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Abstract

We analyze the error rates of the Hamiltonian Monte Carlo algorithm with leapfrog
integrator for Bayesian neural network inference. We show that due to the non-
differentiability of activation functions in the ReLU family, leapfrog HMC for
networks with these activation functions has a large local error rate of Ω(ϵ) rather
than the classical error rate of O(ϵ3). This leads to a higher rejection rate of the
proposals, making the method inefficient. We then verify our theoretical findings
through empirical simulations as well as experiments on a real-world dataset that
highlight the inefficiency of HMC inference on ReLU-based neural networks
compared to analytical networks.

1 Introduction

In recent years, there has been a growing interest in doing full Bayesian analyses for neural networks
and deep learning (Hernández-Lobato and Adams, 2015; Huber, 2020; Cobb and Jalaian, 2021; Dhuli-
pala et al., 2023). Since neural network models are typically high-dimensional, Hamiltonian Monte
Carlo (HMC) (Neal, 2011) is a natural choice over other Markov Chain Monte Carlo approaches
(Duane et al., 1987; Neal, 2011). When the activation function of a network is analytic (e.g., sigmoid
function), one could rely on the theoretical foundations and practical guidelines of HMC in classical
settings with smooth energy functions for computational designs (Neal, 2011; Beskos et al., 2013;
Betancourt et al., 2017).

For ReLU-based neural networks, the situation is not as clear since the ReLU activation has a point of
non-differentiability at zero. The derivative of ReLU at zero, in principle, is not well-defined, although
often set to be zero in most computational platforms (Bertoin et al., 2021). Since non-differentiability
only happens on a set of measure zero on the parameter space, it is natural to assume that this
technical singularity does not pose a problem beyond theoretical considerations. For example, when
training ReLU networks, it is known that the vast majority of stochastic gradient descent sequences
produced by minimizing the loss function are not meaningfully impacted by changing the value of
the derivative of ReLU at zero (Berner et al., 2019; Bolte and Pauwels, 2020; Bertoin et al., 2021;
Bianchi et al., 2022).

For HMC, this line of thought is also not completely misguided, as we will show in this paper that
HMC with leapfrog integrator is correct (i.e., it samples from the correct distribution) as long as the
computed derivatives during sampling are well-defined up to the second order and are compatible
with the chain rule. Since the backpropagation algorithm to compute gradients for neural networks
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is designed with the chain rule as its foundation, HMC with ReLU-based networks is thus correct
regardless of how the derivative of ReLU is defined at zero, as long as it is defined deterministically.
From a theoretical perspective, if Hamiltonian dynamics can be simulated exactly, the acceptance
probability of HMC is always one and non-differentiability is also not an issue.

In practice, however, Hamiltonian systems can rarely be exactly integrated and are often approximated
by a symplectic integrator (e.g., the leapfrog integrator) (Neal, 2011). The approximation errors of
the Hamiltonian during integration lead to a decay in the acceptance probability of the proposals. The
focus of our analyses in this work is on the efficiency of practical implementations of HMC: we show
that when a leapfrog HMC particle crosses a surface of non-differentiability (which corresponds to a
single activation/deactivation of a neuron in the network), the Hamiltonian is likely to incur a local
error rate of order Ω(ϵ), leading to uncontrollable error accumulation along the Hamiltonian path.
This is in contrast with the classical local error rate O(ϵ3) for smooth Hamiltonian (Neal, 2011) and
thus renders HMC inference on ReLU networks inefficient compared to its analytic counterparts.
Since the issue is due to the differences in the derivatives of the potential energy on two domains
across a surface of non-differentiability, it cannot be resolved through the choices of the derivative
value of ReLU at zero.1

Our contributions. In this work, we analyze the HMC algorithm with the leapfrog integrator for
Bayesian neural network inference:

• We formulate the theoretical conditions under which HMC with leapfrog integrator is correct,
even when derivatives are not defined in classical senses.

• We provide an upper bound of order O(ϵ) for the error of Hamiltonian dynamics on ReLU-
based networks, and establish that outside a small set of starting points in the parameter
space, this error is also bounded from below by Ω(ϵ).

• We analyze the optimal dimensional scaling of the step size and acceptance probability of
HMC for target distributions consisting of d ≫ 1 independent and identically distributed
(i.i.d.) dimensions with piece-wise affine non-differentiable log-density components. From
this result, we obtain a new guideline for tuning HMC with a first-order symplectic integrator
that suggests a scaling of d−1/2 for the step size and an optimal acceptance probability of
0.45.

• Through experiments with both synthetic and real datasets, we validate our theoretical
analyses and highlight the inefficiency of ReLU neural networks compared to analytical
networks.

Related works. Classical theoretical analyses of HMC algorithms are often performed under the
assumptions that the potential functions (the negative log-likelihood of the posterior distributions)
are smooth (Neal, 2011; Beskos et al., 2013; Betancourt et al., 2017). Another research direction
considers the cases where the energy function is discontinuous (Pakman and Paninski, 2013; Afshar
and Domke, 2015) or contains discrete parameters (Nishimura et al., 2020; Zhou, 2020) by introducing
momentum adjustments near its discontinuity in a way that preserves the total energy. These results
proved that the constructed algorithms preserve the correct stationary distribution but did not consider
the efficiency of the approach, and they do not apply directly to the neural network models where
the potential function is continuous. It is generally recognized that if the leapfrog transition is not
effective in preserving the Hamiltonian, HMC is inefficient and the issue needs to be remedied
by algorithmic modifications, for example, by using surrogate functions (Dinh et al., 2017) or
non-volume-preserving proposals (Afshar et al., 2021). Other theoretical analyses of HMC also
considered the global geometry such as the curvature of the HMC manifolds (Seiler et al., 2014),
which is different from the local smoothness property that we consider in this paper.

2 Hamiltonian Monte Carlo for Neural Networks and Its Efficiency

Bayesian neural networks (BNNs). We consider a general Bayesian feed-forward neural net-
work model (Neal, 1995). Formally, given a d0-dimensional input x in a bounded open set

1We recall that for two real-valued functions f and g, we write f(ϵ) = O(g(ϵ)) as ϵ → 0 if there exist
a,C > 0 such that |f(ϵ)| ≤ C|g(ϵ)| for all ϵ ∈ [0, a]. Similarly, we write f(ϵ) = Ω(g(ϵ)) if there exist
a, c > 0 such that |f(ϵ)| ≥ c|g(ϵ)| for all ϵ ∈ [0, a].
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X ⊂ Rd0 , the output fq(x) ∈ Y of an M -layer feed-forward neural network with parameters
q = (A1, b1, A2, b2, . . . , AM , bM ) is defined through several layers:

h0(x) = x, (input layer)
hj(x) = σ(Aj · hj−1(x) + bj), for j = 1, 2, . . . ,M − 1, (M − 1 hidden layers)
fq(x) = hM (x) = AM · hM−1(x) + bM , (output layer)

where σ is an activation function, Aj ∈ Rdj×dj−1 and bj ∈ Rdj , with dj being the number of nodes
in the j-th layer. Throughout this paper, we assume the parameter vector q belongs to a compact
set Q. In the Bayesian setting, given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with inputs
xi ∈ X and labels yi ∈ Y , the posterior distribution for the model parameters is:

P (q) ∝ π(q)

n∏
i=1

ℓ(q|xi, yi),

where π(q) is the prior density and ℓ(q|xi, yi) is the likelihood function given the data point (xi, yi).
Using the posterior, we obtain the posterior predictive distribution of any new data point (x, y) by
P (x, y|D) =

∫
ℓ(q|x, y)P (q)dq, which can be used for prediction.

In this paper, we consider the general setting with a smooth (i.e., infinitely differentiable) loss
function Lx,y(q) that holds for several classification and regression problems. A simple case of
this setting is regression with square loss (which corresponds to a Gaussian noise assumption with
fixed, known variance) where Lx,y(q) = (fq(x)− y)2 and log ℓ(q|x, y) ∝ −(fq(x)− y)2. Another
common case is classification with cross-entropy loss where Lx,y(q) = − log(softmax(fq(x))y) and
log ℓ(q|x, y) = fq(x)y + c for some constant c. The analyses of our work can also be extended
easily to other Bayesian learning settings such as unsupervised learning and generative modeling
with smooth losses.

Hamiltonian Monte Carlo for BNNs with leapfrog integrator. Since computing the posterior pre-
dictive distribution P (x, y|D) and other integrals over the posterior is generally intractable, especially
for complex models like neural networks, we usually compute these quantities approximately. Among
the approximation methods, HMC (Neal, 1995, 2011) is a popular choice for neural network models
due to the availability of gradients and the effectiveness of the method when exploring the parameter
space. In general, HMC uses a Hamiltonian dynamical system to sample m parameter vectors
q̃1, q̃2, . . . , q̃m from the posterior P (q) and then approximate

∫
g(q)P (q)dq ≈ 1

m

∑m
i=1 g(q̃i) for

any function g of interest. To sample from P (q), HMC proposes to extend the state space to include
auxiliary momentum variables p of the same dimension as q and study the canonical distribution:

P (q, p) ∝ exp (−H(q, p)) ,

where H(q, p) = U(q) + K(p), with U(q) = − logP (q) and K(p) =
1

2
∥p∥2. Here we refer to

H(q, p), U(q), and K(p) as respectively the Hamiltonian, the potential energy function, and the
kinetic energy function of the Hamiltonian system at the state (q, p). We assumed that p ∼ N (0, I)
in the formulation above, although in theory p could have a more general distribution. After defining
P (q, p), we can then sample q̃1, q̃2, . . . , q̃m successively from this canonical distribution using
Hamiltonian dynamics. Specifically, given the current position q̃i, we sample q̃i+1 in two steps, both
of which leave the canonical distribution invariant (i.e., the canonical distribution is the invariant
distribution of the Markov kernels associated with those samplers). In the first step, we randomly draw
a vector p̃i of new values for the momentum variables from their Gaussian distribution, independently
of the current values q̃i of the position variables. In the second step, a Metropolis update is performed
where a new sample is proposed by simulating Hamiltonian dynamics for L steps using the leapfrog
method (Skeel, 1999; Leimkuhler and Reich, 2005; Sanz-Serna and Calvo, 2018) with a step size of
ϵ. In particular, starting from the initial state (q0, p0) = (q̃i, p̃i), we perform the following updates
for L steps:

p1/2 = p0 −
ϵ

2

∂U

∂q
(q0), (1)

q1 = q0 + ϵ p1/2, (2)

p1 = p1/2 −
ϵ

2

∂U

∂q
(q1). (3)
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The momentum variables at the end of this trajectory are then negated to obtain a proposed state
(q̃, p̃), which is accepted with probability min{1, exp (−H(q̃, p̃) +H(q0, p0))}, giving the new state
(q̃i+1, p̃i+1). The negation of the momentum at the end of this L-step trajectory makes the Metropolis
proposal symmetrical, but is not necessarily needed in practice, since K(p) = K(−p) and the
momentum will be replaced before it is used again in the next iteration.

HMC offers an attractive Monte Carlo method, especially in high dimensions: an HMC particle
can travel a long distance across the state space while Hamiltonian dynamics keep the Hamiltonian
H(q, p) relatively constant, leading to a high acceptance rate (Neal, 2011). When the energy functions
are smooth, the algorithm has a well-established theoretical foundation that guarantees its correctness
and efficiency through two main observations: (i) the leapfrog integrator is reversible and preserves
volume, and (ii) the local error of a leapfrog step is O(ϵ3) (Neal, 2011). Property (ii) essentially
allows the HMC particles to travel a length of Lϵ while maintaining a small rejection rate of order
O(Lϵ3). In practice, HMC is often tuned according to a fixed travel time T ; that is, L = T/ϵ for a
fixed constant T . In this case, the global error of HMC (and thus, the rejection rate of the proposals)
is of order O(Tϵ2).

Efficiency of HMC and optimal tuning. One important aspect of implementing HMC is tuning
the two main parameters: the step size ϵ and the travel time T . The main considerations are: (i)
how to scale ϵ with the dimension of the problem, and (ii) how to choose both ϵ and T to achieve a
balance between the effort to simulate a long trajectory and the acceptance probability of the resulting
proposal. The analyses for such optimal acceptance probability are often done via a proxy case where
the model parameters consist of d ≫ 1 smooth and i.i.d. components (Beskos et al., 2013; Betancourt
et al., 2014). In this setting, Beskos et al. (2013) rely on the global error rate O(ϵ2) to show that HMC
with leapfrog requires L ≈ O(d1/4) steps to traverse the state space and the step size ϵ is generally
scaled as d−1/4 for an average acceptance probability of Ω(1). If we let ϵ = ld−1/4 for some tunable
parameter l, the number of leapfrog steps is L = T/ϵ = T/(ld−1/4), and the computational cost to
compute a single proposal will be approximately:

C0 · d ·
T

ld−1/4
= C0

T

l
d5/4,

where C0 measures the cost of one leapfrog step in one dimension. Given a starting location q,
the number of proposals until acceptance follows a geometric distribution with some probability
of success A(q, l). Using Jensen’s inequality, the expected cost until the first accepted proposal in
stationary is bounded from below by:

C0
T

l · E[A(q, l)]
d5/4.

Here the quantity l · E[A(q, l)] is called the efficiency of the HMC algorithm, and a sensible approach
for optimal tuning of HMC is to choose l such that this efficiency function is minimized. In the
setting with i.i.d. smooth parameters, Beskos et al. (2013) show that:

lim
d→∞

E[A(q, l)] = 2Φ(−l2
√
Σ/2) := a(l),

where Φ is the c.d.f. of the standard normal distribution and Σ is an unknown constant. While Σ
and the optimal lopt of the function l · a(l) generally depend on the specific target distribution under
consideration, it can be shown that a(lopt) does not vary with the selected target distribution. Thus,
in practice, we can compute the efficiency by setting Σ = 1; that is, the efficiency is computed as
2l · Φ(−l2/2). This leads to an optimal acceptance probability of a(lopt) = 0.651, which is often
used in practice for HMC tuning (Neal, 2011; Campbell et al., 2021; Hoffman et al., 2021; Nijkamp
et al., 2021). Subsequently, Betancourt et al. (2014) extend this analysis to include an upper bound
and suggest the target average acceptance probability can be relaxed to 0.6 ≤ a(l) ≤ 0.9.

3 Correctness and Efficiency of Leapfrog HMC on ReLU Neural Networks

In this section, we shall present our theoretical results on the correctness and efficiency of HMC
with leapfrog integrator on Bayesian ReLU neural networks. First, we prove a general result in
Theorem 3.1 on the correctness of leapfrog HMC on models that use backpropagation. As a special
case of this theorem, leapfrog HMC on neural networks with the ReLU activation is correct (i.e., it
samples from the correct distribution), even when derivatives are not defined in a classical sense.
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Theorem 3.1. If the derivatives of the potential energy function U are well-defined up to the second
order and are compatible with the chain rule, i.e.,

∂

∂q

(
∂U

∂q
(ϕ(q))

)
=

∂2U

∂q2
(ϕ(q))

∂ϕ

∂q
(q)

for all smooth functions ϕ, then the leapfrog integrator is reversible and preserves volume. As a
consequence, the HMC sampler with leapfrog integrator leaves the canonical distribution invariant.

Since the backpropagation algorithm is designed with the chain rule as its foundation, Theorem 3.1
tells us that leapfrog HMC on ReLU neural networks is correct regardless of how the derivative
of ReLU is defined at 0, as long as it is defined consistently. A complete proof of this theorem is
provided in Appendix A.1, where deterministic definitions of first derivatives are needed to guarantee
reversibility, and the chain rule concerning second derivatives of the potential function appears when
computing the Jacobian of the leapfrog transformation to ensure volume-preservation.

Having established the correctness of leapfrog HMC on ReLU neural networks, we now turn to
the main emphasis of our paper: the efficiency of this algorithm. Note that from our discussion in
Section 2, the efficiency of HMC depends on the acceptance probability of the proposals and the
approximation error of the Hamiltonian. Thus, our idea here is to show that when the HMC particles
cross a surface of non-differentiability (e.g., that corresponds to a single activation/deactivation of
a neuron in the ReLU network), the Hamiltonian will likely incur a local error rate of order Ω(ϵ),
leading to uncontrollable error accumulation along the Hamiltonian path.

To analyze the efficiency of HMC, we need a result about the (ir)regularity of the potential function
of ReLU-based networks, which is stated in Lemma 3.2 below. Essentially, the output of a ReLU
feed-forward neural network at a node (before activation) can be characterized by the activation
patterns (on-off for ReLU) of all nodes from previous layers feeding into it. When these activation
patterns are fixed, the output at a node is a multilinear/polynomial function of the network parameters.
Non-differentiability thus arises when the values of these functions cross zero, leading to “jumps” in
values of partial derivatives of the potential functions that drive Hamiltonian dynamics.
Lemma 3.2. If the activation function σ is piece-wise affine with a single point of non-differentiability
at 0, then there exists a finite union of smooth surface S =

⋃
i∈I Si with Si = {q : fi(q) = 0} and

analytic functions fi, such that ∂U/∂q is non-smooth on S but locally smooth everywhere else.

The proof of this lemma is in Appendix A.2, which uses an induction argument on the layers of
the feed-forward neural networks. As HMC explores the parameter space, these patterns change
as the dynamics cross a surface of non-differentiability. Since the on-off ReLU activation patterns
are discrete in nature, the behaviors of HMC with ReLU networks resemble those of models with
discrete parameters (Dinh et al., 2017; Nishimura et al., 2020; Zhou, 2020) rather than a purely
continuous one. Lemma 3.2 extends naturally for all piece-wise affine functions with only one point
of non-differentiability at 0 such as the leaky ReLU activation function.

Analysis of local errors. The next step in our analysis is to derive the local error rate of the leapfrog
HMC algorithm on ReLU networks. To give an intuition for our result, we will demonstrate an
error analysis for the simpler case where the particle crosses a surface of non-differentiability only
once. In this case, we consider a single leapfrog step starting at (q0, p0) and ending at (q1, p1) after
performing the updates in Equations (1)-(3). If we assume that along this linear path, the particle
crosses a surface of non-differentiability exactly once at a point z, then we have:

∆K = K(p1)−K(p0) =
1

2

(
∥p1∥2 − ∥p0∥2

)
=

1

2

(∥∥∥∥p0 − ϵ

2

∂U

∂q
(q0)−

ϵ

2

∂U

∂q
(q1)

∥∥∥∥2 − ∥p0∥2
)

= − ϵ

2
p0 ·

(
∂U

∂q
(q0) +

∂U

∂q
(q1)

)
+O(ϵ2)

= − ϵ

2
p1/2 ·

(
∂U

∂q
(q0) +

∂U

∂q
(q1)

)
+O(ϵ2),
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and ∆U = U(q1)− U(q0)

= U(q1)− U(z) + U(z)− U(q0)

=

∫ ϵ

ϵ1

∂U

∂q
(q0 + t p1/2) · p1/2 dt+

∫ ϵ1

0

∂U

∂q
(q0 + t p1/2) · p1/2 dt

=
ϵ2
2
p1/2 ·

[
∂U+

∂q
(z) +

∂U

∂q
(q1)

]
+

ϵ1
2
p1/2 ·

[
∂U

∂q
(q0) +

∂U−

∂q
(z)

]
+O(ϵ3),

where ϵ1 and ϵ2 are the time spent along the path before and after crossing the surface of non-
differentiability, respectively. Similarly, ∂U−

∂q (z) and ∂U+

∂q (z) denote the gradients at z on the two
differentiable regions before and after the incidence, respectively. Thus, we can deduce the local
error of the Hamiltonian:

∆H = H(q1, p1)−H(q0, p0) =
p1/2

2
·
[
−ϵ2

(
∂U

∂q
(q0)−

∂U−

∂q
(z)

)
− ϵ1

(
∂U

∂q
(q1)−

∂U+

∂q
(z)

)
+(ϵ2 − ϵ1)

(
∂U+

∂q
(z)− ∂U−

∂q
(z)

)]
=

(ϵ2 − ϵ1)

2
p1/2 ·

(
∂U+

∂q
(z)− ∂U−

∂q
(z)

)
+O(ϵ2),

since ∂U/∂q (z) is Lipschitz in each domain of continuity due to U being analytic in these bounded
domains.

Our analysis above shows that even if the particle crosses a surface of non-differentiability once, the
incurred local error ∆H will be of order Ω(ϵ). This analysis can be generalized to the case when
the linear path from (q0, p0) to (q1, p1) crosses multiple regions. We thus have the following general
result with the proof given in Appendix A.3.

Theorem 3.3. Consider a leapfrog step starting at (q0, p0) and ending at (q1, p1) that crosses the
surfaces of non-differentiability at z1, z2, . . . , zk at time ϵ1, ϵ2, . . . , ϵk. The local approximation error
incurred can be estimated by:

∆H = H(q1, p1)−H(q0, p0) = p1/2 ·
k∑

i=1

( ϵ
2
− ϵi

)(∂U+

∂q
(zi)−

∂U−

∂q
(zi)

)
+O(ϵ2),

where ∂U−

∂q (zi) and ∂U+

∂q (zi) denote the gradients of U at zi on the two differentiable regions before
and after crossing zi, respectively.

Theorem 3.3 indicates that, in general, ∆H = Ω(ϵ) and is difficult to control. ∆H can only be small
(i.e., smaller than O(ϵ)) if the leapfrog path crosses the regions at a very specific time. For example,
when k = 1, this corresponds to the path crossing a boundary approximately at time t ≈ ϵ/2. The
following lemma shows that this happens only at a very small subset of the state space. The proof of
this lemma is given in Appendix A.4.

Lemma 3.4. For M > 0 and a > 0, define AM,a as the set of all augmented states (q, p) such
that: ∥p∥ ≤ M and a single leapfrog step starting at (q, p) crosses a surface of non-differentiability

exactly once at time ϵ1 ∈
(
(1− a)

ϵ

2
, (1 + a)

ϵ

2

)
. Let BM,a be the set of all augmented states (q, p)

such that the L-step leapfrog Hamiltonian trajectory starting at (q, p) belongs to AM,a at some point
along the path. There exist C > 0 and α ≥ 2 that depend only on the potential energy function (and
are independent of α, ϵ, L, and M ) such that:

µ(AM,a) ≤ (CaMϵ)1/α and µ(BM,a) ≤ (CaMϵ)1/αL,

where µ denotes the Lebesgue measure on Q× Rd, with Q being the parameter space.

Another direct consequence of Theorem 3.3 is that for a fixed travel time T (i.e., L = T/ϵ for a fixed
constant T ), as ϵ goes to zero, the global errors of leapfrog HMC can be controlled by

ϵ

2

∑
z∈A

p(z) ·
(
∂U+

∂q
(z)− ∂U−

∂q
(z)

)
+O(Tϵ),
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where A denotes the set of points of non-differentiability along the Hamiltonian path when the system
is integrated exactly with the same initial state for an amount of time T .

Tuning HMC on ReLU neural networks. Our result above indicates that for ReLU networks, HMC
proposals may accumulate a rejection rate of order Ω(Nϵ), where N is associated with the number
of times the dynamics cross a surface of non-differentiability (i.e., when a ReLU neuron is activated
or deactivated). This means that the classical guidance for implementations of HMC is no longer
valid for ReLU networks. However, with our theoretical result above, we can still adapt the analyses
of Beskos et al. (2013) and Betancourt et al. (2014) to obtain similar guidelines for tuning HMC with
a first-order symplectic integrator. These guidelines are stated in the following proposition, with the
proof given in Appendix A.5.

Proposition 3.5. Consider a target distribution on vectors consisting of d ≫ 1 i.i.d. piece-wise affine
non-differentiable log-density components. The following statements hold:

(a) HMC with the leapfrog integrator has a global error rate of O(ϵ).

(b) The step size ϵ should be scaled as d−1/2 for an Ω(1) average acceptance probability.

(c) The optimal acceptance probability of leapfrog HMC is approximately 0.45.

(d) The range of target average acceptance probability can be relaxed to [0.4, 0.75].

As a consequence of this proposition, for piece-wise affine non-differentiable log-densities, as the
dimension increases, the computational cost to maintain a constant average acceptance probability
grows as d3/2 as opposed to d5/4 in classical cases (Beskos et al., 2013). Statement (d) of the
proposition follows the discussions from Betancourt et al. (2014), where the detailed analysis uses
both the upper and lower bounds of the efficiency function. This analysis is illustrated in Figures 4
and 5 in the appendix.

It is worth noting that for the random-walk Metropolis (RWM) algorithm, the scaling and optimal
acceptance probability are d−1 and 0.23, respectively (Yang et al., 2020). The corresponding
quantities for the Metropolis-adjusted Langevin algorithm (MALA) are d−1/3 and 0.57 when the
potential energy function is seven times differentiable (Roberts and Rosenthal, 1998). Thus, the
scaling of the step size and the optimal acceptance probability for HMC in this setting are still more
efficient than RWM but are less ideal than those of analytic cases.

We want to reiterate that these analyses above are only for the proxy case of d ≫ 1 independent
and identically distributed vector components. In this setting, the number of critical events (where
the HMC particle crosses a surface of non-differentiability) increases linearly as the dimension d
increases. For general ReLU networks, it is still unclear how the number of critical events would
change with increasing dimension of the parameter space. It is worth noting that for a fixed generic
parameter configuration, it is suggested that for any line segment through the input space, the average
number of regions (of the input space) intersecting with it is linear in the number of neurons, which
is far below the exponential number of regions that is theoretically attainable (Hanin and Rolnick,
2019). However, we are not aware of similar results for the number of (polynomial) regions on the
parameter space for fixed inputs.

4 Experiments

4.1 Synthetic Dataset

In this section, we shall conduct empirical simulations to validate our theoretical analyses. For
the simulations, we generate a synthetic dataset with 100 examples where x ∼ uniform(0, 4) and
y ∼ N (cos(2x), 0.12). The dataset is shown in Figure 6 in Appendix A.6. Using this dataset, we
investigate the influences of several hyper-parameters on the average acceptance rate and the efficiency
of HMC on ReLU-based and analytic networks, including the step size ϵ, the number of leapfrog
steps L and the dimension d of the model parameters. Our simulations are implemented using the
Autograd package (Maclaurin et al., 2015).

This section will focus on computational aspects of HMC with BNNs that are not directly obtainable
from our theoretical analysis. First, as highlighted in Section 3, we can qualitatively compare the
efficiency of ReLU-based and analytic networks through their optimal acceptance rates, as a lower
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Figure 1: Acceptance rates of HMC with respect to the number of leapfrog steps L (left) and step
size ϵ (right) on BNNs with different activation functions. The decay in acceptance rates of sigmoid
networks is much more moderate than those of ReLU-based networks.

optimal acceptance rate indicates that the model is less efficient. However, since they are only known
up to a multiplicative constant in the exponents, the efficiency functions of two different models, such
as between ReLU and analytic networks, are not quantitatively comparable through these theoretical
analyses. We aim to validate such direct comparisons in our simulations. Second, some of our
theoretical results are analyzed through the proxy cases of independent and identically distributed
vector components. While this approach, as often done in analyses of HMC, provides good insights
about the behaviors of HMC when the complexity of the models increases, this also leaves some
uncertainties about the extent to which the results apply to neural network models, and we aim to
complement those results through practical simulations.

Effects of number of steps L and step size ϵ. In this simulation, we investigate the effects
of L and ϵ on the acceptance rate of HMC on BNNs with different types of activation func-
tions. In particular, we consider one hidden layer neural networks with 50 hidden nodes that
use either the sigmoid, ReLU, or leaky ReLU activation. We choose a standard normal prior
π(q) = N (0, I) and sample 2,000 parameter vectors from the posterior after a burn-in period of 100
samples. We vary the number of steps L ∈ {200, 400, 600, 800, 1000} together with the step size
ϵ ∈ {0.0005, 0.0010, 0.0015, 0.0020, 0.0025} and record the corresponding acceptance rates. We
repeat this procedure 5 times with different random seeds to obtain the average acceptance rates and
their standard errors. The full results of this simulation are reported in Table 2 in Appendix A.6, with
some typical trends shown in Figure 1.

From Figure 1, we observe that the average acceptance rate of sigmoid networks, across different
values of the step size ϵ, is generally higher than those of ReLU and leaky ReLU networks. As ϵ
increases, the decay in average acceptance rate of sigmoid networks is moderate and stable across
different values of L. On the other hand, the drops in average acceptance rate for ReLU and leaky
ReLU networks are significant, and the problem exacerbates for large values of L.

We also note that for sigmoid networks, the average acceptance rate for fixed step sizes are relatively
constant as L increases. This behavior is somewhat expected for symplectic integrators with smooth
target distributions, as high-order symplectic integrators (i.e., those with global error at most O(ϵ2))
are known to not only approximate the flow of the Hamiltonian H corresponding to the canonical
distributions, but also exactly simulate the flow for some modified Hamiltonian H̃ (Betancourt et al.,
2014). This makes the approximation errors bounded in L for an appropriately small step size
ϵ with smooth target distributions. For ReLU-based networks, the regularity conditions for such
asymptotic behaviors do not hold, and as presented in Figure 1, the leapfrog integrator becomes
unstable, manifesting in numerical divergences that pull the approximation errors to infinity and the
average acceptance rate to zero as L increases.
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(b) UTKFace dataset.

Figure 2: Efficiency of HMC with respect to acceptance rate on BNNs with different activation
functions. On both synthetic and UTKFace datasets, HMC inference with sigmoid networks is more
efficient than with ReLU-based networks.

Efficiency vs. acceptance rate. In this simulation, we investigate the efficiency as a function of the
acceptance rate. We use the same setting as the previous simulation, except that here we fix the travel
time T = ϵL = 0.1 and vary ϵ ∈ {0.0005, 0.0010, 0.0015, . . . , 0.0040}. Recall from Section 2 that
for a fixed d (the dimension of the problem), the expected computational cost until the first accepted
proposal in stationary is inversely proportional to the ϵE[A(q, ϵ)]. Thus, in Figure 2a, we plot the
average curves (after interpolating 5 random runs) of the efficiency (up to a multiplicative constant)
function f(aϵ) = ϵ aϵ, where aϵ is the acceptance rate of the step size ϵ.
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Figure 3: Acceptance rate of HMC with respect
to the number of model parameters on shallow
and deep neural networks with different activation
functions. HMC on shallow networks generally
has lower acceptance rates than deep networks of
the same size.

Figure 2a shows that HMC for analytic networks
is much more efficient than their ReLU coun-
terparts. For every reasonable value of the tar-
get acceptance rate, the computational costs for
ReLU networks are much higher than that of
the sigmoid network. At the empirically op-
timal acceptance rate (∼ 0.75), the difference
in performance is by a factor of more than 4.
We also note that the optimal empirical accep-
tance rates for sigmoid, ReLU, and leaky ReLU
networks in this simulation are 0.755, 0.6525,
and 0.724, respectively. These empirical val-
ues are higher than their theoretical quantities
(0.651 for sigmoid networks and 0.45 for ReLU-
based networks), but are consistent with the re-
laxed ranges using upper and lower bounds of
the efficiency (0.6 ≤ aϵ ≤ 0.9 for sigmoid and
0.4 ≤ aϵ ≤ 0.75 for ReLU-based networks).

Effects of dimensionality. This simulation aims
to study the effects of the dimension d of the pa-
rameter space as well as the network architecture
on the acceptance rate of HMC. For this purpose,
we consider two types of architectures: (i) shal-
low networks with one hidden layer containing
either 10, 50, 100, 200, or 400 nodes, and (ii)
deep networks with 1, 2, 3, or 4 hidden layers,
each of which contains 20 nodes. For each network, we run HMC with L = 200 and ϵ = 0.001 while
keeping other hyper-parameters the same as in previous simulations.

We plot the average acceptance rate with respect to the number of model parameters in Figure 3. From
this figure, when d increases (either by increasing width or depth), all models exhibit some decays in
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Table 1: The average acceptance rate, average test MSE, and average test MSE at the best acceptance
rate for the three activation functions on the UTKFace dataset. The sigmoid network has better
average acceptance rate and MSE than the ReLU-based networks, although all activation functions
have nearly the same MSE at their best acceptance rate.

Average Average MSE Average MSE at
acceptance rate (overall) best acceptance rate

Sigmoid 0.5451 ± 0.0687 0.0552 ± 0.0003 0.0539 ± 0.0001
ReLU 0.2239 ± 0.0617 0.1153 ± 0.0057 0.0533 ± 0.0004

Leaky ReLU 0.1757 ± 0.0514 0.1151 ± 0.0056 0.0538 ± 0.0002

acceptance rates. However, ReLU and leaky ReLU networks become unstable rather quickly, while
the sigmoid network can perform relatively well in the same settings. The results also indicate that
Bayesian learning with HMC for wide networks seems more difficult than for deep networks of the
same number of parameters, hinting that there are other geometric forces in place other than the
dimensionality of the problem.

4.2 UTKFace Dataset

In addition to the synthetic dataset above, we also conduct experiments to validate our theoretical
findings on a subset of the real-world UTKFace dataset (Zhang et al., 2017). This is an image
regression dataset where we need to predict the age of a person given an image of their face. Using
this dataset, we will compare the efficiency curves, the acceptance rates, and the mean squared
errors (MSEs) of HMC sampling on the sigmoid, ReLU, and leaky ReLU networks. Details of our
experiment settings are given in Appendix A.6.

In Figure 2b, we plot the efficiency versus acceptance rate curves in an experiment similar to that
with the synthetic data above. The figure shows that the sigmoid curve is more efficient than the
ReLU and leaky ReLU curves. The optimal acceptance rates for sigmoid, ReLU, and leaky ReLU
networks are 0.813, 0.797, and 0.627 respectively. In Table 1, we show the average acceptance rate,
average MSE, and the average MSE at the best acceptance rate for each network type. From the table,
the sigmoid network has the highest acceptance rate as well as the lowest MSE. However, if we tune
HMC to the best empirical acceptance rate in each network type, their MSEs become very similar.

5 Conclusions and Future Works

We analyzed the error rates of the HMC algorithm with leapfrog integrator for Bayesian neural
network inference and showed, through theoretical analyses and experiments, that HMC on ReLU-
based networks is inefficient compared to analytical networks. Our results highlight that for HMC,
non-differentiability is not an issue that can be ignored, even if singularity only occurs on a set
of measure zero. Several aspects of the paper could be the subjects of future works. First, since
HMC accumulates a rejection rate of order Ω(Nϵ), where N is associated with the number of times
the dynamics cross a surface of non-differentiability, the characterization of this quantity and its
dependency on the network architecture play a central role in studying the efficiency of this algorithm.
As noted in Section 3, it is known that the average number of input regions intersecting with a line
segment through the input space is linear in the number of neurons (Hanin and Rolnick, 2019). Thus,
a similar result for the number of polynomial regions on the parameter space for fixed inputs would
shed light into the decays of the acceptance rates in Figure 3. Another potential future work is to
extend the general ideas in this paper to other models with non-differentiable components, such as
the max-pooling layers in convolutional neural networks.
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A Appendix

A.1 Proof of Theorem 3.1

We consider the formulation of one leapfrog step:

p1/2 = p0 −
ϵ

2

∂U

∂q
(q0)

q1 = q0 + ϵp1/2

p1 = p1/2 −
ϵ

2

∂U

∂q
(q1).

Reversibility. If we reverse the momentum and go from (q1,−p1) to (q2, p2) then

p′1/2 = −p1 −
ϵ

2

∂U

∂q
(q1)

q2 = q1 + ϵp′1/2

p2 = p′1/2 −
ϵ

2

∂U

∂q
(q2).

We note that

q2 = q1 + ϵ

(
−p1 −

ϵ

2

∂U

∂q
(q1)

)
= q1 − ϵp1/2 = q0

and

p2 = p′1/2 −
ϵ

2

∂U

∂q
(q2) = −p1 −

ϵ

2

∂U

∂q
(q1)−

ϵ

2

∂U

∂q
(q0) = −p0.

Thus, leapfrog is reversible as long as ∂U
∂q is a well-defined deterministic function.

Volume preservation. We consider (q1, p1) as function of (q0, p0) and note that

∂q1
∂q0

(q0, p0) = 1− ϵ2

2

∂2U

∂q2
(q0),

∂q1
∂p0

(q0, p0) = ϵ,

∂p1
∂q0

(q0, p0) = − ϵ

2

∂2U

∂q2
(q0)−

ϵ

2

∂2U

∂q2
(q1)

∂q1
∂q0

(q0, p0),
∂p1
∂p0

(q0, p0) = 1− ϵ

2

∂2U

∂q2
(q1)

∂q1
∂p0

(q0, p0).

Thus, the Jacobian of the transformation is[
1− ϵ2

2

∂2U

∂q2
(q0)

] [
1− ϵ2

2

∂2U

∂q2
(q1)

]
− ϵ

[
− ϵ

2

∂2U

∂q2
(q0)−

ϵ

2

∂2U

∂q2
(q1)

(
1− ϵ2

2

∂2U

∂q2
(q0)

)]
,

which is equal to 1.

We thus can conclude that leapfrog transformation preserves volume, as long as the second derivative
of U is well-defined and is compatible with the chain rule. Specifically, we need

∂

∂q0

(
∂U

∂q
(q1)

)
=

∂2U

∂q2
(q1)

∂q1
∂q0

(q0)

and
∂

∂p0

(
∂U

∂q
(q1)

)
=

∂2U

∂q2
(q1)

∂q1
∂p0

(q0).

A.2 Proof of Lemma 3.2

We will use an induction argument on the layers (indexed by l) of the feed-forward neural networks
to prove that for a fixed input x, hl(x) is locally smooth except on a union of multilinear surfaces

Sl =
⋃
i∈Il

Sl
i, Sl

i = {q : f l
i (q) = 0},
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which decomposes the parameter space into open regions

Ω \ Sl =
⋃
j∈Jl

T l
j

on which hl(x) is multilinear.

For l = 1, we note that h1 (as a function of parameters) is only non-differentiable on

S1 =

d1⋃
j=1

{(A1, b1) : A
j
1 · x+ bj1 = 0}

and we have

Ω \ S1 =
⋃

σ∈{−1,1}d1

{(A1, b1) : sign(Aj
1 · x+ bj1) = σj , ∀1 ≤ j ≤ d1}.

Assume that the statement is correct for l, we recall that

hl+1 = σ(Al+1 · hl + bl+1).

We consider⋃
j∈Jl

⋃
σ∈{−1,1}d1

T l
j × {(Al+1, bl+1) : sign(Ak

1 · hl + bk1) = σk, ∀1 ≤ k ≤ dl+1}

and note that on each of the sets in the expression above, hl+1 is a parametric linear transformation
of hl(x), and is thus multilinear.

The complement of this set is a subset of the union of⋃
i∈Il

[Sl
i × Rdl+1 ]

and ⋃
j∈Jl

dl+1⋃
k=1

T l
j × {(Al+1, bl+1) : A

j
1 · hl + bj1 = 0}.

This completes the proof.

A.3 Proof of Theorem 3.3

Consider a leapfrog step starting at (q0, p0) and ending at (q1, p1) and crosses the surfaces of
non-differentiability at z1, z2, . . . , zk at time ϵ1, ϵ2, . . . , ϵk, where

p1/2 = p0 −
ϵ

2

∂U

∂q
(q0)

q1 = q0 + ϵp1/2

p1 = p1/2 −
ϵ

2

∂U

∂q
(q1).

We have

∆K = K(p1)−K(p0) =
1

2

(
∥p1∥2 − ∥p0∥2

)
=

1

2

(∥∥∥∥p0 − ϵ

2

∂U

∂q
(q0)−

ϵ

2

∂U

∂q
(q1)

∥∥∥∥2 − ∥p0∥2
)

= − ϵ

2
p0 ·

(
∂U

∂q
(q0) +

∂U

∂q
(q1)

)
+

∥∥∥∥∂U∂q
∥∥∥∥2
∞

O(ϵ2)

= − ϵ

2
p1/2 ·

(
∂U

∂q
(q0) +

∂U

∂q
(q1)

)
+

∥∥∥∥∂U∂q
∥∥∥∥2
∞

O(ϵ2)
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and

∆U =

k∑
i=0

∫ ϵi+1

ϵi

∂U

∂q
(q0 + tp1/2) · p1/2dt

= p1/2 ·

(
k∑

i=0

(ϵi+1 − ϵi)
∂U+

∂q
(zi)

)
+

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2),

where ϵ0 = 0, ϵk+1 = ϵ, z0 = q0, zk+1 = q1. Here, ∂U−

∂q (z) and ∂U+

∂q (z) denote the gradients at z
on the two differentiable regions before and after the incidence, respectively.

We note that
k∑

i=0

(ϵi+1 − ϵi)
∂U+

∂q
(zi)

=

k∑
i=0

ϵi+1
∂U+

∂q
(zi)−

k∑
i=0

ϵi
∂U+

∂q
(zi)

=

k∑
i=0

ϵi+1
∂U−

∂q
(zi+1)−

k∑
i=0

ϵi
∂U+

∂q
(zi) +

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2)

=

k+1∑
i=1

ϵi
∂U+

∂q
(zi)−

k∑
i=0

ϵi
∂U+

∂q
(zi) +

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2)

=

k∑
i=0

ϵi
∂U−

∂q
(zi)−

k∑
i=0

ϵi
∂U+

∂q
(zi)− ϵ0

∂U−

∂q
(z1) + ϵk+1

∂U−

∂q
(zk+1) +

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2)

= −
k∑

i=0

ϵi

(
∂U+

∂q
(zi)−

∂U−

∂q
(zi)

)
+ ϵ

∂U

∂q
(q1) +

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2),

where the third equality comes form the fact that ∂U
∂q (z) is Lipschitz in each domain of continuity.

We deduce that

H(q1)−H(q0)

= p1/2 ·

(
−

k∑
i=1

ϵi

(
∂U+

∂q
(zi)−

∂U−

∂q
(zi)

)
+

ϵ

2

(
∂U

∂q
(q1)−

∂U

∂q
(q0)

))
+

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2).

Similarly, we have

∂U

∂q
(q1)−

∂U

∂q
(q0) =

k+1∑
i=1

(
∂U−

∂q
(zi)−

∂U+
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+
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(
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∂q
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)
+
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∥∥∥∥
∞

O(ϵ).

Therefore, the local approximation error incurred can be estimated by

p1/2 ·
k∑

i=1

( ϵ
2
− ϵi

)(∂U+

∂q
(zi)−

∂U−

∂q
(zi)

)
+

∥∥∥∥∂2U

∂q2

∥∥∥∥
∞

O(ϵ2).

A.4 Proof of Lemma 3.4

We note that

V = {(q, p) : f
(
q0 +

ϵ

2
(p− ϵ

2

∂U

∂q
(q))

)
= 0}
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Figure 4: Efficiency as functions of acceptance probability for symplectic integrator of second order
(left, error rate O(ϵ2)) and first order (right, error rate Θ(ϵ)). The y-axes of the graphs are presented
up to unknown multiplicative constants and cannot be directly compared.

Figure 5: Upper bound on efficiency as functions of acceptance probability for symplectic integrator
of second order (left, error rate O(ϵ2)) and first order (right, error rate Θ(ϵ)). The y-axes of the
graphs are presented up to unknown multiplicative constants and cannot be directly compared.

has measure zero.

Consider (q, p) ∈ A, we have

f

(
q + ϵ1(p−

ϵ

2

∂U

∂q
(q))

)
= 0, ϵ1 ∈

(
(1− a)

ϵ

2
, (1 + a)

ϵ

2

)
.

The Lojasewicz inequality (Ji et al., 1992) implies that there exists α ≥ 2 such that

C d((q, p),V)α ≤
∣∣∣∣f (q0 + ϵ

2
(p− ϵ

2

∂U

∂q
(q))

)∣∣∣∣ ≤ ∣∣∣ϵ1 − ϵ

2

∣∣∣ ∥∥∥∥p− ϵ

2

∂U

∂q
(q)

∥∥∥∥
≤ aϵ

2

(
M +

ϵ

2
∥∂U
∂q

∥∞
)
.

We conclude that
µ(A) ≤ (CaMϵ)1/α.

Since leapfrog steps preserve Lebesgue volume, the bound on BM,b follows from a simple union
bound.

A.5 Proof of Proposition 3.5

Using similar arguments as those of Theorem 3.3 and Lemma 3.4, we can show that HMC with
leapfrog integrator with

P (q) = exp

(
−

d∑
i=1

V (qi)

)
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has a global error rate of Θ(ϵ) since V (q) is piece-wise affine.

Using the same arguments presented in the proof of Theorem 3.6 of Beskos et al. (2013), the
acceptance probability A(q) of HMC (starting at q) is given by max(1, eRd(q)) where

Rd(q) = −
d∑

i=1

∆(qi, ϵ)

and ∆(qi, ϵ) is the acceptance probability of a Hamitonian particle for the (one-dimensional) potential
function V (q) starting at qi.

We first use Lemma 3.3 of Beskos et al. (2013), which shows that for any volume-preserving, time-
reversible numerical integrator of the Hamiltonian equations of order O(ϵv), the expectation and the
variation of the acceptance probability (with respect to P ) is of order O(ϵ2v). Moreover,

lim
ϵ→0

E[∆(qi, ϵ)]

ϵ2
= µ, lim

ϵ→0

E[∆(qi, h)
2]

ϵ2
= Σ

where µ = Σ/2.

Due to the structure of the target density and stationarity, the terms ∆(qi, h) are i.i.d. random
variables. Since the expectation and variance of ∆(qi, h) are both O(ϵ2) and we have d terms, the
natural scaling to obtain a distributional limit is given by ϵ = ld−1/2. We have

Rd → N
(
−1

2
l2Σ, l2Σ

)
in distribution, and

lim
d→∞

E[A(q)] = 2Φ(−l
√
Σ/2) := a(l)

where Φ is the cumulative distribution function of standard normal distributions.

We note that the number of leapfrog steps of length ϵ needed to compute a proposal is L = T/ϵ, and
the computing time for a single proposal will be approximately

C0 · d ·
T

ld−1/2
=

T

l
d3/2,

where C0 measures the cost for one leapfrog step in one dimension. Given a location q, the number
of proposals until acceptance follows a geometric distribution with probability of success eRd(q).
Using Jensen’s inequality, the expected computing time until the first accepted proposal in stationary
is bounded from below by

T

l · a(l)
d3/2.

A sensible approach for optimal tuning of HMC is to minimize the efficiency l · a(l). Similar to
classical cases, while Σ is unknown, the optimal acceptance rate is independent of Σ and can be
obtained using simple numerical investigations of this function. The result is presented in Figure 4,
where the optimal acceptance probability of leapfrog HMC in piece-wise affine cases is approximately
0.45.

Betancourt et al. (2014) extend the analyses of Beskos et al. (2013) to include an upper bound and
suggest that the target average acceptance probability of 0.651 can be relaxed to 0.6 ≤ α ≤ 0.9.
Following the discussions from Betancourt et al. (2014), we can also relax the range of target average
acceptance probability to 0.4 ≤ α ≤ 0.75, where the optimum upper bounds (0.8 for second order
and 0.715 for first order) of Betancourt et al. (2014) are presented in Figure 5.

A.6 Additional Details of the Experiments

In all experiments, the error bars are one standard error of the mean over 5 different runs of the
algorithm with different random seeds. The experiments were run on a single CPU machine. Each
experiment took 3-4 hours to complete, except for the first simulation on synthetic data, which took
around 5 days on one CPU machine.
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Table 2: Acceptance rates of HMC on the synthetic dataset with respect to the number of leapfrog
steps L and step size ϵ on BNNs with different activation functions.

Activation Number of Step size (ϵ)

function steps (L) 0.0005 0.0010 0.0015 0.0020 0.0025

200 0.994 ± 0.001 0.981 ± 0.002 0.960 ± 0.002 0.925 ± 0.002 0.861 ± 0.002
400 0.996 ± 0.001 0.980 ± 0.001 0.954 ± 0.003 0.911 ± 0.003 0.849 ± 0.004

Sigmoid 600 0.996 ± 0.001 0.982 ± 0.001 0.956 ± 0.002 0.916 ± 0.002 0.851 ± 0.003
800 0.997 ± 0.001 0.980 ± 0.001 0.955 ± 0.002 0.920 ± 0.003 0.841 ± 0.005

1000 0.996 ± 0.001 0.983 ± 0.001 0.954 ± 0.002 0.918 ± 0.001 0.848 ± 0.005

200 0.933 ± 0.003 0.652 ± 0.019 0.160 ± 0.071 0.083 ± 0.022 0.003 ± 0.003
400 0.928 ± 0.003 0.627 ± 0.006 0.161 ± 0.025 0.029 ± 0.010 0.001 ± 0.001

ReLU 600 0.921 ± 0.003 0.588 ± 0.007 0.091 ± 0.004 0.004 ± 0.002 0.000 ± 0.000
800 0.905 ± 0.005 0.556 ± 0.012 0.047 ± 0.007 0.000 ± 0.000 0.000 ± 0.000

1000 0.897 ± 0.003 0.527 ± 0.006 0.030 ± 0.004 0.000 ± 0.000 0.000 ± 0.000

200 0.937 ± 0.002 0.653 ± 0.014 0.192 ± 0.052 0.000 ± 0.000 0.000 ± 0.000
Leaky 400 0.923 ± 0.003 0.597 ± 0.015 0.063 ± 0.031 0.000 ± 0.000 0.000 ± 0.000
ReLU 600 0.914 ± 0.002 0.577 ± 0.006 0.019 ± 0.005 0.000 ± 0.000 0.000 ± 0.000

800 0.911 ± 0.003 0.535 ± 0.012 0.008 ± 0.008 0.000 ± 0.000 0.000 ± 0.000
1000 0.904 ± 0.004 0.468 ± 0.029 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000

0 1 2 3 4
x

1.0

0.5

0.0

0.5

1.0

y

Figure 6: The synthetic dataset used in our simulations. This dataset contains 100 data points where
x ∼ uniform(0, 4) and y ∼ N (cos(2x), 0.12).

For the UTKFace dataset, we select the subset that contains male Asian faces with age between
6 and 92. The subset is then randomly split into a training set (167 images) and a test set (100
images). All the input images are converted into grayscale and resized to 32 × 32, which are then
flattened into a vector of length 1024 to be used with MLP models. All the labels are scaled
by 1/100 so that they are in the range [0, 1]. In this experiment, we fix T = 0.01 and vary
ϵ ∈ {0.00005, 0.00010, 0.00015, . . . , 0.00040}. For each run of the HMC, we sample 300 parameter
vectors from the posterior after a burn-in period of 50 samples. The MSEs are computed on the test
set using these samples.
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