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ABSTRACT

Pretraining on a large number of unlabeled 3D molecules has showcased supe-
riority in various scientific applications. However, prior efforts typically focus
on pretraining models on a specific domain, either proteins or small molecules,
missing the opportunity to leverage the cross-domain knowledge. To mitigate this
gap, we introduce Equivariant Pretrained Transformer (EPT), a novel pretraining
framework designed to harmonize the geometric learning of small molecules and
proteins. To be specific, EPT unifies the geometric modeling of multi-domain
molecules via the block-enhanced representation that can attend a broader context
of each atom. Upon transformer framework, EPT is further enhanced with E(3)
equivariance to facilitate the accurate representation of 3D structures. Another key
innovation of EPT is its block-level pretraining task, which allows for joint pre-
training on datasets comprising both small molecules and proteins. Experimental
evaluations on a diverse group of benchmarks, including ligand binding affinity
prediction, molecular property prediction, and protein property prediction, show
that EPT significantly outperforms previous SOTA methods for affinity prediction,
and achieves the best or comparable performance with existing domain-specific
pretraining models for other tasks.

1 INTRODUCTION

Representing and understanding the 3D geometric structure of molecular systems is of crucial
importance across a multitude of scientific domains, including life science (Eslami et al., [2022),
drug discovery (Blanco-Gonzalez et al., 2023)), and material design (Pyzer-Knapp et al.,[2022). This
is largely owing to the fact that 3D structures mostly determine molecular properties and effects
of various downstream tasks which are hardly captured by 1D representations such as SMILES of
chemical molecules and amino acid sequences of proteins.

In recent years, geometric graph neural net- Small Molecules g Siing Aty
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Adopting deep learning for scientific purposes faces a central challenge: the shortage of labeled data.
To address this issue, recent researchers have incorporated the concept of self-supervised pretraining
techniques from Natural Language Processing (NLP), exemplified by models like BERT (Kenton &
Toutanoval 2019) and GPT (Radford et al.,|2018])). Their experiments confirm that the models pre-
trained from large-scale unsupervised 3D molecules do exhibit improved performance in downstream
tasks after fine-tuning with labeled data. In general, existing pretraining methods on 3D molecules
mainly focus on one pretrained model for one domain. These include small-molecule-specific models
(Luo et al., 20225 Jiao et al., 2023)), protein-specific models (Zhang et al.| [2022), and dual-tower
architectures which can cope with two domains of small molecules and proteins but still leverage one
tower for one domain separately (Zhou et al.|[2023; [Feng et al.| 2023a).

In contrast to previous methods, this paper proposes one pretrained model for multiple domains
(see Figure([I)), to enable unified geometric learning on 3D molecules. Undoubtedly, developing a
molecular foundation model is a formidable task. First, cross-domain data are constructed in different
formats. For example, small molecules are usually of single-level representation with atoms as the
basic building unit. However, proteins are of two-level representation, consisting of amino acids each
of which consists of a certain number of atoms. It is necessary to derive a consistent representation
method to unify this domain difference. Second, molecular systems are always driven by the essential
physical rules in the atom space. The model we propose should appropriately capture the physical
interaction between atoms and comply with E(3) symmetry. Last, existing self-supervised pretraining
objectives are almost designed for specific domains or even specific tasks. It is demanded to develop
multi-domain pretraining objectives that are capable of balancing domain-specific learning and
cross-domain transferring.

In response to these challenges, we introduce Equivariant Pretrained Transformer (EPT), which
consists of three components: unified molecular modeling, equivariant full-atom transformer, and
block-level denoising pretraining, each of which is described below:

* The unified molecular modeling enhances each atom representation by incorporating block-
level features that attend a broader context of each atom, such as the atom-level surroundings
for small molecules and the residue-level belongings for proteins.

* The equivariant full-atom transformer is thoroughly designed upon generic transformer. It
derives the embedding layer with one-layer equivariant GNN to reflect the graph geometry,
and then update the atom-level scalar and vector features via the equivariant self-attention
and feed-forward mechanisms in each layer.

* We propose a block-level denoised pretraining task, which requires the model to recognize
the translation and rotation perturbations applied on each block, thereby enhancing the
model’s ability to model the complex hierarchical geometry of molecules.

We conduct experimental evaluations on a diverse group of benchmarks, including Ligand Binding
Affinity (LBA) prediction, molecular property prediction on QM9, and protein property prediction on
EC and MSP. The results show that EPT significantly outperforms previous SOTA methods on LBA,
and achieves the best or comparable performance with existing domain-specific pretraining methods
on other datasets, which desirably affirm the benefits of our work.

2 EQUIVARIANT PRETRAINED TRANSFORMER

The overview of our method is shown in Figure @ In this section, we first introduce our hierarchical
modelling technique to unify the molecular representation across various domains in and
then present the design of the transformer-based backbone model in §2.2] Finally, we propose the
block-level denoising task for multiple domain pretraining in §2.3]

2.1 UNIFIED MOLECULAR MODELLING

In computational chemistry and molecular modeling, it is common to represent a molecule with
N atoms as a graph G, where atoms are depicted as nodes and their interactions are depicted as
edges denoted as £. Each atom, indexed by ¢, is characterized by a set of features (a;, Z;), with
a; € A specifying the atom type and Z; € R? representing the atom’s 3D coordinate. To capture the
high-level structure within molecules, atoms are additionally grouped into M predefined blocks to
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Figure 2: Overview of our proposed EPT. Our framework is designed to harness the rich information
in multi-domain 3D molecular datasets. To achieve this goal, we adopt the concept of blocks to unify
the molecular representations (§2.1)), design an Equivariant Full-Atom Transformer as the backbone
model (§2.2)), and proposed the block-level denoising technique for pretraining (§2.3).

enrich the node features (Kong et al.l 2023b). Specifically, in the case of small molecules, the blocks
are composed of non-hydrogen atoms (or so-called heavy atoms) and their directly bonded hydrogen
neighbors. For proteins, the blocks correspond to the amino acid residues. Let m,; denote the index of
the block containing atom ¢, the feature set for an atom is extended to (a;, by, , pi, Zi), Where b,
indicates the block type of m;, and p; denotes the atom’s predefined sequential number within its
block. We provide more details of the vocabularies for atom types, block types and atom positions in
Appendix [C| Interactions between atoms are categorized into three distinct edge types to reflect both
intra-block and inter-block relationships. Mathematically,

0, mi; =my,
Cij = 15 mg 7é mjvd(miymj) S 5t0p07 (1)
2, my 7& mj, 6topo < d(miamj) < 5[1’121)(7

where dopo and dmax are predefined thresholds that represent topological and maximum allowable
distances, respectively. The function d(m;,m;) = miNy,, —m; m,=m; [|Zp — Z4||2 calculates the
minimum Euclidean distance between any two atoms belonging to blocks m; and m ;. This framework
allows for a nuanced representation of molecular structures, accommodating the complex nature of
atomic interactions within a molecule.

2.2 EQUIVARIANT FULL-ATOM TRANSFORMER

In the pursuit of efficiently capturing the nuanced interactions of atoms within molecules, we present
the Equivariant Full-Atom Transformer. It utilizes the Transformer-based backbone (Vaswani et al.|
2017) to model the complex interactions among atoms, while keeps updating the scalar and vector
features to capture the rich geometric information inherent in molecular structures.

Specifically, our model first acquires the input features from the Graph Embedding layer, and

iteratively updates the features at each layer . Let H() = [hgl), h(Ql), e hg\l,)] € RN denote the
scalar, and V() = [ﬁgl), 175”, S ﬁg\l,)] € R3*h<N the vector. The model is constructed in this way:
[H(© V()] = Embedding(A, B, P, Z), )

[H(-0-9) v (=05] — [ 0=D v (=D] 4 Self-Atn(LN(H V), V=), 3)

[H(l), ‘_/'v(l)] — [H(l70.5)’ ‘7([70_5)] + FFN(LN(H(I70'5)), V(l70.5))' 4)

After the Embedding layer, Self-attention (Self-Attn) and Feed-Forward Networks (FFN) are applied
alternately, with pre-layer normalization (LN) and residual connections preceding each operation. We
modify the Self-Attn and FFN layers to be E(3)-equivariant, preserving the geometrical symmetry
of molecular structures. These layers are detailed as follows. For conciseness, we omit the layer
subscribe [ unless otherwise specified.
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Graph Embedding Layer. The input features are obtained:

fi:fb(bmi)+fa(ai)+fp(pi)v 5)
ei; = [fi, fi, eij, RBE(||Zi — Zj]|2)], (6)
WY = on(fin Y wlel) - £), 7
JEN(3)
v = N ey (2 - Z), @®)
JEN(3)

where f, fao, fp separately embed the block types, atom types and atom orders, RBF(-) denote the
radial basis functions, and ¢y, @5, ¢, are MLPs to aggregate neighbor information to enrich the 0-th
layer features. It is necessary to initialize VO with SE(3)-equivariant non-zero values via Eq. @i
otherwise the vector features will remain zeros in subsequent layers.

Equivariant Self-Attention Layer. The self-attention layer plays a crucial role in modeling inter-
atomic interactions. For each layer, query Q, key K, and value V; matrices of the s-th head are
computed as

Qs=HWE K, = HWE V, = [ HWY" VW], ©)

where hy is the dimension of each head, W&, WX ¢ Rix4hs WVh W Vv ¢ RF*hs are trainable
parameters that map the features to the appropriate query, key, and value spaces. And the attention
mechanism is given by

Q. K
2Vhs

where D = {d;; }fj:l ={||z: — 2, ”2}%:1 is the distance matrix, and R = {mj}f\fj:l encodes the
edge interactions and geometric relations as '
S {wr(ezj,RBF(Z = zjl2)), (i,4) €€,

1] T ..
700, (i,5) ¢ €.

Here ¢, is an MLP. We explicitly include distances D and edge features R in Eq. (I0) to enhance the
modeling of interatomic interactions, and we explore the efficacy of this design in Appendix [F and

H, V.= Softmax( —D+R)v;, (10)

(11

The outputs of the self-attention layer combines the contributions of all heads:

AH =Y HWI" AV =) VW, (12)

where WO WOV ¢ Rh*" are head-specific trainable parameters.

Equivariant Feed-Forward Layer. Building upon the Geometric Vector Perceptron (GVP, Jing et al.
(2021)) concept, the equivariant feed-forward layer is where the scalar and vector features are fused
and updated simultaneously:

Vi, Vo = VW, VW,, (13)
AH,U = gpen(H, |Vi|2), (14)
AV =LN(U) ® Vs, (15)

where Wi, W, € R"*" are learnable linear projectors, wppN is an MLP that integrates the scalar
features with the magnitude of the vector features, and © denotes element-wise multiplication. The
intermediate matrix U is layer-normalized to conserve the scale of the updated vectors.

2.3 BLOCK-LEVEL DENOISED PRETRAINING

In this section, we describe the block-level denoised pretraining approach designed to incorporate
the hierarchical information into our backbone model (denoted as ¢ hereinafter). The algorithm
leverages the concept of Denoising Score Matching (DSM, |Song & Ermon| (2019)) to enable the
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model to learn from perturbed data representations. We provide more discussions about denoising
strategies in Appendix B} and detail our training target as follows.

Complete Block-level Denoising. We design an additional rotation denoising task from the perspec-
tive of Euler’s rotation equation (Soper}, 2008) above the translation-only denoising target, which is
previously proved effective on complex binding tasks (Jin et al., 2023)).

To begin with, the torque on each block is aggregated as
Mylmi) = Y (= Zolsma)) x ), (16)

According to Euler’s rotation equation, the time derivative of the angular momentum of each block is
given by dL,,/dt = M} = I,G;, where I, € R¥*3*M represents the inertia matrix defined as

Ll m)= Y (||ﬁj||21_ﬁjaj), (17)

mj=m;

where U; = Z; — Zb[:, m;], and the angular acceleration &, € R3*M can be calculated as &, =
—1 -

I, Mj.

To design an objective on &, we additionally perturb blocks by random rotations w;, sampled from

the isotropic Gaussian distribution ZG 50(3)(@) (Leach et al., |2022). Specifically, each rotation

wp:,m;] € s0(3) is constructed as w = 6w, where @ is a uniformly sampled unit vector, and
6 € [0, 7] is a rotation angle with density

£(0) = 1 —7(;059 2(21 N l)e_l(l"‘l)"ﬁ sin ((1 +1/2)6) . (18)

B — sin (0/2)

And the corresponding rotation matrix Q(w) € SO(3) is acquired by the exponential mapping on
w = (Wg, wy,w;) " :

0 —w. wy
Q(w) =exp | w. 0 —wy (19)
—Wwy Wy 0
Overall, the perturbation scheme combining block-level translation and rotation is designed as
Z, = Z - go(Z), (20)
7' =C (g2 +ovez) + QuZ:). e
The translation and rotation loss are defined as
= (Z) = 2,
Looeet = Eeg, on(o,guan [l1n(F) = R0 3]. @2
LoiockR = Ewnzg s (o) {Hdb - pr(w)”%} . (23)
The complete block-level training objective is added as
Loiock-c = Lplock-T + Lblock-R- (24)

3 EXPERIMENTS

We detail the construction of the multi-domain pretraining dataset in Appendix ?? and present the
results on the ligand binding affinity (LBA) prediction task in the following. More results on single
domains and ablation studies are provided in Appendix [E]and [}

Setup The task of Ligand Binding Affinity (LBA) aims at predicting the binding affinity value between
a protein pocket and the corresponding ligand. We follow the setting in Atom3D (Townshend et al.}
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Table 1: The mean and standard deviations of 3 runs on the LBA dataset. The best results are in bold
and the second best are underlined.

Model Sequence Identity 30% Sequence Identity 60%
RMSE| Pearsont Spearman? RMSE| Pearsont Spearman?

DeepDTA 1.866 + 0.080 0.472 £ 0.022 0.471 £ 0.024 1.762 + 0.261 0.666 £ 0.012 0.663 £ 0.015
B&B 1.985 + 0.006 0.165 £ 0.006 0.152 £ 0.024 1.891 + 0.004 0.249 + 0.006 0.275 £ 0.008
TAPE 1.890 + 0.035 0.338 £ 0.044 0.286 +£0.124 1.633 + 0.016 0.568 £ 0.033 0.571 £0.021
ProtTrans 1.544 +£0.015 0.438 £+ 0.053 0.434 £ 0.058 1.641 +0.016 0.595 £ 0.014 0.588 £ 0.009
MaSIF 1.484 +0.018 0.467 £ 0.020 0.455 £ 0.014 1.426 £ 0.017 0.709 £ 0.008 0.701 £ 0.001
IEConv 1.554 +0.016 0.414 £ 0.053 0.428 £ 0.032 1.473 +£0.024 0.667 £0.011 0.675 £ 0.019

Holoprot-Full Surface  1.464 £ 0.006 0.509 £ 0.002 0.500 £ 0.005 1.365 + 0.038 0.749 £0.014 0.742 £0.011
Holoprot-Superpixel 1.491 £ 0.004 0.491 £0.014 0.482 £ 0.032 1.416 & 0.022 0.724 £0.011 0.715 £ 0.006
ProtNet-Amino Acid 1.455 4+ 0.009 0.536 £ 0.012 0.526 £ 0.012 1.397 +0.018 0.741 £ 0.008 0.734 £ 0.009

ProtNet-Backbone 1.458 4+ 0.003 0.546 £ 0.007 0.550 £ 0.008 1.349 +£0.019 0.764 £ 0.006 0.759 £ 0.001
ProtNet-All-Atom 1.463 4+ 0.001 0.551 £0.005 0.551 £ 0.008 1.343 +£0.025 0.765 £ 0.009 0.761 £ 0.003
Atom3D-3DCNN 1.416 +0.021 0.550 £ 0.021 0.553 £ 0.009 1.621 + 0.025 0.608 £ 0.020 0.615 £ 0.028
Atom3D-ENN 1.568 4+ 0.012 0.389 £ 0.024 0.408 £ 0.021 1.620 & 0.049 0.623 £0.015 0.633 £ 0.021
Atom3D-GNN 1.601 £ 0.048 0.545 £ 0.027 0.533 £0.033 1.408 + 0.069 0.743 £ 0.022 0.743 £ 0.027
DeepAffnity 1.893 & 0.650 0.415 0.426 - - -

GeoSSL 1.451 4+ 0.030 0.577 £ 0.020 0.572 £0.010 - — —

EGNN-PLM 1.403 +0.010 0.565 £ 0.020 0.544 £ 0.010 1.559 + 0.020 0.644 £ 0.020 0.646 £ 0.020
Uni-Mol 1.520 & 0.030 0.558 £ 0.000 0.540 £ 0.000 1.619 & 0.040 0.645 £ 0.020 0.653 £ 0.020
ProFSA 1.377 £ 0.010 0.628 £ 0.010 0.620 £ 0.010 1.377 £ 0.010 0.764 £ 0.000 0.762 £ 0.010
EPT-Scratch 1.356 4 0.041 0.604 £ 0.022 0.591 £ 0.025 1.303 +0.015 0.777 £0.001 0.776 £ 0.003
EPT-Molecule 1.3254+0.007  0.627 £ 0.006 0.618 £ 0.004 1.263 +0.022 0.791 £ 0.006 0.783 £ 0.006
EPT-Protein 1.326 = 0.035 0.628 £ 0.014 0.611 +£0.019 1.223 +0.014 0.805 £ 0.002 0.803 £ 0.004

EPT-MultiDomain 1.318 +£0.020 0.643 +£0.005 0.630+0.005 1.165+0.007 0.822+0.002 0.819 +0.002

2020), where each sample is provided as a protein-ligand complex along with its binding affinity.
The dataset includes two different splits based on a threshold of protein sequence similarity: one
where the sequence identity is capped at 30% and another at 60%. Each split contains 3507, 466,
and 490 complexes as the training, validation, and testing sets. We utilize the Root Mean Square
Error (RMSE), Pearson correlation coefficient, and Spearman correlation coefficient as the evaluation
metrics. To validate the consistency of our evaluation, we conduct experiments on three random
seeds and present the mean and standard deviations of the mentioned statistical measures.

Baselines We compare our method with three lines of prior works: sequence-based methods including
DeepDTA (Oztiirk et all 2018), B&B (Bepler & Berger, 2019), TAPE (Rao et al., 2019) and
ProtTrans (Elnaggar et al., 2021a); structure-based models such as MaSIF (Gainza et al., [2020),
IEConv (Hermosilla et al., [2020), Holoprot (Somnath et al.l 2021)), ProtNet (Wang et al., 2023)) and
three backbone models proposed by Atom3D (Townshend et al., 2020); and recent pretrain-based
methods containing DeepAffnity (Karimi et al.,[2019), GeoSSL (Liu et al., 2023), EGNN-PLM (Wu
et al.| [2022), Uni-Mol (Zhou et al.| 2023 and ProFSA (Gao et al., 2023|).

Results Results in Table|l|evaluates our EPT model trained under four different training conditions:
from scratch, pretrained only on the small molecule or protein subset, and pretrained on the entire
multi-domain dataset. We have the following observations: 1. Structure-based models generally
surpass sequence-based counterparts, underscoring the significance of 3D geometry in capturing
interactive information. 2. Pretraining on each individual subset is capable to enhance performance.
Remarkably, EPT-Molecule, which is pretrained without exposure to protein or complex structures,
still outshines the scratch-trained model, suggesting the presence of cross-domain transferable
knowledge. 3. EPT-MultiDomain, benefited from the entire dataset containing diverse domains,
outperforms previous methods and achieve state-of-the-art performance on both of the splits. This
implies that the breadth of pretraining data correlates positively with the model’s performance, and
enables a more generalizable understanding of biological interactions.

4 CONCLUSION

In this work, we propose EPT, an equivariant transformer-based model pretrained on multi-domain
3D molecule structures. We unify the representation of molecules from different domains, design
an equivariant Transformer efficient for large-scale systems, and implement a block-level denoising
strategy specifically for pretraining with diverse multi-domain datasets. The effectiveness of EPT is
demonstrated through its superior performance on LBA, QM9, EC and MSP, highlighting the model’s
ability to generalize across different molecular domains.



Published at the GEM workshop, ICLR 2024

REFERENCES

Bepler, T. and Berger, B. Learning protein sequence embeddings using information from structure.
arXiv preprint arXiv:1902.08661, 2019.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and
Bourne, P. E. The protein data bank. Nucleic acids research, 28(1):235-242, 2000.

Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Antelo-Riveiro, P., Pineiro,
A., and Garcia-Fandino, R. The role of ai in drug discovery: challenges, opportunities, and
strategies. Pharmaceuticals, 16(6):891, 2023.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., Feher, T.,
Angerer, C., Steinegger, M., et al. Prottrans: Toward understanding the language of life through
self-supervised learning. IEEE transactions on pattern analysis and machine intelligence, 44(10):
7112-7127, 2021a.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer,
C., Steinegger, M., Bhowmik, D., and Rost, B. Prottrans: Towards cracking the language of lifes
code through self-supervised deep learning and high performance computing. /[EEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1-1, 2021b. doi: 10.1109/TPAMI.2021.3095381.

Eslami, M., Adler, A., Caceres, R. S., Dunn, J. G., Kelley-Loughnane, N., Varaljay, V. A., and Martin,
H. G. Artificial intelligence for synthetic biology. Communications of the ACM, 65(5):88-97,
2022.

Feng, S., Li, M., Jia, Y., Ma, W., and Lan, Y. Protein-ligand binding representation learning from
fine-grained interactions. arXiv preprint arXiv:2311.16160, 2023a.

Feng, S.,Ni, Y., Lan, Y., Ma, Z.-M., and Ma, W.-Y. Fractional denoising for 3d molecular pre-training.
In International Conference on Machine Learning, pp. 9938-9961. PMLR, 2023b.

Gainza, P., Sverrisson, F., Monti, F., Rodola, E., Boscaini, D., Bronstein, M., and Correia, B.
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.
Nature Methods, 17(2):184-192, 2020.

Gao, B, Jia, Y., Mo, Y., Ni, Y., Ma, W., Ma, Z., and Lan, Y. Self-supervised pocket pretraining via
protein fragment-surroundings alignment. arXiv preprint arXiv:2310.07229, 2023.

Gasteiger, J., Giri, S., Margraf, J. T., and Giinnemann, S. Fast and uncertainty-aware directional
message passing for non-equilibrium molecules. arXiv preprint arXiv:2011.14115, 2020.

Godwin, J., Schaarschmidt, M., Gaunt, A. L., Sanchez-Gonzalez, A., Rubanova, Y., Velickovié, P,
Kirkpatrick, J., and Battaglia, P. Simple gnn regularisation for 3d molecular property prediction
and beyond. In International Conference on Learning Representations, 2021.

Hermosilla, P., Schifer, M., Lang, M., Fackelmann, G., Vazquez, P.-P., Kozlikova, B., Krone, M.,
Ritschel, T., and Ropinski, T. Intrinsic-extrinsic convolution and pooling for learning on 3d protein
structures. In International Conference on Learning Representations, 2020.

Jiao, R., Han, J., Huang, W., Rong, Y., and Liu, Y. Energy-motivated equivariant pretraining for 3d
molecular graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 8096-8104, 2023.

Jin, W, Sarkizova, S., Chen, X., Hacohen, N., and Uhler, C. Unsupervised protein-ligand binding
energy prediction via neural euler’s rotation equation. arXiv preprint arXiv:2301.10814, 2023.

Jing, B., Eismann, S., Soni, P. N, and Dror, R. O. Equivariant graph neural networks for 3d
macromolecular structure. arXiv preprint arXiv:2106.03843, 2021.

Karimi, M., Wu, D., Wang, Z., and Shen, Y. Deepaffinity: interpretable deep learning of compound-
protein affinity through unified recurrent and convolutional neural networks. Bioinformatics, 35
(18):3329-3338, 2019.



Published at the GEM workshop, ICLR 2024

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of NAACL-HLT, pp. 4171-4186, 2019.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Kong, X., Huang, W., and Liu, Y. End-to-end full-atom antibody design. arXiv preprint
arXiv:2302.00203, 2023a.

Kong, X., Huang, W., and Liu, Y. Generalist equivariant transformer towards 3d molecular interaction
learning. arXiv preprint arXiv:2306.01474, 2023b.

Leach, A., Schmon, S. M., Degiacomi, M. T., and Willcocks, C. G. Denoising diffusion proba-
bilistic models on SO(3) for rotational alignment. In ICLR 2022 Workshop on Geometrical and
Topological Representation Learning, 2022. URL https://openreview.net/forum?
1id=BY88eBbkpe5.

Lefaudeux, B., Massa, F., Liskovich, D., Xiong, W., Caggiano, V., Naren, S., Xu, M., Hu, J., Tintore,
M., Zhang, S., Labatut, P., and Haziza, D. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers) 2022.

Liao, Y.-L. and Smidt, T. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang, J. Pre-training molecular graph
representation with 3d geometry. In International Conference on Learning Representations, 2021.

Liu, S., Guo, H., and Tang, J. Molecular geometry pretraining with se (3)-invariant denoising distance
matching. arXiv preprint arXiv:2206.13602, 2022.

Liu, S., Du, W., Ma, Z.-M., Guo, H., and Tang, J. A group symmetric stochastic differential equation
model for molecule multi-modal pretraining. In International Conference on Machine Learning,
pp- 21497-21526. PMLR, 2023.

Luo, S., Chen, T., Xu, Y., Zheng, S., Liu, T.-Y., Wang, L., and He, D. One transformer can understand
both 2d & 3d molecular data. arXiv preprint arXiv:2210.01765, 2022.

Oztiirk, H., Ozgiir, A., and Ozkirimli, E. Deepdta: deep drug—target binding affinity prediction.
Bioinformatics, 34(17):1821-1829, 2018.

Paszke, A., Gross, S., Massa, F,, Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Puny, O., Atzmon, M., Smith, E. J., Misra, ., Grover, A., Ben-Hamu, H., and Lipman, Y. Frame
averaging for invariant and equivariant network design. In International Conference on Learning
Representations, 2021.

Pyzer-Knapp, E. O., Pitera, J. W., Staar, P. W., Takeda, S., Laino, T., Sanders, D. P., Sexton, J.,
Smith, J. R., and Curioni, A. Accelerating materials discovery using artificial intelligence, high
performance computing and robotics. npj Computational Materials, 8(1):84, 2022.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, L., et al. Improving language understanding by
generative pre-training. 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld, O. A. Quantum chemistry structures
and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, P., Canny, J., Abbeel, P., and Song, Y.
Evaluating protein transfer learning with tape. Advances in neural information processing systems,
32,2019.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n) equivariant graph neural networks. In
International conference on machine learning, pp. 9323-9332. PMLR, 2021.


https://openreview.net/forum?id=BY88eBbkpe5
https://openreview.net/forum?id=BY88eBbkpe5
https://github.com/facebookresearch/xformers

Published at the GEM workshop, ICLR 2024

Schiitt, K., Unke, O., and Gastegger, M. Equivariant message passing for the prediction of tensorial
properties and molecular spectra. In International Conference on Machine Learning, pp. 9377-
9388. PMLR, 2021.

Schiitt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A., and Miiller, K.-R. Schnet-a deep
learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24),
2018.

Somnath, V. R., Bunne, C., and Krause, A. Multi-scale representation learning on proteins. Advances
in Neural Information Processing Systems, 34:25244-25255, 2021.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Soper, D. E. Classical field theory. Courier Dover Publications, 2008.

Stirk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Glinnemann, S., and Li0, P. 3d infomax im-
proves gnns for molecular property prediction. In International Conference on Machine Learning,
pp- 20479-20502. PMLR, 2022.

Tholke, P. and De Fabritiis, G. Torchmd-net: equivariant transformers for neural network based
molecular potentials. arXiv preprint arXiv:2202.02541, 2022.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. Tensor field
networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

Townshend, R. J., Vogele, M., Suriana, P., Derry, A., Powers, A., Laloudakis, Y., Balachandar, S.,
Jing, B., Anderson, B., Eismann, S., et al. Atom3d: Tasks on molecules in three dimensions. arXiv
preprint arXiv:2012.04035, 2020.

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe,
0., Wood, G., Laydon, A., et al. Alphafold protein structure database: massively expanding the
structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research,
50(D1):D439-D444, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Wang, L., Liu, H., Liu, Y., Kurtin, J., and Ji, S. Learning hierarchical protein representations via
complete 3d graph networks. In International Conference on Learning Representations (ICLR),
2023.

Wang, Z., Combs, S. A., Brand, R., Calvo, M. R., Xu, P, Price, G., Golovach, N., Salawu, E. O.,
Wise, C. J., Ponnapalli, S. P, et al. Lm-gvp: an extensible sequence and structure informed deep
learning framework for protein property prediction. Scientific reports, 12(1):6832, 2022.

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W., Borst,
A.J., Ragotte, R. J., Milles, L. F,, et al. De novo design of protein structure and function with
rfdiffusion. Nature, 620(7976):1089—-1100, 2023.

Wu, E, Li, S., Wu, L., Li, S. Z., Radev, D., and Zhang, Q. Discovering the representation bottleneck
of graph neural networks from multi-order interactions. arXiv preprint arXiv:2205.07266, 2022.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J. Geodiff: A geometric diffusion model for
molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Yu, Q., Zhang, Y., Ni, Y., Feng, S., Lan, Y., Zhou, H., and Liu, J. Unified molecular modeling via
modality blending. arXiv preprint arXiv:2307.06235, 2023.

Zaidi, S., Schaarschmidt, M., Martens, J., Kim, H., Teh, Y. W., Sanchez-Gonzalez, A., Battaglia, P.,
Pascanu, R., and Godwin, J. Pre-training via denoising for molecular property prediction. arXiv
preprint arXiv:2206.00133, 2022.



Published at the GEM workshop, ICLR 2024

Zhang, Z., Xu, M., Jamasb, A., Chenthamarakshan, V., Lozano, A., Das, P., and Tang, J. Protein
representation learning by geometric structure pretraining. arXiv preprint arXiv:2203.06125, 2022.

Zhang, Z., Xu, M., Lozano, A., Chenthamarakshan, V., Das, P., and Tang, J. Pre-training protein
encoder via siamese sequence-structure diffusion trajectory prediction. In Annual Conference on
Neural Information Processing Systems, 2023.

Zhou, G., Gao, Z., Ding, Q., Zheng, H., Xu, H., Wei, Z., Zhang, L., and Ke, G. Uni-mol: a universal
3d molecular representation learning framework. 2023.

10



Published at the GEM workshop, ICLR 2024

A RELATED WORKS

Geometric Graph Neural Networks. Geometric graph neural networks have emerged as a powerful
paradigm for learning on graph-structured data while respecting the inherent symmetries present
in many physical and biological systems. These networks employ geometric graphs that assign 3D
coordinates to each node, ensuring that the graph’s scalar attributes and dynamic processes remain
invariant and equivariant under E(3) or SE(3) transformations in 3D space. To preserve these symme-
tries, prior research has employed a range of strategies, including irreducible representations  Thomas
et al.[(2018)), frame averaging |[Puny et al.|(2021)), and scalarization mechanism |Schiitt et al.| (2018));
Satorras et al.|(2021). More recently, Transformer-based models have demonstrated their superior
performance on 3D tasks Tholke & De Fabritiis|(2022); Liao & Smidt| (2022); Zhou et al.[(2023). In
this work, we leverage vector features into the Transformer-based backbone for effective geometric
modelling, while faithful to the standard Transformer architecture to enable the memory efficient
techniques [Lefaudeux et al.|(2022)) to handle the molecular structures across various scales.

Pretraining on Domain-Specific Datasets. The scarcity and high cost of labeled molecular data
necessitate the use of label-free pretraining methods for molecular representation models. In the
domain of small molecules, GraphMVP [Liu et al.{(2021)) and 3D Infomax Stérk et al.|(2022)) apply
contrastive learning on 2D-3D pairs, while MoleBlend |Yu et al.| (2023) introduces a multimodal
pretraining framework to align 2D and 3D features. For protein domains, GearNet|Zhang et al.| (2022)
applies contrastive learning on sequencial and structural views of the proteins. Moreover, several
works also focus on modelling the interactions across different domains. For instance, Uni-Mol [Zhou
et al.[(2023) pretrains two separate models for small molecules and protein pockets, and then finetune
the combined model on a binding dataset. Inspired from score-based generative models, denoising
has emerged as a powerful pretraining method to construct a learned force field |Zaidi et al.| (2022);
Liu et al.[(2022); Jiao et al.[(2023)); Feng et al.|(2023b)). NERE [Jin et al.|(2023) designs translation
and rotation denoising task on binding complexes. While NERE conducts perturbations on the entire
ligand, our approach introduces noise at the block-level, enhancing the model’s capability to capture
the hierarchical interactions.

B DETAILS OF MORE DENOISING STRATEGIES

Predict Forces from EPT To applying the denoising task on the EPT model, one additional re-
quirement is to predict forces from the backbone for pretraining. In practice, we apply an additional
FFN-like layer over layer-L to fuse the output scalars and vectors as

Houi, Vou = HP V) )| VD), (25)
F' = out(Houwt, | VourWil2) © VouWs. (26)

Generally, the overview of DSM is outlined as follows. The training process begins by sampling
perturbed coordinates Z' from a predefined noise distribution parameterized by o. The atom-level
pseudo forces F' are then predicted by the model ¢ to recover Z from Z', and finally used to
compute the denoising loss £. The key points of DSM lie in the design of the perturbation mechanism
and the corresponding loss function to align the predicted forces F' with the Denoising Force Field
(DFF). In the following, we first introduce the simple atom-level denoising method, then extend the
denoising targets from atoms to blocks, and finally apply additional rotations on blocks to better
depict the geometric landscape.

Atom-level Denoising. The atom-level denoising process |Zaidi et al.| (2022)); Jiao et al.| (2023)
independently introduces Gaussian noise to each atom as ez ~ N (0, I3y ) rescaled by o;:

Z'=C(Z + oiez), (27)

where the operation C' (Z )= Z-— > Z /N projects the noised sample to the mean-centered subspace
to neutralize the translation introduced by the noises |Xu et al.[(2022).
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The training objective is to match the predicted F' with the denoising force field yielded by

V 500,(Z'\Z) as

77,
2 ||2 .

g

Latom = Eeyrn0.15x) || F' — (28)

Translation-only Block-level Denoising. To conserve the intra-block geometry, we extend the
atom-level denoising task into block-level by considering blocks as rigid bodies, and all the atoms
within the same block are applied by the same noise. For simplification, we first define the operators
py RN 5 R3IXM g, R3XM _y R3XN denote the atom-to-block averaging and the block-to-
atom duplication. In particular, we have

j=mi ! (29)

Slightly different from the atom-level setting, we apply noises on the center of each block as
€z, ~ N (0, Ips). For noise scale oy, the perturbation and mean-centered projection are sequentially
calculated as

Z' = C(Z +ougp(ez,)). (30)
The training objective adapts Eq. into block-level as

m(Z') = Z,

Lotock-T = Ee 7 ~A(0,1301) {Hﬂb(ﬁ;/) - 5 ||§} (31)

g
C VOCABULARY CONSTRUCTION

The vocabulary of atom types, block types and atom positions are detailed in Table [2]

Table 2: Construction of the vocabulary of atom types, block types and atom positions.

Vocabulary Index Descriptions
Atom 0~2 <pad>, <mask>, <global>
3~120 118 elements
Block 0~3 <pad>, <mask>, <unk>, <global>

4~23 20 amino acids
24~141 118 elements (H is included for completeness)

Position 0~2 <pad>, <mask>, <global>
3~12 position codes for atoms in protein, i.e. «, 3, etc.
13 <sml>for atoms in small molecules

D MULTI-DOMAIN PRETRAINING

D.1 DATASET COLLECTION
We collection the 3D molecule datasets from small molecules and protein domain, as detailed in
Table 3] Moreover, for each time loading data from PDB, we further randomly extract a local scope

with three sequencially continuous residues as a training sample. This random segmentation approach
is applied as the data augmentation for proteins.

D.2 HYPERPARAMETERS

We pretrain EPT on 8 NVIDIA Tesla A800 with hyperparameters in Table
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Table 3: Statistics of the structural datasets for pretraining.

Domain Source # of entries
GEOM-QM9 430,201

Small Molecule GEOM-Drugs 1,465,181
PCQM4Myv2 3,378,606

PDB 599,699

Protei PDBBind-PP 2,852
rotemn PDBBind-refined-set 5316
PDBBind-v2020-other-PL 14,127

Table 4: Hyperparameters for constructing and training EPT.

Name hhiddcn hffn hcdgc hrbf L H 6max §Iopc

Value 512 512 64 64 6 8 10.0 1.6

Name epoch scheduler Ir min_Ir o o, max_n_vertex max_vertex_per_gpu
Value 50 cosine 1.0x107% 1.0x10~°> 0.04 0.1 5,000 10,000

E MORE RESULTS

E.1 MOLECULE PROPERTY PREDICTION

Setup We select QM9 Ramakrishnan et al.| (2014) to evaluate the performance of EPT on small
molecules. In detail, QM9 serves as a quantum chemistry benchmark that offers 12 chemical
properties for each 3D molecule composed of C, H, O, N, and F elements. Following [Tholke &
De Fabritiis| (2022), we randomly select 10,000 and 10,831 structures for validation and testing, and
the remaining 110,000 structures are used to finetune the model. We use Mean Absolute Error (MAE)
on each property to evaluate the model performance.

Baselines EPT is benchmarked against a range of 3D geometric models and pretraining approaches
tailored to small molecules. For geometric GNNs, we include SchNet |Schiitt et al.| (2018)), E(n)-
GNN [Satorras et al.[(2021), DimeNet++ Gasteiger et al.[(2020), PaiNN |Schiitt et al.[|(2021), and the
Transformer-based architectures TorchMD-Net Tholke & De Fabritiis| (2022)) and Equiformer|Liao &
Smidt (2022), which incorporate vector or higher-degree features. Pretraining comparisons are drawn
from the work of [Feng et al.| (2023b)), featuring GeoSSL |Liu et al.| (2022) and 3D-EMGP Jiao et al.
(2023))—methods that apply denoising techniques to PaiNN and E(n)-GNN—as well as Transformer-
M [Luo et al.| (2022), DP-TorchMD-Net |Zaidi et al.| (2022)), and Frad (Feng et al.| [2023b)), which
implement various denoising strategies on Transformer-based models.

Results We pretrain our model on the multi-domain dataset and present the results in Table [3
Following Zhang et al.| (2023)), we compute the average rank for each method over the 12 tasks to
summarize the results succinctly. Our approach demonstrates superior or comparable performance to
existing denoising-based methods, validating the effectiveness of block-level denoising. Additionally,
we experiment with an augmented model, EPT-10, which comprises 10 layers against the original
6-layer setting. The enhanced results, as depicted in the last row of Table[3] affirm the scalability of
our proposed pretraining paradigm.

E.2 PROTEIN PROPERTY PREDICTION

Setup We evaluate EPT on protein-related tasks to verify its generalization on macro molecular
systems: Enzyme Commission number prediction (EC) requires predicting the catalyst properties of
proteins characterized by EC numbers, including 538 binary classification tasks; Mutation Stability
Prediction (MSP) seeks to predict whether a point mutation at the interface of protein complexes
leads to better binding affinity, formalized as a binary classification task. For EC, we follow (Zhang
et al.| 2022) to quantify the performance with F1 max and AUPRC, with size of training, validation,
testing set as 15550, 1729, and 1919, respectively. For MSP, we follow [Townshend et al.| (2020) to
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Table 5: MAEs on the QM9 dataset. The best results are in bold and the second best are underlined.
The right-most column provides the averaged rank of each method across 12 tasks.

Model e ol aomol eumol  Ael < R?*>| ZPVE| Upl Ul H| Gl Cyl  Avgl

D) (ag) (meV) (meV) (meV) (a%) (meV) (meV) (meV) (meV) (meV) (ﬁ) Rank
SchNet 0.033 0.235 41.0 34.0 63.0 0.070 1.70 14.00 19.00 14.00 14.00 0.033 11.83
E(n)-GNN 0.029 0.071 29.0 25.0 48.0 0.110 1.55 11.00  12.00 12.00 12.00 0.031 11.17
DimeNet++ 0.030 0.043 24.6 19.5 32.6 0.330 1.21 6.32 6.28 6.53 7.56 0.023 7.17
PaiNN 0.012  0.045 27.6 20.4 457 0.070 1.28 5.85 5.83 5.98 735 0.024 6.33
TorchMD-Net 0.011 0.059 20.3 18.6 36.1 0.033 1.84 6.15 6.38 6.16 7.62 0.026 7.08
Equiformer 0.011 0.046 15.0 14.0 30.0 0.251 1.26 6.59 6.74 6.63 7.63 0.023 6.00
Transformer-M 0.037 0.041 17.5 16.2 274 0.075 1.18 9.37 9.41 9.39 9.63 0.022 6.92
GeoSSL 0.015 0.046 23.5 19.5 40.2 0.122 1.31 6.92 6.99 7.09 7.65 0.024 8.42
3D-EMGP 0.020 0.057 21.3 18.2 37.1 0.092 1.38 8.60 8.60 8.70 9.30 0.026 8.83
DP-TorchMD-Net  0.012  0.052 17.7 143 31.8 0.450 1.71 6.57 6.11 6.45 6.91 0.020 6.67
Frad 0.010 0.037 15.3 13.7 27.8 0.342 1.42 533 5.62 5.55 6.19 0.020 3.17
EPT 0.011 0.045 16.2 14.1 29.6 0.122 1.14 5.53 5.70 5.52 6.42 0.020 3.33
EPT-10 0.010 0.045 152 13.6 29.0 0.152 111 5.44 5.54 542 6.37 0.020 2.33

report AUROC on the split based on 30% sequence identity, where there are 2864, 937, and 347
samples for training, validation and testing.

Baselines We compare our EPT against baselines from|Zhang et al.| (2022) and Jing et al.|(2021)). Due
to the space limit, we highlight representative models from various categories here: (1) traditional
networks such as GCN (Kipf & Welling, 2016) and Atom3D-CNN (Townshend et al., 2020); (2)
equivariant geometric GNNs including Atom3D-ENN (Townshend et al., 2020) and GVP (Jing et al.|
2021); (3) GNNs talored for protein domain represented by GearNet and GearNet-Edge (Zhang
et al., [2022); (4) sequence-based pretraining methods containing LM-GVP (Wang et al.,[2022) and
ProtBERT-BFD (Elnaggar et al.l2021b); (5) structure-based pretraining methods such as GearNet-
Edge-MC (Zhang et al.,[2022).

Results Table[6|illustrates that our EPT outperforms all baselines when trained from scratch, indicating
its remarkable expressiveness in the protein domain. Notably, when compared to the pretrained
models, our EPT pretrained on the multi-domain dataset surpasses the baselines on MSP by a large
margin, emphasizing its capability of capturing shared physics across different molecular domains.
Further, though pretrained on atomic view, EPT exhibits surprising knowledge transferability to
residue-level graphs in the EC task, achieving comparable performance with GearNet-Edge-MC
which is pretrained on the residue-level view of proteins.

Table 6: Results on Enzyme Commission number prediction (EC) and mutation stability prediction
(MSP). The best scores are marked in bold and the second best underlined.

Model EC MSP
FI Max AUPRC AUROC
GCN 0.320 0.319 0.621
Atom3D-CNN - - 0.574
w/o Atom3D-ENN - - 0.574
Pretrain GVP 0.489 0.482 0.680
GearNet 0.730 0.751 -
GearNet-Edge 0.810 0.835 0.633
EPT (ours) 0.823 0.844 0.700
LM-GVP 0.664 0.710 -
w/ ProtBERT-BFD  0.838 0.859 -
Pretrain  GearNet-Edge 0.874 0.892 0.646
EPT (ours) 0.858 0.871 0.741

F ABLATION STUDIES

Design of the backbone model. We provide a series of ablation studies on the QM9 dataset to
elucidate the contribution of each component to the performance of our backbone model, as detailed
in Table[7] Specifically, we explore the following aspects. 1. We first substitute the input embedding
delineated in Eq. with a straightforward atom-level embedding, denoted as f; = f,(a;). The
findings suggest that enriching atom features with block-level information slightly improves model
performance. 2. In Eq. (I0), we integrate the distance matrix D and edge features R into the attention
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Table 7: Evaluation of each proposed component on the QM9 dataset. Best results are marked in
bold.

Block Dist. Edge
‘ Emb. Attn. Attgn. FEN | esomo  eLumo

Ours | v v v v | 192 17.4

Block-level Embeddings
Atom Emb. Only | v v v | 195 17.6

Attention Mechanism

Standard Attn. v v 23.2 20.4
w/ Dist. Attn. v v v 22.3 19.4
w/ Edge Attn. v v v 20.4 17.7

Feed Forward Network
w/o FFN v v v 28.2 26.6

mechanism. Eliminating either or both of these elements leads to a decline in performance, thereby
underscoring their collective significance in effectively capturing the varying interatomic relations. 3.
In Eq. (I3}I5), we employ the FFN layer to amalgamate scalar and vector features. The resultant
sharp drop after removing the FFN layer underscores the critical role of feature fusion in our model.

Comparison on pretraining settings. We evaluate the influence of pretraining datasets and denoising
strategies on LBA and QM9 in Table[§] As an extension of Table[I] we observe a consistent trend
where pretraining on one domain confers benefits to downstream tasks in another domain. Specifically,
the model pretrained on small molecules demonstrates enhanced performance on the LBA tasks, while
the model pretrained on proteins exhibits improved results on the QM9 benchmark. Furthermore,
the model pretrained on the multi-domain dataset shows superior performance across all evaluated
downstream tasks.

We further compare the three kinds of denoising strategies introduced in §2.3] The Lyom Strategy
focuses on atom-level denoising, showing superior results for small molecular structures on QM9.
However, its benefits are less pronounced when applied to large, complex systems such as LBA. On
the contrary, Lyjock.T adopts a more macroscopic approach by only considering the translations of
each block’s center of mass. This coarse-grained strategy improves performance for larger systems
but tends to struggle in smaller molecules. Finally, our model, which accounts for both block-level
rotations and translations, provides a comprehensive supervision for predicted forces, resulting in the
optimal performance across all strategies.

Table 8: Comparison on the LBA and QM9 results from different pretraining settings. Best results
are marked in bold.

Pretraining PCCt MAE|
Setting ID30 ID60 €EHOMO  €LUMO
- 0.604 0.777 19.2 17.4
Dataset Domain
Molecule Only 0.627 0.791 17.5 15.5
Protein Only 0.628 0.805 18.9 16.7
Denoising Strategy

Latom 0.613 0.807 17.1 14.6
Lolock-T 0.636 0.817 17.5 14.8
Ours 0.643 0.822 16.2 14.1
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G IMPLEMENTATION DETAILS

G.1 LBA

We utilize the pretrained model as the encoder and additional apply an output head to predict the
affinity. Specifically, we consider three types of output heads based on an MLP ¢ as follows:

(Patom H(l) Z SDE hgl) 7 (32)
Piock (HD) = ZwE( )D h§”)), (33)
Perapn(HV) = o5 Zh ). (34)

Based on these heads, the hyperparameters for finetuning on LBA are provided in Table [9]

Table 9: Hyperparameters for finetuning on LBA.

Name Ir batch_size output_head label norm epoch save_topk factor patience min_Ir omit_sml_pos

Sequence Identity 30

EPT-Scratch 1.0 x 1074 16 graph std 15 5 0.8 5 1.0 x 1077 True
EPT-Molecule 1.0 x 107° 16 block mad 15 5 0.8 5 1.0 x 1077 True
EPT-Protein 1.0 x107° 8 atom std 20 5 0.8 5 1.0 x 1077 False
EPT-MultiDomain 1.0 x 10~* 16 graph mad 20 5 0.8 5 1.0 x 1077 False
Sequence Identity 60
EPT-Scratch 1.0 x 10~* 16 block mad 30 5 0.8 5 1.0 x 1077 True
EPT-Molecule 5.0x107° 16 block none 30 5 0.8 5 1.0 x 1077 True
EPT-Protein 5.0 x 107° 8 atom none 30 5 0.8 5 1.0 x 1077 False
EPT-MultiDomain 5.0 x 10~° 16 atom none 30 5 0.8 5 1.0x 1077 False
G2 QM9

Following previous studies [Zaidi et al. (2022); [Feng et al.| (2023b), we utilize the noisy node
technique [Godwin et al.|(2021)) by adding Lyjock.c as an auxiliary training objective, and the entire
loss for finetuning on QM9 can be formulated as £ = Lyag + ALpiock-c, Where A balances the weight
of each term. We utilize the same hyperparameters for all 12 tasks, which are detailed in Table [I0]

Table 10: Hyperparameters for finetuning on QM9.

Name Ir batch_size oy o A epoch save_topk factor patience min_Ir omit_sml_pos

EPT 5.0 x 107° 64 0.04 0.1 0.1 1,000 1 0.8 15 1.0 x 1077 True

EPT-10 5.0 x 107° 64 0.04 0.05 0.1 1,000 1 0.8 15 1.0 x 1077 True
G.3 EC

Following Zhang et al.| (2022), we integrate IEConv (Hermosilla et al.,|2020) for better expressiveness
on residue-level protein graph. Specifically, we insert an adapter layer after the attention module to
update the invariant features h as follows:

Ri=hi+ Y ém(de,(€ij) + dey(eis) o dn(hi)), (35)

JEN (1)

where e;; is the intrinsic-extrinsic edge features in (Hermosilla et al., [2020), N (i) denotes the
neighborhood of node ¢, o denotes element-wise multiplication, and ¢y, , @, , Pe,, dn are 2-layer
MLPs. To fully utilize the adapted model, we further post-pretrain the model with pretrained original
parameters and randomly initialized adapters. The model is post-pretrained on an integrated dataset
comprising PDB [Berman et al.|(2000) and AlphaFoldDB |Varadi et al|(2022). During this phase, we
employ block-level denoising and masked prediction as the post-pretraining tasks. We provide the
hyperparamters for post-pretraining in Table[I1] and for finetuning on EC in Table
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Table 11: Hyperparameters for post-pretraining.

Name Ir epoch  scheduler min_Ir o¢ o, maskratio max_vertex_per_gpu
Value 1.0 x 1074 30 cosine 1.0x 1075 0.1 0.1 0.15 10000
Table 12: Hyperparameters for finetuning on EC.
Name Ir batch_size epoch save_topk factor patience min_Ir
EPT (w/o pretrain) 5.0 x 107° 8 200 1 0.6 5 5.0 x 1076
EPT (w/ pretrain) 5.0 x 107° 8 200 1 0.6 5 5.0 x 1076
G.4 MSP

We use the split by sequence identity over 30% provided by Atom3D (Townshend et al.,[2020), and
extract all residues within 6A distance to the mutation point as the local view for input, where the
distance between two residues is measured by the minimum distance between atom pairs. We further
present the mean and standard deviation across three rounds in Table The hyperparameters for
finetuning MSP is listed in Table[14]

Table 13: Mean and standard deviation across 3 runs on mutation stability prediction (MSP). The
best scores are marked in bold and the second best underlined.

Model AUROC
GCN 0.621 £ 0.009
Atom3D-CNN  0.574 4+ 0.005
w/o Atom3D-ENN  0.574 4+ 0.040
Pretrain GVP 0.680 £0.015
GearNet-Edge 0.633 £ 0.067
EPT (ours) 0.700 £ 0.017
w/ GearNet-Edge 0.646 + 0.006
Pretrain  EPT (ours) 0.741 £ 0.007

Table 14: Hyperparameters for finetuning on MSP.

Name Ir batch_size epoch save_topk factor patience min_Ir
EPT (w/o Pretrain) 1.0 x 10“:’ 16 10 5 0.6 5 5.0 x 1076
EPT (w/ Pretrain) 1.0 x 107 4 10 5 0.6 5 5.0 x 1076

GPU Memory Usage for Different Transformer-based GNNs
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Figure 3: GPU memory usage comparison of three Transformer-based backbones as the number of
nodes increases. EPT demonstrates a more memory-efficient scaling behavior compared to TorchMD
and EquiFormer. EquiFormer encounters an Out-of-Memory (OOM) error at 512 nodes on a NVIDIA

Tesla A800 with 80G GPU memory.
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H MEMORY EFFICIENCY

H.1 EFFICIENT ATTENTION MECHANISM

Consider the attention mechanism introduced in Eq. , the query, key matrix Qs, K and the
concatenated value matrix V; share the shape of RP*NmaxXSx4hs "ywhere B, Ny, S, h, denote the
batch size, the maximum number of atoms, the number of heads and the size of each head’s hidden
state. Such shape consistency enables the usage of previous memory efficient techniques |Lefaudeux
et al.[(2022) that provide the interface of attention biases for D and R. We provide the pseudo codes
in PyTorch [Paszke et al.|(2019) style as follows.

from xformers.ops import memory_efficient_attention

def equivariant_memory_efficient_self_ attention(H_in, V_in, D, R, mask):

AURTRY

Params:
H_in: B * N_max * h
V_in: B * N_max * 3 % h
D: B » N_max * N_max
R: B * N_max * N_max
mask: B x N_max

Returns:
H_out: B » N_max = h
V_out: B » N.max = 3 * h

AURTRY

# Eq. (6)

Query_s = linear_scalar_Q(H_in) .view(B, N_max, S, h_s = 4)

Key_s = linear_scalar K(H_in) .view(B, N_max, S, h_s x 4)
Value_s_scalar = linear_scalar_K(H_in) .view (B, N_max, S, h_s)
Value_s_vector = linear_scalar_K(V_in) .view (B, N_max, 3, S, h_s)

# B x Nmax S = 3h_s

Value_s_vector = Value_s_vector.transpose(2,3).flatten(start_dim=-2)
# B * N.max * S x 4h_s

Value_s = cat ([Value_s_scalar, Value_s_vector], dim=-1)

# Eq. (7)

bias = R - D

bias = bias.masked_fill (mask.unsqueeze (1) .unsqueeze(2) == 0, float ("
inf"))

bias = bias.expand(-1, S, -1, -1)
HV = memory_efficient_attention(
query = Query_s,
key = Key_s,
value = Value_s,
attn_bias = bias

s = HV[..., :h_s]

V_s = HV[..., h_s:].view(B, N_max, S, 3, h_s).transpose(2,3)
Eg. (9)

H_out = linear_scalar_O(H_s.view (B, N_max, h))

V_out = linear_vector_ O (V_s.view(B, N_max, 3, h))

return H_out, V_out

H.2 COMPARISON ON TRANSFORMER-BASED BACKBONES

We further compared the GPU memory consumption of our model, a 6-layer, 512-hidden EPT,
with two previous Transformer-based backbones: the 6-layer, 512-hidden TorchMD-Net (Tholke &
De Fabritiis, |2022) and the 6-layer, 128-hidden, 3-degree Equiformer (Liao & Smidt, 2022), which
have 31M, 19M, and 18M parameters, respectively. Our tests measured memory usage of one forward
step on point clouds with 32 to 2048 nodes, sampled uniformly within a sphere of radius ¥/N, and
connected by edges within a 4.0 cutoff distance. Figure [3|illustrates that EPT is consistently more
memory-efficient across various node counts. This efficiency enables our model to effectively process
large-scale point clouds, facilitating the study of expansive molecular systems.
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