
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TESTJUDGE: A RIGOROUS BENCHMARK FOR UNIT
TEST GENERATION AND QUALITY ASSESSMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Test generation is a critical component of automated code generation, yet existing
benchmarks primarily evaluate generated tests using pass rates, overlooking test
comprehensiveness and error-detection capabilities. We introduce TestJudge, a
benchmark designed to evaluate both the quality and error-detection capabilities of
generated unit tests. TestJudge contains 8,000 programming problems in Python
and C++ sourced from Codeforces. For each problem, we provide 10 diverse code
submissions with known correctness labels, where a generated test is considered
valid only if it correctly classifies all 10 submissions according to ground-truth
verdicts. Our evaluation of 13 state-of-the-art models using verdict matching rate
and coverage metrics reveals significant challenges in current approaches. The
best-performing model, Gemini-2.5-Pro, achieves verdict matching rates of only
59.75% for Python and 11.50% for C++. Notably, we observe a striking perfor-
mance gap when comparing test generation versus direct problem-solving tasks on
identical problems, with problem-solving success rates being considerably higher.
This discrepancy suggests that models may rely on problem memorization rather
than developing robust testing strategies, highlighting a critical limitation in cur-
rent automated test generation approaches.

1 INTRODUCTION

Software testing is a crucial component of software development, as it ensures that functional re-
quirements are met and identifies potential defects. However, writing high-quality test cases is
time-consuming and costly, accounting for roughly 15% of the overall development effort (Daka &
Fraser, 2014).

The recent success of large language models (LLMs) in solving programming problems (Chen et al.,
2021; Austin et al., 2021) has sparked a natural question: if LLMs can solve problems, can they also
generate high-quality test cases? After all, a model that understands the problem well enough to
solve it should also be capable of designing tests to validate solutions.

To investigate this hypothesis, we conducted a systematic evaluation and uncovered a surprising
result. LLMs perform well at solving programming tasks but struggle to generate effective test
cases. This issue is particularly severe for C++ problems, where the best-performing model achieves
only 11.50% verdict matching rate. A closer look at failure cases reveals that the majority are not
grossly incorrect, but rather involve subtle reasoning errors, such as missing corner cases or implicit
constraints.

Unfortunately, most existing benchmarks for automated test generation remain flawed in evaluating
test generation capabilities. Prior work commonly reports pass rate and coverage (Wang et al., 2024;
2025; Xu et al., 2025); some benchmarks also report mutation score (Zhang et al., 2024; Jain et al.,
2024). Pass rate and coverage measure only correctness and code coverage, not a model’s ability
to detect errors. Mutation score targets coarse changes in code blocks and misses subtle logical
errors. As a result, current evaluations may overestimate LLMs’ true ability to ensure solution
robustness.

Motivated by this gap, we propose TestJudge, a benchmark designed to measure LLMs’ ability to
detect subtle logical errors. TestJudge contains 800 programming problems from the Codeforces
online competition platform. To reduce randomness in the evaluation, each problem is paired

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with 10 real code submissions. To assess generalization across languages, half of the problems
are in Python and half in C++. We introduce two metrics: Verdict Matching Rate: whether LLM-
generated tests agree with the ground-truth Codeforces verdicts. Coverage: how thoroughly the
tests exercise different code paths.

Our evaluation across both commercial and open-source LLMs shows that even the strongest model,
Gemini-2.5-Pro (Google DeepMind, 2025), achieves only 59.75% matching on Python and performs
drastically worse on C++. Revisiting these results, we highlight a key insight: LLMs may rely more
on memorization than on genuine reasoning or problem understanding. They can reproduce
correct solutions, yet fail to generate tests that expose subtle logical errors and hidden corner cases.
We refer to this phenomenon as the Problem Memorization - the disconnect between problem-
solving ability and test-generation ability - which TestJudge is designed to reveal and ultimately
help address.

Our work makes the following contributions:

• Benchmark. We release a benchmark focused on evaluating the capability of LLMs in
detecting subtle logical errors. The dataset consists of 8000 codes from 800 programming
competition questions in Python and C++.

• Evaluation. We evaluate 13 state-of-the-art models on our benchmark and find that LLMs
struggle to comprehensively evaluate code submissions.

• Analysis. We compare execution logs from problem solving and test generation. And we
find that LLMs tend to memorize solution procedures rather than understand the problems.

2 TESTJUDGE

In this section, we introduce TestJudge from several perspectives. The overview of TestJudge is
shown in Figure 1. We describe the construction of the dataset (Section 2.1), the tasks in our bench-
mark (Section 2.2), and the evaluation metrics (Section 2.3). Finally, we summarize the properties
of TestJudge (Section 2.4).

Figure 1: Overview of TestJudge. We provide multiple code submissions for each programming
problem and prompt LLMs to generate tests. We then execute these tests to obtain evaluation met-
rics, including verdict matching rate, and coverage.

2.1 BENCHMARK CONSTRUCTION

Data collection. We begin with open-source datasets containing code submissions on CodeForces
1,2, and then retrieve missing fields for each submission from the Codeforces platform3. For each

1https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
2https://sites.google.com/site/miningprogcodeforces/home/dataset
3https://codeforces.com

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

submission, the JSON record contains the problem description, input specification, output specifi-
cation, sample input, sample output, verdict, and source code.

Data filtering. We filter out submission records containing incomplete fields. Then, we prompt
GPT-4.1 and Doubao-1.5-Pro-32K to filter out unsolvable problems as well as those with unclear
statements.

Data extraction. We construct tests based on sample input and sample output, run them in the
execution environment, and filter out submission records that fail. We then select 800 problems,
each paired with 10 code submissions-400 in Python and 400 in C++.

We ultimately select the dataset consisting of 8,000 code submissions as the evaluation set for Test-
Judge. The problem tags and sources are provided in Appendix A.

2.2 TASK DESCRIPTION

We propose two tasks: (1) test generation, and (2) problem solving. The detailed procedure is shown
in Figure 2. Orange indicates test generation, and purple indicates problem solving.

(1) Test generation. We provide LLMs with the problem description, input–output specifications,
and input–output samples, ten code submissions with known correctness labels, and prompt them to
generate multiple test cases (see Appendix B for full prompts). We then extract the last code block
from the response. We compile the code and enforce a 30-second time limit. We run the extracted
code separately from the code submissions to produce test logs and metrics. If compilation fails, the
run times out, or an unknown error occurs, we mark the case as a a matching failure.

(2) Problem solving. We prompt LLMs to generate solutions for the same problems in test gener-
ation. Then, we execute each solution with the official test suite. Finally, we compute the success
rate of the solution (Pass@1) and compare it to the verdict matching rate in the test-generation task.
In this task, LLMs generate incorrect test cases, which means that they do not fully understand
the problem. A high success rate of solutions on the same problems indicates the phenomenon of
problem memorization. This procedure provides a new way to quantify problem memorization in
LLMs.

Figure 2: Schematic illustration of the two tasks (test generation and problem solving). The
test-generation task, highlighted in orange, involves guiding LLMs to create test code, while the
problem-solving task, shown in purple, focuses on generating solutions and evaluating them with an
official test suite.

2.3 METRICS

We introduce three evaluation metrics for TestJudge, including the verdict matching rate, coverage,
and the difference between the success rate of problem-solving (Pass@1) and the verdict matching
rate.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Verdict Matching Rate (VMR). Each sample contains one problem and ten code submissions. We
apply the LLM-generated test code to the ten code submissions. If all ten verdicts match the ground-
truth verdicts, we label the sample as a match. We select the proportion of matched samples among
all samples as our metric. The formula can be expressed as follows:

Verdict Matching Rate =
Number of matched samples

Total number of samples
× 100% (1)

Coverage. Coverage is a standard unit-testing metric. Coverage measures the proportion of code
lines executed during testing out of the total lines of code.

Difference between the success rate of problem-solving and VMR (Diff). For each problem, we
prompt the LLM to produce a solution and compute the success rate of problem-solving (Pass@1).
Then, we use the difference between Pass@1 and VMR to quantify the severity of problem memo-
rization.

2.4 PROPERTIES OF TESTJUDGE

Table 1: Comparison between TestJudge and existing test generation benchmarks. TestJudge is the
only benchmark for testing the capability to detect subtle logical errors.

Dataset Size Multiple language Coverage Case legality Logic correction

TESTBENCH 108 ✗ ✔ ✔ ✗

TESTEVAL 210 ✗ ✔ ✗ ✗

TESTGENEVAL 1210 ✗ ✔ ✔ ✗

PROJECTTEST 60 ✔ ✔ ✔ ✗

CLOVER 845 ✗ ✔ ✗ ✗

TESTJUDGE 800 ✔ ✔ ✔ ✔

To provide a deeper understanding of the distinctions among these benchmarks, we provide a de-
tailed explanation of each property, including multiple-language support, line coverage, case legal-
ity, and logic correction, in Table 1.

Multiple languages. There are multiple programming languages in practice. The benchmarks that
include only a single language have inherent limitations. TestJudge considers the evaluation of
Python and C++.

Line coverage. This metric is a standard metric in unit testing. Coverage assesses comprehensive-
ness of test cases.

Case legality. Existing benchmarks often report the pass rate of generated tests. However, passing
all generated cases shows that these cases meet the requirements, but does not necessarily demon-
strate comprehensive coverage. TestJudge measures legality as the proportion of correct programs
accepted by the generated tests.

Logic correction. Existing benchmarks predominantly use mutation scores to evaluate the error-
detection capability of LLMs, but they primarily inject macro errors at the code level, such as flip-
ping logical operators, renaming variables, or deleting code. In practice, it is common for solutions
to not fully cover the problem, resulting in subtle logical errors. TestJudge is the first benchmark
to evaluate logical error detection using multiple code submissions per problem.

3 EXPERIMENTAL EVALUATION

3.1 EXPERIMENTAL SETUP

We evaluated 13 popular LLMs, including both commercial and open-source models (see Appendix
C). We set temperature and top p to 0.8. We set max tokens to 1,024 for non-thinking
models and to 16,384 for thinking models. We used identical parameters across models to ensure a
fair comparison. We computed Python metrics using Pytest and C++ metrics using Gtest and
Lcov.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 TEST GENERATION

Table 2: Metrics of various LLMs for test generation. The best results are bolded.

Model Python VMR C++ VMR Python Coverage C++ Coverage
Non-thinking Models
Doubao-1.5-Pro-32k-250115 17.25% 1.50% 97.28% 90.13%
Qwen3-235B-A22B 15.50% 2.00% 97.87% 90.86%
GPT-4o 11.75% 0.00% 97.13% 90.88%
GPT-4.1 19.00% 1.75% 97.41% 90.85%
DeepSeek-V3 12.75% 1.50% 97.43% 90.68%
Claude-3.7-Sonnet-20250219 19.50% 1.50% 97.81% 91.18%
Claude-4-Sonnet-20250514 25.25% 3.75% 97.69% 91.24%

Thinking Models
Doubao-1.5-thinking-Pro-250415 47.75% 2.00% 97.67% 91.08%
Doubao-Seed-1.6-thinking-250615 53.00% 6.75% 97.35% 90.37%
Claude-3.7-Sonnet-thinking-20250219 27.50% 4.00% 97.81% 91.72%
Claude-4-Sonnet-thinking-20250514 36.00% 3.50% 97.79% 91.72%
DeepSeek-R1 39.00% 3.50% 97.98% 90.55%
Gemini-2.5-Pro 59.75% 11.50% 97.90% 91.14%

Table 2 reports the Verdict Matching Rate (VMR) and Coverage for each model in the test genera-
tion. From the table, we observations three points.

(1) The average VMR of non-thinking models is lower than that of thinking models. Genmini-2.5-
Pro performs best, yet its VMR is only 59.75% in Python and 11.50% in C++, indicating that LLMs
struggle to generate effective test code.

(2) For the same model, metrics vary by programming language. VMR and Coverage are much
lower in C++ than in Python, indicating stronger capability in Python. This pattern is consistent
with the results of other multilingual test benchmarks (Zan et al., 2025; Yang et al., 2024).

(3) From a practical perspective, higher line coverage exercises more execution paths and makes
validation more complete, which tends to increase VMR. Table 2 shows a positive correlation
between coverage and VMR, which is consistent with the empirical observations.

We further analyze the logs of unmatched cases to explain failures. See Section 4.1.1.

3.3 TEST GENERATION VS PROBLEM SOLVING

Table 3: Comparison of test-generation task and problem-solving task. The difference between
Pass@1 and VMR is in parentheses. The biggest difference is bolded.

Model Python VMR Python Pass@1 C++ VMR C++ Pass@1
Non-thinking Models
Doubao-1.5-Pro-32k-250115 17.25% 80.25(+63.00)% 1.50% 43.25(+41.75)%
Qwen3-235B-A22B 15.50% 81.25(+65.75)% 2.00% 52.75(+50.75)%
GPT-4o 11.75% 61.00(+49.25)% 0.00% 42.00(+42.00)%
GPT-4.1 19.00% 82.25(+63.25)% 1.75% 47.75(+46.00)%
DeepSeek-V3 12.75% 90.25(+77.50)% 1.50% 53.50(+52.00)%
Claude-3.7-Sonnet-20250219 19.50% 74.25(+54.75)% 1.50% 49.50(+48.00)%
Claude-4-Sonnet-20250514 25.25% 84.50(+59.25)% 3.75% 61.50(+57.75)%

Thinking Models
Doubao-1.5-thinking-Pro-250415 47.75% 85.75(+38.00)% 2.00% 62.75(+60.75)%
Doubao-Seed-1.6-thinking-250615 53.00% 84.00(+31.00)% 6.75% 51.75(+45.00)%
Claude-3.7-Sonnet-20250219-thinking 27.50% 82.25(+54.75)% 4.00% 55.50(+51.50)%
Claude-4-Sonnet-20250514-thinking 36.00% 91.00(+55.00)% 3.50% 67.50(+64.00)%
DeepSeek-R1 39.00% 88.25(+49.25)% 3.50% 60.75(+57.25)%
Gemini-2.5-Pro 59.75% 96.50(+36.75)% 11.50% 53.25(+41.75)%

We compare the performance on test-generation task and problem-solving task. A submission that
passes all official test cases constitutes a successful solution. We report Pass@1,the proportion of
problems solved with one attempt, and we show in parentheses Diff = Pass@1 - VMR.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

From the table, we observe that Pass@1 is much higher than the verdict matching rate, with an
average gap of approximately 40%. When a model solves a problem but fails to generate the correct
tests for that problem, the model likely does not fully understood the task. The results suggest that
LLMs have a relatively serious problem of problem memorization, that is, they may rely more on
memorization than on genuine reasoning or problem understanding. Pass@1 is lower in C++
than in Python, mirroring the VMR trend. We analyze representative cases in Section 4.1.2.

4 ANALYSIS

4.1 QUALITATIVE ANALYSIS

4.1.1 ANALYSIS OF UNMATCHED CASES

We analyze logs of unmatched cases and group the mismatch causes into three types: (1) Inference
Errors, (2) Compilation Errors, and (3) Timeouts. For a detailed analysis with additional examples,
see Appendix E.

(1) Inference Errors

For non-thinking models, we prompt them to include a chain of thought before generating test code.
For thinking models, we extract their reasoning content and analyze them. Our analysis indicates
that the model generates only a few incorrect test cases, while most of the remaining cases are
correct. However, test code can judge a code submission only when all test cases are correct. Below,
we analyze one unmatched case from Doubao-Seed-1.6-thinking-250615.

Figure 3: Sample of unmatched cases

In this unmatched case, let k denote the umbrella price and r the change share. The task reduces to
finding the smallest positive integer m such that (k ·m) mod 10 equals 0 or r. The model generates
20 test cases, one of which is incorrect. This analysis highlights error and two correct cases (see
Figure 3). In case 1 (k = 25, r = 5), the smallest valid m is 1, since 25× 1 = 2× 10 + 5. In case
2 (k = 25, r = 3), the smallest valid m is 2, since 25× 2 = 5× 10. In case 3 (k = 19, r = 7), the
model returned m = 9, but the smallest valid is m = 3, because 19× 3 = 5× 10 + 7.

Due to these inference errors, the system judged the entire code submission incorrect. Such errors
occur when a required condition is overlooked, such as the minimality constraint above. Despite
multiple checks, the model failed to identify its own reasoning flaws.

(2) Compilation Errors

Python does not require compilation. In this study, we treat syntax errors as “compilation errors”
based on the error messages in the test logs. We observe that correct reasoning can still produce
code with syntax errors. The common causes are: (i) missing symbols in generated test-case

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

strings, which lead to unmatched parentheses; (ii) repetitive output that overruns the max tokens
limit, leaving code blocks incomplete; and (iii) improper escaping or symbol use—e.g., unescaped
double quotes inside double-quoted strings—which truncates the case.

(3) Timeout

We set a timeout of 10 seconds for each code execution test. If no test report is returned within this
period, the case is marked as a timeout. By analyzing the logs, we find that there are mainly two
reasons for timeouts. (i)some submissions contain potential infinite loops, and the LLM-generated
test cases trigger them; (ii) some submissions fails to handle empty inputs. When an empty string is
passed, the program waits indefinitely for input through functions such as input or cin, and the
case is judged as timeout.

4.1.2 ANALYSIS BETWEEN TEST GENERATION AND PROBLEM SOLVING

To further elucidate the phenomenon of problem memorization, we analyze the logs of test gener-
ation and problem-solving on the same question. We select a problem of decoding morse code for
analysis. For additional analyses, see Appendix E.

Figure 4: Sample of successfully solving the problem but generating incorrect test code

We analyze logs from Doubao-Seed-1.6-thinking-250615. Figure 4 shows the logs for test gener-
ation and problem solving. The problem of decoding morse code can be summarized as mapping
strings into numbers, "." maps to 0, "-." maps to 1, "--" maps to 2. The logs reveal two fail-
ures. In test case 6, the final "." is not decoded, so a character remains and the output does not
match the expected "011200". In test case 8, "-" is decoded twice, so a 0 is read as 1, and the
output does not match the expected "202". However, in problem-solving task, the logic of the code
is correct. First, traverse the string character by character, if it is ".", directly output 0. If it is "-",
continue to judge the next character. Then if the next character is "-", output 1; otherwise, output
2. However, the solution approach is entirely correct.

4.2 QUANTITATIVE ANALYSIS

4.2.1 CASE CLASSIFICATION AND PROPORTION OF MATCHED CASES

We require each case to include both passing and failing code submissions. We partition the dataset
by the number of failing submissions for each case and compute the proportion of matched cases in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

each partition. We selected Genimi-2.5-Pro for visual analysis. Figure 15a reports, for Python, the
distribution by number of failing submissions and the corresponding proportion of matched cases;
Figure 15b shows the same for C++.

(a) Proportion of Matched cases in Python (b) Proportion of Matched cases in C++

Figure 5: Proportion of Matched cases for Gemini-2.5-Pro. Overall, Python datasets have fewer
failing code submissions and a higher proportion of matched case than C++.

In Figure 15a, most Python cases contain fewer than five failing code submissions. The dataset
shows a triangular-shaped distribution. The proportion of match cases is higher when there are fewer
failing code submissions. With one failing submission, the proportion of matched cases achieves
71.6%, higher than in cases with more failing code submissions. This pattern suggests that more
failing code submissions reflect more subtle logic errors, which makes it harder to generate
tests that match all submissions.

In Figure 15b, there are the highest number of cases with five failing code submissions. The dis-
tribution peaks in the middle and declines toward both ends. In nearly all cases, the proportion of
matched cases is below 15%.

4.2.2 EFFECT OF THE NUMBER OF CODE SUBMISSIONS IN EACH CASE

Figure 6: Effect of the Number of code submis-
sion in Each Case

In this section, we analyze the effect of the
number of code submissions included in each
case on the Verdict Matching Rate. We ana-
lyze two models: Doubao-1-5-Pro and Gemini-
2.5-Pro (see Figure 6). It shows that the Ver-
dict Matching Rate (VMR) falls as the number
of code submissions per case increases, which
aligns with expectations since more submis-
sions make the task harder and lead to a
steady decrease in VMR.

Surprisingly, the largest drop occurs when the
number of code submissions rises from one to
two. With a single submission, randomness
can produce a spurious match. Two ambigu-
ous outcomes illustrate this issue: (1) the model
predicts “fail” and the code fails, but we cannot
tell whether the generated tests are correct or merely flawed; (2) the model predicts “pass” and the
code passes, but we cannot tell whether the tests are comprehensive, since reusing input-output ex-
amples without new tests may still match. Requiring both passing and failing submissions in
each case significantly reduces this randomness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Test Generation Benchmark for LLMs. LLMs are widely used for code generation. In order to
objectively evaluate the capability of LLMs in code generation, many code generation benchmarks
have emerged, such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and SWE-
BENCH (Jimenez et al., 2023).

Code generation in the testing field has received more attention. Extensive research has been con-
ducted in test generation benchmark, including traditional approaches(Cadar et al., 2011; Fraser &
Arcuri, 2011) and deep learning-based methods (Dinella et al., 2022; Tufano et al., 2020). As LLMs
are adopted for test generation, researchers have proposed numerous benchmarks to evaluate LLM
performance on this task. TestBench (Zhang et al., 2024) selected 108 Java programs to evaluate
the effect of different context types on test generation. TestEval (Wang et al., 2024) mainly uses
coverage as metrics to analyze the test generation capability of different difficulty LeetCode prob-
lems. Partial benchmarks have shifted from function level to repository level. TestGenEval (Jain
et al., 2024) built an evaluation dataset from a Python repository based on the images of SWE-
Bench. It evaluated the performance of the model in test generation and test completion. ProjectTest
(Wang et al., 2025) covers the capability of test generation for multiple languages (Python, Java,
JavaScript). CLOVER (Xu et al., 2025) focuses mainly on the effect of context length on the capa-
bility to generate test code.

Although these benchmarks provide evaluation metrics for test generation, they all overlook the most
important evaluation capability, which is the capability to correct subtle logical errors. Although
existing benchmarks provide mutation scores, they still focus only on the correction capability of
macro code blocks.

6 CONCLUSION

We introduce TestJudge, the first benchmark for test generation that targets subtle logical errors.
It provides review datasets for Python and C++ with 8,000 code submissions from the Codeforces
platform. To reduce evaluation randomness, each case contains ten submissions. We evaluated 13
state-of-the-art models on TestJudge. Although Gemini-2.5-Pro is the top performer, its verdict
matching rate reaches only 59.75% on Python and 11.50% on C++, indicating that LLMs still
struggle to generate effective test code.

To quantify the gap between test generation and problem solving, we compare their success rates
on the same set of problems. Problem-solving consistently achieves much higher success rates than
test generation, which supports the phenomenon of problem memorization - models often rely on
recalled patterns rather than robust reasoning or task understanding.

7 DISCUSSIONS

Problem Memorization. Models might depend on memorizing problems instead of developing
robust testing strategies, which underscores a key limitation in existing automated test generation
methods. Most models are trained on problem-solving data and recall step-by-step code patterns
while neglecting full logical reasoning. By contrast, each test generation records explicit reasoning
for each question, so the data are high quality. To reduce memorization, we propose training on two
sources: data for problem-solving and test generation. This joint training builds forward and reverse
understanding and improves the ability of code generation.

Function-Level benchmark. TestJudge uses code from an online programming platform, which
differs from many real-world settings. However, we argue that current LLMs perform poorly on
function-level test generation, so discussion of repository-level testing is premature. A repository-
level dataset could be built from sequences of commits within a single pull request. Although the
construction cost is high and requires operations such as pulling, image building, and verification,
mature tools exist. Function-level settings remain valuable. The model trained based on the evalua-
tion results can help grade programming problems, provide tests for corpora that lack them, enable
sandbox quality checks, and improve the quality and utility of pre-training corpora.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

As large models improve at code generation, more tasks will rely on LLMs. However, test genera-
tion is exacting, and even a single faulty test can have serious consequences. LLM-generated tests
may label defective code as correct. Therefore, the generated tests require further verification by
developers. Due to the potential negative social risks of automated test generation, we hope that
practitioners in related fields can recognize both its benefits and its drawbacks.

REPRODUCIBILITY STATEMENT

In the source code we submitted, we provided all the corresponding code for TestJudge, as well as the
evaluation data files. Readers can reproduce the results of our test generation, problem-solving, and
direct judgment tasks. We plan to open-source the code and documentation and maintain a public
benchmark leaderboard. We will also establish a discussion forum to guide future improvements in
automated test generation.

LLM USAGE STATEMENT

In this study, large language models (LLMs) were used only as auxiliary tools for two tasks:
manuscript editing and table formatting. For editing, LLMs improved clarity, corrected grammar,
and enhanced readability. For tables, they adjusted structure, standardized notation, and improved
layout to aid interpretation. LLMs were not involved in core research activities such as idea de-
velopment, experimental design, data analysis, interpretation, or scientific writing. All concepts,
methods, results, and conclusions are the authors’ independent, original work.

REFERENCES

Anthropic. Claude 3.7 Sonnet and Claude Code. Technical report, Anthropic, 2025a. URL https:
//www.anthropic.com/news/claude-3-7-sonnet.

Anthropic. System Card: Claude Opus 4 and Claude Sonnet 4. Techni-
cal report, Anthropic, 2025b. URL https://www-cdn.anthropic.com/
4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu, Koushik Sen, Nikolai
Tillmann, and Willem Visser. Symbolic execution for software testing in practice: Preliminary
assessment. In Proceedings of the 33rd International Conference on Software Engineering, pp.
1066–1071, 2011.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems. In 2014 IEEE
25th International Symposium on Software Reliability Engineering, pp. 201–211. IEEE, 2014.

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. Toga: A neural method
for test oracle generation. In Proceedings of the 44th International Conference on Software En-
gineering, pp. 2130–2141, 2022.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Confer-
ence on Foundations of Software Engineering, pp. 416–419, 2011.

Google DeepMind. Gemini-2.5-Pro. Technical report, Google DeepMind, 2025. URL https:
//deepmind.google/models/gemini/.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://deepmind.google/models/gemini/
https://deepmind.google/models/gemini/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test generation
and test completion benchmark. arXiv preprint arXiv:2410.00752, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

OpenAI. Hello GPT-4o. Technical report, OpenAI, 2024. URL https://openai.com/
index/hello-gpt-4o/.

OpenAI. Introducing GPT-4.1 in the API. Technical report, OpenAI, 2025. URL https://
openai.com/index/gpt-4-1/.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit
test case generation with transformers and focal context. arXiv preprint arXiv:2009.05617, 2020.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation. arXiv preprint arXiv:2406.04531, 2024.

Yibo Wang, Congying Xia, Wenting Zhao, Jiangshu Du, Chunyu Miao, Zhongfen Deng, Philip S.
Yu, and Chen Xing. Projecttest: A project-level llm unit test generation benchmark and impact of
error fixing mechanisms. arXiv preprint arXiv:2502.06556, 2025.

Jiacheng Xu, Bo Pang, Jin Qu, Hiroaki Hayashi, Caiming Xiong, and Yingbo Zhou. Clover: A
test case generation benchmark with coverage, long-context, and verification. arXiv preprint
arXiv:2502.08806, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, et al.
Swe-bench multimodal: Do ai systems generalize to visual software domains? arXiv preprint
arXiv:2410.03859, 2024.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen,
et al. Multi-swe-bench: A multilingual benchmark for issue resolving. arXiv preprint
arXiv:2504.02605, 2025.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models. arXiv preprint
arXiv:2409.17561, 2024.

11

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A BENCHMARK STATISTICS

A.1 RULE-BASED FILTERING

We begin with open-source datasets and augment them with data collected by web crawling. We
first apply a shell script to remove code submissions with missing fields. We then use the GPT-4.1
and Doubao-1.5-Pro-32K to screen the remaining samples using simple, manually defined rules:

(a) The problem statement is unclear and lacks actionable information;

(b) The problem requires heavy computation that large language models (LLMs) cannot complete;

(c) The problem admits multiple valid solutions, so success cannot be judged by string matching.

A.2 TAGS OF PROBLEMS

Each problem includes a tag that specifies the required algorithm type. Aggregating these tags
provides a quick view of the types of problem and the composition of the evaluation set. Due to the
fact that each problem may have multiple tags, the total number of tags will exceed the number of
problems. Figure 7 reports the tag statistics for the Python dataset; Figure 8 reports the tag statistics
for the C++ dataset.

Figure 7: Tag Count Statistics in Python

Figure 8: Tag Count Statistics in C++

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 9: Proportion of TestJudge tags

Figure 9 shows the proportion of each tag among all tags. In the TestJudge, the most common tag
is implementation. The second and third most frequent tags are math and brute force. These results
suggest that TestJudge contains many simple problems, and only a few that require complex
decomposition and step-by-step reasoning, such as dynamic programming. Below, we describe
the main tag categories.

(1) Implementation. Implementation denotes problems that translate logic or algorithms into code
and usually do not require complex data structures or algorithm design. These tasks stress precise
reading, careful handling of details, and step-by-step execution.

(2) Math. Math covers problems that rely on mathematical knowledge, including algebra, ele-
mentary number theory, and basic combinatorics. These tasks aim to simplify the problem using
formulas, derivations, or known laws rather than ad-hoc programming.

(3) Brute Force. Brute force means solving the problem by enumerating all possible cases; it is
feasible when the data range is small. Such tasks may not need algorithmic optimization and can be
solved by direct search or traversal, but the time complexity must remain feasible.

(4) Greedy. Greedy problems use a greedy strategy: choose the locally optimal option at each step
to approach a global optimum. They require correct greedy criteria and a justification of why the
criteria work.

(5) Dynamic Programming (Dp). Dynamic programming solves a problem by dividing it into
subproblems and caching their solutions. The key is to define the state and its transition relation. DP
is suitable when subproblems overlap and the problem has an optimal substructure.

(6) Sortings. Sorting problems center on solving tasks by sorting, either by applying a sorting
algorithm directly or by sorting data before further steps. Common methods include quicksort,
mergesort, and custom comparators.

(7) Strings. String problems focus on string processing, such as concatenation, splitting, match-
ing, replacement, traversal, and character counts, often with hashing, prefix functions, or regular
expressions.

B PROMPTS

In the test-generation task, we provide problem description, input–output specifications, and in-
put–output samples, ten code submissions with known correctness labels. We then prompt LLMs to

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

generate test code in a specified format and wrap the output in code blocks for later extraction (see
Figure 10).

System prompt

You are an expert in writing test code, and your task is to
generate corresponding test code based on problem information.

Prompt for the task of generating test codes in Python experiment

Description of programming problem is:
{problem-description}

These are multiple code submissions. Each code block is a code
submission.
‘‘‘python
{code-list}
‘‘‘
The corresponding evaluation results for the above codes are
{verdict-list}
Among them, "OK" indicates that the code has passed all test cases,
and "FAILED" indicates that there are test cases that did not pass.

The input specification for the code submissions is:
{input-specification}
The output specification for the code submissions is:
{output-specification}
These are multiple sets of example inputs, please design your
input-str based on them:
{demo-input}
These are multiple sets of corresponding example outputs, please
design your output-str based on them:
{demo-output}

Please generate unit test code that can pass all tests on code
submission that meets the requirements of the question, and at
least one sample that does not meet the requirements of the
question.
The generated unit test code is strictly written in the following
format:
‘‘‘python
{format of generated code}
‘‘‘

When generating unit test code, strictly follow the following
rules:
1.When generating unit test code, please do not repeatedly
encapsulate into code blocks
2.Please do not write the content of the code submission into the
test function. Please note that calling run method will obtain the
output from the input input str to the code submission. Please do
not modify the function name, keep it as run method().
3.Please refer to the examples of input and output for the code
when designing input str and output str.
4.Please check the syntax and indentation to ensure that the
program can execute.

Figure 10: Prompt for test-generation task.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In the problem-solving task, we provide problem description, input–output specifications, and in-
put–output samples to generate the corresponding solution code (see Figure 11).

System prompt

You are an expert in coding competitions, and your task is to
generate code that can solve problems based on problem information.

Prompt for the task of generating test codes in Python experiment

Description of programming problem is:
{problem-description}

The input specification for the code submissions is:
{input-specification}
The output specification for the code submissions is:
{output-specification}

These are multiple sets of example inputs, please design your
input-str based on them:
{demo-input}
These are multiple sets of corresponding example outputs, please
design your output-str based on them:
{demo-output}

Please write code that can solve the problem based on the task
description, input-output specifications, and input-output
examples.
More test cases similar to input-output examples will be used for
verification, and the code you write needs to pass all the cases.
The generated code is strictly written in the following format:
‘‘‘python
{format of generated code}
‘‘‘

When generating code that can solve the problem, strictly follow
the following rules:
1.Please read the data from the standard input and write it to the
standard output, using input() and print().
2.Please check the syntax and indentation to ensure that the
program can execute.

Figure 11: Prompt for problem-solving task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We also introduce a task that outputs inference results directly (see Setion D.5) for comparison
with the test-generation task. In inference-only task, we provide problem description and code
submissions to LLMs. We then prompt them to generate a pass/fail verdict (see Figure 12).

System prompt

You are an expert in code evaluation, and your task is to directly
determine the verdicts of the code submissions.

Prompt for the task of generating test codes in Python experiment

Description of programming problem is:
{problem-description}

These are multiple submitted codes, including those that meet the
requirements and those that do not. Each code block is a submitted
code.
‘‘‘python
{code-list}
‘‘‘

Please determine whether the above codes can perfectly solve the
corresponding programming problem. If it can, return the result as
OK; if not, return FAILED.
Please place the judgment results of all submitted codes at the end
of the response. You need to output the result of each code line
by line. The judgment result is strictly written in the form of
the following example:
<result>
OK or FAILED
</result>

When generating the verdicts, strictly follow the following rules:
1.You can first output the reason for the judgment, and then
output the final judgment result. The judgment result starts with
<result> and ends with </result>
2.Please do not include <result> and </result> outside of the
final judgment result. Please do not add code and description when
outputting the judgment result.

Figure 12: Prompt for inference only task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C EVALUATED MODELS

We evaluated 13 state-of-the-art models. Figure 4 lists their providers and open-source status.

Table 4: Large Language Models Evaluated in TestJudge

Model Provider Model Name Type Thinking
OpenAI GPT-4.1 (OpenAI, 2025) Proprietary ×

GPT-4o (OpenAI, 2024) Proprietary ×
DeepSeek DeepSeek-V3 (Liu et al., 2024) Open Source ×

DeepSeek-R1 (Guo et al., 2025) Open Source ✓

ByteDance Doubao-1.5-Pro-32K Proprietary ×
Doubao-1.5-Thinking-Pro Proprietary ✓
Doubao-Seed-1.6-Thinking (Seed et al., 2025) Proprietary ✓

Anthropic Claude-3.7-Sonnet (Anthropic, 2025a) Proprietary ×
Claude-4-Sonnet (Anthropic, 2025b) Proprietary ×
Claude-3.7-Sonnet-Thinking Proprietary ✓
Claude-4-Sonnet-Thinking Proprietary ✓

Alibaba Qwen-33B-A22B (Yang et al., 2025) Open Source ×
Google Gemini-2.5-Pro (Google DeepMind, 2025) Proprietary ✓

D EXPERIMENT DETAILS

D.1 EXPERIMENT SETUP

To ensure a fair comparison, we use the same parameters for three tasks—test generation, problem
solving, and direct judgment—as shown in Table 5. Because thinking models generate longer chains
of thought, we set a higher max tokens for them than for non-thinking models.

Table 5: Experiment Setup

Parameter Value
Temperature 0.8

Top p 0.8

Max tokens 1024 (Non-Thinking Models)
16384 (Thinking Models)

D.2 METRICS

Verdict Matching Rate (VMR). Each sample contains a question and ten code submissions. We
apply the test code generated by LLMs to ten code submissions. If the ten verdicts match the
ground-truth verdicts, we label the sample as a match (see Figure 13).

We select the proportion of matched samples among all samples as our metric. The formula can be
expressed as follows:

Verdict Matching Rate =
Number of match samples
Total number of samples

× 100% (2)

Coverage. Code line coverage is a software-testing metric that reports the proportion of executable
lines exercised by tests. High coverage does not guarantee thorough testing; it only shows that lines
ran, not that behavior is correct or that all scenarios were examined. Even so, coverage is a useful
first indicator for finding untested code that needs further attention.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 13: Matching Situation Diagram

Difference between success rate of problem-solving (Pass@1) and VMR (Diff). For each prob-
lem, we prompt the LLM for a solution and compute Pass@1. Then, we use the difference between
Pass@1 and VMR to quantify the severity of problem memorization (see Formula 3).

Diff = Pass@1 − VMR (3)

D.3 TEST GENERATION

D.3.1 EVALUATION ON TESTJUDGE

Table 6: Metrics of various LLMs for test generation. The best results are bolded.

Model Python VMR C++ VMR Python Coverage C++ Coverage
Non-thinking Models
Doubao-1.5-Pro-32k-250115 17.25% 1.50% 97.28% 90.13%
Qwen3-235B-A22B 15.50% 2.00% 97.87% 90.86%
GPT-4o 11.75% 0.00% 97.13% 90.88%
GPT-4.1 19.00% 1.75% 97.41% 90.85%
DeepSeek-V3 12.75% 1.50% 97.43% 90.68%
Claude-3.7-Sonnet-20250219 19.50% 1.50% 97.81% 91.18%
Claude-4-Sonnet-20250514 25.25% 3.75% 97.69% 91.24%

Thinking Models
Doubao-1.5-thinking-Pro-250415 47.75% 2.00% 97.67% 91.08%
Doubao-Seed-1.6-thinking-250615 53.00% 6.75% 97.35% 90.37%
Claude-3.7-Sonnet-thinking-20250219 27.50% 4.00% 97.81% 91.72%
Claude-4-Sonnet-thinking-20250514 36.00% 3.50% 97.79% 91.72%
DeepSeek-R1 39.00% 3.50% 97.98% 90.55%
Gemini-2.5-Pro 59.75% 11.50% 97.90% 91.14%

We evaluated 13 state-of-the-art models on TestJudge. Table 6 reports the Verdict Matching Rate
(VMR) and Coverage for each model in the test generation. We found that:

(1) The average VMR of non-thinking models is lower than that of thinking models. The reasoning
ability of a thinking model can improve its capacity to generate tests.

(2) Claude-4-Sonnet-20250514 is the best performing non-thinking model, yet its VMR is only
25.25% for Python and 3.75% for C++; Genmini-2.5-Pro is the best performing thinking model,
yet its VMR is only 59.75% for Python and 11.50% for C++. 65% of the problems in the Python
dataset have implementation tags (which can be solved directly without involving complex reason-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ing), while 37.75% of the problems in the C++ dataset. Genmini-2.5-Pro has a VMR smaller than
the proportion of problems labeled with ”implementation” in both datasets, suggesting it cannot
successfully generate tests for simple questions. This suggests that LLMs struggle to generate
effective test code.

(3) For the same model, metrics differ by programming language. VMR and Coverage are much
lower in C++ than in Python, so capability is stronger in Python. This is also consistent with the
results of other multilingual test benchmarks. The main reason is that most of the available code
data is written in Python. When training models, the proportion of Python data is much higher than
that of other languages, leading to weaker code generation capabilities in those languages compared
to Python.

(4) From a practical perspective, higher line coverage exercises more execution paths and makes
validation more complete, which tends to increase VMR. We construct a scatter plot using VMR
and coverage, and fit the scatter points into a straight line. Figure 14 shows a positive correlation
between coverage and VMR, which is consistent with the actual fact.

(a) Coverage-VMR scatter plot in Python (b) Coverage-VMR scatter plot in C++

Figure 14: Coverage-VMR scatter plot. In Python and C++, there is a weak positive correlation
between coverage and VMR.

D.3.2 EVALUATION FOR DIFFERENT NUMBERS OF CODE SUBMISSIONS

We also evaluated various models with different numbers of code submissions.

Table 7: VMR for different numbers of code submissions. The best results are bolded.

Language Python VMR C++ VMR
The number of code submissions for each case 1 code 2 codes 5 codes 10 codes 1 code 2 codes 5 codes 10 codes

Non-Thinking Models
Doubao-1.5-Pro-32k-250115 59.25% 24.00% 20.25% 17.25% 54.75% 10.75% 6.00% 1.50%
Qwen-235B-A22B 61.00% 17.75% 16.50% 15.50% 53.50% 4.25% 3.75% 2.00%
GPT-4o 55.25% 9.00% 12.50% 11.75% 50.25% 1.25% 1.25% 0.00%
GPT-4.1 60.50% 22.25% 23.25% 19.00% 57.25% 7.25% 5.75% 1.75%
DeepSeek-V3 52.50% 16.00% 13.25% 12.75% 48.00% 5.50% 2.25% 1.50%
Claude-3.7-Sonnet-20250219 59.25% 20.50% 19.75% 19.50% 52.75% 3.75% 3.25% 1.50%
claude-4-Sonnet-20250514 60.75% 24.75% 26.00% 25.25% 54.75% 6.75% 4.75% 3.75%

Thinking Models
Doubao-1.5-Thinking-Pro-250415 77.00% 70.25% 56.25% 47.75% 54.75% 10.75% 4.00% 2.00%
Doubao-Seed-1.6-Thinking-250615 77.00% 62.00% 56.50% 53.00% 59.50% 18.25% 11.00% 6.75%
Claude-3.7-Sonnet-Thinking-20250219 65.50% 40.25% 37.50% 27.50% 52.25% 8.50% 6.75% 4.00%
Claude-4-Sonnet-Thinking-20250514 64.00% 43.75% 41.50% 36.00% 55.50% 12.50% 7.75% 3.50%
DeepSeek-R1 69.00% 52.25% 45.50% 39.00% 52.00% 23.75% 13.25% 3.50%
Gemini-2.5-Pro 77.00% 64.75% 61.00% 59.75% 59.00% 24.00% 17.25% 11.50%

Table 7 shows that the Verdict Matching Rate (VMR) falls as the number of code submissions per
case increases, which aligns with expectations since more submissions make the task harder and
lead to a steady decrease in VMR.

Surprisingly, the largest drop occurs when the number of code submissions rises from one to two.
With a single submission, randomness can produce a spurious match. Requiring both passing

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and failing submissions in each case significantly reduces this randomness. Two ambiguous
outcomes illustrate this issue:

(1) the model predicts “fail” and the code fails, but we cannot tell whether the generated tests are
correct or merely flawed;

(2) the model predicts “pass” and the code passes, but we cannot tell whether the tests are compre-
hensive, since reusing input-output examples without new tests may still match.

D.3.3 EVALUATION FOR DIFFERENT INFORMATION

To assess whether providing code submissions interferes with model test generation, we design three
comparison experiments:

Group 1: Only provide problem information;

Group 2: Provide problem information and code submissions without known correctness labels;

Group 3: Provide problem information and code submissions with known correctness labels.

Table 8: VMR for different information.

Language Python C++
Experiment Group Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

Non-Thinking Models
Doubao-1.5-Pro-32k-250115 12.50% 18.25% 17.25% 1.00% 3.50% 1.50%
Qwen-235B-A22B 10.50% 15.25% 15.50% 1.25% 1.00% 2.00%
GPT-4o 8.50% 8.50% 11.75% 0.75% 0.00% 0.00%
GPT-4.1 12.50% 22.25% 19.00% 1.75% 2.75% 1.75%
DeepSeek-V3 5.75% 12.25% 12.75% 0.50% 1.50% 1.50%
Claude-3.7-Sonnet-20250219 11.25% 17.75% 19.50% 0.50% 1.75% 1.50%
Claude-Sonnet-4-20250514 17.50% 23.50% 25.25% 1.50% 2.50% 3.75%

Thinking Models
Doubao-1.5-Thinking-Pro-250415 45.25% 50.50% 47.75% 3.50% 2.75% 2.00%
Doubao-Seed-1.6-Thinking-250615 40.00% 46.25% 53.00% 5.00% 5.00% 6.75%
Claude-3.7-Sonnet-Thinking-20250219 21.75% 34.75% 27.50% 2.25% 3.25% 4.00%
Claude-Sonnet-4-Thinking-20250514 32.25% 32.25% 36.00% 3.50% 4.25% 3.50%
DeepSeek-R1 22.75% 40.25% 39.00% 3.00% 4.75% 3.50%
Gemini-2.5-Pro 45.50% 53.00% 59.75% 6.50% 7.50% 11.50%

In Figure 8, we observe the following:

(1) The VMR of the experimental group without code submission (Group 1) is lower than that of
the group with code submission (Group 2,3), code submission can enhance the model’s ability to
generate tests. Code submission provides error information, allowing the model to generate test
cases with broader coverage.

(2) The VMR of the group with code submission and its correctness labels (Group 3) is generally
higher than that of the group with code submission alone (Group 2). When the code submission
status is unknown, the model may make errors, overlooking certain error types and failing to generate
effective test samples.

D.4 TEST GENERATION VS PROBLEM SOLVING

We compare the performance on test generation and problem solving. A submission that passes all
official test cases counts as a successful solution. We report Pass@1, the proportion of problems
solved with one attempt, and we show in parentheses Diff = Pass@1 - VMR.

From the table, it can be seen that Pass@1 is much higher than the Verdict Matching Rate, with
an average gap of about 40%. When a model solves a problem but fails to produce correct test
code for that problem, the model likely has not fully understood the task. The results can infer that
LLMs have a relatively serious problem of problem memorization, that is, they may rely more on

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Comparison of test generation and problem-solving. The difference between Pass@1 and
VMR is in parentheses. The biggest difference is bolded.

Model Python VMR Python Pass@1 C++ VMR C++ Pass@1
Non-thinking Models
Doubao-1.5-Pro-32k-250115 17.25% 80.25(+63.00)% 1.50% 43.25(+41.75)%
Qwen3-235B-A22B 15.50% 81.25(+65.75)% 2.00% 52.75(+50.75)%
GPT-4o 11.75% 61.00(+49.25)% 0.00% 42.00(+42.00)%
GPT-4.1 19.00% 82.25(+63.25)% 1.75% 47.75(+46.00)%
DeepSeek-V3 12.75% 90.25(+77.50)% 1.50% 53.50(+52.00)%
Claude-3.7-Sonnet-20250219 19.50% 74.25(+54.75)% 1.50% 49.50(+48.00)%
Claude-4-Sonnet-20250514 25.25% 84.50(+59.25)% 3.75% 61.50(+57.75)%

Thinking Models
Doubao-1.5-thinking-Pro-250415 47.75% 85.75(+38.00)% 2.00% 62.75(+60.75)%
Doubao-Seed-1.6-thinking-250615 53.00% 84.00(+31.00)% 6.75% 51.75(+45.00)%
Claude-3.7-Sonnet-20250219-thinking 27.50% 82.25(+54.75)% 4.00% 55.50(+51.50)%
Claude-4-Sonnet-20250514-thinking 36.00% 91.00(+55.00)% 3.50% 67.50(+64.00)%
DeepSeek-R1 39.00% 88.25(+49.25)% 3.50% 60.75(+57.25)%
Gemini-2.5-Pro 59.75% 96.50(+36.75)% 11.50% 53.25(+41.75)%

memorization than on genuine reasoning or problem understanding. Pass@1 is lower for C++
than for Python, mirroring the VMR trend.

The model shows a clear link between test-generation and problem-solving metrics. We construct
a scatter plot of the two metrics and fit a linear model. Figure 15 shows a strong positive correla-
tion between Pass@1 and VMR. This suggests that training on test-generation data may improve
problem-solving performance, underscoring the need to build such datasets.

(a) Pass@1-VMR scatter plot in Python (b) Pass@1-VMR scatter plot in C++

Figure 15: Pass@1-VMR scatter plot. In Python and C++, there is a strong positive correlation
between Pass@1 and VMR.

D.5 TEST GENERATION VS DIRECT JUDGMENT

We prompt the model to directly output the verdicts of the code submissions and calculate the verdict
matching rate. We then compare it to the verdict matching rate of test generation.

Table 10: Comparison of Test Generation and Direct Judgment. The difference between the two
tasks is in parentheses.

Number of Code Submissions per Case 2 Codes 5 Codes 10 Codes
Experiment Type Test Generation Direct Judgment Test Generation Direct Judgment Test Generation Direct Judgment

Doubao-1.5-Pro-32k-250115 23.25% 65.25% (+42.00%) 22.75% 30.00% (+7.25%) 17.25% 15.25% (-2.00%)
Qwen-235B-A22B 18.00% 55.50% (+37.50%) 16.25% 25.25% (+9.00%) 15.50% 9.75% (-5.75%)
GPT-4o 13.00% 56.50% (+43.50%) 12.50% 25.75% (+13.25%) 11.75% 9.25% (-2.50%)
GPT-4.1 23.75% 68.75% (+45.00%) 22.00% 31.25% (+9.25%) 19.00% 14.25% (-4.75%)
DeepSeek-V3 15.50% 75.00% (+59.50%) 13.50% 29.50% (+16.00%) 12.75% 14.50% (+1.75%)
Claude-3.7-Sonnet-20250219 16.75% 55.25% (+38.50%) 19.50% 17.25% (-1.75%) 19.50% 12.75% (-6.75%)
Claude-4-Sonnet-20250514 23.00% 59.00% (+36.00%) 25.75% 34.50% (+8.75%) 25.25% 16.75% (-8.50%)
Doubao-1.5-Thinking-Pro-250415 68.50% 76.00% (+7.50%) 56.00% 57.50% (+1.50%) 47.75% 57.00% (+9.25%)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10 shows the difference in VMR between test-generation tasks and direct judgment tasks. As
the number of code submissions per sample increases, the VMR for both tasks decreases.

Interestingly, when the sample contains two or five code submissions, the verdict matching rate of
direct judgment is generally higher than that of the test-generation task. However, when the sample
contains 10 code submissions, the verdict matching rate of the test generation is mostly higher
than that of direct judgment, indicating that using generated tests to judge the verdicts of the code
submissions is more robust. The reasons for this phenomenon are discussed in Section E.3.

E ANALYSIS

E.1 ANALYSIS OF UNMATCHED CASES

We analyze logs of unmatched cases and group the mismatch causes into three types: (1) Inference
Errors, (2) Timeouts, and (3) Compilation Errors.

(1) Inference Errors

For non-thinking models, we prompt them to include a chain of thought before generating test code.
For thinking models, we extract their reasoning content and analyze it. Our analysis shows the model
only generates a few incorrect test cases, while most of the remaining cases are correct. Below, we
will present multiple examples of unsuccessful matches due to inference errors.

Table 11 shows the problem of Vasya and String. The task involves modifying characters no more
than k times to obtain the max length of consecutive identical substrings.

There are two examples of errors in this task: In case 6, LLMs mistakenly use more than k character
transformations, changing ’aaabb’ to ’aaaaa’, leading to an incorrect maximum length of 5, while
the correct answer is 4; in case 10, LLMs again use more than k character transformations, leading
to an incorrect maximum length of 6, while the correct answer is 5.

Table 12 shows the problem of Triangle. The task reduces to evaluating four matches: first, whether
a triangle can be formed; second, whether a degenerate triangle can be formed. If neither is possible,
the output is ”IMPOSSIBLE”.

There are many possible match pairings, some code submissions overlooked certain cases. A com-
prehensive test suite should cover all pairings among the four match types. However, the model did
not enumerate all pairings, so some erroneous submissions were not judged as FAILED.

(2) Timeout

We set a timeout of 10 seconds for each code execution test. If no test report is returned within this
period, the case is marked as a timeout. By analyzing the logs, we find that there are mainly two
reasons for timeouts. (i)some submissions contain potential infinite loops, and the generated test
cases trigger them; (ii) some code fails to handle empty inputs. When an empty string is passed, the
program waits indefinitely for input through functions such as input or cin, and the case times
out.

(3) Compilation Errors of Generated Code

Python does not require compilation. In this study, we treat syntax errors as “compilation errors”
based on the error messages in the test logs. We observe that correct reasoning can still produce
code with syntax errors. The common causes are: (i) missing symbols in generated test-case
strings, which lead to unmatched parentheses; (ii) repetitive output that overruns the max tokens
limit, leaving code blocks incomplete; and (iii) improper escaping or symbol use—e.g., unescaped
double quotes inside double-quoted strings—which truncates the case.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Inference errors result in all code submissions being judged as FAILED

Case 1: Vasya and String

Problem:
High school student Vasya got a string of length *n* as a birthday present. This string consists of
letters ’a’ and ’b’ only. Vasya denotes beauty of the string as the maximum length of a substring
(consecutive subsequence) consisting of equal letters. Vasya can change no more than *k* characters
of the original string. What is the maximum beauty of the string he can achieve?

Input Specification
The first line of the input contains two integers *n* and *k* (1 <= ∗n∗ <= 100000,0 <= ∗k∗ <=
∗n∗)— the length of the string and the maximum number of characters to change.The second line
contains the string, consisting of letters ’a’ and ’b’ only.
Output Specification
Print the only integer— the maximum beauty of the string Vasya can achieve by changing no more
than *k* characters.

Reasoning Content from Doubao-1.6-Seed-Thinking
Got it, let’s tackle this problem. The user wants unit tests for the submitted codes, where the tests
should pass the correct codes (marked OK) and fail the incorrect ones (marked FAILED). First, I need
to understand the problem clearly. The problem is about finding the maximum length of a substring
of equal characters (either ’a’s or ’b’s) after changing at most k characters. So the correct approach
should handle both cases: turning non-’a’s into ’a’s (up to k times) to get a long ’a’ substring, and
similarly for ’b’s, then taking the maximum of the two.

Let’s think about different test scenarios:
1. **All characters the same**: Input like ’5 0\naaaaa’ → Output ’5’. Correct codes should return 5.
Incorrect ones might mess up.
2. **k equals n**: Input ’3 3\n aba’ → Output ’3’ (change all to ’a’ or ’b’). Correct codes should
handle this.
3. **k=0, mixed characters**: Input ’5 0\n ababa’ → Output ’1’ (can’t change anything, so maximum
is 1).
4. **Need to change some characters**: Like the example 1: ’4 2\n abba’ → 4.
5. **Longer substring with one change**: Example 2: ’8 1\n aabaabaa’ → 5.
6. **Changing to ’b’s instead of ’a’s**: Input ’5 1\n aaabb’ → Changing one ’a’ to ’b’ gives ’aabbb’
(length 3) or changing one ’b’ to ’a’ gives ’aaaaa’ (length 5). So output is 5. Correct codes should
check both cases.
7. **Edge case: n=1**: Input ’1 0\n a’ → Output ’1’; ’1 1\n b’ → Output ’1’.
8. **Edge case: k=0, all different**: Input ’3 0\n aba’ → Output ’1’.
9. **Edge case: k=0, consecutive characters**: Input ’5 0\n aaabb’ → Output ’3’ (the first three ’a’s).
10. **Case where changing to ’b’s is better**: Input ’6 2\n ababab’ → Changing two ’a’s to ’b’s gives
’bbbbbb’ (length 6) or two ’b’s to ’a’s gives ’aaaaaa’ (length 6). So output 6.
11. **Case where you need to slide the window**: For example, ’7 2\n abbaabb’ → Let’s see: the
string is ’a b b a a b b’. Changing two ’a’s to ’b’s: the ’a’s are at 0,3,4. Changing 0 and 3 gives
’bbbbabb’ (length 4), but changing 3 and 4 gives ’abbbbbb’ (length 6). So output 6.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Insufficient comprehensive inference resulted in some erroneous code submissions being
judged as OK

Case 1: Triangle

Problem:
Johnny has a younger sister Anne, who is very clever and smart. As she came home from the
kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task
was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is
extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this
task, now she is asking Johnny to do the same.
The boy answered that he would cope with it without any difficulty. However, after a while he found
out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a
positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to
construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big
amount of cases, he asks you to help him.

Input Specification
The first line of the input contains four space-separated positive integer numbers not exceeding 100 —
lengthes of the sticks.
Output Specification
Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the
first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE
if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed
to break the sticks or use their partial length.

Reasoning Content from Doubao-1.6-Seed-Thinking
Got it, let’s tackle this problem. The user wants unit tests for the submitted codes that check if they
meet the problem requirements. First, I need to understand the problem thoroughly. The problem is
about four sticks, and we need to find if any three can form a non-degenerate triangle (TRIANGLE),
if not then a degenerate one (SEGMENT), else IMPOSSIBLE. The key points are:
- For a non-degenerate triangle, the sum of any two sides must be greater than the third. But since we
can sort, the main condition is that the sum of the two smaller sides is greater than the largest.
- For a degenerate triangle, the sum of the two smaller sides equals the largest.
- We need to check all combinations of three sticks from four.

Now, let’s generate the unit tests. The unit test code should have test methods for each of these
cases. The test methods should use input str and output str as per the problem’s input and output
specifications.

For example:
- Test case 1: Input ’4 2 1 3’ → Output ’TRIANGLE’
- Test case 2: Input ’7 2 2 4’ → Output ’SEGMENT’
- Test case 3: Input ’3 5 9 1’ → Output ’IMPOSSIBLE’
- Test case 4: Input ’1 2 3 4’ → Output ’TRIANGLE’
- Test case 5: Input ’2 3 4 5’ → Output ’TRIANGLE’
- Test case 6: Input ’1 2 3 5’ → Output ’SEGMENT’
- Test case 7: Input ’1 2 3 6’ → Output ’SEGMENT’
- Test case 8: Input ’1 3 4 5’ → Output ’TRIANGLE’
- Test case 9: Input ’1 2 3 3’ → Output ’TRIANGLE’
- Test case 10: Input ’1 2 4 7’ → Output ’IMPOSSIBLE’
- Test case 11: Input ’1 1 2 3’ → Output ’SEGMENT’

These test cases cover various scenarios: non-degenerate in different triplets, degenerate in different
triplets, no non-degenerate/no degenerate, multiple non-degenerate, multiple degenerate.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.2 ANALYSIS BETWEEN TEST GENERATION AND PROBLEM SOLVING

To better understand the phenomenon of problem memorization, we examine the logs of test gener-
ation and problem-solving for the same question.

Figure 13 shows the logs for test generation and problem solving. The problem of morse code
decoding can be summarized as converting strings into numbers, "." is 0, "-." is 1, "--" is 2.

The logs reveal two failures. In case 6, the final "." is not decoded, so a character remains and the
output does not match the expected "011200".; In case 8, "-" is decoded twice, so a 0 is read
as 1 and the output does not match the expected "202". But when solving problems, the logic of
the code is correct. First, traverse the string line by line, if it is ".", directly output 0. If it is "-",
continue to judge the next character. Then if the next character is "-", output 1, otherwise, output
2.

However, the solution approach is entirely correct. We iterate through the string with an index. At
each step, check if the current character is ’.’ → if yes, then it’s 0, add to result, increment index by
1. If the current character is ’-’, then we need to check the next character. If next is ’.’, then it’s 1,
add ’1’, increment index by 2. If next is ’-’, then it’s 2, add ’2’, increment index by 2.

Figure 14 shows the New Year Transportation problem. Each cell stores a value that tells how many
steps to move forward. Starting from cell 1, we advance step by step and check whether we reach
the target cell.

The logs reveal two failures. In case 5, moving from cell 1 to 3 and then to 4 reaches the target, so
the output should be YES, not NO; in case 11, moving from cell 1 to 4 and then to 5 also reaches
the target, so the output should be YES, not NO.

However, the solution approach is entirely correct. We simulate the journey starting from cell 1. We
keep moving forward by following the one - way portals. In each step, we determine the next cell
based on the current cell’s portal value. The loop runs as long as the current position is less than the
target cell t. Once the loop ends (when the current position is greater than or equal to t), we check if
the current position exactly matches t to determine if we can reach the target.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 13: Generate error tests but can solve the problem

Case 1: Borze

Problem:
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze
alphabet is used. Digit 0 is transmitted as ’.’, 1 as ’-.’ and 2 as ’–’. You are to decode the Borze code,
i.e. to find out the ternary number given its representation in Borze alphabet.

Input Specification
The first line contains a number in Borze code. The length of the string is between 1 and 200
characters. It’s guaranteed that the given string is a valid Borze code of some ternary number (this
number can have leading zeroes).
Output Specification
Output the decoded ternary number. It can have leading zeroes.

Reasoning Content from Doubao-1.6-Seed-Thinking for test generation
Okay, I need to generate unit test code for the Borze code decoding problem. Let’s start by under-
standing the problem. The task is to decode a Borze code string into a ternary number. The Borze
code uses: ’.’ for 0; ’-.’ for 1; ’–’ for 2.
So first, I need to create test cases based on the example inputs and outputs, and possibly other edge
cases. Let’s list possible test cases:
1. Test the first example: input ’.-.–’ → output ’012’.
2. Test the second example: input ’–.’ → output ’20’.
3. Test the third example: input ’-..-.–’ → output ’1012’.
4. Edge case: single character input ’.’, which should output ’0’.
5. Edge case: two characters ’-.’ → ’1’; ’–’ → ’2’.
6. Longer input, like ’.-.-.–..’ → let’s decode:’.’ →0, ’-.’→1, ’-.’→1, ’–’→2, ’.’→0 → ’01120.’
7. All zeros: ’...’ → ’000’.
8. Mixed 1 and 2: ’-.-.-.’ → 1 1 1 → ’111’; ’–.–’ → 2 1 2 → ’212’.

Reasoning Content from Doubao-1.6-Seed-Thinking for problem solving
Okay, let’s see. The problem is to decode Borze code into a ternary number. The Borze alphabet uses
specific symbols for 0, 1, 2. So first, I need to remember what each code represents. Oh right, 0 is ’.’,
1 is ’-.’, and 2 is ’–’.
The input is a string of Borze code, and I have to convert that into the corresponding ternary digits.
The output is the decoded number as a string, which can have leading zeros.

So the approach is: iterate through the string with an index. At each step, check if the current character
is ’.’ → if yes, then it’s 0, add to result, increment index by 1. If the current character is ’-’, then we
need to check the next character. If next is ’.’, then it’s 1, add ’1’, increment index by 2. If next is ’-’,
then it’s 2, add ’2’, increment index by 2.
So the steps for the code:
1. Read the input string. Let’s call it s.
2. Initialize an index variable i starting at 0.
3. Initialize a result string, say res = ”
4. While i < len(s):
a. if s[i] == ’.’, then append ’0’ to res, i +=1
b. else (it’s ’-’), check s[i+1]. If s[i+1] == ’.’, append ’1’, i +=2. Else (s[i+1] == ’-’), append ’2’, i +=2.
5. After processing all characters, print res.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 14: Generate error tests but can solve the problem (Continue).

Case 2: New Year Transportation

Problem:
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to
n, as a 1<=*n* board. People live in cells. However, it was hard to move between distinct cells,
because of the difficulty of escaping the cell. People wanted to meet people who live in other cells.
So, user has made a transportation system to move between these cells, to celebrate the New Year.
First, he thought of *n*-1 positive integers. For every integer *i* where 1<=*i*<=*n*-1 the
condition holds. Next, he made *n*-1 portals, numbered by integers from 1 to *n*-1. The *i*-th
(1<=*i*<=*n*-1) portal connects cell *i* and cell (*i*+*ai*), and one can travel from cell *i* to
cell (*i*+*ai*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which
means one cannot move from cell (*i*+*ai*) to cell *i* using the *i*-th portal.
Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don’t know whether it
is possible to go there. Please determine whether I can go to cell *t* by only using the construted
transportation system.

Input Specification
The first line contains two space-separated integers *n* (3<=*n*¡=3104) and *t* (2<=*t*<=*n*)
— the number of cells, and the index of the cell which I want to go to. The second line contains *n*-1
space-separated integers. It is guaranteed, that using the given transportation system, one cannot leave
the Line World.
Output Specification
If I can go to cell *t* using the transportation system, print YES

Reasoning Content from Doubao-1.6-Seed-Thinking
So, to summarize, the unit tests should include:
1. Exact reach in one step: Input: ’5 3\n2 1 1 1’. Output: YES.
2. Exact reach in two steps: Input: ’6 5\n1 3 1 1 1’. Output: YES.
3. Exact reach in multiple steps: Input: ’8 4\n1 2 1 2 1 2 1’. Output: YES.
4. Overshoot in one step: Input: ’5 3\n3 1 1 1’. Output: NO.
5. Overshoot in two steps: Input: ’6 4\n2 2 1 1 1’. Output: NO.
6. Reach t=n in one step: Input: ’10 10\n9 1 1 1 1 1 1 1 1’. Output: YES.
7. Reach t=n in multiple steps: Input: ’7 7\n1 1 1 1 1 1’. Output: YES.
8. Overshoot and can’t reach t: Input: ’8 5\n1 2 1 2 1 1 1’. Output: NO.
9. Path ends at t=n: Input: ’9 9\n3 1 2 1 1 1 1 1’. Output: YES.
10. T is in the middle of the path: Input: ’10 6\n2 1 2 1 1 1 1 1 1’. Output: YES.
11. T is not in the path and not overshot: Input: ’7 5\n3 1 1 1 1 1’. Output: NO.
12. Edge case: Input: ’5 2\n1 1 1 1’. Output: YES.
13. Edge case: Input: ’5 2\n2 1 1 1’. Output: NO.

Reasoning Content from Doubao-1.6-Seed-Thinking for problem solving
Here is the step-by-step logic:
1. Initialize the current position to cell 1.
2. Enter a loop that continues as long as the current position is less than the target cell t.
3. Inside the loop, determine the next cell by adding the portal’s value a[i] to the current cell i.
Since the cell numbers are 1-indexed and Python lists are 0-indexed, the jump from current cell is
a[current cell-1].
4. Update the current position to this new cell.
5. The loop terminates when the current position is either equal to or greater than t.
6. After the loop, if the current position is exactly t, it means we have successfully reached the
destination. We print ”YES”.
7. If the current position is greater than t, it means we have overshot the target. Since all movements
are forward, we can never go back to t. In this case, we print ”NO”.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.3 ANALYSIS BETWEEN TEST GENERATION AND DIRECT JUDGMENT

Table 15: Analysis of the direct judgment task.

Reasoning Content from Doubao-1.6-Seed-Thinking
Let’s analyze each code one by one:
1. First code - OK:
- Correctly counts the frequency of each bar length and finds the maximum frequency (tower height)
and number of unique lengths (number of towers).
2. Second code - FAILED:
- The logic is overly complicated and incorrect. It tries to count consecutive same elements after
sorting, but the implementation is wrong.
3. Third code - FAILED:
- The logic is completely wrong and doesn’t solve the problem. It’s doing unnecessary string
manipulations and incorrect counting.
4. Fourth code - OK:
- Correctly finds the maximum count and number of unique elements.
5. Fifth code - FAILED:
- The logic is incorrect. It tries to count unique elements and maximum frequency but does it in a
wrong way (count is incremented incorrectly).
6. Sixth code - OK:
- Correctly counts frequencies using a fixed-size array and finds the maximum count and number of
unique elements.
7. Seventh code - OK:
- Similar to sixth code but uses 1001 as fixed size. Works correctly for the problem constraints.
8. Eighth code - OK:
- Correctly uses set to count unique elements and finds maximum frequency.
9. Ninth code - FAILED:
- The logic is partially correct but the height counting is wrong (only increments by 1 for duplicates).
10. Tenth code - FAILED:
- The logic is incorrect. The formula (n-len(a))+1 doesn’t correctly calculate the maximum height.

Figure 15 shows that the model evaluates submissions by aligning them with the problem’s
solution logic rather than generating individual tests. Direct judgment task depends heavily
on the execution logic extracted from the code submissions. When many submissions are present,
extracting incorrect problem logic from any one of them can cause the sample to fail. Generating
tests to determine verdicts is not subject to this randomness. This also explains that the metrics of
the test-generation task surpass those of the direct-judgement task as the number of code submissions
increases.

28

	Introduction
	TestJudge
	Benchmark Construction
	Task Description
	Metrics
	Properties of TestJudge

	Experimental Evaluation
	Experimental Setup
	Test Generation
	Test Generation vs Problem Solving

	Analysis
	qualitative analysis
	Analysis of unmatched cases
	Analysis between Test Generation and Problem Solving

	quantitative analysis
	Case classification and proportion of matched cases
	Effect of the Number of code submissions in Each Case

	Related Work
	Conclusion
	Discussions
	Benchmark Statistics
	Rule-based Filtering
	Tags of Problems

	Prompts
	Evaluated models
	Experiment Details
	Experiment Setup
	Metrics
	Test Generation
	Evaluation on TestJudge
	Evaluation for different numbers of code submissions
	Evaluation for different information

	Test Generation vs Problem Solving

	Test Generation vs Direct Judgment

	Analysis
	Analysis of unmatched cases
	Analysis between Test Generation and Problem Solving
	Analysis between Test Generation and Direct Judgment

