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ABSTRACT

Model-based reinforcement learning (MBRL) from pixels often encodes frames
into discrete latent variables that form tokens for sequence model backbones to
learn world model dynamics. Previous work adopts two main approaches, each
facing distinct limitations. Categorical bottlenecks enable fast frame-level pre-
diction by flattening spatial features into categorical distributions, but suffer from
explosive parameter growing with resolution and code dimension. Conversely,
vector-quantised variational autoencoder (VQ-VAE) methods achieve parameter
efficiency through codebook quantisation but require slow token-level autoregres-
sive prediction within frames, shifting computational complexity to the dynamics
model and producing longer sequences that slow training and inference.

We propose STEP-VQ, a novel frame-level VQ-VAE-based world model that en-
ables prediction of entire frames through single forward passes. STEP-VQ follows
the latent-imagination paradigm with two components: a world model (VQ-VAE
+ sequence model) and a behaviour policy. The approach is sequence-model ag-
nostic, working with both Mamba-2 and Transformer architectures without modi-
fications. Our key insight is that fine-grained spatial structure preservation may be
unnecessary for effective behaviour learning in latent space, as temporal dynamics
can implicitly capture spatial patterns through frame-level prediction. We provide
rigorous theoretical analysis grounded in variational inference, showing how our
training objective emerges from evidence lower bound (ELBO) optimisation and
why Kullback-Leibler (KL) divergence formulations enable superior performance
through bidirectional optimisation.

On Atari-100k, STEP-VQ achieves competitive performance whilst dramatically
improving efficiency: 11.2x faster training than a strong VQ-VAE based baseline,
4x parameter reduction compared to categorical bottlenecks, and growing advan-
tages at higher resolutions (+27.4% mean improvement at 96x96). STEP-VQ
reaches superhuman performance on 9 games versus 8 for categorical methods,
with KL divergence providing 24.5% improvement over cross-entropy baselines.
These results demonstrate that frame-level discrete quantisation offers a practical
path to efficient, scalable MBRL using modern sequence architectures.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) significantly improves sample efficiency, which has
been a key challenge in applying reinforcement learning (Hafner et al. 2020; 2021} |[Kaiser et al.,
2020; |[Hafner et al., [2023 |Wang et al., [2024). One effective approach is to train a world model
using real environment interactions (Ha & Schmidhuber; |2018; Hafner et al.,[2019). Subsequently,
instead of policy learning relying solely on costly real-world interactions, the world model can be
used to generate ‘imagined’ rollouts used to refine both policy and value estimates. This allows each
real interaction to yield many learning updates. The result is faster learning particularly in domains
where data is scarce, expensive, or risky — such as robotics, healthcare, and industrial control —
while still achieving strong final performance.

In MBRL, a central challenge is to learn compact, predictive state representations directly from
high-dimensional pixel frames. Discrete latent spaces address this by compressing sequences of



Under review as a conference paper at ICLR 2026

observations into sequences of symbolic codes (Oord et al.l|2017; [Esser et al.,|2021;Yu et al.| [2022)
that simplify dynamics learning and control, enabling human-level or superhuman performance on
Atari, MuJoCo, and Crafter (Hafner et al., 2021} |Wang et al., |2024; Dedieu et al., [2025). The key
insight is that effective world models require alignment between visual encoding (how to discretise
observations) and temporal prediction (how to model dynamics). Prior work learns such discrete la-
tents via Categorical bottlenecks (CB) (e.g., the Dreamer family) (Hafner et al.|[2021;2023; Wang
et al [2025; [Zhang et al.l 2023) or Codebook-based vector quantisation (VQ) VQ-VAE-style
codebooks (e.g., IRIS) (Oord et al.,2017; Micheli et al.| [2023}2024; Dedieu et al.,2025). However,
these existing approaches each have their own caveats: CB suffers from parameter counts that grow
with image resolution and code size while VQ suffers from slow, sub-frame token-level autoregres-
sive rollouts. For example, IRIS connects a VQ codebook to a transformer-based world model but
incurs prohibitively slow training due to per-token autoregressive prediction within frames (Micheli
et al. [2023). Building on this, Parallel Observation Prediction (POP) and A-IRIS improved train-
ing throughput yet still fall short of the efficiency of categorical bottlenecks (Cohen et al., 2024;
Micheli et al.}2024)). This computational bottleneck has limited the practical adoption of VQ-based
world models despite their parameter efficiency advantages. To address this fundamental efficiency-
performance trade-off, we target a hybrid approach using discrete, frame-based token representation
(as in CB) with VQ-VAE’s parameter efficiency, whose dynamics can be learnt and rolled out us-
ing frame-level predictions. The architecture of these two discretisation approaches is shown in
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Figure 1: Two alternative tokeniser architectures: (a) VQ-VAE based; (b) Categorical bottlenecks
based.

These design choices reflect different priorities in the efficiency-fidelity trade-off (as we show later
in Figure [2]in Section [3). Categorical bottlenecks achieve fast frame-level prediction by mapping
spatial features to high-dimensional categorical distributions that produce single tokens per frame,
but this approach (i) discards spatial structure through flattening and (ii) creates explosive parameter
scaling proportional to heightx widthx channelsx code dimensionx code class, inflating memory
and latency as resolution or code cardinality grows. Conversely, VQ-VAE-based models preserve
spatial structure through codebook quantisation and maintain parameter efficiency, but shift compu-
tational complexity to the dynamics model, requiring sequence modelling to process multiple tokens
per frame rather than single tokens, producing longer sequences and slower training/inference.

However, our approach takes advantage of the observations that, in MBRL contexts, whilst au-
toregressive token-level prediction respects fine-grained spatial structure, this precision may not be
necessary for effective behaviour learning. Adjacent frames often exhibit high redundancy, suggest-
ing that building spatial understanding by exploiting temporal similarity patterns may be sufficient
for behaviour models operating in latent space. This insight motivates our approach: frame-level
prediction that leverages temporal dynamics to implicitly capture spatial structure whilst achieving
computational efficiency. Therefore, we propose STEP-VQ (Single-pass spaTio-tEmporal Predic-
tion with VQ-VAE), a training scheme that enables a sequence model to predict all discrete video
codes in a single forward pass while enforcing spatiotemporal consistency. STEP-VQ follows the
latent-imagination paradigm with two components: a world model (enhanced VQ-VAE autoen-
coder and sequence model) and a behaviour policy. The approach requires no modifications to
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the sequence model: it can be dropped into any Dreamer-like architecture by simply replacing the
categorical-projection layer, and it works with Mamba, or Transformers. Our main contributions
are:

* Frame-wise prediction for VQ-VAE world models. We propose a training scheme that
enables frame-level prediction of discrete codes in VQ-VAE-based world models, avoiding
sub-frame token-level autoregression, therefore increasing the “imagination” speed.

* Architecture-agnostic sequence modeling. Empirically, the method is sequence-
backbone agnostic: we show empirically that it works out of the box with both Transform-
ers and Mamba-2, yielding comparable performance in the low-resolution domain without
architecture-specific tuning.

* Resolution-scalable performance at fixed model size. STEP-VQ leverages VQ-VAE’s
codebook efficiency where parameters grow significantly slower than categorical bottle-
necks as resolution increases, avoiding the explosive parameter scaling of CB methods that
leads to performance degradation. At higher resolutions, STEP-VQ’s advantages become
more pronounced, reaching +27.4% mean improvement at 96x96 resolution.

* Theoretical analysis of frame-level temporal prediction. We provide rigorous theoret-
ical foundations explaining how temporal redundancy enables frame-level VQ prediction
to match autoregressive performance whilst achieving superior computational efficiency,
grounded in variational inference principles.

2 STEP-VQ ARCHITECTURE

STEP-VQ follows the latent-imagination paradigm for MBRL, similar to methods like
Dreamer (Hafner et al.| 2021), DRAMA (Wang et al., [2025), and STORM (Zhang et al., [2023)).
Our overall architecture comprises two main components:

1. World Model: An VQ-VAE based autoencoder that learns discrete latent representations,
paired with a sequence model (Mamba-2 or Transformer) that captures temporal dynamics.

2. Behaviour Model: A standard actor-critic model m(a; | hy, 2¢) that operates directly on
the state predicted by h; and the current latent codes z;.

The key innovation lies in enabling frame-level prediction for VQ-VAE methods—previously forced
into slow sub-frame token-level autoregression while retaining the training efficiency and scalability
advantages of CB-based methods. This approach enables the behaviour model to use latent variables
directly as they represent entire frames rather than individual spatial tokens by exploiting temporal
redundancy in images. We provide theoretical foundations leveraging variational inference princi-
ples, temporal redundancy exploitation analysis, and novel training procedures to ground our loss
function choices and explain when frame-level prediction can match autoregressive performance.

Crucially, since the behaviour policy operates only on latent codes rather than reconstructed images,
reconstruction quality drives representation learning rather than direct policy optimisation as shown
in Figure[6]

2.1 WORLD MODEL IMPLEMENTATION

The following subsections detail the technical implementation and theoretical framework that en-
ables VQ-based frame-level prediction. We consider a partially observable Markov decision process
(POMDP). At each discrete time ¢, the agent receives an image observation z; € R3*#*W and
selects an action a; € A = {0,1,...,n} where n is the number of available (task-dependent)
actions.

Given a trajectory (z1.7,a1.7—1), a 2D encoder Ency produces continuous latent features: zy =
Ency(x;) € RIXW'XD \where H', W' are the spatial dimensions and D is the embedding di-
mension of the latent space. A vector-quantisation codebook £ = {ey,...,ec} C RP (matrix
E € RY*D) defines a per-patch quantiser over (i,5) € {1,...,H'} x {1,..., W'} ky;j =
arg min.¢(c || 2£[i, 7] — ecl|3. yielding the discrete index map z; = {ky;}i; € () <w!
its embedding z{ = E[z] € RT*W'*D with 2{[i, j] = ey, .-

and
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Because quantisation is applied per spatial site (,7), this discretisation preserves the H' x W’
lattice, maintaining spatial locality and structure (without flattening). Training follows VQ-VAE
practice: gradients are passed through the quantiser via a straight-through estimator with a commit-
ment loss, and the codebook is updated with the exponential moving average (EMA) of the encoder
embeddings; the decoder consumes the gathered embeddings z{ in place of the continuous latents
zg . Concretely, we use the standard VQ-VAE commitment loss

Loq =82 —seldlls >0, (1)

where sg[-] denotes the stop gradient operation. The 2D decoder likelihood remains pg(x; | z¢) =
po(@e | 24).

For context, we briefly compare our VQ-VAE approach with CB alternatives. Categorical methods
represent each frame by a fixed number M of categorical positions, each taking one of K symbols.
The flattened encoder latents are mapped to oy € RM* X Jogits, with M categorical distributions
yielding indices k; € [K]™. This approach discards spatial locality and introduces parameters
proportional to H'W'D - (M - K), making it sensitive to image resolution. Variants are used in
STORM (Zhang et al.| [2023), Dreamer (Hafner et al., [2021; 2023), and DRAMA (Wang et al.,
2023)), and serve as our experimental baselines in Section

2.1.1 SEQUENCE MODEL COMPONENT

The sequence model captures the temporal dynamics of the environment. Crucially STEP-VQ is
sequence-model agnostic, meaning that it does not mandate the use of a specific sequence-model
architecture. The sequence model learns to predict future discrete codes z;y; given the historical
context and actions. We demonstrate STEP-VQ’s versatility by evaluating its performance with
two popular modern sequence modelling architectures: Mamba-2 and Transformer, with detailed
comparisons presented in Section [3]

2.2 TRAINING PROCEDURE

Training uses batches of real frames from replay data in shape (B, L, H, W, 3), where B is the
batch size and L is the sequence length. The encoder and VQ layer produce quantised codes z;
(ground truth) representing the temporal sequence in shape (B, L, H',W'), where H', W' are the
spatial dimensions after encoder downsampling. These codes, along with actions, are processed
by the sequence model to generate recurrent states (B, L, dy), where d}, is the recurrent hidden
dimension, which predict future codes Z; (predictions). Training aligns the predicted codes (student)
with encoder-assigned codes (teacher), where 2*[:, 1 : L] serves as the teacher and [:,: L—1] serves
as the student, implementing temporal offset for next-step prediction.

2.3 MATHEMATICAL FRAMEWORK

Having introduced the VQ-VAE autencoder and sequence model components, we now address the
key challenge: how to train the sequence model to predict discrete codes for frame-level predic-
tion effectively. We frame this as a problem of alignment between visual encoding and temporal
prediction.

2.3.1 SPATIAL DYNAMICS AND TEMPORAL REDUNDANCY

We now provide the mathematical formulation underlying the training procedure. The encoder
qs(zt | x1) acts as a posterior distribution that assigns discrete codes given visual observations:

L exp(=Bllz[ig] — ecll?)
wladind] = 1) = G i) — el

where [ controls the temperature (standard VQ-VAE uses 8 — oo for hard assignments).

2

The temporal dynamics are modelled through a recurrent state h; € R% that summarises the history
of latent codes and actions up to time ¢ — 1:

hi ~ py(h1), hi = fyp(hi—1,2t—1,a0—1) fort > 2, 3)
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so that h; is a deterministic function of (21:t—1, @1:¢—1). The dynamics model py;(z: | h:) serves
as a prior distribution that predicts codes given this encoded history, with the equivalence p.; (2 |
ht) = py(2z¢ | #z1:4—1,a1:4—1). This prior captures temporal dependencies whilst the posterior
captures visual content.

Our dynamics model py, (2, | h¢) approximates the standard spatial categorical distribution:

H W’

pu(z | he) ~ [T T Cat(zli, 5; softmax(fy(he)[i, 51)) - )

i=1j=1

This approximation exploits temporal redundancy—enabling frame-level prediction when tem-
poral patterns contain sufficient mutual information to predict spatial dependencies. The approach
works when temporal correlations ({7 from 2{"7)) are more predictive than spatial correlations,
with achievable approximation quality given using mutual information bounds in Section

2.3.2 TRAINING LOSS FORMULATION

The complete training objective combines reconstruction, VQ-VAE commitment, and dynamics
losses:
Actotal = Erecon + l:vq + Edynamics- (5)

The dynamics loss aligns predicted categorical distributions with ground-truth code assignments, as
derived from ELBO principles in Section During training, the sequence model predicts Z;1
from temporal history h;, supervised against ground-truth codes 2, from the encoder. The loss
formulation becomes:

Edynamics = - Zlogpw (ét—i-l[ivj] = Z:—&-l[iaj] ‘ ht) . (6)
,J

where the sequence-model follows the encoder in the distributional alignment described above, with
averaging over batch and sequence dimensions in practice. This is precisely the cross-entropy loss
between the predicted categorical distributions and ground-truth code assignments.

KL Divergence and Practical Implementation. Empirically, KL divergence loss outperforms
cross-entropy through superior training methodology. Rather than hard assignments from standard
VQ-VAE, we use soft posterior targets based on encoder distances to all codebook entries. The KL
framework enables bidirectional training with stop gradients that jointly optimise both the encoder
and dynamics model, preventing model collapse whilst enabling advanced techniques like free-bit
(Kingma et al.| 2016) for maintaining representation quality. The practical loss formulation is:

Lxr = M Dk [sg(py(esr | he)) 1 ao(zryy | 2 0) | H A2 Dke [Py (Bega | he) | 'sg(ae(ziy | 240))] -

This not-only prevents model collapse but enables complementary teacher-student learning between
encoder and dynamics model, with detailed derivation provided in Section

3 EVALUATION

We evaluated STEP-VQ on the Atari 100k benchmark, which limits agents to 100k environment in-
teractions representing approximately 2 hours of real-time play (Kaiser et al.l 2020; Machado et al.,
2018). This benchmark is widely used for assessing MBRL methods as it emphasizes sample effi-
ciency. We follow the standard evaluation protocol and report per-game human-normalised scores
(HNS):

SCOr€agent — SCOr€random

HNS =

. (7

SCOT€hyuman — SCOT€random
over the standard 26-game set (Kaiser et al., 2020; Schwarzer et al., |2023). Our codebase builds
on the DRAMA MBRL implementation (Wang et al.| [2025). Unless otherwise stated, results use
the configuration shown in Section [F| for the Mamba2-based architecture (STEP-VQ-M) and the
Transformer-based architecture (STEP-VQ-T).
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The primary innovation of STEP-VQ addresses the computational bottleneck that has limited VQ-
based world models. We therefore begin by evaluating the training efficiency gains that enable
scalable VQ-based MBRL.

3.1 TRAINING EFFICIENCY: ADDRESSING VQ-BASED TRAINING BOTTLENECKS

A significant advantage of STEP-VQ is its training efficiency compared to existing VQ-based meth-
ods. Our timing comparison, on a single L40S GPU, demonstrates substantial speedups across
configurations (Figure [2). STEP-VQ-IRIS, a version of STEP-VQ using IRIS-consistent hyperpa-
rameters and a transformer sequence model for fair comparison, trains 11.2x faster than IRIS. More
importantly, STEP-VQ-T, the configuration used for performance evaluation in Table [3] achieves
9.7x speedup while maintaining equivalent performance.

The efficiency bottleneck in IRIS stems from token-level autoregression: 20-frame sequences re-
sult in 20x16=320 actual tokens to be processed due to spatial tokenisation, with batch size 64 and
smaller models (256 dimensions, 10 layers). STEP-VQ eliminates this bottleneck through frame-
level prediction enabled by spatial independence, allowing longer temporal context (128 frames in
STEP-VQ-T) and different architectures (512 dimensions, 4 layers) without proportional compu-
tational penalty. The fact that STEP-VQ-T uses 6.4x longer sequences whilst maintaining 9.7x
speedup demonstrates the scalability advantages of frame-level approaches.

By enabling frame-level prediction in a single forward pass, STEP-VQ eliminates the token-level
autoregressive bottleneck whilst retaining VQ-VAE’s parameter efficiency and preserving spatial
structure. This advancement makes VQ-based MBRL competitive for applications requiring effi-
cient temporal modelling with extended temporal context.

Having demonstrated substantial improvements in training efficiency, we next evaluate whether
these gains come at the cost of performance quality.

Training Efficiency Relative To IRIS ( 1)
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(a) Training efficiency comparison between STEP-VQ and other VQ-VAE-based models.
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Figure 2: Model efficiency and parameter analysis for STEP-VQ compared to baseline methods.
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3.2 OVERALL PERFORMANCE: COMPARISON WITH CATEGORICAL BOTTLENECKS (CB)

As established in Section approximating spatial structure through temporal dynamics is theo-
retically sound for MBRL applications. As CB methods use independent sampling that completely
discards spatial structure in exchange for computational efficiency, we empirically evaluate against
CB-based approaches to validate this theoretical framework. To do so, we replace the VQ-VAE
based autoencoder in our Mamba- and Transformer-based implementation of STEP-VQ (referred
to as CB-M and CB-T - with detailed configurations provided in Section [F)). This comparison tests
whether our spatial independence approximation, which preserves more spatial information than
CB’s complete spatial flattening, can achieve competitive performance whilst enjoying significantly
higher training efficiency than VQ-based world models such as IRIS. We use CB-based architectures
as our primary baseline whilst using original IRIS results for Atari 100K as an additional reference
point. We note that re-evaluating IRIS on the Atari 100k benchmark would have required prohibitive
computational resources.

All method variants (STEP-VQ-M, STEP-VQ-T, CB-M, CB-T) use identical hyperparameters
across all Atari games. STEP-VQ demonstrates overall higher mean performance for both archi-
tectures tested, evaluated using 3 seeds with performance averaged across 10 episodes per game.
Significantly, STEP-VQ consistently achieves superhuman performance (HNS > 1) on 9 games ver-
sus 8 for the CB baselines across both architectures. With Mamba2, STEP-VQ-M achieves a mean
HNS of 1.110 compared to 1.053 for categorical quantisation (+5.4% improvement, Table [T)). With
Transformer, STEP-VQ-T scores 1.048 versus 1.012 for categorical bottlenecks (+3.5% improve-
ment, Table[2). The overall training curve is shown in Figure 4]

For additional context with VQ-based methods, STEP-VQ-T achieves equivalent mean HNS (1.048)
and higher median scores compared to published IRIS results (Table 3| with IRIS results marked *
indicating external results from the original paper). This competitive performance is notable given
that STEP-VQ-T uses fixed hyperparameters for all games compared to IRIS, which has game-
specific hyperparameter tuning for Freeway. However, readers should interpret this comparison
carefully as IRIS results are from their original publication rather than reproduced in our environ-
ment.

These results must be interpreted within the context of parameter efficiency: STEP-VQ achieves
these competitive results using significantly fewer parameters (2,175,616) compared to the CB base-
lines (8,919,552), representing a 4 x parameter reduction. Whilst this efficiency trade-off contributes
to mixed individual game performance and lower median scores in some comparisons, it becomes in-
creasingly valuable at higher resolutions (detailed in Section [3.3) where categorical methods experi-
ence parameter explosion as shown in the Figure[2] These results highlight STEP-VQ’s architecture-
agnostic benefits and hyperparameter robustness whilst showing varying performance across indi-
vidual games, which we interpret to be due to varying degrees of temporal redundancy exploitation
across game types, with performance correlating to how well temporal patterns can substitute for
explicit spatial modelling as analysed in Section[B.2

Building on both efficiency and performance advantages, we evaluate how these benefits translate
to scalability at higher resolutions.

3.3 RESOLUTION SCALABILITY: ENHANCED PERFORMANCE AT HIGHER RESOLUTIONS

STEP-VQ’s advantages become more pronounced at higher resolutions, demonstrating superior
scalability compared to CB architectures. At 96x96 resolution, STEP-VQ’s performance advan-
tage over categorical quantisation grows to +27.4% mean improvement (+35.9% median) as shown
in Table[5]and Figure 3]

To ensure unbiased evaluation, we tested 8 games selected using three criteria based on performance
patterns in Table |1} (1) high-influence games that significantly impact overall metrics (Krull,
Boxing, Jamesbond, RoadRunner), (2) games where categorical methods achieve superhuman
performance whilst STEP-VQ does not (UpNDown, BankHeist), and (3) games where STEP-VQ
achieves superhuman performance whilst categorical methods do not (Breakout, Assault).

The scalability advantage is evident in performance degradation analysis: whilst both methods ex-
perience performance reduction at higher resolution, STEP-VQ decreases by 7.5% (Table [6) com-
pared to categorical methods’ 19.6% degradation (Table[7). At 96x96 resolution, STEP-VQ wins 6
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out of 8 games and maintains superior mean and median performance across the diverse scenarios
tested. This suggests STEP-VQ’s codebook-based quantisation scales more effectively than categor-
ical bottlenecks for higher-resolution processing. An example of the quantitised codes of STEP-VQ
at 96x96 resolution is shown in Figure[9]

Finally, we validate our theoretical analysis by directly comparing the two loss functions derived
from our ELBO framework.

Mean Median
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Figure 3: Higher resolution (96x96) performance comparison across 8 systematically selected
games. STEP-VQ demonstrates superior scalability with +27.4% mean advantage (+35.9% median)
over categorical quantisation, whilst showing reduced performance degradation (7.5% vs 19.6% for
categorical methods). Games were selected across three performance regimes to ensure unbiased
evaluation: high-influence games (Krull, Boxing, Jamesbond, RoadRunner), categorical-
advantage games (UpNDown, BankHeist), and STEP-VQ-advantage games (Breakout,
Assault), demonstrating consistent scalability benefits across diverse scenarios.

3.4 CROSS-ENTROPY VS. KL DIVERGENCE: FROM THEORY TO PRACTICE

As established in Section [2.3.2] cross-entropy loss emerges naturally from the ELBO’s prior-
posterior alignment objective. Since both py (2, | hy) and gy (2, | ;) are categorical distributions
over discrete codes, their alignment during the imagination phase becomes:

L-1

Lop ==Y logpy(zli, ] = go(zli, 4] | 27) | ) - ®)

t=1 i,j

This establishes cross-entropy as a natural objective for discrete codes. However, our empirical
evaluation shows that KL divergence loss provides a 24.5% performance improvement over the
cross-entropy baseline.

We directly compared STEP-VQ using cross-entropy loss versus our proposed KL divergence for-
mulation on the same 8 games used for resolution scalability analysis, with the same selection ratio-
nale to ensure unbiased evaluation. The results demonstrate general advantages for KL divergence
across multiple metrics: mean HNS improves from 2.070 to 2.577, whilst median performance in-
creases from 1.209 to 1.300 (Table [d).

The advantage varies across games: KL divergence shows substantial improvements in games like
Krull (+45.0%) and Boxing (+27.1%), whilst cross-entropy performs competitively in games like
UpNDown and Assault. This empirical validation supports our theoretical analysis that KL diver-
gence enables more effective training.

4 RELATED WORK

Model-based reinforcement learning has emerged as a key approach to improve sample efficiency by
learning environment dynamics for policy optimisation (Sutton & Barto, |1998;; [Hafner et al.| 2020;
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2021} Kaiser et al., 2020; [Wang et al.| [2024). Recent advances using discrete latent representations
have achieved human-level performance across diverse domains (Hafner et al.,|2021; Dedieu et al.,
2025), with the central challenge being learning compact, predictive representations that enable
efficient dynamics modelling whilst preserving visual information necessary for control. A critical
design choice in this area concerns discrete representation learning approaches.

4.1 DISCRETE REPRESENTATION LEARNING

MBRL methods typically employ one of two discrete representation approaches: vector quantisation
(VQ-VAE) and categorical bottlenecks, each facing distinct trade-offs.

VQ-VAE (Oord et al., [2017) provides parameter-efficient codebook representations and has been
applied to world modelling in IRIS (Micheli et al.,[2023), but requires slow token-level autoregres-
sive prediction within frames. Improvements like A-IRIS (Micheli et al] [2024) and POP (Cohen
et al.,[2024)) enhanced throughput but remain computationally slower than categorical methods.

Categorical bottlenecks, popularised by Dreamer (Hafner et al., [2021; 2023) and variants like
DRAMA (Wang et al.| 2025) and STORM (Zhang et al.| [2023), enable fast frame-level prediction
but suffer from explosive parameter scaling proportional to image resolution and code dimensions.

The choice of sequence modelling architecture further influences these trade-offs.

4.2 ARCHITECTURAL FLEXIBILITY IN MBRL

Although A-IRIS (Micheli et al.| 2024) and POP (Cohen et all 2024) have worked to make VQ-
VAE-based world models faster, they still fall short of categorical bottleneck efficiency. Another
limitation is that these approaches often require modifications to the sequence model architecture
to achieve their improvements. Given that modern MBRL methods employ increasingly diverse
sequence architectures—STORM uses Transformers (Vaswani et al.,2017) whilst DRAMA employs
Mamba-2 (Gu & Daol 2024)—such architecture-specific modifications limit flexibility and broader
applicability.

STEP-VQ addresses these limitations by being sequence-model agnostic, working effectively with
both Transformers and Mamba-2 without requiring architecture-specific modifications. Our ap-
proach enables frame-level prediction with VQ-VAE representations whilst maintaining the archi-
tectural flexibility needed for diverse MBRL applications.

5 CONCLUSION

This work addresses a fundamental limitation in MBRL: the computational bottleneck that has
hindered VQ-VAE-based world models. STEP-VQ bridges VQ-VAE’s parameter efficiency with
categorical bottlenecks’ computational speed, achieving 11.2x training speedup over IRIS whilst
maintaining competitive performance with 4x fewer parameters. Our evaluation demonstrates ad-
vantages across different sequence-modelling architectures and growing benefits at higher resolu-
tions (+27.4% at 96x96), with KL divergence providing 24.5% improvement over cross-entropy
baselines.

Beyond empirical advances, this work provides a theoretical foundation for frame-level discrete
prediction through variational inference principles. Our ELBO derivation establishes the mathe-
matical basis for discrete dynamics learning, whilst spatial independence analysis explains when
frame-level prediction can match autoregressive performance. The insight that temporal dynamics
can implicitly capture spatial structure challenges conventional MBRL approaches and opens new
research directions in efficient world model design. The architecture-agnostic framework enables
broad applicability across modern sequence architectures.

While our evaluation focuses on Atari domains, the theoretical framework provides tools for broader
application. The mutual information analysis offers principled approaches for adaptive spatial mod-
elling, and the efficiency gains suggest potential for high-resolution, real-world applications. STEP-
VQ represents a significant advancement toward practical, scalable MBRL that combines theoretical
rigor with computational efficiency, offering a viable path for efficient world models using modern
sequence architectures.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs as a general-purpose assist tool for grammar and typo examination.

B THEORETICAL FOUNDATIONS

This appendix provides detailed mathematical derivations underpinning STEP-VQ’s theoretical
framework.

B.1 ELBO DERIVATION FOR SEQUENTIAL DISCRETE LATENTS

We derive how cross-entropy loss emerges naturally from the ELBO in sequential discrete latent
variable models.

Variational Framework. Given trajectory (z1.7, a1.7—1), we seek to maximise:

Pe(ﬂCl:T | Z1:T) ’pw(zlzT | al:T—l)
1 . 1-1) > Eo oimtwm) |1 9
ogp(rir | arr-1) 2 Eoy(rrlarr) {Og 46 (211 | Z1:7) ©
The dynamics term decomposes as:
T
py(2rr | avr—1) = py(21) H (20 | ). (10)
where h,; encapsulates temporal history (21.4—1, @1.¢—1)-
Cross-Entropy Emergence. The dynamics loss becomes:
T
£dynamics = - Z ZIngll)(Zt[ia,ﬂ = Q¢(Zt[i7j] | x:) | ht) (11)
t=+1 i,j

Since py (2¢[i, j] | he) = softmax(fy (he)[i, 7,:]) and g4 (2¢[¢, j] | =7) provides discrete targets, this
is precisely cross-entropy loss between predicted distributions and ground-truth codes.

B.2 SPATIAL INDEPENDENCE ANALYSIS

The factorisation py (2t | he) = []; ; p(2t[i, j] | ht) assumes spatial conditional independence. This
approximation quality can be bounded using mutual information.

Approximation Error Bound. The error is small when:
I(Zt[zv]L Zt[i/aj/] | ht) ~0 for (7’).7) 7& (i/uj/)' (12)

This holds when temporal history h; contains sufficient information about spatial structure, making
spatial locations conditionally independent given temporal context.

Game-Specific Implications.

* Low MI games (e.g., Breakout): Static backgrounds + deterministic physics — temporal
history determines spatial layout — good approximation

* High MI games (e.g., exploration): Novel spatial structures unpredictable from actions —
poor approximation

12
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B.3 KL DIVERGENCE VS CROSS-ENTROPY

The superior performance of KL divergence over cross-entropy stems from proper posterior formu-
lation.

Soft Posterior. Instead of deterministic assignment 0(z; — 27 ), the true posterior is:
exp (=B ||z [i; 5] — ecl®)
Sier exp(—B 12l 5] — exl]?)
Bidirectional Training. Practical implementation uses stop gradients:
Ly = MDxulsg(py (20 | he)) [ ag(z1 [ )] + A2 Delpy (20 | he) [ sg(gs(ze | 27))]. (14)

qe(2eli, jl =clxt) = (13)

This prevents model collapse whilst enabling complementary learning between encoder and dynam-
ics model.
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Figure 4: STEP-VQ vs. Categorical quantization performance across architectures on Atari 100k
benchmark. Both Mamba?2 and Transformer architectures show general improvements with STEP-
VQ, with Mamba2 achieving higher absolute performance whilst results vary across individual
games.

D STEP-VQ AND STANDARD VQ-BASED MBRL “IMAGINATION”
PROCESSES DIAGRAM
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Figure 5: Loss function comparison: KL divergence vs cross-entropy for STEP-VQ across 8 system-
atically selected games, showing +24.5% mean improvement and +7.4% median improvement. Re-
sults demonstrate general advantages for KL divergence whilst acknowledging game-specific varia-
tion.

(a) Standard VQ-based MBRL “imagination” process.

20 = {keigh € (O

Transformer (xL)

@ Policy MLP @ ®

(b) STEP-VQ based MBRL ““imagination” process.

Figure 6: STEP-VQ and standard VQ-based MBRL “imagination” processes. STEP-VQ enables
frame-level prediction for VQ-VAE methods and the behaviour model operates directly on the latent
codes rather than reconstructed images.
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E DETAILED PERFORMANCE RESULTS

This appendix provides comprehensive per-game performance comparisons across all tested archi-
tectures and quantisation methods.

Game STEP-VQ Mamba2 CB Mamba2 Difference Change (%)
Alien 0.142 0.027 0.115  +425.9
Amidar 0.073 0.082 -0.009 -11.0
Assault 1.054 0.737 0.317 +43.0
Asterix 0.154 0.140 0.014  +10.0
BankHeist 0.294 1.371 -1.077 -78.6
BattleZone 0.085 0.142 -0.057 -40.1
Boxing 7.244 6.169 1.075 +174
Breakout 1.071 0.199 0.872  +438.2
ChopperCommand 0.145 0.061 0.084 +137.7
CrazyClimber 2.622 2.998 -0.376  -12.5
DemonAttack 0.012 0.017 -0.005 -29.4
Freeway 0.911 0.378 0.533 +141.0
Frostbite 0.046 0.048 -0.002 -4.2
Gopher 0.564 0.745 -0.181 -24.3
Hero 0.217 0.415 -0.198  -47.7
Jamesbond 1.597 1.190 0.407 +34.2
Kangaroo 0.631 0.700 -0.069 -9.9
Krull 7.628 6.045 1.583  +26.2
KungFuMaster 1.144 1.253 -0.109  -8.7
MsPacman 0.207 0.304 -0.097 -31.9
Pong 1.167 1.162 0.005 +0.4
PrivateEye -0.000 0.025 -0.025 -100.0
Qbert 0.099 0.252 -0.153  -60.7
RoadRunner 1.528 1.945 -0.417 -214
Seaquest 0.012 0.008 0.004 +50.0
UpNDown 0.203 0.963 -0.760  -78.9
Overall Mean 1.110 1.053 0.057 +5.4
Overall Median 0.256 0.396 -0.141  -35.6

Table 1: Performance comparison between STEP-VQ and CB with Mamba2 on Atari 100K bench-
mark. Values show mean normalised scores across 3 seeds and evaluate the performance by averag-
ing across 10 episodes. Best performing method per game is highlighted in bold. STEP-VQ has 9
superhuman games (HNS > 1) while CB has 8. Both STEP-VQ and CB have a close superhuman
game: STEP-VQ’s Freeway is 0.911 with the same hyperparameter as the other games while CB’s
UpNDown achieves 0.963.

E.1 EXPLORATORY GAME PATTERN ANALYSIS

Preliminary analysis of game-specific performance reveals potential patterns that may inform future
research directions, though this analysis is exploratory and post-hoc in nature. STEP-VQ shows
stronger relative performance in six games: Alien (+279.4% average across architectures), Breakout
(+265.3%), Freeway (+187.8%), Assault (+42.5%), Jamesbond (+25.8%), and Boxing (+16.5%).

These games appear to share certain characteristics such as continuous action requirements and
spatial-temporal coordination challenges. For example, Breakout requires paddle positioning coor-
dinated with ball trajectory, whilst Alien involves movement-shooting coordination. However, we
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acknowledge this analysis is exploratory and requires careful interpretation given the small sample
size and post-hoc nature.

Conversely, categorical quantisation shows advantages in other game types (BankHeist, Gopher, Up-
NDown), potentially reflecting different computational requirements. Future work could investigate
whether these patterns reflect systematic differences in how the two quantisation approaches handle
different types of temporal dependencies, though such analysis would require larger game samples
and controlled studies to establish causal relationships.

Game STEP-VQ Transformer  Categorical Transformer  Difference  Change (%)
Alien 0.142 0.061 0.081 +132.8
Amidar 0.061 0.090 -0.029  -32.2
Assault 1.085 0.764 0.321 +42.0
Asterix 0.131 0.136 -0.005 -3.7
BankHeist 0.557 0.998 -0.441  -442
BattleZone 0.153 0.084 0.069 +82.1
Boxing 6.664 5.767 0.897 +15.6
Breakout 0.881 0.458 0423  +92.4
ChopperCommand 0.096 0.097 -0.001  -1.0
CrazyClimber 2.400 2.041 0.359 +17.6
DemonAttack 0.034 -0.008 0.042 +525.0
Freeway 0.582 0.174 0408 +234.5
Frostbite 0.044 0.171 -0.127  -743
Gopher 0.315 1.188 -0.873  -73.5
Hero 0.176 0.285 -0.109  -38.2
Jamesbond 1.689 1.439 0250 +17.4
Kangaroo 1.018 0.544 0474 +87.1
Krull 7.019 6.846 0.173  +2.5
KungFuMaster 1.113 1.189 -0.076  -6.4
MsPacman 0.239 0.384 -0.145 -37.8
Pong 1.122 1.139 -0.017  -1.5
PrivateEye 0.026 -0.003 0.029  +966.7
Qbert 0.146 0.344 -0.198  -57.6
RoadRunner 1.251 1.731 -0.480 -27.7
Seaquest 0.009 0.011 -0.002 -18.2
UpNDown 0.286 0.384 -0.098 -25.5
Overall Mean 1.048 1.012 0.036 +3.5
Overall Median 0.300 0.384 -0.084 -21.7

Table 2: Performance comparison between STEP-VQ and CB with Transformer on Atari 100K
benchmark. Values show mean normalised scores across 3 seeds and evaluate the performance by
averaging across 10 episodes. Best performing method per game is highlighted in bold. STEP-
VQ has 9 superhuman games (HNS > 1) while CB has 8. Both methods have near-superhuman
performances: STEP-VQ’s Breakout at 0.881 and CB’s BankHeist at 0.998, achieved with the
same hyperparameters across all games.
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Game STEP-VQ Transformer IRIS* Difference Change (%)
Alien 0.142 0.028 0.114  +407.1
Amidar 0.061  0.080 -0.019 -23.8
Assault 1.085 2.504 -1.419  -56.7
Asterix 0.131 0.078 0.053 +67.9
BankHeist 0.557 0.053 0.504  +950.9
BattleZone 0.153  0.308 -0.155 -50.3
Boxing 6.664 5.833 0.831 +14.2
Breakout 0.881  2.929 -2.048 -69.9
ChopperCommand 0.096  0.115 -0.019 -16.5
CrazyClimber 2400 1.938 0462 +23.8
DemonAttack 0.034 1.035 -1.001  -96.7
Freeway 0.582 1.033 -0.451 -43.7
Frostbite 0.044  0.045 -0.001  -2.2
Gopher 0.315 0918 -0.603 -65.7
Hero 0.176  0.202 -0.026 -12.9
Jamesbond 1.689 1.584 0.105 +6.6
Kangaroo 1.018 0.263 0.755 +287.1
Krull 7.019 4.699 2.320 +49.4
KungFuMaster 1.113  0.957 0.156 +16.3
MsPacman 0.239 0.104 0.135 +129.8
Pong 1.122  1.000 0.122  +12.2
PrivateEye 0.026 0.001 0.025 +2500.0
Qbert 0.146 0.044 0.102  +231.8
RoadRunner 1.251 1.226 0.025 +2.0
Seaquest 0.009  0.014 -0.005  -35.7
UpNDown 0.286 0.270 0.016 +5.9
Overall Mean 1.048  1.048 -0.001  -0.1
Overall Median 0.300 0.289 0.011 +4.0

Table 3: Performance comparison between STEP-VQ Transformer and IRIS on Atari 100K bench-
mark. Best performing method per game is highlighted in bold. Note: IRIS* results are from Micheli
et al.[(2023) with different architecture and hyperparameters.

Game STEP-VQ Mamba2  Cross Entropy  Difference = Change (%)
Assault 1.054 1.281 -0.227  -17.7
BankHeist 0.294 0.287 0.007 +2.4
Boxing 7.244 5.700 1.544 +27.1
Breakout 1.071 1.138 -0.067 -5.9
Jamesbond 1.597 1.044 0.553  +53.0
Krull 7.628 5.262 2366 +45.0
RoadRunner 1.528 1.469 0.059 +4.0
UpNDown 0.203 0.376 -0.173  -46.0
Overall Mean 2.577 2.070 0.508 +24.5
Overall Median 1.300 1.209 0.090 +74

Table 4: Performance comparison between STEP-VQ Mamba?2 (KL divergence) and Cross Entropy
on Atari 100K benchmark. Values show mean normalised scores across 3 seeds. Best performing
method per game is highlighted in bold. Percentage change calculated as (STEP-VQ Mamba?2 -
Cross Entropy) / Cross Entropy x 100%.
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Game STEP-VQ HighRes  Categorical HighRes Difference = Change (%)
Assault 1.185 0.825 0.360 +43.6
BankHeist 0.449 0.706 -0.257 -36.4
Boxing 7.075 5.156 1.919 +37.2
Breakout 0.940 0.411 0.529 +128.7
Jamesbond 1.689 1.220 0.469 +38.4
Krull 5.870 4.714 1.156  +24.5
RoadRunner 1.595 1.531 0.064 +4.2
UpNDown 0.278 0.409 -0.131  -32.0
Overall Mean 2.385 1.871 0.514 +274
Overall Median 1.390 1.022 0.368 +35.9

Table 5: Performance comparison between STEP-VQ Highres and Categorical Highres on Atari
100K benchmark. Values show mean normalized scores across 3 seeds. Best performing method
per game is highlighted in bold. Percentage change calculated as (STEP-VQ Highres - Categorical
Highres) / Categorical Highres x 100%.

Game STEP-VQ HighRes  StepVQ Mamba2 Difference = Change (%)
Assault 1.185 1.054 0.131 +124
BankHeist 0.449 0.294 0.155 +52.7
Boxing 7.075 7.244 -0.169 2.3
Breakout 0.940 1.071 -0.131  -122
Jamesbond 1.689 1.597 0.092 +5.8
Krull 5.870 7.628 -1.758 -23.0
RoadRunner 1.595 1.528 0.067 +4.4
UpNDown 0.278 0.203 0.075 +36.9
Overall Mean 2.385 2.577 -0.192  -7.5
Overall Median 1.390 1.300 0.091 +7.0

Table 6: Performance comparison between STEP-VQ Highres and STEP-VQ Mamba2 on Atari
100K benchmark. Values show mean normalized scores across 3 seeds. Best performing method
per game is highlighted in bold. Percentage change calculated as (STEP-VQ Highres - STEP-VQ
Mamba2) / STEP-VQ Mamba2 x 100%.

Game Categorical HighRes  Categorical Mamba2  Difference  Change (%)
Assault 0.825 0.737 0.088 +11.9
BankHeist 0.706 1.371 -0.665 -48.5
Boxing 5.156 6.169 -1.013  -164
Breakout 0.411 0.199 0212  +106.5
Jamesbond 1.220 1.190 0.030 +2.5
Krull 4.714 6.045 -1.331  -22.0
RoadRunner 1.531 1.945 -0.414 213
UpNDown 0.409 0.963 -0.554 -57.5
Overall Mean 1.871 2.327 -0.456  -19.6
Overall Median 1.022 1.280 -0.258  -20.1

Table 7: Performance comparison between Categorical Highres and Categorical Mamba2 on Atari
100K benchmark. Values show mean normalized scores across 3 seeds. Best performing method
per game is highlighted in bold. Percentage change calculated as (Categorical Highres - Categorical
Mamba2) / Categorical Mamba2 x 100%.
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F LoSS AND HYPERPARAMETERS

F.1 VARIATIONAL AUTOENCODER FOR STEP-VQ-M AND STEP-VQ-T

The hyperparameters shown in Table[§|correspond to the standard model. For both STEP-VQ-M and
STEP-VQ-T, we use the same hyperparameter (except for the hyperparameter differences between
Mamba-2 and Transformer).

Hyperparameter Value
Learning rate le-4
Frame shape (h, w, c) (64, 64, 3)
Layers 4
Filters per layer (Encoder) (32, 64, 128, 256)
Stride 1,2,2,2)
Kernel 5
Act SiLU
Norm Group

Table 8: Hyperparameters for the autoencoder for STEP-VQ-M and STEP-VQ-T.

For the higher resolution experiments, we use the same hyperparameters but with a different frame
shape (h, w, ¢) = (96, 96, 3).

F.2 VARIATIONAL AUTOENCODER FOR CB-M AND CB-T

The hyperparameters shown in Table[9]correspond to the standard model VAE for CB-M and CB-T,
it is also used for higher resolution experiments.

Hyperparameter Value
Learning rate le-4
Frame shape (h, w, c) (64, 64, 3)
Layers 5
Filters per layer (Encoder) (32, 64, 128, 256, 256)
Stride 1,2,2,2,2)
Kernel 5
Act SiLU
Norm Group

Table 9: Hyperparameters for the autoencoder for CB-M and CB-T.

For the higher resolution experiments, we use the same hyperparameters but with a different frame
shape (h, w, ¢) = (96, 96, 3).

F.3 VECTOR QUANTISATION FOR STEP-VQ-M AND STEP-VQ-T

The vector quantisation for STEP-VQ-M and STEP-VQ-T is the same as shown in Table [I0}

Hyperparameter Value
Codebook size 64
Commitment loss weight 0.25
Codebook EMA 0.99

Table 10: Hyperparameters for the vector quantisation for STEP-VQ-M and STEP-VQ-T.
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F.4 CATEGORICAL BOTTLENECK FOR CB-M AND CB-T

The categorical bottleneck for CB-M and CB-T is the same as shown in Table

Hyperparameter Value
Categorical size 32
Categorical classes 32

Table 11: Hyperparameters for the categorical bottleneck for CB-M and CB-T.

F.5 REWARD AND TERMINATION PREDICTION HEADS

The reward and termination flag predictors both utilize the deterministic state representation pro-
duced by the sequence model. The rich temporal features captured by the sequence model enable
accurate predictions using only a single fully connected layer. This hyperparameter is used for all
four models: STEP-VQ-M, STEP-VQ-T, CB-M and CB-T.

Hyperparameter  Value

Hidden units 256
Layers 1
Act SiLU
Norm RMS

Table 12: Hyperparameters for reward and termination prediction heads.

F.6 MAMBA-2 HYPERPARAMETERS

The Mamba-2 hyperparameters are the same as the ones used for STEP-VQ-M and CB-M.

Hyperparameter Value
Learning rate 4e-5
Hidden units 512
Layers 4
Dropout 0.1
Act SiLU
Norm RMS
Mamba-2 head number 4

Table 13: Hyperparameters for Mamba-2.

F.7 TRANSFORMER HYPERPARAMETERS

The Transformer hyperparameters are the same as the ones used for STEP-VQ-T and CB-T.

F.8 ACTOR CRITIC HYPERPARAMETERS

We use the behavior policy learning approach from DreamerV3 (Hatner et al., 2023) due to its
simplicity and proven effectiveness, as the behavior policy is not the focus of our main focus in this

paper.
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Hyperparameter Value
Learning rate 4e-5
Hidden units 512
Layers 4
Feed forward units 2048
Dropout 0.1
Act SiLU
Norm RMS
Transformer head number 8

Table 14: Hyperparameters for Transformer.

Hyperparameter Value
Learning rate 4e-5
Layers 2
Gamma 0.985
Lambda 0.95
Entropy coefficient 3e-4
Max gradient norm 100
Actor hidden units 256
Critic hidden units 512
RMS Norm True
Act SiLU
Batch size (bimg) 1024
Imagine context length (limg) 4

Table 15: Hyperparameters for the behaviour policy.

G RECONSTRUCTED GAMING FRAMES
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Figure 7: Reconstructed gaming frames from the UpNDown game at 64x64 resolution in temporal
order. The top row shows the original frames, and the second row shows the quantitised codes. The
third row shows the original frames in greyscale at the background and the red patches show where
the quantitised codes change from the previous frame. The fourth row is the reconstructed frames.
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Figure 8: Reconstructed gaming frames from the Breakout game at 64x64 resolution in temporal
order. The top row shows the original frames, the second row shows the quantitised codes. The third
row shows the original frames in greyscale at the background and the red patches show where the
quantitised codes change from the previous frame. The fourth row is the reconstructed frames.
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Figure 9: Reconstructed gaming frames from the Assault game at 96x96 resolution in temporal

order. The top row shows the original frames, the second row shows the quantitised codes. The third

row shows the original frames

in greyscale at the background and the red patches show where the

quantitised codes change from the previous frame. The fourth row is the reconstructed frames.
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Figure 10: Reconstructed gaming frames from the BankHeist game at 64x64 resolution in tempo-
ral order. The top row shows the original frames, the second row shows the quantitised codes. The
third row shows the original frames in greyscale at the background and the red patches show where
the quantitised codes change from the previous frame. The fourth row is the reconstructed frames.
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