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ABSTRACT

Diffusion alignment aims to optimize diffusion models for the downstream objec-
tive. While existing methods based on reinforcement learning or direct backpropa-
gation achieve considerable success in maximizing rewards, they often suffer from
reward over-optimization and mode collapse. We introduce Diffusion Alignment
as Variational Expectation-Maximization (DAV), a framework that formulates
diffusion alignment as an iterative process alternating between two complemen-
tary phases: the E-step and the M-step. In the E-step, we employ test-time search
to generate diverse and reward-aligned samples. In the M-step, we refine the dif-
fusion model using samples discovered by the E-step. We demonstrate that DAV
can optimize reward while preserving diversity for both continuous and discrete
tasks: text-to-image synthesis and DNA sequence design.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021) excel at generating high-fidelity samples across
diverse domains, from image synthesis (Rombach et al., 2022; Ho et al., 2022), robotics (Chi et al.,
2023) to computational biology (Sahoo et al., 2024). Beyond generating high-likelihood samples,
many real-world applications necessitate samples optimized for external criteria; the aesthetic qual-
ity of images (Schuhmann, 2022), or the biological activity of DNA enhancers (Gosai et al., 2023).

To align the diffusion model with downstream objectives, various fine-tuning methods for diffusion
models have been proposed. Prior works can be typically divided into two categories: (1) RL-based
fine-tuning and (2) direct backpropagation. RL-based approaches (Fan et al., 2023; Black et al.,
2023; Venkatraman et al., 2024) optimize the parameters of diffusion models with a reverse-KL ob-
jective using on-policy data. This combination is prone to mode-seeking behavior, which may cause
premature convergence and mode collapse, severely degrading sample quality and diversity (Kim
et al., 2025c). Direct backpropagation (Clark et al., 2023; Prabhudesai et al., 2023) attains higher
sample efficiency but depends on sharp, brittle gradient signals from learned reward functions (Tra-
bucco et al., 2021), often leading to severe over-optimization (Skalse et al., 2022). Thus, there is a
pressing need for a fine-tuning framework that can effectively maximize rewards without sacrificing
the diversity and naturalness of the pretrained diffusion model.

To this end, we propose Diffusion Alignment as Variational Expectation-Maximization (DAV).
Inspired by (Levine, 2018), our framework is based on the variational Expectation-Maximization
(EM) algorithm (Neal & Hinton, 1998; Jordan et al., 1999), iteratively alternating between the E-
step for exploration and the M-step for amortization. The E-step (Exploration) aims to discover
diverse and high-reward samples from the variational posterior. To effectively capture the multi-
modal structure of posterior distribution, we invest additional test-time computation (Kim et al.,
2025c; Zhang et al., 2025) via techniques such as gradient-based guidance (Grathwohl et al., 2021;
Guo et al., 2024) and importance sampling, enabling a thorough exploration of promising regions.

The subsequent M-step (Amortization) updates pθ to pθ′ by distilling the knowledge from the
discovered samples back into the parameters of the diffusion model. Unlike conventional RL-based
methods that optimize a reverse-KL divergence, a mode-seeking objective that concentrates on a
single dominant mode (Fan et al., 2023; Venkatraman et al., 2024; Uehara et al., 2024b), our M-step
update corresponds to minimization of the forward-KL divergence, a mode-covering objective that
encourages the model to cover all diverse modes discovered through the E-step (Chan et al., 2022).
Therefore, the iteration of EM steps leads to a synergetic cycle, where the M-step adaptively refines
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the model towards a multi-modal aligned distribution, and the improved model in turn enables the
E-step to gather samples from a more aligned distribution while preserving diversity.

To demonstrate the versatility of our method, we apply DAV to align diffusion models in both
continuous (text-to-image synthesis) and discrete (DNA sequence design) domains. For the image
synthesis task, we fine-tune the Stable Diffusion v1.5 model (Rombach et al., 2022) to optimize for
given external rewards—including aesthetic quality (Schuhmann, 2022) and non-differentiable ob-
jectives like image compressibility and incompressibility (Black et al., 2023)—while mitigating the
mode collapse of the images. For DNA sequence design, we fine-tune a discrete masked diffusion
model (Sahoo et al., 2024) to design DNA enhancers (Gosai et al., 2023) that achieve high target
activity while preserving the naturalness and diversity of generated sequences.

2 RELATED WORKS

2.1 DIFFUSION ALIGNMENT

Fine-tuning approaches. RL-based fine-tuning frames the denoising process as a sequential
decision-making problem, optimizing a policy to maximize a black-box reward function (Black
et al., 2023; Fan et al., 2023; Uehara et al., 2024b; Su et al., 2025). In parallel, direct backprop-
agation approaches propagate the gradient signal from the differentiable reward function through
the diffusion denoising chain, greatly improving sample efficiency (Xu et al., 2023; Clark et al.,
2023; Prabhudesai et al., 2023). Despite progress, both fine-tuning methods suffer from reward
over-optimization (Skalse et al., 2022), due to the mode-seeking behavior of reverse-KL optimiza-
tion in reinforcement learning (Korbak et al., 2022) and the brittle gradient signal from the reward
model (Kim et al., 2025b). Recently, Liu et al. (2024); Domingo-Enrich et al. (2025) propose to
fine-tune the continuous diffusion model using the gradient signal of the reward function to follow
the tilted distribution ppretrained(x) · exp(r(x)), where r(x) is the reward function. While effective
at improving performance and mitigating over-optimization, these methods require a differentiable
reward function and are not straightforward to extend to discrete diffusion models.

Test-time inference approaches. Test-time inference approaches allocate additional computation
during generation to find aligned outputs without altering model weights. Techniques include guid-
ance (Dhariwal & Nichol, 2021; Chung et al., 2023; Yu et al., 2023; Bansal et al., 2023), and test-
time search methods (Ma et al., 2025; Zhang et al., 2025; Li et al., 2024b; Singhal et al., 2025; Kim
et al., 2025a; Li et al., 2025; Jain et al., 2025). Despite their effectiveness in bypassing additional
post-training phases, these methods face drawbacks: guidance-based approaches often suffer from
underoptimization (Kim et al., 2025a), and search-based algorithms demand substantial computa-
tional overhead, rendering them impractical for real-world applications.

DAV unifies the strengths of these two paradigms by leveraging a test-time search to collect diverse,
aligned samples and then distill the gathered knowledge back into the model through a principled
Expectation-Maximization algorithm. By amortizing test-time search into the parameters of the dif-
fusion model, DAV achieves strong alignment and sampling diversity without extensive computation
requirements at inference time. While recent methods (Liu et al., 2024; Domingo-Enrich et al., 2025)
focus on continuous diffusion models and rely on the differentiability of the reward function, DAV
naturally extends to both continuous and discrete diffusion without requiring any assumption on the
differentiability of the reward function, making it a more general and widely applicable framework.

3 BACKGROUNDS

3.1 DIFFUSION MODELS

Diffusion models are generative models that learn data distributions by adding noise to data and
then training how to reverse the noising process (Sohl-Dickstein et al., 2015). They comprise two
opposing Markov chains, a forward process q that gradually adds noise to the data, and a learned
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reverse process pθ that denoises the state to recover the original data:

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1), pθ(x0:T ) = pT (xT )

T∏
t=1

pθ(xt−1 | xt),

where x0∼qdata is clean data, xT is pure noise, and pT (xT ) is a simple base distribution from which
we can easily sample. Depending on the data modality, we can parameterize diffusion processes with
a Gaussian distribution for continuous diffusion or a Categorical distribution for discrete diffusion.
The details are elaborated in Appendix G.

The reverse process pθ is learned by optimizing the evidence lower bound (ELBO) on the data
log-likelihood Ex0∼qdata [log pθ(x0)], which can be decomposed as follows:

Eq[log pθ(x0|x1)]−
T∑

t=2

Eq[DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]−DKL(q(xT |x0) ∥ pT (xT )).

3.2 MARKOV DECISION PROCESS

We formulate the fine-tuning of the reverse diffusion process as a Markov Decision Process (MDP).
Following prior works (Fan & Lee, 2023; Black et al., 2023), we define a finite-horizon MDP with
sparse reward and deterministic transitions, denoted as the tuple (S,A, P, r, γ, ρ0), where S is the
state space, A the action space, P the transition dynamics, γ ⊂ [0, 1] the discount factor, r :
S × A → R the reward function, and ρ0 the initial state distribution. Unlike previous approaches,
we incorporate the discount factor γ. Within this MDP, we want to fine-tune our diffusion policy π.
The specific formulations are as follows:

st ≜ (xT−t, T − t) πθ(at|st) ≜ pθ(xT−t−1|xT−t) P (st+1|st, at) ≜ δ(xT−t−1,T−t−1)

at ≜ xT−t−1 ρ0(s0) ≜ (pT , δT ) r(st, at) ≜

{
R(x0) if t = T − 1

0 otherwise.

R(x0) is an external reward function defined on the clean data space. For brevity, we mainly use
notations with xt’s (rather than (st, at)) in the subsequence sections. Also, with a slight abuse of
notation, we often denote r(xt, xt−1) instead of r((xt, t), xt−1).

3.3 KL-DIVERGENCE REGULARIZED REINFORCEMENT LEARNING

Following Abdolmaleki et al. (2018); Wu et al. (2019); Kumar et al. (2019), we consider maximiza-
tion of the KL-regularized RL objective for a given diffusion model pprior = pθ, i.e.,

pθ∗ = argmax
pθ′

Eτ∼pprior

[
T∑

t=1

γT−t(r(xt, xt−1)− αDKL(pθ′(xt−1|xt)||pprior(xt−1|xt)))
]
, (1)

where τ = (xT , xT−1, . . . , x0) is a trajectory sampled from ρ0 and pprior, and α > 0 controls the
strength of the regularization. We define soft Q-function of state-action pair (xt, xt−1) as follows:
Q∗

soft(xt, xt−1) = r(xt, xt−1)

+ Eτ∼pθ∗

[
t−1∑
s=1

γt−s (r(xs, xs−1)− αDKL(pθ∗(·|xs)||pprior(·|xs)))
∣∣∣∣∣xt, xt−1

]
(2)

Following Uehara et al. (2024a), KL-regularized soft Bellman equations are given by:

V ∗
soft(xt) = α logExt−1∼pprior(·|xt)

[
exp

(
1
α Q

∗
soft(xt, xt−1)

)]
, (3)

Q∗
soft(xt, xt−1) = r(xt, xt−1) + γ · Ext−1∼pprior(·|xt)

[
V ∗

soft(xt−1)
]
. (4)

Under the discounted diffusion MDP with sparse reward and deterministic transition of Section 3.2,
we can set terminal conditions V ∗

soft(x0) = 0, Q∗
soft(x1, x0) = r(x0), and approximate the soft

Q-function by using Tweedie’s formula (Efron, 2011; Li et al., 2024b) as follows:
Q∗

soft(xt, xt−1) ≈ γt−1r(x̂0(xt−1)), (5)
where x̂0(xt) = Ex0∼pprior [x0|xt] denotes the approximated posterior mean. (See Appendix B for
details.)
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Test-time SearchPrior Distribution Posterior Distribution
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Figure 1: Conceptual illustration of DAV. DAV alternates between E-step, where trajectories are
obtained via test-time search, and M-step, where the diffusion model parameters θ are updated by
amortizing the posterior into the policy. By iterating these two steps, DAV progressively refines the
diffusion model toward a multi-modal aligned distribution.

4 DIFFUSION ALIGNMENT AS VARIATIONAL EM

In this section, we introduce a detailed mechanism of Diffusion Alignment as Variational
Expectation-Maximization (DAV). As illustrated in Figure 1, DAV aligns diffusion models by
iteratively alternating between an E-step and an M-step. The E-step involves a test-time search
guided by a soft Q-function to effectively discover high-reward, multi-modal trajectories from the
variational posterior distribution. Subsequently, in the M-step, the diffusion model is updated by
distilling the information from searched trajectories through the E-step, progressively learning to
generate outputs that are aligned with the reward function. The training procedure of our method is
summarized in the pseudo code provided in Appendix A.

4.1 VARIATIONAL EXPECTATION-MAXIMIZATION FORMULATION

Inspired by Levine (2018), we cast diffusion alignment as maximizing the likelihood of a binary
optimality variable O, defined as pθ(O = 1|τ) ∝ exp(

∑T
t=1 rt(xt, xt−1)/α). This directly implies

that the alignment objective is to maximize the marginal likelihood of optimality as follows:

max
θ

log pθ(O = 1).

Importantly, θ does not directly parameterize this marginal likelihood, but instead induces a distri-
bution over trajectories by pθ(τ) = pT (xT )

∏T
t=1 pθ(xt−1|xt). In other words, since θ specifies the

diffusion reverse process, alignment can be formulated by introducing a latent trajectory variable τ
that bridges between the model parameters and the optimality variable. The reverse process yields a
trajectory τ , which contains x0 that is subsequently evaluated by the reward function. Hence, τ acts
as an unobserved latent variable connecting θ to the observed optimality outcome O. The resulting
incomplete log-likelihood is expressed as log pθ(O = 1) = log

∫
pθ(τ,O = 1)dτ.

Directly maximizing the incomplete log-likelihood is intractable due to the hierarchical struc-
ture of denoising trajectories. Instead, we introduce a variational distribution η(τ) =

pT (xT )
∏T

t=1 η(xt−1 | xt), to approximate the intractable posterior pθ(τ |O = 1) and convert
the marginal likelihood optimization into a tractable variational inference problem as follows (See
Appendix C for details):

log pθ(O = 1) ≥ Eτ∼η

[
T∑

t=1

(
r(xt, xt−1)

α
+ log

pθ(xt−1 | xt)
η(xt−1 | xt)

)]
= Jα(η, pθ), (6)

Introducing discount factor. The high stochasticity of the diffusion reverse process makes early
denoising steps less impactful on the final outcome (Ho et al., 2020), necessitating a discounting
mechanism to attenuate credit assignment of xt with large timestep t.
Proposition 1 (Lower bound on likelihood of O with discount factor γ). Let γ ∈ (0, 1] be the
discount factor. The likelihood of the optimality variable O admits the following lower bound:

Jα,γ(η, pθ) ≜ Eτ∼η(τ)

[
T∑

t=1

γT−t

(
r(xt, xt−1)

α
+ log

pθ(xt−1 | xt)
η(xt−1 | xt)

)]
. (7)

Proof. See Appendix D.
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Optimizing the ELBO, Jα,γ(η, pθ), is often approached with an EM-based RL algorithm, alternat-
ing between the E-step (posterior inference) and the M-step (model update) (Dayan & Hinton, 1997).
However, prior EM-based RL approaches exhibit a critical weakness in the E-step. They approxi-
mate the posterior by reweighting on-policy samples or past experiences from a replay buffer (Peters
& Schaal, 2007; Abdolmaleki et al., 2018; Nair et al., 2020). However, if the behavioral policy devi-
ates significantly from the posterior distribution pθ(τ |O = 1), this approach critically misspecifies
the posterior, guiding the M-step toward a biased and suboptimal distribution.

Therefore, we redesign the EM-based RL for diffusion alignment. Let θk be the model parameter
at the k-th iteration. In the E-step, we first determine the posterior distribution that maximizes the
ELBO, i.e., η∗k(τ) = argmaxη Jα,γ(η, pθk). Then, we employ test-time search (Singhal et al.,
2025; Kim et al., 2025c) to obtain approximate samples that follow η∗k(τ). In the M-step, we max-
imize the ELBO by updating the model parameter, θk+1 = argmaxθ Jα,γ(η∗k, pθ), which corre-
sponds to minimizing the forward KL divergence using the samples from the η∗k.

4.2 E-STEP: TEST-TIME SEARCH FOR POSTERIOR INFERENCE

In the E-step, we sample trajectories from the variational posterior distribution η∗k by employing test-
time search. We first determine η∗k(τ) = argmaxη Jα,γ(η, pθk). Since our objective is equivalent
to the KL-regularized RL objective in Equation (1), the optimal variational distribution, η∗k(τ), is
the production of the soft optimal policy that takes the form of a reward-tilted distribution:

η∗k(xt−1|xt) ∝ pθk(xt−1|xt) exp(Q∗
soft,θk(xt, xt−1)/α). (8)

The derivation is detailed in Section E.1. However, directly sampling from η∗k is intractable. To
overcome this, we approximate it using a two-stage local search to generate the subsequent state,
xt−1. The first stage of this search involves sampling a set of candidate particles. Specifically, we
draw M intermediate particles, {xmt−1}Mm=1, from a proposal distribution, η̂k. If the gradient signal
of the reward is available, we can construct an effective proposal distribution by using gradient
guidance (Grathwohl et al., 2021; Kim et al., 2025a). Subsequently, we refine the intermediate
particles via importance sampling, which effectively pushes the samples closer to η∗k (Li et al.,
2024b). We detail our search procedure in Section E.2.

Note that the test-time search in DAV is a modular component. This design allows for any algorithm
capable of approximating the target posterior distribution to be substituted into the E-step. There-
fore, DAV is not tied to a specific search technique and can directly benefit from future advancements
in test-time search methods (Jain et al., 2025; Zhang et al., 2025; Yoon et al., 2025).

4.3 M-STEP: AMORTIZING TEST-TIME SEARCH INTO DIFFUSION MODELS

In the M-step, we update θ by distilling trajectories from the E-step. This corresponds to maximizing
ELBO by projecting η∗k onto the diffusion pθ via forward KL minimization on searched trajectories:

θk+1 = argmax
θ

Jα,γ(η∗k(τ), θ) = argmin
θ

DKL(η
∗
k(τ)||pθ(τ)). (9)

Minimizing this forward KL divergence is equivalent to maximizing the log-likelihood of the trajec-
tories from η∗k. Since the policy update is performed via gradient ascent rather than an exact max-
imization, it constitutes a partial M-step in a Generalized EM framework (Dempster et al., 1977).
Nevertheless, as long as the gradient ascent increases the ELBO, the monotonic improvement prop-
erty of EM is preserved. The training objective for DAV is thus:

LDAV(θ) = argmax
θ

Eτ∼η∗
k
[log pθ(τ)] = Eτ∼η∗

k
[

T∑
t=1

log pθ(xt−1|xt)]). (10)

To prevent the capability loss of the pretrained model, we introduce DAV-KL, which adds a KL-
divergence term to penalize deviation from the initial pretrained policy pθ0 :

LDAV-KL(θ) = Eτ∼η∗
k
[

T∑
t=1

log pθ(xt−1|xt)] + λDKL(pθ(xt−1|xt)||pθ0(xt−1|xt)). (11)

where the coefficient λ controls the trade-off between aligning with the expert policy η∗k and pre-
serving the knowledge of the pretrained model.
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Figure 2: Training dynamics of our methods and baseline models, with performance marked every
10 epochs. All methods were trained for 100 epochs, except for DDPO, which was trained for 500
epochs. Our approaches successfully preserve alignment score and diversity compared to baselines.

Method Aesthetic (↑) LPIPS-A (↑) ImageReward (↑)
Pretrained 5.40 (0.01) 0.65 (0.01) 0.90 (0.01)
DDPO 6.83 (0.16) 0.48 (0.05) 0.27 (1.01)
TDPO 6.78 (0.28) 0.39 (0.10) 0.51 (0.47)
DRaFT 7.22 (0.22) 0.46 (0.04) 0.19 (0.64)
DAV 8.04 (0.07) 0.53 (0.03) 0.95 (0.21)
DAV-KL 6.99 (0.04) 0.58 (0.01) 1.13 (0.04)

DAS 7.22 (0.01) 0.65 (0.01) 1.07 (0.03)
DAV Posterior 9.18 (0.07) 0.53 (0.01) 0.91 (0.21)
DAV-KL Posterior 8.66 (0.09) 0.58 (0.01) 1.14 (0.08)

Table 1: Comparison on text-to-image synthesis benchmarks. All results are reported as mean with
standard deviation in parentheses. Our methods and TDPO are shown at the 100th epoch, while
DDPO and DRaFT are taken from the last checkpoint before over-optimization. Methods above the
midline are fine-tuning approaches, and those below are test-time search methods.

5 EXPERIMENTS

This section empirically evaluates the ability of our framework to optimize rewards while preserving
sample diversity and naturalness in continuous and discrete diffusion. We demonstrate the versatility
of our framework across two distinct data modalities: text-to-image synthesis using a latent diffusion
model (Rombach et al., 2022) and DNA sequence design via a discrete diffusion model (Sahoo et al.,
2024). We denote the amortized policies as DAV and DAV-KL, and their posterior samples, obtained
through test-time inference as explained in Section 4.2, as DAV Posterior and DAV-KL Posterior,
respectively. Implementation details and hyperparameter settings for all experiments are provided
in Appendix H. To reflect the versatility of DAV, our baselines mainly consist of methods that are
agnostic to data modality and reward function differentiability. We also compare our approach with
a representative test-time search method, as it is the core mechanism of the E-step.

5.1 CONTINUOUS DIFFUSION: TEXT-TO-IMAGE SYNTHESIS

We use Stable Diffusion v1.5 (Rombach et al., 2022) as our base pretrained model across all text-
to-image experiments. We employ a set of 40 simple animal prompts for fine-tuning as provided by
Kim et al. (2025c). All results are averaged over three random seeds.

5.1.1 EXPERIMENTAL SETUP

Metrics. We use the differentiable LAION aesthetic score (Schuhmann, 2022) as our primary re-
ward. We evaluate the results for two key failure modes: reward over-optimization and diversity col-
lapse. To detect over-optimization, we measure prompt alignment using CLIPScore (Radford et al.,
2021) for semantic consistency and ImageReward (Xu et al., 2023) for human preference. Sample

6
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DRaFT-1

(R = 7.09)
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Figure 3: Qualitative comparison of our methods with DAS, DRaFT-1, DDPO, and pretrained
model. Results for our methods are reported after 100 epochs of fine-tuning. For DDPO and DRaFT,
we sample images from the last checkpoint before significant collapse. All images in the figure are
collected from multiple runs, and the score reported under each method is the average aesthetic score
of the seven sampled images.

diversity is quantified using LPIPS (Zhang et al., 2018), reporting the average distance across all
samples (LPIPS-A) and within samples from the same prompt (LPIPS-P).

Baselines. We compare DAV against representative baselines include DDPO (Black et al., 2023) for
RL-based fine-tuning, DRaFT (Clark et al., 2023) for direct backpropagation, and DAS (Kim et al.,
2025c) for test-time search. We also include TDPO (Zhang et al., 2024b), a gradient-free RL-based
method specifically designed to mitigate reward over-optimization.

5.1.2 RESULTS

Figure 2 shows the training dynamics for each method, demonstrating how alignment and diversity
metrics evolve as the aesthetic reward is optimized. The results in Figure 2-(a) and Figure 2-(b)
indicate that DAV and DAV-KL maintain a high alignment score while the baselines exhibit a sharp
degradation in alignment scores. Similarly, Figure 2-(c) and Figure 2-(d) demonstrate that DAV and
DAV-KL are substantially better at preserving sample diversity throughout the fine-tuning process.

Table 1 provides a quantitative comparison of our methods against the baselines. The first key
observation is a comparison between our methods and the fine-tuning baselines. DAV achieves a
significantly higher reward (8.04) than both DDPO (6.83) and DRaFT (7.22), while maintaining a
high ImageReward score (0.95) comparable to the pretrained model. In DAV-KL, KL-regularization
induces a trade-off: it enhances diversity and ImageReward while incurring a reduction in reward.
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Figure 4: Comparison of ELBO and aesthetic score trends for DAV and its ablated baselines.

As illustrated in Figure 3, both DAV and DAV-KL generate well-aligned samples without producing
the repetitive backgrounds seen in the outputs of DDPO and DRaFT-1.

The second key observation from Table 1 is the comparison among test-time search methods. DAV
Posterior achieves the highest aesthetic score (9.18), substantially outperforming DAS (7.22), while
DAV-KL Posterior obtains the best ImageReward (1.14) with competitive aesthetic performance
(8.66). Although our methods exhibit a slight decrease in diversity compared to DAS, our methods
deliver clear gains in reward and alignment quality.

Effect of E-step Variants in DAV. In Search and distill, the model is updated using samples from
η∗0 instead of η∗k, skipping the update of the posterior distribution. In Reweight, we replace test-time
search with trajectory reweighting by exponentiated reward, following Abdolmaleki et al. (2018).
By ablating key components of the E-step, we evaluate the effectiveness of test-time search in their
ability to optimize the ELBO.

Figure 4 illustrates the ELBO and the corresponding aesthetic score trends for each variation. We
empirically validated that DAV consistently improves ELBO, although we cannot guarantee mono-
tonic improvement due to approximation errors in the E-step. The ablated baselines not only fail to
optimize ELBO, as expected, but also fail to increase the aesthetic score. These results suggest the
importance of test-time computation in the E-step for our variational EM framework.

Additional analysis. We conduct sensitivity analyses of the hyperparameters of DAV in Appendix I.
Lower α increases reward but risks over-optimization, while higher values improve diversity. Set-
ting γT ≈ 0 stabilizes optimization by limiting early-step credit assignment. We analyze the effect
of the number of distillation steps in the M-step and the number of particles in importance sam-
pling. We also evaluated DAV with non-differentiable objectives, such as the compressibility and
incompressibility rewards from Black et al. (2023), and we report the results in Appendix J.
5.2 DISCRETE DIFFUSION: DNA SEQUENCE DESIGN

We pretrained the masked discrete diffusion model (Sahoo et al., 2024) on the large-scale DNA
enhancer dataset from Gosai et al. (2023). The dataset consists of 700k DNA sequences (200-bp
length) and their corresponding enhancer activity in human cell lines, as measured by massively
parallel reporter assays (MPRAs). All subsequent results are averaged over six random seeds.

5.2.1 EXPERIMENTAL SETUP

Metrics. Our metric setup follows the methodology of Wang et al. (2025). As the target reward,
we use a trained Enformer network (Avsec et al., 2021) to predict enhancer activity (Pred-Activity
(↑)). To avoid data leakage, we train two distinct Enformer models on disjoint splits of the enhancer
dataset (Gosai et al., 2023): one provides rewards during fine-tuning, and the other serves solely
as a held-out evaluator. We further assess the generated sequences on three criteria: diversity, nat-
uralness, and biological validity. We quantify diversity using the average Levenshtein distance (↑)
(Haldar & Mukhopadhyay, 2011) between generated sequences. We assess naturalness using the 3-
mer Pearson Correlation (3-mer Corr (↑)) against the top 0.1% most active enhancers in the dataset.
Finally, to measure biological validity and detect over-optimization, we use an independently trained
classifier for Chromatin Accessibility (ATAC-Acc (↑)) (Consortium et al., 2012; Lal et al., 2024).
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Figure 5: Performance comparison of DAV and baseline models. The x-axis represents the reward
(Pred-Activity), while the y-axis shows (a) Diversity (Levenshtein Diversity), (b) Naturalness (3-
mer Corr), and (c) Validity (ATAC-Acc).

Baselines. We compare DAV against representative baselines of discrete diffusion model alignment.
For direct backpropagation on discrete models, our baseline is DRAKES (Wang et al., 2025). For
RL-based fine-tuning, we compare against DDPO (Black et al., 2023) and VIDD (Su et al., 2025).

5.2.2 RESULTS

As shown in Figure 5, our methods outperform baselines in generating enhancer DNA sequences.
In Figure 5-(a), DAV achieves the best trade-off between reward and diversity. Figure 5-(b) shows
that our methods achieve the best performance in both reward and naturalness. Figure 5-(c) further
confirms that our methods effectively balance reward and validity. Moreover, DAV Posterior further
enhances reward optimization while maintaining diversity and naturalness. These results showcase
the versatility of DAV in the discrete diffusion alignment, where it effectively optimizes for reward
while maintaining high sample diversity. The entire table of results is presented in Table 2.

6 DISCUSSION

Conclusion. We introduced DAV, a novel diffusion alignment framework based on the variational
Expectation-Maximization algorithm. The E-step performs test-time search guided by a soft Q-
function to discover high-reward, diverse, and natural samples; the M-step amortizes the result of
test-time search by forward-KL distillation, fine-tuning diffusion models to the high-reward dis-
tribution while preserving the diversity and naturalness. We validated DAV on two distinct data
modalities: continuous diffusion for image synthesis and discrete diffusion for DNA sequence de-
sign. Our results show that DAV effectively fine-tunes diffusion models to optimize rewards while
mitigating over-optimization and diversity collapse in both domains.

Limitations and future works. Our work presents two primary avenues for future research. The
first addresses the main limitation of our current framework: the computational overhead of the
test-time search in the E-step. Fortunately, the E-step is modular, allowing for the direct integration
of more efficient search algorithms. We anticipate that leveraging recent and future advances in
test-time search (Zhang et al., 2025; Li et al., 2025) will substantially mitigate this bottleneck. The
second limitation is the approximation error in the soft Q-function, which may guide the test-time
search toward suboptimal distributions. This error primarily stems from the inaccuracy of Tweedie’s
formula for approximating the posterior mean at xt with high noise levels (Chung et al., 2023).
Future work could address this by employing distillation techniques (Salimans & Ho, 2022; Song
et al., 2023). Distillation techniques substantially reduce the number of denoising steps required for
accurate x0 prediction, expected to enhance posterior mean approximation at large timesteps and
yield more reliable Q-function approximations.
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THE USE OF LARGE LANGUAGE MODELS

Large Language Models were employed exclusively for two auxiliary tasks: (1) minor polishing
of the manuscript text for improving grammar and readability, and (2) limited assistance in code
implementation for debugging syntax or refactoring functions. Importantly, LLMs did not contribute
to the conception of the research problem, the development of the core methodology, or the design
and execution of experiments. All critical ideas, methods, and analyses presented in this paper are
the original work of the authors.
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A PSEUDO CODE OF DAV

Algorithm 1 Diffusion Alignment as Variational EM (DAV)
Require: Pretrained diffusion parameters θ0.

1: Initialize model parameters θ ← θ0

2: for k = 1, . . . , N do
3: Initialize dataset of trajectories D ← ∅
4: E-step: Posterior Exploration via Test-Time Search
5: for b = 1, . . . , B do
6: Sample initial noise xT ∼ ρ0(xT )
7: Initialize trajectory τ ← {xT }
8: for t = T, . . . , 1 do
9: Sample M particles from q̂k(·|xt) with Equation (56) or Equation (59)

10: Compute weights {wm}Mm=1 with Equation (62)
11: Resample xt−1 ∼ Categorical({wm}Mm=1)
12: Append xt−1 to trajectory τ
13: end for
14: Add completed trajectory τ to D
15: end for
16:
17: M-step: Amortization via Forward KL Projection
18: for τ ∈ Dk do
19: Update θ by minimizing Equation (10) or Equation (11)
20: end for
21: end for
22: return Optimized parameters θN
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B APPROXIMATION OF THE SOFT Q-FUNCTION

In KL-regularized RL for diffusion fine-tuning, prior works approximate the Soft Q-function for the
undiscounted MDP case where γ = 1 (Uehara et al., 2024a; Li et al., 2024b). By leveraging the
recursive soft Bellman equation and the posterior mean approximation by Tweedie’s formula (Efron,
2011; Chung et al., 2023), the soft Q-function can be approximated as:

Q∗
soft(xt, xt−1; γ = 1) ≈ r(x̂0(xt)) (12)

However, this approximation does not hold in the more general discounted setting where γ ̸= 1.
We find that for a discounted MDP, the recursive form of the Bellman equation instead yields lower
and upper bounds on the Soft Q-function. For t ≥ 2 and 0 < γ < 1, we derive the following
inequalities:

αγ logEx0:t−1∼pprior

[
exp

(
γt−2r(x0)

α

)]
≤Q∗

soft(xt, xt−1) ≤ αγt−1 log

(
Epprior

[
exp

(
r(x0)

α

)])
.

For inducing upper inequalities, we start by substituting the definition of the soft Q-function into the
soft value function, and we obtain the recursive expression of the soft value function:

V ∗
soft(xt) = α logExt−1∼pprior(·|xt)

[
exp

(r(xt, xt−1)

α
+
γ

α
V ∗

soft(xt−1)
)]

(13)

Based on the sparse reward MDP defined in Section 3.2, the immediate reward r(xt, xt−1) is zero
for all steps t ≥ 2. This simplifies the recursion to

V ∗
soft(xt) = α logExt−1∼pprior(·|xt)

[
exp

( 1
α
V ∗

soft(xt−1)
)]
, for t ≥ 2. (14)

With the terminal condition V ∗
soft(x0) = 0, the soft Q-value at t = 1 is simply the immediate reward,

Q∗
soft(x1, x0) = r(x1, x0) = r(x0). By substituting this into the definition of the soft value function,

we can derive the value at t = 1 and subsequently the Q-function at t = 2 as:

V ∗
soft(x1) = α logEx0∼pprior(·|x1)[exp(r(x0))/α] (15)

Q∗
soft(x2, x1) = γα logEx0∼pprior(·|x1)

[
exp

(
r(x0)

α

)]
(16)

To simplify the notation, we define the auxilary variable βt(xt) := exp
(
V ∗

soft(xt)/α
)
. From the

definition of V ∗
soft, the case at t = 1 is β1(x1) = Ex0∼pprior [exp(r(x0)/α)]. Then the recursion of soft

Bellman equations for t ≥ 2 can be written as:

βt(xt) = Ext−1∼pprior [βt−1(xt−1)
γ ]. (17)

Since the function z 7→ zγ is concave for 0 < γ < 1, applying Jensen’s inequality yields the fol-
lowing relationship: (E[Z])γ ≥ E[Zγ ]. By iteratively applying this result to the recursive definition
of βt(xt) ), we can establish a lower bound as follows:

βt(xt) = Ext−1∼pprior [βt−1(xt−1)
γ ] (18)

= Ext−1∼pprior [(Ext−2∼pprior [βt−2(xt−2)
γ ])γ ] (19)

≥ Ext−2:t−1∼pprior [(βt−2(xt−2))
γ2

] (20)

≥ Ext−3:t−1∼pprior [(βt−3(xt−3))
γ3

] (21)

· · · (22)

≥ Ex1:t−1∼pprior [(β1(x1))
γt−1

] (23)

= Ex1:t−1∼pprior [Ex0∼pprior [exp(r(x0)/α)]
γt−1

] (24)

By applying Jensen’s inequality again, we can obtain the lower bound of the βt(xt):

Ex0:t−1∼pprior [(exp(r(x0)/α)
γt−1

] ≤ βt(xt) (25)
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In a similar manner, the upper bound of βt(xt) for t ≥ 2 is derived using E[Zγ ] ≤ (E[Z])γ :

β(xt) = Ext−1∼pprior [βt−1(xt−1)
γ ] (26)

≤ (Ext−1∼pprior [βt−1(xt−1)])
γ (27)

≤ (Ext−1,xt−2∼pprior [βt−2(xt−2)])
γ2

(28)

· · · (29)

≤ (Ex1:t−1∼pprior [β1(x1)])
γt−1

(30)

= (Ex1:t−1∼pprior [Ex0∼pprior [exp(r(x0)/α)]])
γt−1

(31)

By the law of total expectation, the nested expectations can be combined into a single expectation
over the trajectory x0:t−1, which yields the final upper bound for βt(xt):

βt(xt) ≤ (Ex0:t−1∼pprior [exp(r(x0)/α)])
γt−1

(32)

Combining these results, the bounds on βt for t ≥ 2 is summarized as:

Ex0:t−1∼pprior [(exp(r(x0)/α))
γt−1

] ≤ βt(xt) ≤ Ex0:t−1∼pprior [exp(r(x0)/α)])
γt−1

(33)

By substituting βt(xt) = exp(V ∗
soft(xt)/α) back into the inequality, we obtain the bounds on the

exponentiated soft value function:

Ex0:t−1∼pprior

[
exp

(
γt−1r(x0)

α

)]
≤ exp

(
V ∗

soft(xt)

α

)
≤

(
Ex0:t−1∼pprior

[
exp

(
r(x0)

α

)])γt−1

(34)

Taking the logarithm of all parts and multiplying by α yields the bounds on the soft value function
V ∗

soft(xt):

α logEx0:t−1∼pprior

[
exp

(
γt−1r(x0)

α

)]
≤V ∗

soft(xt) ≤ αγt−1 log

(
Ex0:t−1∼pprior

[
exp

(
r(x0)

α

)])
.

(35)

Using the relation Q∗
soft(xt, xt−1) = γV ∗soft(xt−1) for t ≥ 3 from Equation (4), we can derive the

corresponding bounds for the soft Q-function:

αγ logEx0:t−1∼pprior

[
exp

(
γt−2r(x0)

α

)]
≤Q∗

soft(xt, xt−1) ≤ αγt−1 log

(
Epprior

[
exp

(
r(x0)

.
α

)])
A remarkable simplification occurs when we approximate the log-sum-exp terms in both the lower
and upper bounds using Tweedie’s formula (Efron, 2011; Chung et al., 2023). We find that both
complex bounds are approximated to the same simple, closed-form expression. This result, which
is also consistent with the exact solutions for the boundary cases at t = 1 and t = 2, yields the
following unified, first-order approximation for the soft Q-function:

Q∗
soft(xt, xt−1) ≈ γt−1r(x̂0(xt−1)). (36)
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C DERIVATION OF EVIDENCE LOWER BOUND

We derive the ELBO of the marginal log-likelihood of the optimality variable, log pθ(O = 1). The
derivation begins by introducing a variational distribution η(τ) over the trajectories. By applying
Jensen’s inequality, we can derive the ELBO as follows:

log pθ(O = 1) = log

∫
pθ(τ)p(O = 1|τ) dτ (37)

= log

∫
η(τ)

pθ(τ)p(O = 1|τ)
η(τ)

dτ (38)

≥
∫
η(τ)

(
log p(O = 1|τ) + log

pθ(τ)

η(τ)

)
dτ (39)

∝ Eτ∼η

[
T∑

t=1

(
r(xt, xt−1)

α
+ log

pθ(xt−1|xt)
η(xt−1|xt)

)]
=: Jα(η, pθ) (40)

This final expression constitutes the ELBO, which serves as our tractable surrogate objective for
alignment.
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D PROOF OF PROPOSITION 1

Proposition 1 (Lower bound on likelihood of O with discount factor γ). Let γ ∈ (0, 1] be the
discount factor. The likelihood of the optimality variable O admits the following lower bound:

Jα,γ(η, pθ) ≜ Eτ∼η(τ)

[
T∑

t=1

γT−t

(
r(xt, xt−1)

α
+ log

pθ(xt−1 | xt)
η(xt−1 | xt)

)]
. (7)

Proof. For clarity, we stick to MDP notations in Section 3.2. First, as suggested in Levine (2018),
we introduce an absorbing state sabsorb to take into account the discount factor γ and let S̄ :=
S ∪ {sabsorb}. Each action a at s make transition to s′ ∈ S following the original dynamics P
with probability γ and to sabsorb with probability 1 − γ, i.e., the modified transition probability P̄
becomes:

P̄ (s′ | s ∈ S, a) =
{
γP (s′ | s, a) if s′ ∈ S
1− γ if s′ = sabsorb,

(41)

and P̄ (sabsorb | sabsorb, a) = 1.

Similarly, the modified reward becomes:

r̄(s, a) =

{
r(s, a) if s ∈ S
0 if s = sabsorb.

(42)

Also, p̄θ and η̄ define distributions over trajectories in the modified MDP, with p̄θ(·|sabsorb) =
η̄(·|sabsorb) = δsabsorb(·) and p̄θ(·|s) = pθ(·|s), η̄(·|s) = η(·|s) if s ∈ S.

We can derive the ELBO for the modified MDP in the same way as Equation (40), which gives:

log pθ(O = 1) ≥ Eτ∼η̄,P̄

[
T−1∑
t=0

(
r̄(st, at)

α
+ log

p̄θ(at|st)
η̄(at|st)

)]
=: Jα,γ(η̄, p̄θ) (43)

By linearity of expectation, we can swap the sum and the expectation:

Jα,γ(η̄, p̄θ) =
T−1∑
t=0

E(st,at)∼η̄,P̄

[
r̄(st, at)

α
+ log

p̄θ(at|st)
η̄(at|st)

]
. (44)

Consider the event Et, meaning the agent has not yet reached the absorbing state up to time t, i.e.,
st ∈ S,∀t ∈ [0, 1, . . . , t] and Pr(Et) = γt. Recall the law of total expectation:

E(st,at)∼η̄,P̄ [·] = Pr(Et) · E(st,at)∼η̄,P̄ [·|Et] + (1− Pr(Et)) · E(st,at)∼η̄,P̄ [·|¬Et] .

If ¬Et, then st = sabsorb, r̄(st, at) = 0, and log p̄θ(at|st)
η̄(at|st) = 0. On the other hand, when conditioned

on Et, η̄(·|st) = η(·|st), p̄θ(·|st) = pθ(·|st), r̄(st, at) = r(st, at), and E(st,at)∼η̄,P̄ [·|Et] =

E(st,at)∼η [·]. Now, we can rewrite Jα,γ in the original MDP:

Jα,γ(η̄, p̄θ) =
T−1∑
t=0

Pr(Et) · E(st,at)∼η̄,P̄

[
r̄(st, at)

α
+ log

p̄θ(at|st)
η̄(at|st)

∣∣∣∣Et

]
(45)

=

T−1∑
t=0

γtE(st,at)∼η

[
r(st, at)

α
+ log

pθ(at|st)
η(at|st)

]
(46)

= Eτ∼η

[
T−1∑
t=0

γt
(
r(st, at)

α
+ log

pθ(at|st)
η(at|st)

)]
. (47)

By rewriting the last line using notations with xt’s:

Jα,γ(η, pθ) = Eτ∼η

[
T∑

t=1

γT−t

(
r(xt, xt−1)

α
+ log

pθ(xt−1|xt)
η(xt−1|xt)

)]
. (48)
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E DETAILS OF TEST-TIME SEARCH FOR THE E-STEP

This section details the test-time search procedure for DAV. In the E-step, we are required to
sample trajectories from the optimal posterior distribution, η∗(τ). We first simplify the problem
by defining an optimal policy, η∗(xt−1|xt), and decompose the optimal posterior distribution as
η∗(τ) = ηT (xT )

∏T
t=1 η

∗(xt−1|xt). We then draw samples from this policy using a two-stage pro-
cess: (1) Constructing proposal distribution η̂(xt−1|xt) using gradient guidance from the reward
function (Grathwohl et al., 2021; Dhariwal & Nichol, 2021), and (2) Employing importance sam-
pling to refine these samples, correcting for mismatches with the true posterior.

E.1 DERIVING SOFT OPTIMAL POLICY FOR EXPLORATION

For the fixed policy parameters of diffusion model at the k-th iteration, pθk , the optimal posterior
policy η∗k(xt−1|xt) for 1 ≤ t ≤ T is defined as the policy that maximizes the regularized objective
Jα,γ(η, pθk). Because our objective Jα,γ(η, pθk) is equivalent to the KL-regularized RL objective
in Equation (1), η∗k(xt−1|xt) is the soft optimal policy. Let Q∗

soft,θk denote the soft Q-function for
the objective regularized with respect to the prior policy pθk . Then, the soft optimal policy is found
by solving the following maximization problem:

η∗k(xt−1|xt) = argmax
η(·|xt)

Ext−1∼η(·|xt)

[
Q∗

soft,θk(xt, xt−1)

α
− log

η(xt−1|xt)
pθk(xt−1|xt)

]
(49)

= argmax
η(·|xt)

Ext−1∼η(·|xt)

[
log

pθk(xt−1|xt) exp(Q∗
soft,θk(xt, xt−1)/α)

η(xt−1|xt)

]
(50)

= argmin
η(·|xt)

DKL(η(xt−1|xt)||
1

Z
pθk(xt−1|xt) exp(Q∗

soft,θk(xt, xt−1)/α))− logZ

(51)

=
1

Z
pθk(xt−1|xt) exp(Q∗

soft,θk(xt, xt−1)/α), (52)

where Z =
∫
pθk(xt−1|xt) exp(Q∗

soft,θk(xt−1|xt)/α)dxt−1. To summarize, the soft optimal policy
η∗k(xt−1|xt) takes the form of a Boltzmann distribution, where the prior policy pθk is re-weighted
by the exponentiated soft Q-function to favor actions with higher expected soft returns.

E.2 GRADIENT-GUIDED TEST-TIME SEARCH WITH IMPORTANCE SAMPLING CORRECTION

We now detail the two-stage procedure for sampling from the soft optimal policy, η∗k(xt−1|xt),
which is designed to generate high-reward samples while preserving the diversity of the prior model:

• Proposal construction: If the reward function is differentiable, construct a proposal distri-
bution η̂k for η∗k using a first-order Taylor expansion.

• Importance sampling correction: We employ importance sampling to correct for the
distributional mismatch between our proposal distribution η̂k and the optimal policy η∗k.

E.2.1 CONSTRUCTING PROPOSAL DISTRIBUTION VIA TAYLOR EXPANSION

For complex reward functions where the target posterior deviates significantly from the current pol-
icy, leveraging the gradient of a differentiable reward function can dramatically improve the effi-
ciency of the E-step. This gradient-guided exploration provides a more direct path to discovering
high-reward samples.

Continuous diffusion. In the case of continuous diffusion models, we incorporate the reward gra-
dient into the reverse process by leveraging a first-order Taylor expansion, as previously suggested
by Dhariwal & Nichol (2021); Kim et al. (2025c). We derive our proposal distribution from the
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optimal soft policy η∗k by first approximating the soft Q-function with the reward function:

η∗k(xt−1|xt) =
1

Z
pθk(xt−1|xt) exp

(
1

α
Q∗

soft,θk(xt, xt−1)

)
(53)

≈ 1

Z
pθk(xt−1|xt) exp

(
γt−1

α
r(x̂0(xt−1))

)
(54)

where x̂0(xt−1) = Ep
θk
[x0|xt−1] and pθk(xt−1|xt) = N (xt−1;µθk(xt, t), σ

2
t I). To maintain a

tractable Gaussian form, we approximate r(x̂0(xt−1)) with a first-order Taylor expansion around
the mean of the prior distribution, µθk :

r(x̂0(xt−1)) ≈ r(x̂0(xt)) +∇xt
r(x̂0(xt))

T (xt−1 − µθk(xt, t)). (55)

Since r(x̂0(xt)) does not depend on xt−1, it is absorbed into Z, leaving only the linear term in
the exponent. This process effectively incorporates the linearized reward gradient as a guidance
term, shifting the mean of the prior distribution (Dhariwal & Nichol, 2021). We therefore define our
proposal policy η̂k as this modified Gaussian:

η̂k(xt−1|xt) :=
1

Z
pθk(xt−1 | xt) exp

(
γt−1

α
r(x̂0(xt−1))

)
(56)

= N
(
xt−1; µθk(xt, t) +

σ2
t

α
γt−1∇xt

r(x̂0(xt)), σ
2
t I

)
. (57)

Discrete diffusion. Drawing inspiration from Grathwohl et al. (2021) and Nisonoff et al. (2025),
we extend gradient-guided E-step to a discrete diffusion model by incorporating Taylor expansion-
based gradient exploitation of a differentiable soft optimal Q-function. Similar to the derivation
process of proposal distribution of the continuous diffusion, our derivation begins with the approxi-
mated optimal policy, where the soft Q-function is approximated as a posterior mean approximation:

η̂k(xt−1 | xt) :=
1

Z
pθk(xt−1 | xt) exp

(
γt−1

α
r(x̂0(xt−1))

)
(58)

To create a tractable gradient signal, we apply a first-order Taylor expansion to the reward function
r(x̂0(xt−1)) around the current state estimate x̂0(xt). After substituting the expansion, we can sim-
plify the expression. Terms that are constant with respect to xt−1 are absorbed into the normalization
constant Z. This isolates the influence of the gradient signal as a linear term that directly modifies
the log-probabilities of the prior distribution pθk .

η̂k(xt−1 | xt) ∝ pθk(xt−1 | xt) exp
(
γt−1

α

[
r(x̂0(xt)) +∇xt

r(x̂0(xt))
⊤(xt−1 − xt)

])
(59)

∝ pθk(xt−1 | xt) exp
(
γt−1

α
∇xtr(x̂0(xt))

⊤xt−1

)
(60)

The final expression defines a new categorical distribution whose log-probabilities are those of the
prior policy, shifted by a linear guidance term. Finally, the proposal distribution is Categorical with
logit-additive guidance:

η̂k (xt−1 | xt) =
L∏

ℓ=1

Cat
(
xℓt−1; softmax (zℓ)

)
(61)

where the logits vector zℓ ∈ RK for position ℓ has components:

[zℓ]i = log πθk (xt−1,ℓ = i | xt) +
γt

α

[
∇xt,ℓ

r (x̂0 (xt))
]
i

,

and ℓ ∈ {1, · · · , L}: dimension, i ∈ {1, · · · ,K}: category index.
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E.2.2 IMPORTANCE SAMPLING CORRECTION

Since the proposal distribution η̂k is constructed via Taylor expansion of the reward function, the
resulting samples may deviate from the true optimal distribution q∗k. To correct for this mismatch,
we employ importance sampling. Given M samples {xmt−1}Mm=1 from the proposal distribution η̂k,
we assign importance weight to each particle as:

wm
t−1 :=

η∗(xmt−1|xt)
η̂(xmt−1|xt)

(62)

=
pθk(xmt−1|xt)
η̂(xmt−1|xt)

exp(
1

α
Q∗

soft,θk(xt, x
m
t−1)) (63)

≈ pθk(xmt−1|xt)
η̂(xmt−1|xt)

exp(
γt−1

α
r(x̂0(x

m
t−1))) (64)

A corrected sample from q∗k is then obtained by resampling according to the normalized weights:

xt−1 ∼ Cat

{
wm

t−1∑M
n=1 w

n
t−1

}M

m=1

 (65)
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F EXTENDED RELATED WORKS

F.1 SELF-TRAINING

The self-training paradigm, pioneered by the AlphaGo series (Silver et al., 2016; 2017a;b), alternates
between an expert rollout stage to generate high-quality data and a distillation stage to fine-tune the
model on that data via maximum likelihood estimation (MLE). This framework has been success-
fully adapted to Large Language Models in methods like STaR (Zelikman et al., 2024), which boot-
straps reasoning from self-generated rationales, and ReST (Gulcehre et al., 2023; Singh et al., 2024;
Zhang et al., 2024a), which distills a policy from a filtered set of high-quality outputs. In the same
vein, DAV translates the self-training paradigm to diffusion models. Within the DAV framework, the
test-time search (E-step) acts as the expert rollout to discover diverse, high-reward samples, which
are then used for distillation (M-step) via MLE. To our knowledge, DAV is the first to apply the
self-training framework to the problem of aligning diffusion models.

F.2 GRPO AND DPO BASED GENERATIVE MODEL ALIGNMENT

Recently, Group Relative Policy Optimization (GRPO) has emerged as a strong method for aligning
LLMs, often outperforming PPO-based approaches (Shao et al., 2024). Following this trend, several
GRPO-based alignment methods for diffusion fine-tuning have been introduced, achieving strong
performance in reward optimization (Liu et al., 2025; Xue et al., 2025b;a). However, their primary
objective is reward maximization rather than preventing over-optimization. DAV is designed to
mitigate over-optimization, providing a balanced trade-off between reward optimization, diversity,
and naturalness.

There is also a line of work aligning diffusion models using Direct Policy Optimization (DPO;
Rafailov et al., 2023). While these methods achieve strong human preference win rates over pre-
trained models (Wallace et al., 2024; Li et al., 2024a; Zhu et al., 2025), they are fundamentally
constrained by the quality of pre-collected preference datasets, which often limits their performance
frontier (Xue et al., 2025b). Moreover, prior GRPO and DPO-based approaches focus primarily on
visual generative tasks, whereas DAV provides a unified framework that is empirically validated on
both continuous and discrete diffusion models.
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G ADDITIONAL BACKGROUNDS

G.1 CONTINUOUS DIFFUSION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of hierarchical generative
models that learn to approximate the data distribution. A denoising diffusion model generates a
sample x0 by a Markov generative process—often referred to as the reverse process—that starts
from a standard Gaussian prior pT (xT ) = N (0, I):

pθ(x0:T ) = pT (xT )

T∏
t=1

pθ(xt−1 | xt), pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), σ

2
t I

)
.

The forward process is defined by a fixed Markov chain that gradually corrupts the data x0 with
Gaussian noise according to a variance schedule {βt}Tt=1:

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1), q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
.

A useful property of the forward process is that xt can be obtained directly in closed form without
simulating the entire chain:

q(xt | x0) = N
(
xt;
√
ᾱt x0, (1− ᾱt)I

)
,

where αt = 1− βt, ᾱt =
∏t

s=1 αs.

Training a diffusion model is performed by optimizing the evidence lower bound(ELBO) on the data
log-likelihood Ex0∼qdata [log pθ(x0)], which can be decomposed as follows:

Eq[log pθ(x0|x1)]−
T∑

t=2

Eq[DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))]−DKL(q(xT |x0) ∥ pT (xT )).

G.2 DISCRETE DIFFUSION

Our discrete diffusion model follows the framework defined in Masked Diffusion Language Models
(MDLM) (Sahoo et al., 2024).

Notation. We begin by considering a single discrete variable x0 ∈ {1, 2, ...,K} that belongs to a
finite vocabulary of size K. We denote the mask token as [M ], which serves as an absorbing state
in our forward diffusion process. The diffusion process operates over T discrete time steps, with
t ∈ {1, 2, ..., T}. We use Qt ∈ [0, 1]K×K to denote row-stochastic transition matrices where each
row sums to 1. The noise schedule is parameterized by αt = e−σ(t) where σ(t) : [0, 1]→ R+, and
βt = 1− αt controls the corruption rate.

Forward diffusion process. The forward diffusion process gradually corrupts the clean data x0
through a markov chain over T discrete time steps:

q(x1:T | x0) =
T∏

t=1

q (xt | xt−1) .

Each forward step follows a categorical distribution:

q (xt | xt−1) = Cat
(
xt; ext−1

Qt

)
,

where ext−1
is the one-hot encoding of xt−1. The choice of Qt determines the corruption process.

Austin et al. (2021) deals with various options for Qt such as uniform, absorbing, and Gaussian;
however, we are mainly considering an absorbing kernel as in Sahoo et al. (2024):

(Qt)i,j =


βt, if j = [M ] and i ̸= [M ]

1, if i = j = [M ]

1− βt, if j = i ̸= [M ]

0. otherwise
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Following prior works, log-linear schedule σ(t) = − log(1 − t) gives us αt = 1 − t and βt = t,
meaning the corruption probability increases linearly with time.
Additionally, marginal forward distribution can be computed as:

q (xt | x0) = Cat
(
xt; ex0Qt

)
,

where Qt = Q1Q2 · · ·Qt is the cumulative transition matrix. This analytical tractability enables
sample-efficient training as we can directly sample xt from x0 without simulating the entire forward
chain. Let ᾱt =

∏t
s=1 αs =

∏t
s=1 (1− βs). Then:

(Qt)i,j =


1− αt, if j = [M ] and i ̸= [M ]

1, if j = i = [M ]

αt, if j = i ̸= [M ]

0. otherwise

This means the marginal distribution simplifies to:

q(xt|x0) =


αt, if xt = x0 ̸= [M ]

1− αt, if xt = [M ] and x0 ̸= [M ]

1, if x0 = [M ]

0. otherwise

In other words, each unmasked token x0 remains unchanged with probability αt. This simple binary
choice makes sampling and likelihood computation extremely efficient.

Reverse diffusion process. Austin et al. (2021) introduces the x0-parameterization for the reverse
process. Sahoo et al. (2024) further simplifies the process by introducing substitution-based (SUBS)
parameterization. SUBS-parameterization simplifies the reverse diffusion process by explicitly pre-
venting the model from predicting the absorbing state ([M ]) when conditioned on an intermediate
sample, and also by ensuring that once a token is denoised, it is permanently fixed and cannot revert
to a masked state in subsequent sampling steps. The reverse process in this paper is parameterized
as:

pθ(xs|xt) = q(xs|xt, x0 = x̂0(xt, t; θ)) =

{
Cat(xs;xt), if xt ̸= [M ]

Cat(xs;
(1−αs)m+(αs−αt)x̂0(xt,t;θ)

1−αt
if xt = [M ]

where the pθ(xs|xt) for s < t denoises from time t back to time s, and m denotes the one-hot
encoding of the mask token [M ].

Loss function. From the original loss in Ho et al. (2020), Sahoo et al. (2024) derives a simplified
training objective through Rao-Blackwellization of the discrete-time ELBO. We define a sequence
of time step pairs (s(1), t(1)), ..., (s(T ), t(T )) where 0 ≤ s(i) < t(i) ≤ T for all i, which partitions
the diffusion trajectory into segments. The key result is:

LMDLM =

T∑
i=1

Eq

[
DKL

(
q
(
xs(i) | xt(i), x0

)
∥pθ

(
xs(i) | xt(i)

))]
=

T∑
i=1

Eq

[
αt(i) − αs(i)

1− αt(i)
log

〈
x̂0

(
xt(i); θ

)
, x0

〉]

Multivariate discrete variables. Now we extend to multivariate discrete data, where we have
a sequence of discrete variables. We redefine our notation for this multivariate case xt =(
x1t , x

2
t , . . . , x

L
t

)
where each xℓt ∈ {1, 2, . . . ,K}, L is the sequence length, and each position ℓ

represents a discrete variable in the sequence. The forward process assumes independence across
positions:

q (xt | xt−1) =

L∏
ℓ=1

q
(
xℓt | xℓt−1

)
.
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Each component follows the same absorbing state transition as in the single-variable case:
q
(
xℓt | xℓt−1

)
= Cat

(
xℓt; exℓ

t−1
Qt). The reverse process allows for dependencies across positions:

pθ (xs | xt) =
L∏

ℓ=1

pθ
(
xℓs | x1:Lt

)
, s < t.

Each position depends on the entire sequence context: pθ
(
xℓs | x1:Lt

)
=

Cat
(
xℓs; softmax

(
fθ

(
x1:Lt , t

)))
. Thereby, the training objective extends the single-variable

SUBS formulation:

Lmulti
MDLM =

T∑
i=1

Eq

[
L∑

ℓ=1

αt(i) − αs(i)

1− αt(i)
I
[
xℓt(i) = [M ]

]
log pθ

(
xℓ0 | x1:Lt(i)

)]
,

where I is an indicator function, and it is essential to ensure that we don’t compute the loss based on
the unmasked tokens.
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H EXPERIMENTAL DETAILS

H.1 TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion model. Based on Stable Diffusion v1.5 (Rombach et al., 2022), we adopt 50-step DDPM
sampling (Ho et al., 2020) with classifier-free guidance (Ho & Salimans, 2021), setting the guidance
weight to 5.0 for all experiments. For parameter-efficient fine-tuning, we apply LoRA (Hu et al.,
2022) to the denoising UNet with a rank of 4, consistently across all baselines.

Details of evaluation. To assess prompt–image alignment, we use CLIPScore (Radford et al.,
2021) and ImageReward (Xu et al., 2023). To evaluate diversity, we employ two LPIPS-based met-
rics (Zhang et al., 2018), which quantify perceptual differences between images. LPIPS-A measures
diversity across all generated images, irrespective of the prompt, while LPIPS-P measures diversity
within each prompt by computing the mean LPIPS distance among images conditioned on the same
prompt. For all evaluations, we sample 32 images per prompt.

Baselines. We reproduce results for DDPO1 (Black et al., 2023) and TDPO2 (Zhang et al., 2024b)
using their official codebases. As the source code for DRaFT is not publicly available, we use a
faithful implementation based on the AlignProp codebase3 (Prabhudesai et al., 2023). We set the
batch size to 64 for all fine-tuning methods. For DAS4 (Kim et al., 2025c), we adjusted its sampling
steps from 100 to 50 to match other methods. Accordingly, we set its tempering parameter γ to
0.014 to ensure (1 + γ)T − 1 = 1 for T = 50, following the hyperparameter setting guidelines of
the authors.

Training details of baselines. Most baselines are trained for 100 epochs. However, due to its
slower optimization, we trained DDPO for 500 epochs. For all methods, we report the best perfor-
mance prior to collapse. In Table 1, the reported results correspond to epoch 400 for DDPO, epoch
40 for DRaFT, and epoch 100 for TDPO. In the case of DAS, we directly report the performance
obtained from its test-time inference without additional training.

Aesthetic score optimization. We employ the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate of 1e-3, β1 = 0.9, and β2 = 0.999. We set the training batch size to 64.
The core hyperparameters for DAV are set as follows: α = 0.005, γ = 0.9, and an importance
sampling particle size M = 4. For the DAV-KL variant, we use a KL-regularization coefficient of
λ = 0.01. In each iteration, the M-step performs a single update using the dataset collected from
the corresponding E-step. We train the model for 100 epochs, which takes approximately 14 hours
on eight RTX 3090 (24GB) GPUs. A sensitivity analysis for these hyperparameters is presented in
Appendix I.

Compressibility and incompressibility optimization. We use the same hyperparameter configu-
ration as the aesthetic score optimization experiment, with the only exception being the importance
sampling particle size, which we set to M = 16. Training for six epochs takes approximately 2
hours on eight RTX 3090 (24GB) GPUs.

1https://github.com/kvablack/ddpo-pytorch
2https://github.com/ZiyiZhang27/tdpo
3https://github.com/mihirp1998/AlignProp
4https://github.com/krafton-ai/DAS
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H.2 DNA SEQUENCE DESIGN

Diffusion Model. We used the pretrained Masked Diffusion Language Model (MDLM) (Sahoo
et al., 2024), following the pretrained diffusion from the Li et al. (2024b). This model is trained on
the Enhancer dataset (Gosai et al., 2023), which consists of DNA sequences of length 200.

Reward Oracle. Our reward modeling and evaluation setup follows that of DRAKES (Wang et al.,
2025). To prevent data leakage, we use two separate reward oracles trained on distinct data splits
from Lal et al. (2024). Both oracles are Enformer models (Avsec et al., 2021) initialized with
pretrained weights; one serves as the reward signal during fine-tuning, while the other is reserved
for held-out evaluation. Further details on the evaluation protocol can be found in Wang et al. (2025),
Appendix F.2.

Evaluation Metrics. We assess the generated sequences on three criteria: biological validity, nat-
uralness, and diversity. We generate sequences for evaluation using a batch size of 640. To measure
biological validity and detect over-optimization, we use an independently trained classifier to pre-
dict Chromatin Accessibility (ATAC-Acc) (Lal et al., 2024; Wang et al., 2025; Su et al., 2025). We
assess sequence naturalness using the 3-mer Pearson Correlation (3-mer Corr), which compares the
k-mer frequencies of generated sequences to those of the top 0.1% most active enhancers in the
dataset (Gosai et al., 2023). Finally, we quantify diversity using the average Levenshtein distance
between generated sequences (Haldar & Mukhopadhyay, 2011; Kim et al., 2023).

Predicted activity optimization. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with
a learning rate of 1e-3, β1 = 0.9, and β2 = 0.999. Hyperparameters for our method are set to α =
0.01, γ = 1, and an importance sampling particle size of M = 10. In the M-step, posterior mean
approximation at early timesteps is inherently unreliable. Consequently, directly maximizing the
likelihood in Equation (10) may compel the model to replicate these erroneous estimates, resulting
in unstable optimization. To mitigate this issue, we omit the first 80 steps from the original 128 steps
and perform maximum likelihood estimation only on the remaining 48 steps. We train DAV for 200
epochs, which takes approximately 15 hours on a single RTX 3090 (24GB) GPU.

Experiment Result Table 2 shows that DAV and its posterior variant, DAV Posterior, achieve
a superior balance between reward optimization and validity, and naturalness compared to baseline
methods. While strong RL-based methods, such as DDPO and VIDD attain high target rewards, they
suffer from a significant drop in diversity and ATAC-acc, which indicates reward over-optimization.
In contrast, our amortized DAV policy achieves a higher reward (7.71) than baselines while main-
taining high diversity (87.91) and naturalness. Furthermore, the DAV Posterior achieves the highest
scores in both the target reward (9.04) and validity (0.865), while still maintaining high diversity.
This demonstrates the ability of our methods to generate high-reward sequences without sacrific-
ing naturalness or diversity. For the test-time search baselines (Li et al., 2024b; Chu et al., 2025),
although SGDD approaches DAV in Pred-activity and even achieves higher diversity, DAV still sub-
stantially outperforms it in ATAC-acc and 3-mer correlation. This demonstrates that DAV Posterior
is significantly more robust to reward over-optimization compared to these baselines.

Method Pred-activity (↑)
(target)

ATAC-acc (↑)
(Validity)

3-mer Corr (↑)
(naturalness)

Levenstein
Diversity (↑)

Pre-trained 0.13 (0.03) 0.018 (0.012) 0.000 (0.081) 111.58 (0.27)
DRAKES 6.05 (1.09) 0.784 (0.354) 0.229 (0.221) 90.38 (16.20)
VIDD 7.31 (0.09) 0.545 (0.425) 0.261 (0.074) 64.31 (10.06)
DDPO 7.51 (0.05) 0.129 (0.266) 0.287 (0.114) 49.12 (13.83)
DAV 7.71 (0.26) 0.552 (0.109) 0.397 (0.145) 87.91 (3.73)

SVDD 5.06 (0.03) 0.244 (0.008) 0.675 (0.004) 64.72 (0.42)
SGDD (β = 30) 8.66 (0.04) 0.225 (0.008) 0.090 (0.020) 110.14 (0.07)
SGDD (β = 50) 8.77 (0.07) 0.223 (0.021) 0.090 (0.019) 109.94 (0.11)
DAV Posterior 9.24 (0.23) 0.920 (0.067) 0.347 (0.160) 87.13 (4.63)

Table 2: Comparison of sequence design methods.
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I SENSITIVITY TEST

This section provides a sensitivity analysis for the hyperparameters governing the test-time search in
DAV. We examine four key parameters: (1) α, a temperature parameter that controls the exploration
strength, where lower values lead to sharper sampling by amplifying the influence of the soft Q-
function; (2) γ, the discount factor used for credit assignment; (3) Distillation Steps, the number of
training cycles applied to the dataset collected in a single E-step; and (4) Number of particles used
for the importance sampling step in Equation (62). The experimental setting, except for these four
hyperparameters, follows the setting in Section H.1.

Temperature α. As shown in Figure 6, lower α yields higher reward scores. However, excessively
small values may cause over-optimization, degrading ImageReward, CLIP score, and diversity. In-
creasing α mitigates this effect, producing more diverse samples.

Discount factor γ. Figure 7 shows that setting γT ≈ 0 stabilizes optimization. In contrast, high
values such as γ = 0.95 fail to suppress early-step credit assignment, leading to over-optimization.
Interestingly, before collapse, reward and alignment scores are positively correlated with γ, while
diversity metrics exhibit a negative correlation.

Distillation steps. As illustrated in Figure 8, increasing the number of distillation steps in the
M-step improves the reward when set above one. However, excessive steps reduce both alignment
scores and diversity.

Number of particles. Figure 9 shows that the number of particles used for importance sampling
has a limited impact on overall performance. Yet, large values can harm alignment scores such as
ImageReward and CLIP. For computational efficiency, we set the number of particles to four.
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Figure 6: Effect of the inverse temperature parameter α on performance metrics.
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Figure 7: Effect of the discount factor γ on performance metrics.
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Figure 8: Effect of the number of distillation steps on performance metrics.
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Figure 9: Effect of the number of particles on performance metrics.
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J NON-DIFFERENTIABLE REWARDS
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Figure 10: Optimization trends of DAV on compressibility and incompressibility rewards.
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Figure 11: Qualitative comparison between DAV-KL and DDPO when optimized for the compress-
ibility and incompressibility reward function.

DAV extends naturally to non-differentiable rewards by skipping the gradient-based proposal con-
struction described in Section E.2.1. As shown in Figure 10, DAV-KL effectively optimizes both
compressibility and incompressibility rewards. This result demonstrates the versatility of DAV in
black-box reward optimization.

Figure 11 presents qualitative comparisons between DAV-KL and DDPO. DAV-KL produces more
aligned samples with fewer training epochs. Under the compressibility reward, DAV-KL preserves
only the core parts of the animals, whereas DDPO retains redundant background textures. For
incompressibility, DAV-KL better captures the essential semantic features of the animals, while
DDPO often fails to do so despite DAV-KL achieving higher reward scores. These results confirm
that DAV is effective for optimizing the non-differentiable rewards.
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K COMPUTATIONAL COSTS ANALYSIS

Aesthetic score Table 3 reports the RTX 4090 GPU hours and performance of our method com-
pared to DDPO, DRaFT, and their KL-regularized variants, optimized following the Equation 18 of
Uehara et al. (2024a):

p∗ = argmax
pθ

Eτ∼pθ(τ)

[
r(x0)− α

T∑
t=1

DKL(pθ(· | xt)||pθ0(· | xt))
]

While DAV requires a substantial computational budget, its runtime remains comparable to the high-
epoch DDPO and KL-regularized baselines. Crucially, DAV justifies this cost by achieving a supe-
rior trade-off: it attains the highest aesthetic scores while preserving LPIPS-A and ImageReward. In
contrast, KL-regularized baselines suffer significant degradation in diversity and ImageReward even
when consuming comparable or greater GPU hours.

Method-epochs Aesthetic (↑) LPIPS-A (↑) ImageReward (↑) GPU hours
Pretrained 5.40 0.65 0.90 -
DDPO-100 6.08 0.63 0.96 18.1
DDPO-200 6.44 0.57 0.85 36.1
DDPO-300 6.70 0.54 0.67 54.2
DDPO-400 6.84 0.48 0.28 72.2
DDPO-500 6.82 0.44 -0.44 90.3
DDPO+KL-400 (α=0.3) 6.93 0.47 0.47 82.7
DRaFT-42 7.22 0.46 0.19 1.7
DRaFT+KL-2000 (α=0.035) 6.78 0.59 0.23 220.0
DAV-100 (M=4) 8.04 0.53 0.95 82.4
DAV-KL-100 (M=2) 7.11 0.58 1.11 91.2
DAV-KL-100 (M=4) 6.99 0.58 1.13 98.7

Table 3: Comparison of computational cost and performance for optimizing aesthetic score.

Compressibility and incompressibility As shown in Figure 10, DAV-KL trained for 6 epochs
substantially outperforms the DDPO baseline trained for 100 epochs. In terms of compute, DAV-KL
requires 14.3 GPU hours on an RTX 3090, which is roughly half the cost of DDPO at 28.7 GPU
hours.

DNA sequence design For discrete diffusion model fine-tuning, we reproduce DDPO (Black
et al., 2023) and VIDD (Su et al., 2025) using the official codebases of VIDD 5, and we repro-
duce DRAKES (Wang et al., 2025) following its official implementation 6. All hyperparameters are
set exactly as specified in the original papers. On a single RTX 3090 GPU, the training times are
approximately: 14 hours for DDPO, 16 hours for VIDD, 43 hours for DRAKES, and 15 hours for
DAV. Notably, DAV achieves comparable training time while yielding higher reward and naturalness
with preserved diversity.

5https://github.com/divelab/VIDD
6https://github.com/ChenyuWang-Monica/DRAKES
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