 2. 384

4.7 Relation Contradicting Explanations 385

In this final setup, we use counterfactual explana- 386

tions, i.e. explanations that are explicitly contradict- 387

ing the golden label c-factual or that are falsify- 388

ing the explanation for a correct label ¬(why-exp) 389

to test the robustness of models to potentially false 390

or misleading information, as well as highlight how 391

different model may be differently sensitive to ex- 392

planation injection. For this setup, we also report 393

accuracy, but we interpret higher accuracy as an in- 394

dicator of less effectiveness of this special type of 395

explanations (Table 3). 396

5 Results and Discussion 397

This study reveals that explanations, even without 398

explicit training, enhance LLMs’ semantic relation 399
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prediction accuracy, as shown in Tables 1, 2, and400

3. Across various models, datasets, and explanation401

types, label-aware explanations consistently yield the402

greatest improvement, while even relation-agnostic403

explanations surpass baseline performance.404

Label-Aware Explanations significantly boost405

LLM accuracy. Models with access to explana-406

tions, particularly "why" explanations, perform best,407

demonstrating the utility of providing detailed rea-408

soning steps. "Why-not" explanations also effec-409

tively refine decision-making processes, typically410

ranking second in performance.411

Relation-Agnostic Explanations enhance accu-412

racy even without targeting specific relations, under-413

scoring the value of generic explanations. Pre-hoc414

explanations (generated before predictions) tend to415

outperform post-hoc ones (generated afterward). The416

accuracy of these explanations varies with the contex-417

tually predicted label, emphasizing the risk of error418

propagation from incorrect predictions.419

Relation-Contradicting Explanations show that420

LLMs struggle with misleading information, as seen421

with lower performance from "c-factual" and "¬(why-422

exp)" explanations compared to baselines. This indi-423

cates the need for accuracy and validation in expla-424

nation content to aid LLMs effectively.425

Model sensitivity to explanation types varies; for426

instance, GPT-3.5 excels with "why" explanations,427

while Llama 13b prefers "why-not." Dataset char-428

acteristics also influence explanation effectiveness,429

with StrategyQA showing lower gains compared to430

e-CARE, highlighting the impact of the complexity431

and type of reasoning required.432

In summary, explanations significantly enhance433

LLM performance, though their effectiveness varies434

with the explanation type, model architecture, and435

dataset complexity. Further research is essential to436

optimize explanation use and improve LLM reason-437

ing capabilities.438

6 Related work439

Explainable AI (XAI) aims to make complex mod-440

els more understandable, with various types of ex-441

planations contributing to this goal. The concept442

of "explanation" has been interpreted differently in443

XAI literature, each serving distinct purposes and444

applying to different aspects of model interpretation.445

A comprehensive review of these techniques can be 446

found in Molnar et al. (2020). Local explanations 447

focus on providing insights into the decision-making 448

process for individual predictions, with techniques 449

like LIME (Ribeiro et al., 2016) and SHAP (Lund- 450

berg and Lee, 2017) being prominent examples. Fea- 451

ture importance explanations aim to identify which 452

features are most influential in a model’s decision- 453

making process, while global explanations seek to 454

convey an understanding of the model’s behavior 455

across all predictions. Friedman (2001) provides 456

significant contributions to understanding ensemble 457

models’ global behavior. Counterfactual explana- 458

tions offer a different perspective by illustrating how 459

changes in the input text could alter the prediction 460

(Wachter et al., 2017; Verma et al., 2022; Tolkachev 461

et al., 2022). Example-based explanations utilize 462

specific instances from the dataset to explain how 463

the model behaves under certain conditions (Kim 464

et al., 2016). Attention mechanisms, since the in- 465

troduction of the Transformer model (Vaswani et al., 466

2017), have been utilized for model interpretation. 467

However, there is debate on whether attention can 468

effectively serve as a proxy for explanations, with 469

some arguing for its limitations (Jain and Wallace, 470

2019), while others challenge this claim (Wiegreffe 471

and Pinter, 2019). An overview of this topic can 472

be found in Bibal et al. (2022). Causal inference 473

methods, as detailed by Pearl (2009), offer a deeper 474

level of explanation by understanding the causal re- 475

lationships within the data that the model leverages 476

for predictions. 477

The role of explanations in NLP models has been 478

explored by various researchers. Paranjape et al. 479

(2021) focuses on template-based contrastive expla- 480

nations, while our work delves into different types of 481

explanations and their connection to implicit knowl- 482

edge in language models. Lampinen et al. (2022) and 483

Ye and Durrett (2022) demonstrate the benefits of 484

in-context explanations for large models in challeng- 485

ing reasoning tasks. Similar to our approach, Pruthi 486

et al. (2022) measure explanation quality based on 487

downstream performance. Their methodology in- 488

volves training a student model on explanations gen- 489

erated by a teacher, resembling our generation-and- 490

evaluation setup. However, they utilize automatic 491

explanation generation techniques and train the stu- 492

dent for the end task. Finally, Cambria et al. (2023) 493
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LABEL-AWARE EXPLANATIONS

MODEL no-exp dummy human why why-not ex-exp

e-RTE-3-ITA

GPT-3.5 65 57 69 80 75 72
LLama 13b 57 45 75 91 84 82

Mistral 8x7b 76 64 88 90 85 86

e-SNLI

GPT-3.5 65 64 69 88 86 88
LLama 13b 53 44 75 84 79 87

Mistral 8x7b 74 69 89 87 84 93
e-CARE

GPT-3.5 52 65 81 90 88 93
LLama 13b 30 48 62 95 89 90

Mistral 8x7b 62 63 77 91 78 93
e-Strategy-QA

GPT-3.5 45 47 50 71 72 44
LLama 13b 45 26 57 74 64 68

Mistral 8x7b 39 43 57 49 44 41

Table 1: Accuracy of LLMs on test sets of the selected datasets with label-aware explanations. We boldface the best
scoring type of explanation for each model.

provides a comprehensive survey of approaches for494

generating natural language explanations, while Hart-495

mann and Sonntag (2022) examines the benefits of496

explanations for NLP models.497

7 Experiments on measuring implicitness498

In Section 7 we have defined the amount of implic-499

itness of an explanation ei as the combination of500

relatedness and novelty of ei with respect to a sen-501

tence pair < s1, s2 >.502

This set of experiments aims to propose a prelim-503

inary study to quantify the degree of implicit infor-504

mation brought up by the explanation, and how it505

correlates with explanation effectiveness.506

We define two simple metrics to capture differ-507

ent degrees of explanation relatedness and one for508

novelty, measuring implicitness as the product of509

relatedness and novelty.510

7.1 Relatedness511

Semantic Similarity. We leverage cosine sim-512

ilarity between the sentence embeddings of the513

combined text-hypothesis pair and the explanation.514

Given an input sentence s, the model outputs a fixed-515

dimensional vector es representing its contextualized516

embedding. The sentence-transformers/all-mpnet-517

base-v2 model (Reimers and Gurevych, 2019) was518

used to generate semantically rich sentence represen- 519

tations. 520

Entailment. We use a pre-trained NLI model to 521

determine the degree to which the explanation is 522

implied by the combined text-hypothesis pair. A 523

sigmoid function was applied to the entailment score 524

pent output by the NLI model. Higher scores indicate 525

stronger entailment relation between combined text- 526

hypothesis pairs (t and h, respectively) and their 527

corresponding explanations (e), suggesting that the 528

explanation is likely to be related to the input. For 529

calculations, we use the roberta-large-mnli model 530

(Liu et al., 2019), fine-tuned on the Multi-Genre NLI 531

dataset (Williams et al., 2018). 532

7.2 Novelty 533

Novelty: This metric, inspired by classical work on 534

surprisal in information theory (Shannon, 1948), cap- 535

tures the unexpectedness of words in the explanation 536

given the combined text-hypothesis context. We cal- 537

culated the average word surprisal of an explanation 538

as: 539

Novelty(t, h, e) =
1

|Es|
∑
w∈Es

− logP (w|t, h) (1) 540
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LABEL-AGNOSTIC EXPLANATIONS

MODEL no-exp dummy pre-hoc post-hoc

e-RTE-3-ITA

GPT-3.5 65 57 55 (56) 55 (63)
LLama 13b 57 45 61 60

Mistral 8x7b 76 64 66 66

e-SNLI

GPT-3.5 65 63 64 66
LLama 13b 53 44 58 65

Mistral 8x7b 73 69 74 71

e-CARE

GPT-3.5 51 64 67 69
LLama 13b 29 48 62 63

Mistral 8x7b 61 63 63 65
Strategy-QA

GPT-3.5 45 46 48 47
LLama 13b 44 26 45 46

Mistral 8x7b 39 43 42 43

Table 2: Accuracy on test sets for the setup using label
agnostic explanations.

where P (w|t, h) is the probability of a word w in541

the explanation to occur in the input, estimated using542

the word frequencies in the combined text-hypothesis543

context. We define an empirical smoothing param-544

eter alpha = 0.1 as the frequency of words non545

occurring in the input.546

7.3 Preliminary results547

The analysis of the correlation among implicitness548

measures and the prediction outcomes in the datasets549

highlights some common trends, which we report in550

detail for the Mixtral model results on the e-CARE551

dataset (Table 4).552

The correlation coefficient between similarity and553

prediction and entailment and prediction are moder-554

ately strong (r = 0.53, r = 0.49), indicating that555

higher relatedness often correlates with a higher like-556

lihood of a correct prediction. Novelty alone exhibits557

a negative correlation with prediction (r = 0.36),558

indicating that higher novelty often may lead to in-559

correct predictions.560

However, considering feature interaction, the in-561

teraction between similarity and novelty shows a562

positive correlation with predictions (r=0.55), sug-563

gesting that the interaction between the two has a564

potential predictive power that needs to be further565

investigated. The interaction of entailment with nov-566

LABEL-CONTRADICTING EXPLANATIONS

MODEL no-exp dummy c-factual ¬(why-exp)

e-RTE-3-ITA

GPT-3.5 65 57 15 30
LLama 13b 57 45 18 10

Mistral 8x7b 76 64 36 33

e-SNLI

GPT-3.5 65 64 28 42
LLama 13b 53 44 13 12

Mistral 8x7b 74 69 42 52

e-CARE

GPT-3.5 52 65 6 27
LLama 13b 30 48 1 16

Mistral 8x7b 62 63 4 26

Strategy-QA

GPT-3.5 45 47 37 37
LLama 13b 45 26 37 27

Mistral 8x7b 39 43 39 31

Table 3: Accuracy on test sets of the tested models for the
label-contradicting explanations.

elty correlates positively with prediction (r=0.51), 567

confirming the potential influence of implicitness in 568

the prediction phase. These findings encourage us 569

to further explore the dimension of implicitness in 570

explanations. 571

8 Conclusion 572

In this study, we tested the effects of explanations 573

on LLMs, showing that they can significantly im- 574

prove their accuracy in predicting relations between 575

sentences. This improvement is consistent across 576

different models, datasets, and explanation types. 577

Our experiments also show a correlation between 578

explanation effectiveness and the degree of implicit 579

knowledge conveyed by the explanations, suggesting 580

that explanations that introduce novel and relevant in- 581

formation are more likely to be helpful to LLMs. Fur- 582

thermore, our analysis reveals that different LLMs 583

exhibit varying sensitivity to different explanation 584

types. Our findings contribute to research on the role 585

of explanations in enhancing LLM performance. By 586

understanding the nuances of model sensitivity to 587

different explanation types and the ways in which 588

explanations contribute to implicit knowledge acqui- 589

sition, we can develop more effective techniques for 590

explaining and improving the reasoning capabilities 591

of LLMs. 592
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Limitations593

This study has several limitations that should be con-594

sidered.595

Limited Scope: We focus on a specific type of NLP596

task involving implicit knowledge and investigate the597

impact of explanations on relation prediction. Fur-598

ther research is needed to extend these findings to a599

broader range of NLP tasks and model architectures.600

Artificial Setting: We utilize a controlled experi-601

mental setup, where explanations are provided in a602

specific format and injected into the model during603

inference. Real-world applications might involve604

more complex scenarios with less controlled input605

and output formats.606

Simplification of Implicitness: Our measurement607

of implicitness relies on basic metrics like cosine608

similarity and novelty, which may not fully capture609

the nuanced nature of implicit knowledge in lan-610

guage. More sophisticated techniques are needed for611

a comprehensive evaluation of implicitness. Data De-612

pendence: Our results are based on specific datasets613

with curated explanations. Further exploration with614

different datasets is required to assess the generaliz-615

ability of our findings.616
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Table 4: Correlation Matrix for Features from the e-CARE dataset based on the Mistral label-aware predictions.

Feature Similarity Entailment Novelty Sim x Nov Ent x Nov Prediction
Similarity 1.00 0.45 -0.20 0.86 0.42 0.53
Entailment 0.45 1.00 -0.25 0.40 0.95 0.49

Novelty -0.20 -0.25 1.00 -0.18 -0.22 -0.36
Sim x Nov 0.86 0.40 -0.18 1.00 0.38 0.55
Ent x Nov 0.42 0.95 -0.22 0.38 1.00 0.51
Prediction 0.53 0.49 -0.36 0.55 0.51 1.00
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