Nemotron-CLIMB: CLustering-based Iterative Data
Mixture Bootstrapping for Language Model Pre-training

Shizhe Diao', Yu Yang', Yonggan Fu', Xin Dong', Dan Su'!, Markus Kliegl!, Zijia Chen',
Peter Belcak', Yoshi Suhara', Hongxu Yin', Mostofa Patwary!, Yingyan (Celine) Lin?,
Jan Kautz!, Pavlo Molchanov'

INVIDIA 2Georgia Institute of Technology

Abstract

Pre-training datasets are typically collected from web content and lack inherent
domain divisions. For instance, widely used datasets like Common Crawl do
not include explicit domain labels, while manually curating labeled datasets such
as The Pile is labor-intensive. Consequently, identifying an optimal pre-training
data mixture remains a challenging problem, despite its significant benefits for
pre-training performance. To address these challenges, we propose CLustering-
based Iterative Data Mixture Bootstrapping (Nemotron-CLIMB), an automated
framework that discovers, evaluates, and refines data mixtures in a pre-training
setting. Specifically, Nemotron-CLIMB embeds and clusters large-scale datasets in
a semantic space and then iteratively searches for optimal mixtures using a smaller
proxy model and a predictor. This strategy enables effective domain adaptation
without relying solely on curated data. When continuously trained on 400B tokens
with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by
2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social
Sciences) yields a 5% improvement over random sampling. Finally, we introduce
NEMOTRON-CLIMBLAB, a filtered 1.2T-token corpus with 20 clusters for research,
and NEMOTRON-CLIMBMIX, a 400B-token compact dataset designed for efficient
pre-training that delivers superior performance under an equal token budget. We
analyze the final data mixture, elucidating the characteristics of an optimal data
mixture. Our data is available here.

1 Introduction

Pre-training datasets for large language models (LLMs)
have scaled to trillions of tokens, typically combining large-
scale web crawls with smaller, high-quality domain-specific
datasets. These corpora enable the development of gener-
alist models capable of addressing diverse tasks. However,
their vast scale and heterogeneity pose challenges in balanc-
ing general knowledge with domain expertise, often leading < « /
to inefficient utilization of high-value data for specialized
capabilities. Recent studies emphasize the importance of =~ «

the final stage of pre-training, commonly referred to as o i o ® ”
mid-training, where models are refined on targeted, high-
quality data to enhance specific capabilities. For example,
[L] demonstrated that emphasizing domain-specific datasets . "
during the final pre-training phase significantly improves scaling than training on other datasets.
performance on benchmarks such as GSMSK [2] (math), We measure the average performance
MMLU [3] (reasoning), and HumanEval [4] (coding). Sim- " 12 downstream benchmarks.

5187 __—"
52 o

50 / :/ —

Average Performance (%)
&
\

—m~ ClimbLab-Random

—a= Nemotron-CC-HQ
SmolLM
DCLM-baseline

—e~ ClimbMix
FineWeb-Edu

Figure 1: Pre-training a 1B model on
NEMOTRON-CLIMBMIX shows better

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://huggingface.co/collections/nvidia/climb-datasets-67e428bdb9aaced2acda191f

ilarly, OLMo 2 [5]] mixes high-quality web data with curated STEM references, synthetic math
datasets, and encyclopedic content for mid-training, achieving notable gains in math reasoning tasks.
These findings highlight the potential of carefully curated data mixtures in mid-training for improving

domain performance.

Despite the success of pre-training, optimizing data mix-
tures for both general and domain-specific tasks remains
a challenge: (1) Large-scale datasets such as Common
Crawl [[] offer unmatched diversity and scale but lack ex-
plicit domain labels, making it difficult to extract domain-
relevant content. Filtering data often relies on general-
purpose heuristics like perplexity or educational value [6],
which do not necessarily capture the most informative or
high-quality content for specific domains. (2) Even with
curated datasets like The Pile [7] with domain annotations,
selecting an optimal data mixture is non-trivial due to the
complex, nonlinear relationship between dataset compo-
sition and model performance. For instance, optimizing
a model for coding tasks requires not just programming-
related content but also complementary knowledge from
mathematics, reasoning, and security.

To address these challenges, we propose CLustering-based
Iterative Data Mixture Bootstrapping (Nemotron-CLIMB;
CLIMB for short)—a novel framework for automating the
search for optimal pre-training data mixtures. CLIMB con-
sists of three key steps: (1) embedding and clustering large-
scale datasets, (2) constructing mixture-performance pairs
by sampling and pruning data mixtures and training proxy
models, and (3) fitting a predictor. By treating the data

| 8
ases

(1]
Pre-training Data \CLlMB y. Optimized Data Mixture
for Improving Task X

Web Data Topic A

g1doL

Topic C

CLIMB (Qurs)
*

52 = Uama-3.2
- °

AMD-OLMo
)

Average Reasoning Score

49 2
& Qwen2.5 T'my.LIama

SmollM @
48 °

02 04 06 08 10 12
Model Size (Billion Parameters)

Figure 2: Given large-scale pre-training
data consisting of web-scale and cu-
rated sources, CLIMB identifies the op-
timal mixture of different topics (A, B,
C) to improve performance in a target
task (e.g., general reasoning). We com-
pare the performance of state-of-the-
art language models across different
parameter scales on general reasoning
benchmarks. CLIMB achieves a better
tradeoff between model size and perfor-
mance, demonstrating a more efficient
scaling trend compared to prior models.

mixture as input features and performance metrics as target labels, we train a regression model as a
predictor. This approach enables efficient, iterative refinement of data mixtures without relying on

predefined domain labels.

We frame data mixture construction as a search problem
and solve it using a bootstrapping strategy. At each itera-
tion, candidate mixtures are proposed, pruned, and refined
to optimize diversity and domain relevance. Unlike static
mixing strategies, our method dynamically adjusts data mix-
tures throughout training using a weak predictor approach,
integrating multiple predictors iteratively to discover ef-
fective configurations for domain adaptation. CLIMB ac-
tively learns to refine and optimize data mixtures based on
real-world feedback from environment verifications, rather
than passively relying on predefined heuristics or human-
annotated domain labels. This ability to iteratively self-
improve makes CLIMB more flexible and adaptive to new
data distributions and domain-specific requirements.

Additionally, CLIMB prioritizes computational efficiency,
demonstrating that iterative data mixture search achieves
superior results within a fixed training budget. For instance,
rather than allocating all resources to a larger model search-
ing in one iteration, our approach iteratively refines training
data mixtures, balancing verification and generation tasks.
Importantly, to reduce the computational overhead, our
method leverages lightweight proxy models to evaluate
mixture quality and reduce the search space by pruning

© lteration 1
Iteration 2
° lteration3
* CLIMB-iter1
CLIMB-iter2
* CLIMB-iter3

t-SNE Dim 2

D
t-SNE Dim 1

Figure 3: Visualization of CLIMB’s
iterative search process using t-SNE.
Each point represents a data mixture
config in the search space, with differ-
ent iterations (CLIMB-Iterl, CLIMB-
Iter2, CLIMB-Iter3) illustrating how
the search space is refined over itera-
tions. Initially, the search explores a
broad set of configurations (Iter 1), pro-
gressively narrowing in subsequent it-
erations (Iter 2 and Iter 3) as CLIMB
selects more optimal mixtures.

progressively, significantly reducing the cost of brute-force hyperparameter sweeps.

"https://commoncrawl .org/

https://commoncrawl.org/

We demonstrate the effectiveness of CLIMB by searching the optimal data mixture in general
reasoning tasks first and then extending it to specific domains (e.g., STEM, social sciences, and
humanities). Using the optimal data mixture discovered by CLIMB, we train 350M and 1B models
on 40B tokens, both of which surpass the previously best data mixing (Doremi and RegMix) methods
by a large margin. Furthermore, when trained on a larger number of tokens (400B) with this mixture,
our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. We observe that optimizing for
a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally,
based on the insights obtained from our explorations, we further apply CLIMB to two existing datasets,
Nemotron-CC [8]] and smollm-corpus [9], and produce a new dataset with superior performance.

Our contributions are threefold:

o Automated Data Mixture Optimization. We propose an embedding-driven data mixing approach to
automatically identify, group, mix high-quality clusters, enabling domain-specific training while
removing the reliance on manually predefined domain-specific data.

o Dynamic and Iterative Search Framework. Our method introduces an iterative search process,
dynamically refining data mixtures throughout training to optimize diversity and domain relevance,
while addressing scaling challenges in clustering and data filtering.

o New High-quality Dataset. We contribute a filtered 1.2-trillion-token corpus with 20 clusters as
a new playground for data mixing research and a new high-quality 400-billion-token data for
efficient pre-training.

2 CLIMB: CLustering-based Iterative Data Mixture Bootstrapping

Our work focuses on curating training data from a massive data source in an automated fashion,
specifically tailored to improve the desired tasks or domains. To ensure that the filtered dataset
remains relevant to the target domain while maintaining general language modeling and reasoning
capabilities, our framework simplifies the data curation process through a fully autonomous iterative
bootstrapping approach, eliminating the need for manual curation and reducing labor costs. As
illustrated in Figure 4] we first cluster documents from the data source in an embedding space
to differentiate data across domains. Next, we iteratively optimize the mixture weights using a
bootstrapping process to progressively enhance the dataset’s domain relevance. Further details of the
two phases are provided in Section [2.T|and [2.2] respectively.

2.1 Data Preprocessing

To effectively cluster documents belonging to the same domain, we propose clustering them in the
embedding space rather than the word space, as this approach promotes a deeper semantic alignment
among documents within the same cluster. To accomplish this, our framework follows three steps, as
shown in Fig. 4|and elaborated below:

Text embedding. Given a large raw dataset D= {D1, Da,...,D,} containing n documents, we
map the documents into an embedding space using an embedding model M,. The output of the
embedding model is a set of embedding vectors, E = {E1, Fa, ..., E,}.

Embedding clustering. We then cluster the embeddings using a suitable clustering algorithm. For
instance, k-means [[10] can be used to group them into Kj,;; clusters. To ensure the clusters are as
fine-grained as possible for subsequent processing, we prefer to set Kj; to a relatively large value at
this stage, such as 1000. The specific settings are detailed in Section [3.1]

Cluster merging. To further improve clustering quality, we perform cluster pruning and merging.
Specifically, given Kjy; clusters, we conduct cluster-level pruning to remove low-quality clusters,
retaining Kpnuneq high-quality clusters based on model-based classifiers as the pruning metric. Then
we merge the clusters into Kephanced Clusters according to the distance between centroids, where
Kenhanced < Kpruned < Kini- The primary goal of merging is to merge similar fine-grained clusters
and reduce the number of domains, facilitating the subsequent data mixture process. The entire

dataset is reduced to D from D. The implementation details can be found in Section

Em(Eed ‘ oy Cluc?ter

N N N Texts Embeddings
% |
%

o @
Merge
Clusters
&9

(b) Mixture Bootstrapping

config cluster, cluster, cluster,, Train

, 1 0.1 0.2 03 Proxy |45.1 .]
L— 2 0.5 0.05 0.2 LMs 46.2 9 : _/ N T?‘I;
4 redictor
15t Iteration S b - 3 o 53 " .
configs 0 9 ° .
config cluster, cluster, cluster,, . [u_{..’
PN\ 1 0.4 0.3 0.1 T Train 483 9 \4
: Prune with Proxy
"2 2 045 002 0.1 Predictor [46.2 LMs 46.4 Update
i 3 02 017 031 447 R Predictor
2nd |teration é : o
[configs Q n; 0.42 0.1 0.08 46.1 459

(c) Optimal Mixture Weights Use the predictor after K iterations to get the optimal data mixture weights.

Figure 4: The CLIMB framework overview. Upper section: CLIMB first preprocesses raw data
via embedding and clustering it into groups. These clusters serve as the basis for the search space,
where a mixture is defined as a set of weights to combine different clusters. Lower section: CLIMB
samples 75, mixtures in iteration k, trains proxy models on a subset of them, and updates a predictor
to estimate performance. The predictor prunes mixtures that are likely to perform poorly, so only
the most promising mixtures proceed to full proxy training in subsequent iterations. Through
progressively refining the search space and eliminating suboptimal candidates, CLIMB converges
toward an optimized data mixture and balances general and domain-specific performance without
exhaustive manual curation.

2.2 Iterative Bootstrapping: Mixture Weight Search

Given a set of data clusters, the next step is to optimize sampling mixture weights to maximize the
desired downstream task performance. We formulate this as a bi-level optimization problem and
solve it via iterative bootstrapping.

Mixture weight search as a bi-level optimization problem. Given a set of data clusters D =
{D1, Ds,..., Dy} and the objective function ¢(a, w) with model weights w trained with mixture
weights «, which outputs the achievable performance P on a calibration set, the objective is to
identify the optimal mixture weights o* € A that maximize the task performance ¢(c, w).
k

min Lyq; (o, w*(@))s.t. w* (@) = arg min lepgin (o, w)s.t. Zai =1, a; >0)

acA w P
Approximate the objective with task performance predictors. A straightforward approach to
estimate the objective function ¢(«, w) is to train a model for each « across the entire design space A.
However, this is computationally prohibitive. To address this challenge, we propose using a predictor
fo(a) to approximate ¢(«, w) based on a subset of (mmixture weights, performance) pairs, thereby
significantly reducing the training cost. In essence, our cluster mixture search can be reformulated as
a bi-level optimization problem under the above approximation:

min f(alS) st. f = argmin » _ L(f(s), (s, w")))
S, feF ses8
where £ is the loss function for the predictor fa, F represents the set of all possible approximations
to ¢, and S := {S C A | |S| < C} denotes all configurations that satisfy the sampling budget C.
The value of C' is directly tied to the total training cost of the proxy models.

Iterative bootstrapping to solve Eq.[2} To solve Equation 2] previous methods typically approach
this optimization by first uniformly sampling mixture weights from the design space, training a model

on the corresponding combined datasets, and then learning a predictor based on the performance of
the trained models. However, we observe that, given a fixed training budget, this strategy is limited
by the inefficiency of the initial uniform sampling. This inefficiency causes the model to focus
excessively on low-quality mixture weights while failing to identify high-quality ones, ultimately
leading to suboptimal mixture weights.

In light of this, rather than uniformly sampling across the entire space and then fitting the predictor,
we propose an iterative approach to evolve both the sampling strategy S and the predictor fy. The
rationale behind this method is to guide the predictor to focus more on subspaces with higher-quality
weight mixtures, resulting in more accurate predictions under the same training budget. Specifically,
this approach can be mathematically formulated as solving the bi-level optimization problem using
a coordinate descent method that alternates between optimizing the configuration sampling and
predictor fitting subroutines, where the iteration k can be formulated as:

(Sampling) P* = {fu(s)|s € A\ S}, Sy € Topy (P*), S**1 = Sy, U Sk, 3)

(Predictor Fitting) a* = argmin f(a|S*™!), s.t. fr41 = argmin Z L(f(s),£(s,w™))
a€A frE€F segk+1
))
where Top, (P*) represents the set of the top N configurations, ranked according to the task
performance P*. In contrast, existing methods [11]] can be seen as running the above coordinate
descent process for only a single iteration, which is a special case of our more general framework.

Implementation. The above coordinate descent solution is intuitive and straightforward to implement.
Suppose that the iterative method consists of K iterations. Initialize S* by randomly sampling a few
configurations from A and training proxy models to obtain their performance. Then, for iterations
k=2,..., K, jointly optimize the sampling set S* and the predictor fé“ in an alternating manner:

Subroutine 1: Configuration sampling. At iteration k + 1, sort all configurations in the weight space
A (excluding those already in S*) according to their predicted performance P*. Next, randomly

sample M new configurations from the top IV ranked configurations based on P* in order to balance
exploitation and exploration. These newly sampled configurations, combined with S*, form S¥+1.

Subroutine 2: (Weak) predictor fitting. Train a predictor fé“ 1 by minimizing the loss £ using the

sampled configurations in S**!. The learned predictor 5*1 is then used to evaluate the configura-

tions and generate the predicted performance Pk+1,

By alternating between these two procedures for a predefined number of iterations, one progressively
refines the predictors and guides the sampling process toward subspaces with higher-quality mixture
weights, thereby increasing the average quality of the searched mixture weights. At the same time,
the promising samples in S**! improve the prediction accuracy of the updated predictor fé““ for
high-performing configurations, allowing for more accurate assessment of the sampled configurations’
quality. Finally, one selects the best configuration predicted by the final predictor as the final data
mixture weight. For implementation, the predictor can be any regression model, such as linear
regression, ridge regression, decision tree regression, or a multilayer perceptron. In our experiments,
we use LightGBM [[12], which predicts the target value by learning an ensemble of decision trees.
More implementation details could be found in Section[3.1]

3 Experimental Settings

Data. For training, we use Nemotron-CC [8] and smollm-corpus [9] as the source dataset. CLIMB-
clustering yields 21 super-clusters containing 800B tokens. For evaluation, we test on reasoning
benchmarks: PIQA [13]], ARC_C, ARC_E [14], HellaSwag [15]], WinoGrande [16], and SIQA [17].
We optimize using PIQA, ARC_E, and HellaSwag validation data, then evaluate on test sets. LM-
Evaluation harness [18] is used, with all datasets in a 0-shot setting except MMLU (5-shot) [19} 20].

Model. We first perform phase-1 pre-training to establish a solid foundation. Three Transformer
decoder-only models (62M, 350M, 1B) are trained with next-token prediction on 10T tokens (a
combination of DCLM [21]] and TxT360 [22]]), similar to [23] (12T tokens). We use the warmup-
stable-decay (WSD) learning rate schedule [24], allowing resumption in the stable stage and focusing

Table 1: Comparison with data mixture methods. All models are continuously trained on the same
number of tokens (40B). The best results are highlighted in bold. Base refers to the model before
training and serves as the starting point for all other models. We report perplexity for wiki and
lambda, accuracy for arc_e, winogrande, siqa, accuracy_norm for piqa, arc_c, hellaswag.

Size \ Model Proxy\ wiki lambda\ piga arc_c arc_e hellaswag winogrande siga avg.

Base - 22.70 8.87 70.03 28.11 56.12 51.16 54.48 40.75 50.11

Random - 20.92 9.85 71.16 30.54 62.50 52.14 55.40 4129 5217

350M Dorenﬁ 350M | 19.41 1039 | 70.29 33.53 66.41 52.25 55.95 41.86 53.38
) RegMix 350M | 20.93 1032 | 71.92 3342 66.12 53.69 55.27 4223 53.78
CLIMB 350M | 19.67 9.29 7221 3487 67.25 55.32 56.79 42.54 54.83

Base - 17.79 6.65 73.89 3492 66.77 62.12 59.82 41.26 56.46

Random - 17.82 6.53 74.05 37.12 70.24 62.90 60.77 4248 5793

1B Doremi 350M | 15.78 6.33 7491 40.01 72.34 63.53 61.08 43.09 59.16
RegMix 350M | 16.19 6.62 7522 4042 71.32 64.73 62.33 4222 59.37

CLIMB 350M | 15.96 6.44 75.78 4098 72.97 66.01 63.32 43.37 60.41

on data mixing research in the decay stage. For proxy models, we use 62M and 350M for efficiency.
For target models, we evaluate all three sizes to assess the approach across scales. For the rest of paper
we use the 350M-proxy, ablations with 62M are in the Appendix[D.9] Once the optimal data mixture
is found, we train the target model on 40B tokens using this mixture and compare performance.
Unless stated otherwise, all reported results come from this 40B continuous pre-training.

Baselines. We compare our method with (1) Random selection, and state-of-the-art data mixing
methods, including (2) DoReMi [25]], and (3) RegMix [[11]]. The details about these baselines are in

Appendix [C.T}

3.1 Implementation Details

Text embedding. We use stella_en_400M_v5 EL as it efficiently encodes large-scale text with
excellent performance.

Embedding clustering. We adopt the classic K-means clustering algorithm from the FAISS li-
brary [26] 27], setting the initial number of clusters Kj;; to 1000.

Cluster merging. We train several fasttext models [28] to evaluate the data quality across four
important dimensions - overall quality, educational value, informational value, and advertisement
score (1-5) - by annotating 1 million texts with Nemotron-340B [29] with a carefully designed prompt
template (see Appendix [D.TT). Then we perform cluster-level pruning based on the fasttext scores,
applying a relatively loose threshold of 3.0, which results in 240 (i.e., the value of Kppned) clusters.
Finally, we group the clusters according to a Euclidean distance threshold of 1.5.

Iterative bootstrapping. The data mixture search runs for three iterations with 64, 32, and 16
searches in the first, second, and third iterations, respectively. We initialize a Dirichlet distribution
based on each cluster’s token count and sample configurations. In each iteration, a predictor is trained
using both current and past data.

For predictor training, we use a LightGBM [12] regression model, which fits mixture-performance
pairs well with limited data [11]]. To prevent overfitting, we set L1 and L2 regularization, early
stopping, a maximum depth of four, and require at least five samples per leaf. The ablation study of
the above design choices is in Section[5} Additionally, we employed a separate validation set and an
early stopping mechanism, halting training after 20 rounds of no improvement.

4 Experimental Results

In this section, we will demonstrate the effectiveness of CLIMB. Firstly, we compare the performance
of CLIMB with other data mixture methods (Table[I)). Then with the optimal data mixture, we train
longer and compare the model with stage-of-the-art baseline models. We use general reasoning tasks
as the benchmark and a 350M proxy model in the main experiment.

2https ://huggingface.co/NovaSearch/stella_en_400M_v5

https://huggingface.co/NovaSearch/stella_en_400M_v5

Table 2: Comparison with state-of-the-art language models on general reasoning benchmarks. CLIMB
is continuously trained on 400B tokens with the optimal data mixture. Best results in bold.

Model Size | piga arc_c arc_e hellaswag winogrande siga mmlu obga boolq race lambda truthfulga Avg.
Qwen2.5 490M |69.96 32.42 64.60 52.14 56.59 4422 33.03 3520 62.29 3493 5251 39.74 48.14
SmolLM 360M |71.49 36.00 70.08 53.52 56.75 41.20 3298 37.60 55.29 34.74 45.76 3793 47.78
CLIMB (Ours) 350M|72.52 35.07 67.38 56.27 57.93 42.88 33.28 36.60 62.29 3339 52.62 36.86 48.93
TinyLlama 1.1B |73.29 30.12 60.31 59.19 59.12 40.63 31.60 36.00 57.83 36.46 58.84 37.60 48.42
AMD-OLMo 1.2B |75.63 33.70 65.95 63.61 61.64 44.17 31.92 35.80 60.58 34.64 59.31 3222 4993
Llama-3.2 1.2B |74.59 36.26 6549 63.67 60.69 42.99 3540 37.20 63.98 37.80 62.99 37.67 51.56
CLIMB (Ours) 950M |75.46 40.96 73.57 66.90 63.54 43.55 3647 41.20 66.02 36.65 59.05 39.06 53.54

33
32
g g 39
I P == 1B CLIMB Iterations
& &
@ 30 @38y 1B CLIMB-Best@N
3 3 37 1B Random
229 2 == 350M CLIMB Iterations
61 e 350M CLIMB-Best@N
28 350M Random
35
26 27 34
et e e xerd yer s nert et xer?
e B CUMBT B MR B M
(a) STEM (b) Humanities (c) Social Sciences

Figure 5: Performance of target models on MMLU benchmarks for different subject areas. For both
350M and 1B target models, CLIMB used 350M proxy models, whereas CLIMB-Best@N used
proxy models of the same size as the target models. CLIMB consistently improves performance
across iterations, outperforming CLIMB-Best@N despite using smaller proxy models.

4.1 Comparison with Data Mixture Baselines

As shown in Table [} CLIMB outperforms all baseline data mixture methods. For example, with
the 350M target model, CLIMB achieves an average accuracy of 54.83%, outperforming Random
(52.17%) and the best-performing baseline, Regmix (53.78%). Similarly, for the 1B model, CLIMB
achieves an average accuracy of 60.41%, higher than all baselines. Although the optimization
objective is confined to the validation sets of PIQA, ARC_E, and HellaSwag, we observe that the
resulting performance gains carry over to all the benchmark tasks. This clearly demonstrates the
robust generalization ability of our approach, indicating that optimizing on a limited set of core
tasks can effectively capture and transfer essential reasoning capabilities across a broader range of
problems.

4.2 Comparison with SOTA LMs

Using the optimal data mixture identified by our method, we further investigate the effect of scaling up.
Specifically, we used the same data mixture to train on 400B tokens and then compared the resulting
model against state-of-the-art baselines. As shown in Table[2] CLIMB achieves the best performance
among all sub-500M and sub-1.2B models. For example, when comparing models of similar scales
(around 1B parameters), CLIMB consistently outperforms other baselines — including Llama-3.2 and
AMD-OLMo — across the majority of the general reasoning benchmarks. In particular, it achieves
the highest overall average score, surpassing the next-best model (i.e., Llama-3.2) by a noticeable
margin (2.0%). Moreover, we introduced additional benchmarks (e.g., mmlu, gpqa, obqa, boolq, and
race), and our model is consistently better than baseline models, which demonstrates that our method
exhibits excellent generalization performance.

Iteratively refined data mixtures lead to better pre-training performance.

Table 3: Ablation study with 1B target model trained on 40B tokens.

Setting | Model Proxy Comp. | piga arc_c arc_e hellaswag winogrande siga Avg.
CLIMB 350M 100% | 75.78 40.98 72.97 66.01 63.32 43.37 60.41

Abl.com CLIMB 350M 150% | 76.23 41.28 73.16 66.41 63.53 43.71 60.72
’ P CLIMB 350M 200% | 76.51 4231 73.41 66.81 63.70 4399 61.12
CLIMB 350M 6:1 75.32 40.80 7291 65.51 62.84 42.93 60.05

Abl.allo CLIMB 350M 4:2:1 | 75.78 4098 72.97 66.01 63.32 43.37 60.41
CLIMB 350M 2:2:1:1 | 75.36 40.77 72.88 65.86 62.97 43.02 60.14

CLIMB 62M 100% | 75.41 40.56 72.82 65.76 63.23 42.89 60.11

Abl.proxy CLIMB 132M 100% | 75.56 40.93 72.94 65.57 63.09 43.07 60.19
CLIMB 350M 100% | 75.78 40.98 72.97 66.01 63.32 43.37 60.41

48-21cluster 350M 100% | 75.89 3991 71.92 65.87 63.21 42.62 59.90

64-21cluster 350M 100% | 75.87 40.34 72.44 65.39 63.14 43.55 60.12

Abl.clus 100-21cluster 350M 100% | 76.13 40.73 72.57 66.13 63.39 43.70 60.44
1000-21cluster 350M 100% | 75.78 40.98 72.97 66.01 63.32 43.37 6041
2000-21cluster 350M 100% | 75.37 41.33 72.47 65.79 63.46 42,99 60.24
1000-15cluster 350M 100% | 75.94 41.33 73.34 66.28 63.62 43.05 60.59
1000-30cluster 350M 100% | 76.03 40.49 72.66 65.78 63.45 43.12 60.25

AbLinit Random 350M 100% | 75.42 40.12 7247 65.73 64.27 4322 60.21

: Dirichlet 350M 100% | 75.78 40.98 72.97 66.01 63.32 43.37 60.41

5 Analysis

In this section, we present the analysis and discussion about some important factors and designs
behind CLIMB and demonstrate CLIMB is a robust data mixing method.

Optimizating towards Specific Domains. In addition to optimizing towards general reasoning tasks,
one important application of CLIMB is developing a domain-specialist model. We explore searching
the optimal data for specific domains. Using the MMLU as an example, which has pre-defined three
domains: STEM, humanities, and social-sciences and divided tasks into these domains, we conduct
experiments on each domain separately. We set the optimization objective as the performance on
its validation set. Here, we introduce a new baseline: CLIMB-Best@N, which directly searches for
the best parameters on randomly sampled configs using the target model. Note that to ensure the
same search compute in the table, the number of searches is reduced for the 1B model. As shown
in Figure 5] the CLIMB-Best@N shows noticeably better accuracy than Random across all three
domains, demonstrating the superiority of data searching. This establishes a robust baseline for
comparison. In contrast, our proposed CLIMB methods consistently improve performance across
iterations. For instance, in the 350M model, CLIMB-iter3 achieves accuracies of 28.67%, 29.56%,
and 39.36% in STEM, Humanities, and Social Sciences, respectively, significantly outperforming
both Random and CLIMB-Best@N. Similarly, in the 1B model, CLIMB-iter3 achieves a Social
Sciences accuracy of 41.79%, surpassing CLIMB-Best@N by 1.13%. These results highlight the
broad applicability of our approach to models of varying sizes. In addition, we can see a clear
improvement over each iteration. For example, from CLIMB-iter] to CLIMB-iter3, the performance
is improved from 40.18% to 41.79% on mmlu-social-sciences.

Effects of Search Compute Budget. In the main experiments, we fix our total search budget (total
compute) at 100%. Concretely, we perform three iterations of search with 64, 32, and 16 candidates
evaluated in iterations 1, 2, and 3, respectively, giving a total of 112 searches. To understand how
scaling search computes helps, we compare runs with greater total numbers of searches (e.g., 168,
224). Increasing the total number of searches allows the search procedure to more thoroughly explore
possible data-mixture candidates each iteration. As shown in Table 3] (rows under “Abl.comp”), we
observe a trend that more extensive searches (e.g., 150% or 200%) continue to offer gains. This
confirms our intuition that more exhaustive data-mixture optimization can further boost downstream
accuracy when sufficient compute is available.

Effects of Compute Allocation. By default, we allocate our 100% total compute across three
iterations in a 4:2:1 ratio (64:32:16). In principle, however, one could allocate compute to create
either a “tall” search tree (more iterations but fewer searches per iteration) or a “fat” one (fewer
iterations but more searches per iteration). Table [3] (rows under “Abl.allo””) compares several such
allocations: 6:1, 4:2:1, and 2:2:1:1. We find that 4:2:1 yields the best overall average performance

(60.41%). Having too few iterations (e.g., 6:1) can lead to suboptimal exploration in earlier iterations,
while splitting too many iterations (2:2:1:1) spreads compute too thin across each iteration. Thus,
balancing depth (number of iterations) and breadth (searches per iteration) proves key to robustly
finding a good mixture.

More search iterations improve performance, but compute should be balanced between depth
and breadth. A 150%-200% compute increase yielded noticeable gains.

Analysis of Final Weights Furthermore, we analyzed the weights of the final data mixtures. From
Figure[7](a) , for the general reasoning task, C8, C9, C18, and C19 account for the majority of the
weight. As shown in Appendix[D.2] C8, C9, and C19 exhibit a high degree of correlation with general
reasoning. Moreover, when analyzing the topics of these four clusters (Table), we find that they
collectively form a diverse distribution. More detailed analysis is shown in Appendix [D.§]

Both the relevance of cluster content to downstream tasks and the diversity among different
clusters are crucial for achieving effective data mixtures and robust model performance.

In addition, we also discussed the topics of clusters, the relationship between clusters and downstream
tasks, the effects of proxy models, the effects of the number of clusters, the effects of initialization,
the effects of compute allocation, and the evolution of cluster weights in Appendix [D]

6 NEMOTRON-CLIMBLAB and NEMOTRON-CLIMBMIX: New SOTA
Pre-training Data

Based on the insights obtained from our explorations above, we further apply CLIMB to two existing
datasets: Nemotron-CC [8]] and smollm-corpus [9]], with the goal of constructing a powerful new pre-
training dataset. Specifically, we first combine Nemotron-CC and smollm-corpus, and then employ
our proposed CLIMB-clustering method to semantically reorganize and filter this combined dataset
into 20 distinct clusters, leading to a 1.2-trillion-token high-quality corpus, named NEMOTRON-
CLIMBLAB. Subsequently, we utilize CLIMB-search to identify an optimal data mixture from
these clusters. Using this optimal mixture, we further extract a 400-billion-token high-quality
dataset named NEMOTRON-CLIMBMIX. We train a 1B model from scratch with NEMOTRON-
CLIMBMIX and evaluate its performance relative to models pretrained on other datasets under the
same token budget. The results, illustrated in Figure[I] indicate that models trained on NEMOTRON-
CLIMBMIX significantly outperform those trained on existing datasets, including Nemotron-CC [8]],
SmolLM [9], DCLM-baseline [21], and FineWeb-Edu [30]. The optimal data mixture weights
identified by CLIMB is shown in Figure 8] We note that in the previous continuous pre-training
setting, a few domains accounted for the majority of the weight. However, since the experiments
here are conducted under a pre-training-from-scratch setting, a more balanced cluster distribution is
required compared to continuous pre-training. This difference arises because continuous pre-training
provides a strong foundation, allowing the model to focus primarily on learning a few important
domains, whereas pre-training from scratch necessitates more diverse data coverage. Finally, we
publicly release these two datasets: the filtered 1.2-trillion-token dataset organized into 20 semantic
clusters as a research playground for further data-mixture studies, and the optimized 400-billion-token
NEMOTRON-CLIMBMIX dataset for efficient pre-training.

7 Related Work

Data Mixture for LLM Pre-training. The composition of pre-training datasets are critical in
determining the generalization abilities of language models [31}132,|33]. Typically, data mixtures
like those in the Pile [7], GLaM [34], and ROOTS [35] are crafted using manually defined rules,
yet these heuristics lack standardization and transferability across different settings. SlimPajama-
DC [36] systematically evaluated the influence of various predefined data configurations, yielding
valuable insights. More recently, learning-based approaches such as DoReMi [25] and DoGE [37]

have introduced optimization techniques for domain proportions by iteratively refining training with
reference and proxy models. While [38] investigated data sequencing strategies through the lens
of curriculum learning, our work focuses on the simultaneous integration of diverse data domains,
emphasizing a distinct aspect of pre-training. The aforementioned methods show promise, but they
require the dataset to already possess clear and natural domain distinctions. By contrast, we propose
a novel approach that can automatically identify approximate domains from large amounts of web
data and then find the optimal data mixture automatically. In parallel work, WebOrganizer [39]]
proposes using classifiers to annotate web-scale data with topic and format labels. In contrast, our
clustering-based approach is more straightforward, and readily scalable, and we introduce an iterative
optimization method to refine the data mixture.

Data Selection for Specific Domains. Beyond optimizing the overall pre-training data mix-
ture [40, 1411142 143]], selecting high-quality domain-specific data [44} 45 is essential for improving
model specialization during pre-training. Existing methods approach this challenge differently.
DSIR [46] estimates relevance using hashed n-grams and resamples data to better match target
domain distributions. CRISP [47]] clusters the generalist dataset and samples these clusters according
to their frequencies in the smaller specialist dataset. [48] propose to select data that nudges the
pre-training distribution closer to the target distribution. Training dynamics-based selection leverages
model learning behavior to guide data filtering, including S2L [49], which clusters data based on
loss trajectories to prioritize domain-relevant examples, and LESS [50], which selects instruction
tuning data with the highest gradient similarity to a target task. Embedding-based filtering removes
redundant [51]] or low-quality data, with SCIP [52] applying synthetic corruptions for filtering and
heuristic pruning [53] reducing noise from overrepresented long-text clusters. [S4] proposes to select
the data on which model losses are predictive of downstream abilities. While these approaches im-
prove data quality for specialized domains, they often rely on predefined domain labels or heuristics,
limiting their flexibility for large-scale pre-training. In contrast, our proposed framework, CLIMB,
iteratively refines domain-relevant data mixtures without requiring explicit domain labels, making it
more applicable to real-world pre-training data and easier to scale.

8 Conclusion

This work introduces CLIMB, a novel clustering-based iterative mixture bootstrapping framework
for optimizing data mixture for pre-training LLMs. CLIMB automates the discovery, evaluation, and
refinement of data mixtures, improving large-scale pre-training with explicit targets. By leveraging
unsupervised clustering, proxy model training, and a predictor, CLIMB efficiently navigates the
vast search space of data compositions, enabling the construction of optimal domain-aware mixtures
without reliance on predefined domain labels or extensive manual curation. By training 350M
and 1B models with the optimal data mixture searched by CLIMB, we achieve state-of-the-art
performance across 12 reasoning tasks. Our experiments demonstrate that intelligently balancing
unstructured corpora with targeted domain data leads to significant performance gains under fixed
computational budgets. Compared to conventional static mixing strategies, our iterative approach
allows for dynamic refinement, preserving general capabilities while excelling in specialized domains.
Our findings underscore the potential of data-driven optimization techniques in enhancing LLM
efficiency, advancing domain-specialized training.

References

[1] Cody Blakeney, Mansheej Paul, Brett W Larsen, Sean Owen, and Jonathan Frankle. Does
your data spark joy? performance gains from domain upsampling at the end of training. arXiv
preprint arXiv:2406.03476, 2024.

[2] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[3] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

10

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[5] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
lik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam,
Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christo-
pher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh
Hajishirzi. 2 olmo 2 furious, 2025.

[6] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al.
Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

[7] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[8] Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa
Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common
crawl into a refined long-horizon pretraining dataset. arXiv preprint arXiv:2412.02595, 2024.

[9] Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Smollm-corpus. 2024.

[10] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the royal statistical society. series c (applied statistics), 28(1):100-108, 1979.

[11] Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang,
Jing Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training.
arXiv preprint arXiv:2407.01492, 2024.

[12] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[13] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432-7439, 2020.

[14] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[15] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[16] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

[17] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[18] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024.

11

[19] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf.
Smollm - blazingly fast and remarkably powerful, 2024.

[20] Cosmopedia/evaluation. Cosmopedia/evaluation at main - huggingface/cosmopedia.

[21] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-Im: In search of the next
generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200-14282, 2024.

[22] Liping Tang, Nikhil Ranjan, Omkar Pangarkar, Xuezhi Liang, Zhen Wang, Li An, Bhaskar
Rao, Linghao Jin, Huijuan Wang, Zhoujun Cheng, et al. Txt360: A top-quality llm pre-training
dataset requires the perfect blend, 2024.

[23] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji
Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024.

[24] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language
models with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

[25] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024.

[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535-547, 2019.

[27] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

[28] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas
Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651,
2016.

[29] Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

[30] Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the
web for the finest text data at scale. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[32] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[33] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-

thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

12

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pages 5547-5569. PMLR, 2022.

Hugo Laurencon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del
Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo Gonzalez Ponferrada,
Huu Nguyen, et al. The bigscience roots corpus: A 1.6 tb composite multilingual dataset.
Advances in Neural Information Processing Systems, 35:31809-31826, 2022.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang,
Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. Slimpajama-dc: Under-
standing data combinations for llm training. arXiv preprint arXiv:2309.10818, 2023.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christo-
pher Ré. Skill-it! a data-driven skills framework for understanding and training language
models. Advances in Neural Information Processing Systems, 36, 2024.

Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation. arXiv preprint
arXiv:2502.10341, 2025.

Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi
Bai, Jiantao Qiu, Lei Cao, Ju Fan, et al. Harnessing diversity for important data selection in
pretraining large language models. arXiv preprint arXiv:2409.16986, 2024.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. Advances in Neural Information Processing Systems,
37:108735-108759, 2024.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqgi Chen. Qurating: Selecting high-
quality data for training language models. In Forty-first International Conference on Machine
Learning.

David Brandfonbrener, Hanlin Zhang, Andreas Kirsch, Jonathan Richard Schwarz, and Sham
Kakade. Color-filter: Conditional loss reduction filtering for targeted language model pre-
training. Advances in Neural Information Processing Systems, 37:97618-97649, 2024.

Sebastian Ruder and Barbara Plank. Learning to select data for transfer learning with bayesian
optimization. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2017.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building
domain specific large language models. In Findings of the Association for Computational
Linguistics ACL 2024, pages 10184—-10201, 2024.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for
language models via importance resampling. Advances in Neural Information Processing
Systems, 36:34201-34227, 2023.

David Grangier, Simin Fan, Skyler Seto, and Pierre Ablin. Task-adaptive pretrained language
models via clustered-importance sampling. In The Thirteenth International Conference on
Learning Representations, 2025.

Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu Jahagirdar, Yuanzhi Zhang, Rongxing
Du, Anit Kumar Sahu, and Ruoxi Jia. Get more for less: Principled data selection for warming
up fine-tuning in LLMs. In The Twelfth International Conference on Learning Representations,
2024.

13

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. Smalltolarge
(s21): Scalable data selection for fine-tuning large language models by summarizing training
trajectories of small models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
Selecting influential data for targeted instruction tuning. In Forty-first International Conference
on Machine Learning, 2024.

Amro Abbas, Kushal Tirumala, Déniel Simig, Surya Ganguli, and Ari S Morcos. Semd-
edup: Data-efficient learning at web-scale through semantic deduplication. arXiv preprint
arXiv:2303.09540, 2023.

Yu Yang, Aaditya K Singh, Mostafa Elhoushi, Anas Mahmoud, Kushal Tirumala, Fabian
Gloeckle, Baptiste Roziere, Carole-Jean Wu, Ari S Morcos, and Newsha Ardalani. Decoding
data quality via synthetic corruptions: Embedding-guided pruning of code data. arXiv preprint
arXiv:2312.02418, 2023.

Aaditya K Singh, Yu Yang, Kushal Tirumala, Mostafa Elhoushi, and Ari S Morcos. Brevity is
the soul of wit: Pruning long files for code generation. arXiv preprint arXiv:2407.00434, 2024.

Kashun Shum, Yuzhen Huang, Hongjian Zou, Ding Qi, Yixuan Liao, Xiaoxin Chen, Qian Liu,
and Junxian He. Predictive data selection: The data that predicts is the data that teaches. arXiv
preprint arXiv:2503.00808, 2025.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic
human falsehoods, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358-50376, 2023.

Sachin Goyal, Pratyush Maini, Zachary C Lipton, Aditi Raghunathan, and J Zico Kolter.
Scaling laws for data filtering—data curation cannot be compute agnostic. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22702-22711,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-40 system card. arXiv
preprint arXiv:2410.21276, 2024.

14

A Limitations

While our proposed CLIMB framework demonstrates strong performance and provides valuable
insights into data mixture optimization, several limitations warrant further exploration.

First, although we mitigate computational overhead by leveraging lightweight proxy models during
the iterative search process, training these proxy models still incurs non-negligible costs. We show
that using lightweight models (e.g., 350M and 62M) is feasible, but further reducing the compu-
tational burden—perhaps through parameter-efficient tuning, distillation, or zero-shot evaluation
strategies—remains an important direction for future work.

Second, our evaluation of domain-specific benefits is based on MMLU’s coarse-grained domain
categories (e.g., STEM, Social Sciences), which may not fully reflect real-world applications. While
our results highlight the potential of CLIMB for domain adaptation, we have not yet evaluated its
effectiveness in high-stakes domains such as finance or healthcare, where data characteristics and
requirements can differ substantially. We leave such real-world validation to future research.

B Societal Impacts

This work contributes to advancing the field of machine learning by proposing an automated frame-
work for optimizing data mixtures in language model pre-training. Our method enables more efficient
and scalable objective-aware pre-training by leveraging clustering and iterative search, reducing
reliance on manually curated datasets.

From an ethical standpoint, our approach does not introduce new risks beyond those commonly asso-
ciated with LLM training, such as biases in training data and potential misuse. However, optimizing
the data mixture may lead to an overrepresentation of certain domains while underrepresenting others,
potentially reinforcing knowledge disparities. While our method allows for more controlled and
targeted data composition, future work should explore safeguards to ensure fairness and mitigate
unintended biases in domain representation. Additionally, our method automates domain-aware
data selection without requiring explicit human annotation, potentially reducing reliance on curated
datasets. However, this also raises concerns about unintended biases in automatically clustered
data. Ensuring transparency and interpretability in data selection remains a critical area for future
exploration.

C Experimental Settings

C.1 Baselines

We compare our method with state-of-the-art data mixture methods, including DoReMi [25]], and
RegMix [[L1]].

e Random: randomly select data for language model training, where each cluster is assigned an
equal and uniform weight.

e DoReMi [25]: a method that trains a small proxy model with group distributionally robust
optimization (Group DRO) to determine domain weights for pre-training data, which are then used
to resample the dataset and train a larger model more efficiently.

e RegMix [L1]: an approach that performs a single round of data mixture configuration search by
sampling configurations and training the model on each configuration to obtain config-performance
pairs. We then train a regression model to predict the optimal data mixture weights. This method
can be regarded as an extension of RegMix [11], using a much larger proxy model and larger
cluster data labeled by our clustering approach.

C.2 Data

For the source data, we employ Nemotron-CC [§]] — a large dataset filtered from Common Crawl. It
divides all the data into 20 buckets based on data quality annotation, and we use the subset from the
highest-quality bucket. The hierarchical clustering of this subset results in approximately 800 billion
tokens distributed across 21 clusters.

15

For the downstream evaluation tasks, we conduct experiments on general reasoning benchmarks in-
cluding PIQA [13], ARC_C [14], ARC_E [14], HellaSwag [15], WinoGrande [16], Truthful QA [55I,
and SIQA [17]]. In this setting, we optimize the model using the validation data of specific tasks and
evaluate it on test data from different tasks. For optimization, we use the validation data of only
PIQA, ARC_E, and HellaSwag and evaluate the model on the test sets of all these datasets. We
use LM-Evaluation harness [[18] for evaluation. Following the setup in [[19}20], except for MMLU,
which is evaluated using a 5-shot setting, all other datasets are evaluated using a 0-shot setting.

C.3 Model

Firstly, we conduct phase-1 pre-training to provide a good foundation for all of the following
experiments. We train three sizes (62M, 350M, and 1B) of standard Transformer decoder-only
models with the next-token language modeling loss. All of them are trained on 10 trillion tokens,
similar to [23] that trained for 12T tokens. We acknowledge that this over-training does not strictly
align with scaling laws [56, I57, 158]]. However, since it does not hurt performance, we chose to
train on the same amount of data. This practice has also been adopted in some recent models; for
example, Qwen-2 [23] utilized 12 Trillion tokens of data to train their 5S00M model. We use the
warmup-stable-decay (WSD) learning rate schedule [24] because it supports resuming at any time of
the stable stage and we could focus on the data mixing research in the decay stage. For the proxy
model, we choose 62M and 350M to conduct experiments, as these sizes are computationally efficient
for exploring data mixture configurations. For the target model, we conduct experiments on all three
sizes (62M, 350M, and 1B) to comprehensively evaluate the impact of our approach across different
model scales. After we identify the optimal data mixture, we continue to train the target model on
40B tokens using this new mixture and then compare its performance. Unless otherwise noted, all
reported results are obtained from this 40B continuous pre-training.

C.4 Training Settings

For pre-training, we use AdamW optimizer and set the learning rate to Se-5 for the stable stage and
anneal it to le-5. We use a batch size of 2M tokens throughout the training process, utilizing 256
NVIDIA H100 GPUs. The training time of a single lightweight proxy model is approximately 45
GPU hours, while the training time of the large target model is around 6,400 GPU hours.

16

D Analysis

D.1 Topics of Clusters

To gain a deeper understanding of the topics covered in each cluster, we conducted an analysis by
extracting the topics with GPT-4o [59]. Specifically, we randomly sampled 100 documents from each
cluster and employed GPT-40 to summarize the most representative topics within them. The model
was instructed to identify the four to seven most relevant topics for each cluster, ensuring a concise
yet comprehensive characterization. We also recognize that this approach can only provide auxiliary
explanations; our goal is to facilitate the understanding of the internal structure of each cluster rather
than to make definitive conclusions through topic analysis.

Table 4: Topics of clusters.

Cluster-ID Topics

1 Environment, Public Health, Policy Development, Medical Innovation

2 Technology, Neurophysiology, Health and Safety, Innovative Research, Rehabilitation
3 Restoration Efforts, Climate and Ecosystem, Community Engagement

4 Diagnostics, Diseases, Prevention and Control

5 Vehicles, Ecology, Community, Conservation Efforts

6 Energy, Science, Materials, Nanostrctures, Quantum Computing

7 Physics, Accelerators, Materials, Architecture, System

8 Biology, Genetics, Astronomy, Climate Science

9 Earth Sciences, Space Science, Scientific Collaboration

10 Health, Symptoms, Treatment, Therapy, Disorders, Conditions

11 Communication, Biography, History, Society, Policy

12 Culture, Education, Sustainability, Community, Public Health, Crime, Economy

13 Arts, Literature, Education, History

14 Geography, Government, Organization, Religion, Agriculture, Economy, Civilizations
15 Science, Technology, Education, Engineering, Collaboration

16 Science, Health, Minerals, Population, Agriculture, Vaccination, Welfare, Management
17 Role-Playing, Problem Solving, Mathematics, Algorithms

18 Revolution, Parliament, Efficiency, Communication, Animal Behavior

19 History, Culture, Economy, Energy, Market, Policy

20 Python, Code

21 Government, Law, Scientific Revolution, Music, Literature

D.2 Relationship between Clusters and Downstream Tasks

In this section, we analyzed the relationship between clusters and downstream task performance.
First, we visualized the similarity between each cluster and downstream tasks in Figure[6] where
cosine similarity is measured using the average embedding of each cluster. We use arc-e to represent
the general reasoning domain. Our key observations are as follows: (1) in-domain data enhances
downstream performance. Take the general reasoning as an example, as shown in Figure [f] Clusters
C8 and C19 share the most similar distribution with arc-e and indeed they contribute a lot to the final
mixture weights. (2) out-of-domain data are also useful. From the results of general reasoning, as
our search process iterates, we find that while C21 is highly similar, it provides limited benefits to
downstream performance, leading to a gradual decrease in its importance. Conversely, C8 initially
appears out-of-domain but becomes increasingly important with further iterations. (3) domain
contribution is complex: While similarity can serve as an indicator of a cluster’s importance, it is
not always a decisive factor. For instance, in mmlu-stem, the most similar cluster is C7, and as
shown in Figure[7](d), it plays a crucial role, contributing 36% of the weight. However, C8, despite
having a lower similarity score, has an even higher weight contribution (61%). From this analysis,
we observe that highly similar data can sometimes enhance downstream task performance. However,
using only in-domain data does not necessarily lead to optimal performance. Distribution similarity
alone is not a sufficient condition for importance—that is, a cluster or domain being similar to a
downstream task does not inherently guarantee performance improvement. This is because data
mixture involves complex interactions among different clusters. In some cases, when clusters are
highly similar, incorporating only one of them may suffice. This highlights the intricate interplay
within data mixtures, suggesting that optimal selection requires more than just similarity-based
filtering.

17

Similarity

0.59 0.64 0.60 061 0.62 057 0.62 0.3
2 0.8
3 0.75
E mmlu-humanities| 0.61 0.63 0.56 0.59 0.63 EuE:ENVAS 062 061 0.56
g 07
= ‘ 0.65
© mmlu-social-sciencesMUVFRNE] 0.63 0.62 0.60 ¥ 0.78 1 0.72 0.55
2 0.6
e 0.55
mmlu-stem) 0.60 0.62 0.64 0.62 062 0.62 064 0.54 05
Sy
& 7 Ve, P 7 7 7t Ve, e Ve, P 7 e e
%.y, %s, %s, %.r, %s, %s, %.r, %s, %sz %s[% Usy, %sx %s/ %&1 %Sr %sz %&1
=
Supercluster
Figure 6: Similarity between clusters and downstream tasks.
(a) Weight analysis of 350M proxy model optimized towards general reasoning
Iterationl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.12 s
04
ferationz 0.00 0.00 000 000 000 000 000 000 000 003 000 000 000 0.00 0.01 03

Iteration

Meration3 0.00 0.00 0.00 000 000 000 000 013 018 0.00 0.00 000 000 0.00 000 003 000 022 EGEEM 000 0.00

e e e e e e 0 s 0 o & & @ & & & & & &
Cluster

%
Q‘!

(b) Weight analysis of 350M proxy model optimized towards MMLU humanities

fteration1 0.01 0.00 0.01 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.76 0.00 0.01
06
Iteration2 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.69 0.00 0.00 04
&

Iteration

Iteration3 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

- R L3 JRRY

@

o
@
<

Cluster
(c) Weight analysis of 350M proxy model optimized towards MMLU social sciences

Iteration1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.02

Iteration

Iteration3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

000 0.0 000 0.00
04
fteration2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.22 013 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.04 03
000 0.0 007 013 o X X I
e & & & &

[og [eg < <& & & & &
Cluster
(d) Weight analysis of 350M proxy model optimized towards MMLU STEM

ferationl 0.02 0.01 001 0.00 0.00 000 000 002 001 000 000 001 000 003 005 012 000 020

tteration2 0.00 0.07 0.01 0.00 0.00

Iteration

Iteration3 0.00 0.02 0.01 0.00 0.00

o <& & & &

%
3
[
3
%

& o &
Cluster

(e) Weight analysis of 62M proxy model optimized towards general reasoning

fteration1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.81 0.00 0.00

c 06
°
0 teration2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.92 0.00 0.00 04
£
-0z
Iteration3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.18 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00
-00
& & < <& <@ & < & @ & Lo AR - A 4 & & & & & >
Cluster

Figure 7: Heatmap of weights across iterations.
D.3 Effects of Proxy Model.

Our method relies on a proxy model to rapidly score candidate mixtures. Intuitively, larger proxy
models should better approximate the performance of the final (larger) target model. We test three
proxy sizes: 62M, 132M, and 350M parameters. From TableE] (rows under “Abl.proxy”), as we
increase the proxy model from 62M to 350M, the average score improves from 60.11 to 60.41.
Although the gains are not dramatic, they consistently favor using the largest feasible proxy model.
This shows that a stronger proxy—closer in capacity to the target—achieves more accurate gradient
estimates of mixture quality.

18

D.4 Effects of Number of Clusters.

In our method, we employ a hierarchical clustering procedure. Specifically, we first group all data
into K;,,;+ clusters, perform a filtering step, and then regroup these clusters into Keppanced SUper-
clusters. In this section, we explore the robustness of our data-mixture method and investigate its
sensitivity to the number of clusters. Hence, we experiment with different values of K;,,;; (48, 64,
100, 1000, 2000) and Kppancea (15, 21, 30). The results in Table 3] (rows under “Abl.clus”™) show
that performance improves as K;,;; increases from 48 to 100 and declines when K;,;; increases
from 1000 to 2000. Overall, our method is not particularly sensitive to the number of clusters,
demonstrating the robustness of our approach. It is worth mentioning that if K;,;; exceeds 2000
given the dataset size, the clustering becomes overly fine-grained and thus too dispersed. Likewise, if
K nhanced 18 set too high, it requires more compute for sampling, increasing the overall cost of the
data search process.

D.5 Effects of Initialization.

We compare how different initialization schemes for the mixture weights affect performance. We
experiment with a simple random initialization versus a Dirichlet-based initialization that biases
weights to be more evenly spread at the start. Table 3] (rows under “Ablinit”) shows that Dirichlet
initialization achieves a slightly higher average score (60.41%) than random (60.21%). The perfor-
mances are comparable, suggesting the robustness of our data mixing approach, which is largely
insensitive to the choice of initialization.

D.6 Effects of Compute Allocation.

By default, we allocate our 100% total compute across three iterations in a 4:2:1 ratio (64:32:16). In
principle, however, one could allocate compute to create either a “tall” search tree (more iterations
but fewer searches per iteration) or a “fat” one (fewer iterations but more searches per iteration).
Table (rows under “Abl.allo”) compares several such allocations: 6:1, 4:2:1, and 2:2:1:1. We find
that 4:2:1 yields the best overall average performance (60.41%). Having too few iterations (e.g., 6:1)
can lead to suboptimal exploration in earlier iterations, while splitting too many iterations (2:2:1:1)
spreads compute too thin across each iteration. Thus, balancing depth (number of iterations) and
breadth (searches per iteration) proves key to robustly finding a good mixture.

D.7 Evolution of Cluster Weights

The data mixture weights are important to understand the impact of different clusters, so we closely
examine how they evolve across iterations. Figure[7](a) presents the weights discovered by our search
process for the 350M proxy model in the general reasoning domain. As shown, most clusters have
minimal or no contribution (weights close to 0.00), while a few clusters play a significant role, with
their weights changing across iterations. Among them, C18, C19, and C21 initially have high weights,
but C19 and C21 exhibit a decreasing trend, suggesting their diminishing impact. Conversely, C8 and
C9 become more relevant in later iterations, with their weights increasing in Iteration 3 (C8: 0.13,
C9: 0.18), highlighting an adaptation in feature importance.

D.8 Analysis of Final Weights

Furthermore, we analyzed the weights of the final data mixtures. From Figure[/|(a) , for the general
reasoning task, C8, C9, C18, and C19 account for the majority of the weight. As shown in[D.2] C8,
C9, and C19 exhibit a high degree of correlation with general reasoning. Moreover, when analyzing
the topics of these four clusters (@), we find that they collectively form a diverse distribution.

In addition, we analyzed the importance of different clusters across domains on MMLU. As shown
in Figures[7](b), (c), and (d), certain clusters play a crucial role in specific domains. For example,
C7, Cl11, and C19 are particularly important for the humanities domain, while C7 and C8 are highly
influential in the STEM domain. These findings highlight how different clusters contribute uniquely
to various domains, providing deeper insights into domain-specific feature significance. We are also
curious about the similarities and differences in the weights discovered by the large proxy model
and the small proxy model. To explore this, we compared Figure[7] (a) and (e), and observed that
they share similar important features, such as C8, C9, C18, and C19, although the assigned weights

19

vary between the models. This insight suggests that we can leverage a smaller 62M proxy model
for further experiments, reducing computational costs while retaining key structural patterns. The
experimental results are presented in Appendix [D.9] Notably, the weights appear sparse because,
during the sampling process, we intentionally bias towards sparse weights. This approach effectively
amplifies important clusters while filtering out less significant ones, enhancing the clarity of key
features. In addition, we also investigate the relationship between clusters and downstream task
performance in[D.2]

D.9 Experiments with 62M proxy model

In the main experiment, we used a 350M proxy model. To further investigate the effectiveness of
smaller proxy models, we conducted additional experiments with reduced model sizes. The results,
presented in Tables[S]and [6], indicate that even when the proxy model size was reduced by a factor
of five, its performance remained strong. This suggests that smaller proxy models can still be highly
effective, providing valuable insights while reducing computational costs.

Table 5: Performance of target models on MMLU-social-sciences task. The main proxy model is
62M.

Target | Model Proxy | Accuracy (%)
Random - 27.40
CLIMB-Best@N 62M 31.03
62M CLIMB-iterl 62M 29.05
CLIMB-iter2 62M 30.71
CLIMB-iter3 62M 32.43
Random - 34.87
CLIMB-Best@N 350M 38.39
350M CLIMB—@terl 62M 36.09
CLIMB-iter2 62M 37.01
CLIMB-iter3 62M 37.98
Random - 36.69
CLIMB-Best@N 1B 40.66
1B CLIMB-iterl 62M 40.03
CLIMB-iter2 62M 40.46
CLIMB-iter3 62M 41.72

Table 6: Performance of target models on general reasoning benchmarks. The main proxy model is
62M.

Size | Model Proxy Comp. | piga arc_c arc_e hellaswag winogrande siga Avg.
Random - 0 61.80 24.06 45.70 33.64 50.19 37.51 41.76
CLIMB-Best@N 62M 100% | 63.16 25.51 51.30 35.68 51.14 38.07 44.14

62M CLIMB-iterl 62M 57% |63.92 2482 49.83 34.76 49.48 38.79 43.60
CLIMB-iter2 62M 85% |64.09 26.10 49.83 35.95 51.06 38.68 44.29
CLIMB-iter3 62M 100% | 64.54 27.01 5339 35.82 51.15 39.50 45.23
Random - 0 71.16 30.54 62.50 52.14 55.40 4129 52.17
CLIMB-Best@N 350M 100% |71.92 3370 67.00 54.55 56.59 41.67 54.24
350M CLIMB-iterl 62M 57% |71.65 3349 6531 5444 56.28 41.99 53.86
CLIMB-iter2 62M 85% |71.54 34.01 6643 54.61 56.78 41.37 54.12
CLIMB-iter3 62M 100% |71.87 34.12 66.92 54.81 56.11 42.37 54.37

Random - 0 74.05 37.12 70.24 62.90 60.77 4248 57.93
CLIMB-Best@N 1B 100% |75.02 3839 7234 6431 61.16 42.52 58.96

B CLIMB-iterl 62M 57% |74.38 38.19 7098 64.21 61.58 43.11 58.74
CLIMB-iter2 62M 85% |75.26 39.28 72.17 63.99 63.16 41.27 59.19
CLIMB-iter3 62M 100% |75.41 40.56 72.82 65.76 63.23 42.89 60.11

D.10 Effects of Predictor

In our approach, after training the proxy model on configuration-performance pairs, we use a
regression model (i.e., predictor) to capture the relationship between configuration and target domain
performance. To evaluate prediction accuracy, we hold out a portion of the data as the test set and
compute the Spearman rank correlation between the predictions and ground truth. As shown in

20

Iterationl 0.00 0.02 0.01 0.08 0.06 0.090.01 0.01 0.05 0.020.02 0.00 0.03 0.04 0.03 0.01 0.03 0.01 I:03

c
2 0.2
® Iteration2 001 001 002 003 003 [UulE] i 0.07 000 008 001 XN 001 001 0.03 0.06 004 003 0.01 0.01

1

] -0.1
=

Iteration3 0.01 0.01 0.01 0.03 0.02 FOPON R 0.01 0.01 0.07 0.010.01 0.00 0.00 0.07 0.06 0.02 0.01 0.00

O AN A O A N R o

Cluster
Figure 8: Weight analysis of NEMOTRON-CLIMBMIX across iterations.

Figure[9] we visualize the predicted and true accuracy pairs for the 350M proxy models and find that
the predictor performs exceptionally well, achieving 94% Spearman rank correlation.

H o A D O O
O

65

A J

Correlation: 0.94

True Acc
(@)} (@)
w e~
[]
(X
X

o
RO
\
°

Figure 9: The Spearman rank correlation between predicted accuracy made by the predictor model
and the groundtruth accuracy.

D.11 Prompt Template

We present the prompts used for data annotation, as shown in the table below.

21

Evaluation Criteria for Pre-Training Data

You are an expert evaluator assessing a text for suitability as pre-training data for a large
language model. For each criterion, start from O points. Then add points based on the
conditions described. If no conditions are met, the score remains 0. Please evaluate the given
text using the rating scale below. Assign a score from O to 5 for each criterion, and reference
the expanded guidelines under each category to determine the appropriate rating:
Rating Scale:
* 0: Does not meet the criterion at all
e 1: Partially meets the criterion
e 2: Fairly meets the criterion
* 3: Mostly meets the criterion
* 4: Fully meets the criterion
* 5: Exceeds the criterion
Criteria and Expanded Guidelines:
1. Quality: The text is natural, clean, and free from severe grammatical errors, spelling
mistakes, syntactical issues, repetitive phrasing, or random symbols.

* +1: Correct basic spelling and mostly proper grammar, despite minor slips.
* +1: Coherent sentence structures, no glaring syntactical breakdowns.

* +1: Natural language, free from repetitive phrasing, easy to read.

* +1: Polished, no major grammatical errors or spelling mistakes.

* +1: Professional-level writing quality, free from unnatural phrasing.

2. Advertisement: The text should avoid excessive promotional language or overt
advertising.

* +1: Minimal promotional elements, not distracting.
 +1: Subtle promotional aspects, not overshadowing content.
* +1: Mostly neutral with slight marketing-like language.
e +1: Almost free from advertisements, at most one mild reference.
* +1: No detectable promotional content.
3. Informational Value: The text provides accurate insights, useful facts, or relevant
knowledge.
* +1: At least one accurate fact or relevant information.
* +1: Multiple useful pieces of information.
* +1: Enhances understanding, presents explanations.
¢ +1: Substantial, well-structured, reliable information.
* +1: Exceptional depth, authoritative content.
4. Educational Value: Assess if the text is beneficial for structured learning.

¢ +1: Basic educational relevance, even if mixed with non-academic content.
* +1: Addresses education but lacks strong alignment with standards.

* +1: Suitable for educational use, introduces key concepts.

* +1: Highly relevant for structured learning, minimal extraneous content.

* +1: Outstanding educational value, clear, easy-to-follow insights.

Final Output Format:

{
"quality": < integer 0-5 >,
"advertisement": < integer 0-5 >,
"informational_value": < integer 0-5 >,
"educational_value": < integer 0-5 >,

}

Content to evaluate:

INPUT_DOC

22

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present extensive quantitative experiments and demonstrate our claims
across a wide variety of benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

23

Justification: Our paper does not contain theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of our framework, training setups, proxy
model configurations, clustering procedures, and evaluation metrics in the main paper
and appendix. In addition, we release the datasets used in our experiments (NEMOTRON-
CLIMBLAB and NEMOTRON-CLIMBMIX) and the corresponding Hugging Face link is
included in the abstract. These resources, together with the methodology described, are
sufficient for reproducing the main experimental results and validating the conclusions.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We release our curated data and training code here.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide training details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We performed relatively large-scale training (> 100B tokens) so that the task
performance is stable across runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://huggingface.co/collections/nvidia/climb-datasets-67e428bdb9aaced2acda191f
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The training resources are detailed in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and followed this guideline.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it in Appendix B}
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Our data is based on publicly available open datasets, so we did not apply
additional safeguards to further enhance safety.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used open data and have provided the corresponding references.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. The documentation is provided in the dataset card hosted on Hugging
Face.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: No crowdsourcing experiments or research involving human subjects were
conducted.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: No crowdsourcing experiments or research involving human subjects were
conducted.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

28

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	CLIMB: CLustering-based Iterative Data Mixture Bootstrapping
	Data Preprocessing
	Iterative Bootstrapping: Mixture Weight Search

	Experimental Settings
	Implementation Details

	Experimental Results
	Comparison with Data Mixture Baselines
	Comparison with SOTA LMs

	Analysis
	Nemotron-ClimbLab and Nemotron-ClimbMix: New SOTA Pre-training Data
	Related Work
	Conclusion
	Limitations
	Societal Impacts
	Experimental Settings
	Baselines
	Data
	Model
	Training Settings

	Analysis
	Topics of Clusters
	Relationship between Clusters and Downstream Tasks
	Effects of Proxy Model.
	Effects of Number of Clusters.
	Effects of Initialization.
	Effects of Compute Allocation.
	Evolution of Cluster Weights
	Analysis of Final Weights
	Experiments with 62M proxy model
	Effects of Predictor
	Prompt Template

