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Abstract

Reducing parameter redundancies in neural network architectures is crucial for
achieving feasible computational and memory requirements during training and
inference phases. Given its easy implementation and flexibility, one promising
approach is layer factorization, which reshapes weight tensors into a matrix format
and parameterizes them as the product of two small rank matrices. However, this
approach typically requires an initial full-model warm-up phase, prior knowledge
of a feasible rank, and it is sensitive to parameter initialization. In this work, we
introduce a novel approach to train the factors of a Tucker decomposition of the
weight tensors. Our training proposal proves to be optimal in locally approximating
the original unfactorized dynamics independently of the initialization. Furthermore,
the rank of each mode is dynamically updated during training. We provide a
theoretical analysis of the algorithm, showing convergence, approximation and
local descent guarantees. The method’s performance is further illustrated through
a variety of experiments, showing remarkable training compression rates and
comparable or even better performance than the full baseline and alternative layer
factorization strategies.

1 Introduction

The memory footprint and computational cost for inference and training are major limitations of
modern deep learning architectures. A variety of techniques have been developed to address this
issue, aiming to reduce model size and computational complexity. Popular approaches include
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weight sparsification [26, 59, 30] and quantization [83, 15]. However, pruning via sparsification
struggles to take advantage of GPU hardware designed for dense matrices, and it is difficult to
provide error estimates on model performance when using quantization [24]. Moreover, while able
to reduce resource requirements for inference, these methods struggle to achieve memory reduction
during training without affecting performance. As pointed out in [20, 24], training accurate sparse or
quantized neural networks from the start is particularly challenging. At the same time, the training
phase of modern architectures can require several days on several hundreds of GPUs [7], requiring
huge memory storage and energy consumption overheads. Thus, being able to reduce the resource
demand of both inference and training while maintaining model performance is of critical importance.

Along with sparsification and quantization, layer factorization is another popular and successful
model compression approach. Representing layer weights using different types of matrix and tensor
factorizations can yield huge memory reduction while retaining model performance and robustness
[67, 13]. A wealth of recent work has shown theoretical and experimental evidence suggesting that
layer weights of over-parametrized networks tend to be low-rank [3, 5, 22] and that removing small
singular values may even lead to increased model performance while dramatically reducing model
size [70, 68]. One significant advantage of low-rank factorizations is that a low-parametric factorized
model can be used throughout the entire training [79, 36, 68] and fine-tuning phase [33, 80]. The
most direct way of doing this is by representing each layer’s weight tensor W as the product of
small factors and then directly training each factor independently in a block-coordinate descent. In
the matrix case, this boils down to imposing the rank-r parametrization W = UV ⊤ for each layer
W , with U, V rectangular matrices with only r columns. The network is then trained on the set of
rank-r matricesMr = {UV ⊤ : U, V have r columns}, interpreting the loss as a function of U, V
alone. This is the approach taken also by popular fine-tuning strategies such as LoRA [32, 86, 50].
When W is a higher-dimensional tensor, as in the case of convolutional kernels for example, the
same approach can be implemented using different types of tensor low-rank factorizations, including
canonical polyadic (CP) and Tucker formats [43, 49, 63, 71, 42, 21]. While direct training of a layer’s
factors is widely used in deep learning, this approach has two major disadvantages:

1. The rank r of the factorization needs to be chosen a-priori, and the performance of the compressed
model can highly depend on it [70, 79];

2. The training flow is highly sensitive with respect to the choice of the initialization, which may
result in a high-oscillatory slow-converging loss and sub-optimal performance and may require a
warm-up phase during which the full model is trained prior to the rank reduction [79, 36, 68].

Point 2, in particular, is directly related to the geometry of the constraints set. In the matrix case,
it is well-known thatMr is a Riemannian manifold with points of very high curvature near small
singular values [19]. These points give rise to stiffness and result in ill-conditioning. This intrinsic
poor conditioning can be overcome by projecting the gradient flow on the tangent bundle ofMr as
presented in [68].

In the higher-dimensional tensor case, we face the same problems. However, trying to adapt the
approach for matrices to other tensor factorizations is not trivial, as it may lead to prohibitive
computational costs and memory requirements scaling with the order of the tensor. Moreover, not all
the tensor factorizations have the required Riemannian structure to design projections and tangent
planes. This paper introduces a rank-adaptive geometry-aware training algorithm that trains factorized
tensor layers in Tucker format taking advantage of the underlying Riemannian structure, yielding
strictly better performance than direct factorizations and overcoming both Points 1 and 2 above. Our
main contributions are:

• We design an algorithm for training tensor layers in Tucker format that is rank-adaptive, as the
ranks of the layers are dynamically updated during training to match a desired compression rate;

• We provide theoretical guarantees of loss descent, convergence to stationary points in expectation,
and approximation to the ideal full model;

• We provide extensive experimental evaluation showing that the proposed method yields remark-
able training compression rates (e.g., more than 95% for VGG16 on CIFAR10), while achieving
comparable or even better performance than the full baseline and alternative baselines.
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1.1 Related work

Related work on network compression methods differs structurally by the mathematical object of
consideration, i.e., matrix- or tensor-valued parameter structures, as well as the type of parameter
reduction. Weight pruning [28, 61, 73, 59, 81] enables parameter reduction by enforcing sparsity, i.e.,
zero-valued weights, whereas low-rank compression imposes parameter reduction by factorization
of weight matrices [34, 49, 79, 66, 84] and tensors [44, 71, 4, 63, 42, 38, 42, 72, 35]. On top
of approaches that transform tensor layers into compressed matrices [68, 34, 49, 79], different
tensor decompositions have been used to compress convolutional layers. Such approaches include
CP decomposition [44, 71, 4, 63], Tucker [42, 38], tensor trains [42, 72] or a combination of
these [21]. Other works focus on performing efficient optimization on Stiefel manifolds to preserve
orthonormality, with methods based on regularization or landing [57, 8, 13, 1], cheap parametrizations
of orthogonal groups [46, 48] and Riemannian schemes [58, 67, 2]. Other methods consider only
the floating point representation of the weights, e.g. [75, 25, 27, 14, 76], or a combination of the
above [51]. From the algorithmic point of view, related work can be categorized into methods that
compress networks entirely in a postprocessing step after full-scale training [60, 56, 44, 38, 21, 4],
iterative methods where networks are pre-trained and subsequently compressed and fine-tuned [28,
34, 79], and methods that directly compress networks during training [68, 61]. As no full-scale
training is needed, the latter approach offers a better potential reduction of the overall computational
footprint. Only a few of these methods propose strategies for dynamically choosing the compression
format during training or fine-tuning, e.g., by finding the ranks via alternating, constraint optimization
in discrete [47] and discrete-continuous fashions [34]. However, both these approaches require
knowledge of the full weights during training and overall are more computationally demanding than
standard training. In [68], a rank-adaptive evolution of the gradient flow on a low-rank manifold
was proposed to train and compress networks without using the full-weight representation; however,
only for matrix-valued layers. While a direct extension of this method to Tucker tensors is possible,
the resulting algorithm exhibits a prohibitive memory footprint and computational complexity. The
development of rank-adaptive training methods for tensor-valued layers poses non-trivial challenges
that may prevent loss descent and performance of the compressed net. For example, numerical
instabilities arising from the CP decomposition during training have been observed in [44] and [63].

2 Geometry-aware training in Tucker format

For a tensorW , we write Mati(W ) to denote the matrix obtained by unfoldingW along its i-th mode.
The tuple ρ = (r1, r2, . . . , rd) is called Tucker rank of W if ri = rank(Mati(W )). Every d-order
tensorW with Tucker rank ρ = (r1, . . . , rd) can be written in Tucker form (or Tucker decomposition)
W = C ×d

i=1 Ui, entry-wise defined as

W (i1, . . . , id) =

r1,...,rd∑
α1,...,αd=1

C(α1, . . . , αd)U1(i1, α1) · · ·Ud(id, αd)

where C ∈ Rr1×···×rd is a core tensor of full Tucker rank ρ = (r1, . . . , rd) and the Ui ∈ Rni×ri

are matrices with orthonormal columns. From this representation, we immediately see that if W is
represented in Tucker format, then the cost of storing W and of performing linear operations with W
(e.g. matvecs or convolutions) is O(r1 · · · rd + n1r1 + · · ·+ ndrd), as opposed to the O(n1 · · ·nd)
cost required by the standard full representation. When ni ≫ ri, e.g., ni > 1.5ri, the latter is much
larger than the former.

In the following, we develop a rank-adaptive algorithm that trains layers in Tucker form in a robust
and efficient manner. Our derivation follows five points:

1. We introduce the dynamical low-rank approximation framework in Section 2.1, which provides
gradient flows for layers in Tucker format. However, the direct use of these evolution equations to
train the network will require prohibitively small learning rates due to the high curvature of the
manifold of Tucker tensors.

2. We introduce a reparameterization in Theorem 2.1 that allows us to formulate robust dynamics for
the reparametrized factors.

3. By integrating numerically the resulting gradient system (with e.g. SGD as explicit Euler) along
with a basis augmentation step, we propose a geometry-aware rank-adaptive training strategy for
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the network in Tucker format. This approach, however, requires d + 1 forward and backward
evaluations of the network, resulting in significantly increased computational costs.

4. We show in Corollary 2.2 that computational costs can be substantially reduced by noting that the
computation of the augmented basis can largely be simplified. This leads to our proposed training
scheme in Algorithm 1. The algorithm is equivalent to the integration of the gradient system but
requires only two instead of d+ 1 gradient evaluations.

5. Due to its equivalence to the approach constructed in point 3, we can show that Algorithm 1 indi-
rectly updates weights along straight lines on the manifold, thus leading to three main theoretical
properties: loss descent (Theorem 3.1), convergence in expectation (Theorem 3.2), and a robust
bound showing approximation of the full model (Theorem 3.3).

2.1 Dynamical low-rank approximation

For ρ = (r1, . . . , rd), the set

Mρ = {W : rank(Mati(W )) = ri, i = 1, . . . , d}

is a manifold with the following tangent space at any point W = C ×d
i=1 Ui ∈Mρ [40]

TWMρ =
{
δC

d
×
i=1

Ui +
d∑

j=1

C ×j δUj ×k ̸=j Uk : δC ∈ Rr1×···×rd , δUj ∈ TUj
Sj

}
(1)

where Sj is the Stiefel manifold of real ni × ri matrices with orthonormal columns. To design a
strategy that computes layer weights withinMρ using only the low-rank Tucker factors C and {Ui}i,
we formulate the training problem as a continuous-time gradient flow projected onto the tangent
space (1). As shown in Section 3, the continuous formulation will allow us to derive a modified
backpropagation pass which uses only the individual small factors C, {Ui}i and that does not suffer
from a slow convergence rate due to potential ill-conditioned tensor modes (see also Section 4.2).

Let f be a neural network and letW be a weight tensor within f . Consider the problem of minimizing
the loss function L with respect to just W while keeping the other parameters fixed. This problem
can be equivalently formulated as the gradient flow

Ẇ (t) = −∇WL(W (t)) (2)

where, for simplicity, we write the loss as a function of only W and where “dot” denotes the time
derivative. When t→∞, the solution of (2) approaches the desired minimizer. Now, suppose we
parametrize each tensor layer in a time-dependent Tucker form W (t) = C(t) ×d

i=1 Ui(t) ∈ Mρ.
Then Ẇ (t) ∈ TW (t)Mρ, the tangent space ofMρ at W (t). Thus, (2) boils down to

Ẇ (t) = −P (W (t))∇WL(W (t)) (3)

where P (W ) denotes the orthogonal projection onto TWMρ. Using standard derivations from
dynamical model order reduction literature [40], the projected gradient flow in (3) leads to the
following evolution equations for the individual factors C(t) and Ui(t)

U̇i = −(I − UiU
⊤
i )Mati

(
∇WL(W )×j ̸=i U

⊤
j

)
Mati(C)

†

Ċ = −∇WL(W )×d
j=1 U

⊤
j ,

(4)

where † denotes the pseudoinverse and where we omitted the dependence on t for brevity. Even
though (4) describes the dynamics of the individual factors, the equations for each factor are not fully
decoupled. A direct integration of (4) would still require taping the gradients∇WL with respect to the
full convolutional kernel W . Moreover, the pseudoinverse of the matrices Mati(C)

† adds a stiffness
term to the differential equation, making its numerical integration unstable. The presence of this stiff
term is actually due to the intrinsic high-curvature of the manifoldMρ and is well understood in the
dynamic model order reduction community [39, 53, 37, 54, 10, 9]. As observed in [68], an analogous
term arises when looking at low-rank matrix parameterizations, and it is responsible for the issue of
slow convergence of low-rank matrix training methods, which is observed in [79, 36, 68].

To overcome these issues, we use the following change of variables. Let Mati(C)
⊤ = QiS

⊤
i be the

QR decomposition of Mati(C)
⊤. Note that Si is a small square invertible matrix of size ri × ri.

Then, the matrix Ki = UiSi has the same size as Ui and spans the same vector space. However, the
following key result holds for Ki.
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Theorem 2.1. Let W = C ×d
i=1 Ui ∈ Mρ be such that (3) holds. Let Mati(C)

⊤ = QiS
⊤
i be the

QR decomposition of Mati(C)
⊤ and let Ki = UiSi. Then,

K̇i = −∇KiL
(
Teni(Q

⊤
i )×j ̸=i Uj ×i Ki

)
,

Ċ = −∇CL(C ×d
j=1 Uj)

(5)

where Teni denotes “tensorization along mode i”, i.e. the inverse reshaping operation of Mati.

The supplementary material provides the proof in Appendix D. The theorem above allows us to
simplify (4), obtaining a gradient flow that only depends on the small matrices Ki and the small
core tensor C. Moreover, it eliminates a stiffness term; this added regularity appears reasonable as
no inversion is now involved in the differential equations. A rigorous regularity statement can be
found in Theorem 3.3. We would like to underline the importance of the careful construction of
Ki to arrive at this theorem. A naive extension of [68] to Tucker tensors can be constructed by a
reshaping of W into matrices Mati(W ) = UiSiV

⊤
i with Si = Mati(C) and Vi =

⊗
j ̸=i Uj . Then,

Ki = UiSi can be used to update Ui into all directions i ≤ d which directly inherits the robustness
properties presented in [68]. However, this construction ofK yields a prohibitive memory footprint of
O(niΠj ̸=irj) and computational costs of O(niΠj ̸=ir

2
j ) rendering the resulting method impractical.

Based on the numerical integration of (5), we propose a robust, memory-efficient, and rank-adaptive
method to update the network parameters by using only the core tensor C and the basis matrices Ki.
The proposed approach is as follows: Fix an approximation tolerance τ > 0, then, first update the
basis matrices performing for all i = 1, . . . , d:

1. Form Ki = UiSi, where Si is the square ri × ri matrix from QR decomposition of Mati(C)
⊤

2. Compute Knew
i with one step integration of (5) starting from Ki

3. Form the new augmented matrix U new
i by orthonormalizing the columns of [Ui,K

new
i ]

Second, update the core tensor and truncate:

4. Lift the core tensor C̃ = C ×d
i=1 (U

new
i )⊤Ui using the new augmented basis matrices

5. Compute Cnew with one step integration of (5) starting from C̃ using fixed basis matrices U new
i

6. Perform a rank adjustment step to the prescribed tolerance by computing the best Tucker approxi-
mation of Cnew, i.e. solving the following optimization (rounding) task:

Find C ∈M≤2ρ of smallest rank ρ′ = (r′1, . . . , r
′
d) such that ∥Cnew − C∥ ≤ τ∥Cnew∥, (6)

where ρ = (r1, . . . , rd) andM≤2ρ denotes the set of tensors with component-wise Tucker rank
lower than 2ρ.

In practice, the final rank adaptive step is done by performing a high-order SVD (HOSVD) [16] on
Cnew. The parameter τ is responsible for the compression rate of the method, as larger values of τ
yield smaller Tucker ranks and thus higher parameter reduction. The computed tensor C ∈Mρ′ has
the form C = C ′ ×d

i=1 U
′
i ∈ Mρ′ and the computed U ′

i ∈ R2ri×r′i with r′i ≤ 2ri are then pulled
back to the initial dimension by the change of basis Ui = U new

i U ′
i ∈ Rni×r′i , and the new core tensor

C is then assigned C ′. This implementation, however, comes at the expense of evaluating the network
and gradient tapes d+ 1 times for an order d tensor.

The next key result will overcome this issue and will allow us to reduce the necessary network and
gradient tape evaluations to two.
Corollary 2.2. Let W = C ×d

i=1 Ui ∈Mρ be such that (6) holds. Let Mati(C)
⊤ = QiS

⊤
i be the

QR decomposition of Mati(C)
⊤ and let Ki = UiSi. Then,

span
([
Ui, K̇i

])
= span

([
Ui,∇Ui

L
(
W

)])
.

The supplementary material provides the proof in Appendix E. Using Corollary 2.2, one can replace
the individual forward evaluation and descend steps for Ki by a single backpropagation. All available
new information is given by the gradients∇UiL, which can be evaluated from the same tape.
Combining the above strategy with Corollary 2.2 we obtain Algorithm 1: an efficient rank-adaptive
geometry-aware training method for tensor in Tucker format. Note that without the explicit computa-
tion of Ki = UiSi we compute all basis gradients ∇Ui

L in a single network evaluation and we use
∇Ui
L to augment the basis. Note that stochastic gradient evaluations can be done in practice and that
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Algorithm 1: TDLRT: Efficient Tensor Dynamical Low-Rank Training in Tucker format.
Input :Initial low-rank factors C ∼ r1 × · · · × rd; Ui ∼ ni × ri;

adaptive: Boolean flag that decides whether or not to dynamically update the ranks;
τ : singular value threshold for the adaptive procedure.

1 Gi ← ∇Ui
L(C ×d

i=1 Ui) /* Single-sweep grad evaluation */
2 for each mode i do
3 U new

i , _← QR([Ui, Gi]) /* Augmentation and orthonormalization */
4 C̃ ← C ×d

i=1 (U
new
i )⊤Ui /* Projection of Tucker core onto new basis */

5 C ← descent step with direction∇CL
(
C̃ ×d

i=1 U
new
i

)
6 (C,U1, . . . , Ud)← Tucker decomposition of C up to relative error τ as in (6)
7 Ui ← U new

i Ui , for i = 1, . . . , d /* Rank adjustment */

momentum methods are applicable for the descent step on line 5 of Algorithm 1. In case the rank
decreases after the retraction step, we only use the corresponding subset of the old basis functions to
form the momentum term. In case of rank increase, the momentum term of the new basis vectors is
initialized as zero. As a side note, the rank truncation proposed in Algorithm 1 allows to maintain
the nice theoretical guarantees of the algorithm, but in practice any tensor-completion/factorization
method such as [23] could be used for this step.

2.2 Computational Complexity

The computational costs for the full network training come from back and forward passes through each
layer. For a layer with weight tensor W ∈ Rn1×···×nd , they require O(b

∏
i ni) operations, where b

is the batch size. When using TDLRT, these computational costs reduce to O(b
∏

i ri + b
∑

i niri)
operations, yielding a significant reduction in computational costs to determine the gradient. However,
performing low-rank updates also adds computational costs due to several factorizations. Here, the
QR and SVD on Mati(C), which are needed in the updates of Ui and the truncation step, require
O(

∑
i ri

∏
j rj), and the QR on Ki requires O(

∑
i nir

2
i ) operations. Hence, in total, we have for

every layer a cost of O(b
∏

i ri + b
∑

i niri +
∑d

i=1(nir
2
i + ri

∏d
j=1 rj)) operations for TDLRT, vs.

theO(b
∏

i ni) required by the full baseline. Thus, TDLRT scales linearly with the dimensions ni, and
for ri ≪ ni, which is typically the case, see Appendix C.2, it has advantageous computational cost.

3 Convergence and approximation analysis

In this section, we present our main theoretical results. First, we show Algorithm 1 guarantees
descent of the training loss, provided the compression tolerance is not too large. Second, we show
that when Algorithm 1 is implemented with SGD with a decaying learning rate, the method converges
to a stationary point in expectation. Third, we prove that the compressed network computed via the
rank-adaptive TDLRT scheme in Algorithm 1 well-approximates the full model that one would obtain
by standard training, provided the gradient flow of the loss is, at each step, approximately low-rank.
The latter result shows that if a high-performing subnetwork of low Tucker rank exists, then the
proposed TLDRT will probably approximate it. For brevity, some statements here are formulated
informally, and all proofs and details are deferred to Appendix F in the SM.
Suppose that for each convolution W , the gradient∇WL, as a function of W , is locally bounded and
Lipschitz, i.e.,∥∇WL(Y )∥ ≤ L1 and ∥∇WL(Y1)−∇WL(Y2)∥ ≤ L2∥Y1 − Y2∥ around W . Then,

Theorem 3.1 (Descent). Let W (λ) = C ×d
j=1 Uj be the Tucker low-rank tensor obtained after one

training iteration using Algorithm 1 and let W (0) be the previous point. Assuming the one-step
integration from 0 to λ is done exactly, it holds LW (W (λ)) ≤ LW (W (0)) − αλ + βτ , where
α, β > 0 are constants independent of λ and τ , and where LW denotes the loss as a function of
only W .

We now prove that the rank-adaptive training method in Algorithm 1 converges to a stationary point
in expectation if implemented with SGD and decaying learning rate.
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(b) VGG16 Cifar10
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(c) ResNet18 Cifar10
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Figure 1: Comparison of compression performance for different models against the full baseline for
the Cifar10 (a-c) and Tiny-Imagenet (d) benchmark. The mean accuracy of 20 weight initializations
is displayed. TDLRT achieves higher compression rates at higher accuracy with lower variance
between initializations.

Theorem 3.2 (Convergence). Denote with W̃ (t) is the weight tensor after t passes of Algorithm 1
before the rank truncation step, and W (t) the one obtained after the rank truncation. Assume
Algorithm 1 is implemented using SGD as a descent method with learning rate sequence {λt}
satisfying the Robbins-Monro conditions:∑

t λt = +∞
∑

t λ
2
t < +∞ .

Suppose also that the spectral distribution stabilizes fast enough over time, i.e.,∑
t≥0 E[∥W̃ (t)−W (t)∥] < +∞

and that the projected stochastic gradient has a controlled drift, namely

E
[
∥∇L(t− 1)×j PŨj(t)

∥2 | t− 1
]
≤ µ+ ν∥∇L(t− 1)×j PUj(t−1)∥2

for some µ, ν > 0, where PU is the orthogonal projection onto the range of U . Then, the following
convergence condition holds

lim inf
t→∞

E∥∇L(t− 1)×j PUj(t−1)∥2 = 0

Details of the proof are contained in the appendix.
Theorem 3.3. For an integer k, let t = kλ, and let W (t) be the full convolutional kernel, solution of
(2) at time t. Let C(t), {Ui(t)}i be the Tucker core and factors computed after k training steps with
Algorithm 2, where the one-step integration from 0 to λ is done exactly. Finally, assume that for any
Y in a neighborhood of W (t), the gradient flow −∇LW (Y ) is “ε-close” to TYMρ. Then,

∥W (t)− C(t)×d
j=1 Uj(t)∥ ≤ c1ε+ c2λ+ c3τ/λ (7)

where the constants c1, c2, c3 depend only on L1 and L2.

In particular, both bounds in the above theorems do not depend on the higher-order singular values
of the exact nor the approximate solution, which shows that the method does not suffer instability
and slow convergence rate due to potential ill-conditioning (small higher-order singular values).
Note that this result is crucial for efficient training on the low-rank manifold and is not shared by
direct gradient descent training approaches, as we will numerically demonstrate in the following
section. Moreover, we emphasize that (7) provides a sufficient condition for the computation of a
high-performing subnetwork. In fact, for smooth enough network models f , condition (7) implies
that f(W (t)) ≈ f(C(t)×d

j=1 Uj(t)), i.e. the computed subnetwork approximates the full model.

4 Experiments

In the following, we conduct a series of experiments to evaluate the performance of the proposed
method as compared to the full model and to standard layer factorization and model pruning baselines.
The full baseline is the network trained via standard implementation. In order to test the method
on tensor layers, we consider here convolutional networks and apply the decomposition to the
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convolutional kernel W . In terms of layer factorization, we compare against different baseline
approaches: direct training of the factors in the low-rank matrix factorization format [34, 49, 79, 36],
the low-rank tensor Canonic-Polyadic format [44, 71, 4, 63], the low-rank tensor Tucker format
[42, 38], and the low-rank Tensor-Train format [62]. The convolution operation can then be written
completely in terms of the small factors using the factorization ansatz. While the above papers
propose different initialization and rank selection strategies, all the referenced literature trains the
factors in the chosen layer factorization format by implementing forward and backward propagations
simultaneously and independently on each factor in a block-coordinate fashion. This way of training
on the low-rank manifold ignores the geometry of the manifold, whereas TDLRT directly exploits
the underlying geometry to avoid points of high curvature. We compare the training strategy alone.
Thus, we ignore any model-specific initialization and regularization addition. We also compare with
Riemannian gradient descent (RGD) for tensors in Tucker format implemented using the HOSVD
retraction [74, 17] and with the matrix dynamical training algorithm [68], where the standard forward
and backward passes are endowed with a rank-adaptive QR projection step, similar to the proposed
Algorithm 1. In terms of pruning techniques based on sparsification, we compare with methods
from two of the most popular strategies: iterative magnitude pruning (IMP) [20], and single-shot
pruning at initialization, single-shot network pruning (SNIP) [45] and Gradient Signal Preservation
(GraSP) [78]. The experiments are performed on an Nvidia RTX3090, Nvidia RTX3070 and one
Nvidia A100 80GB. The code is available in the supplementary material.

4.1 Compression Performance

The compression performance of TDLRT is evaluated on CIFAR10 and tiny-imagenet. The typical
data augmentation procedure is employed for this dataset: a composition of standardization, random
cropping, and a random horizontal flip. All methods are trained using a batch size of 128 for 70
epochs each, as done in [79, 36]. All the baseline methods are trained with the SGD optimizer; the
starting learning rate of 0.05 is reduced by a factor of 10 on plateaus, and momentum is chosen as
0.1 for all layers. The rank r̂ of each tensor mode for the fixed-rank baseline methods is determined
by a parameter κ, i.e., we set r̂ = κrmax. The proposed TDLRT method employs Algorithm 2,
where SGD is used for the descent steps at lines 4 and 9, with momentum and learning rate as above.
Dynamic compression during training is governed by the singular value threshold τ , see Equation (6).
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Figure 2: Left panel: Computational footprint of low-rank convolutions. TDLRT surpasses the
baseline performance for meaningful compression rates. Middle panel: Convergence behavior of
Lenet5 on MNIST dataset in the case of an initial overestimation of the rank, with exponentially
decaying singular values. Mean and standard deviation (shaded area) over 10 random initializations.
Right panel: Compared to standard Tucker decomposition, with and without rank adaption, wall
training time to reach 60% accuracy for TDLRT.

Figure 1 (a-c) shows the mean accuracy of TDLRT as compared to competing factorization baselines.
TDLRT achieves higher compression rates at higher accuracy with lower variance between weight
initializations than the competing methods. In the case of the VGG16 benchmark, TDLRT is able to
maintain baseline accuracy for compression rates over 90% and exceeds the baseline on average for
τ = 0.03, i.e., 95.3% compression. Alexnet has 16.8% of the parameters of VGG16. Thus, compres-
sion is naturally more challenging to achieve. Nevertheless, TDLRT outperforms the baselines and
remains close to the full network performance. Similar behavior is observed on ResNet18.

Table 1 shows a comparison of the best-performing compression between all the factorization-based
and pruning-based baseline methods as well as TDLRT in the CIFAR10 benchmark for Alexnet,
ResNet18, and VGG16. In the proposed evaluation, TDLRT is on par or outperforms all the
alternatives, including pruning based on sparsity (implemented without warmup for the sake of a fair
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Table 1: Comparison of the best-performing compression rates for different methods on the CIFAR10
benchmark with Alexnet, VGG16, and ResNet18. For each column, we report first and second best
results.

VGG16 Alexnet ResNet18

test acc. [%] c.r. [%] test acc. [%] c.r. [%] test acc. [%] c.r. [%]

Baseline 92.01 0.0 85.46 0.0 94.33 0.0

Fa
ct

or
iz

at
io

n

TDLRT (ours) 90.23 94.40 82.39 83.12 92.72 78.73
Matrix DLRT [68] 89.13 83.22 73.57 71.57 80.98 56.85
Tucker-factorized [38] 86.71 91.4 70.30 69.74 91.11 74.19

Matrix-factorized [79] 84.54 94.34 77.07 68.20 92.07 77.49
CP-factorized [44] 82.53 89.98 76.14 71.46 91.87 69.95

Tucker RGD [74] 81.48 84.26 73.88 74.01 92.76 74.18
TT-factorized [62] 87.27 90.30 78.13 88.14 87.13 81.24

Pr
un

in
g SNIP [45] 89.58 56.23 − − 89.50 78.50

IMP [20] 87.21 58.54 − − 90.50 82.50
GraSP [78] 88.50 77.30 − − 89.40 77.90

comparison), Tensor-Train (TT) and Tucker factorization, Riemmanian gradient descend (RGD) for
Tucker decompositions, as well as the matrix-valued DLRT, due to the higher flexibility of the Tucker
format where compression along each tensor mode individually is possible. The compression rate
(c.r.) is computed as 1− c/f , where c is the number of convolutional parameters in the compressed
model after training and f is the number of convolutional parameters of the full model. While this
is the compression rate after training, we emphasize that methods based on factorizations yield an
analogous compression rate during the entire training process. We also remark that no DLRT version
of CP decomposition is shown as CP is not suited for dynamical low-rank training due to its lack of a
manifold structure. Similar results are obtained for the tiny-imagenet benchmark, see Fig. 1 (d) and
Table 3. The rank evolution of the networks during training is discussed in Appendix C.2.

4.2 Robustness of the Optimization

To further highlight the advantages of Algorithm 2 as compared to standard simultaneous gradient
descent on the factors of the decomposition, we show in Figure 2 the accuracy history of LeNet5
on MNIST using TDLRT as compared to standard training on Tucker and CP decompositions. In
the case of TDLRT, an optimization step denotes the evaluation of Algorithm 2 for all convolutional
layers for one batch of training data, while for the other methods, we refer to a standard SGD batch
update for all factors of the tensor decompositions of all layers. All linear layers of the network are
trained with a traditional gradient descent update and are not compressed. In this experiment, we
initialize the network weights to simulate a scenario where the rank is overestimated. To this end,
we employ spectral initialization with singular values decaying exponentially with powers of ten.
Integrating the low-rank gradient flow with the TDLRT Algorithm 2 leads to faster and more robust
convergence rates of the network training process.

4.3 Computational Performance

The computational performance in inference and training of convolutional layers in Tucker decom-
position depends on their current tensor ranks, see Section 2. We evaluate the inference time of
120K RGB images and memory footprint of VGG and AlexNet in Tucker factorization as used in
Algorithm 2 and compare them to the non-factorized baseline models in Figure 2. As a result, for
realistic compression rates, see also Figure 1, the computational footprint of TDLRT is significantly
lower than the corresponding baseline model.
Rank adaptive TDLRT training comes at the additional expense of QR and SVD operations per
optimization step compared to standard fixed rank training without orthonormalization. However, the
increased robustness of the optimization and faster convergence reduces the computational overhead
of TDLRT as demonstrated in Figure 2. In order to provide a fair comparison between the methods,
we report the time to achieve 60% accuracy target at a compression rate of 90% for all methods, on
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LeNet5 MNIST with the setting as in Section 4.2. We refrain from measuring time to convergence
since the standard Tucker decomposition is not able to reach similar accuracy levels at the same
compression ratio as TDLRT.

4.4 Fine-tuning with LoRA-like low-rank adapters

In this section, we are presenting another application of our method, namely fine-tuning pre-trained
models through the use of low-rank adapters. In particular, our approach Algorithm 1 is completely
agnostic between model compression and adaptation, the approach is the same. More precisely, given
a pre-trained model fW∗ with tensor pre-trained weights W ∗, it is possible to add a low-rank Tucker
correction W . Then, given a task loss L(f), by defining L(W ) = L(fW∗+W ) we report ourselves to
the original formulation of the problem. Moreover, we would like to stress that this approach can
be applied also to matrices, which are a particular case of tensors with d = 2 modes. To showcase
these two settings, we present two different settings in which we test our method. In Table 2 (left) we
show the fine-tuning of Deberta V3 [29] on the GLUE benchmark [77]. In this test case here, the
low-rank adapters have been applied to all matrices in attention layers, and the final performance
against LoRA [33] fine-tuning is reported. Apart from our additional hyperparameter τ , all the other
hyperparameters had been kept as reported in [85].
In Table 2 (right), we report the results for fine-tuning stable diffusion [64] with Dreambooth [65].
To adapt the model, we applied Tucker tensor corrections to each convolution of the Unet, and a
matrix adapter to each attention layer of the text encoder network. We applied our method on all these
correctors, while keeping the same hyperparameters setting as in [55]. We would like to observe that
the kind of adapters they propose for convolutions consist in a matrix factorization of a reshaping
of the convolutional tensor. This results in a potentially bigger number of parameters needed, as a
matrix factorization would be O((Cd1d2 +F )r) against a O(Cr1 +Fr2 + d1r3 + d2r4 + r1r2r3r4)
for a plain Tucker factorization, where F is the number of output features, C is the number of input
channels, d1 and d2 are the spatial dimensions of the convolutional kernel. This observation is in
fact reflected in the numbers in Table 2, in which we can observe a higher compression potential for
tensor decompositions compared to matrix ones.

Table 2: Fine-tuning performance metrics on Deberta V3 Glue benchmark (left) and on Stable
diffusion Dreambooth (right).

GLUE LoRA TDRLT(Ours)
# params 1.33M (rank 8) 0.9M (τ = 0.15)

CoLa (Corr.) 0.6759 0.7065
MRPC (Acc.) 0.8971 0.9052
QQP (Acc.) 0.9131 0.9215
RTE (Acc.) 0.8535 0.8713
SST2 (Acc.) 0.9484 0.9594

method loss # params
LoRA (r = 8) 0.260 5 M
LoRA (r = 5) 0.269 3 M
LoRA (r = 3) 0.274 1.8 M

Ours (τ = 0.02) 0.2635 1.8 M
Ours (τ = 0.1) 0.272 1.5 M

5 Discussion and limitations

This work leverages the geometry of the Tucker tensor factorization manifolds to construct a robust
and efficient training algorithm for neural networks in compressed Tucker format. The proposed
method has a theoretical backbone of approximation error bounds to the full model and guarantees of
loss descent and convergence to stationary points in expectation. The method is superior to standard
factorization approaches with alternating or simultaneous gradient descent, as demonstrated in the
compression-to-accuracy ratio for various benchmarks and models. The method provides a significant
reduction of hyperparameters to a single parameter τ . This parameter has a clear interpretation
as compression rate per layer depending on the layer’s importance on the overall network training
dynamics. We, however, note that further strategies to pick an adequate τ are possible and remain
to be investigated. Further, we note that an efficient implementation on GPUs requires an efficient
tensor rounding algorithm in Algorithm 1. Finally, the proposed method assumes well-performing
low-rank Tucker sub-nets exist in the reference network. While we observe this empirically, further
investigations are required to provide theoretical evidence supporting this assumption, similar to the
case of fully-connected linear layers, see [3, 6].
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A Impact statement

This paper presents work whose main goal is to reduce the training costs of tensor-based architecture,
while maintaining mathematically sound guarantees of performance in terms of convergence and
approximation. As in the majority of deep learning research, there are potential societal consequences
of our work, none of which we feel must be specifically highlighted here. A positive societal impact
is the reduces carbon emissions by more efficient neural networkt training and inference. Regarding
ethical aspects, we feel nothing has to be added.

B Algorithm for tensor taping based on Theorem 2.1

For the sake of completeness, we provide the algorithmic description of the method to generate
gradients of the Tucker factors as obtained by Theorem 2.1.

The training algorithm for tensor-valued neural network layers in Tucker format is presented in
Algorithm 2. Through the lens of computational efficiency, the main difference to Algorithm 1 is the
following:

Each time we back-propagate through a convolutional layer W = C ×d
i=1 Ui, we form the new

variable Ki = UiSi as in Theorem 2.1, we integrate the ODE in (5) from Ki(0) = Ki to Ki(λ),
λ > 0, and then update the factors Ui by forming an orthonormal basis of the range of Ki(λ). This
strategy directly follows from Theorem 2.1.

Similar to Algorithm 1, we implement the orthonormalization step via the QR factorization while
we perform the integration of the gradient flow via stochastic gradient descent with momentum and
learning rate λ, which coincides with a stable two-step linear multistep integration method [69]. Once
all the factors Ui are updated, we back-propagate the core term by integrating the equation for C in
(5), using the same approach.

Similar to Algorithm 1, the Tucker rank of the new kernel can be adaptively learned with a key
basis-augmentation trick. The implementation for Algorithm 2 works as follows: Each time we
backpropagate Ki ∈ Rni×ri , we form an augmented basis K̃i by appending the previous Ui to the
new Ki(λ), K̃i = [Ki|Ui]. We compute an orthonomal basis U new

i ∈ Rni×2ri for K̃i and we form
the augmented 2r1 × · · · × 2rd core C̃ = C ×d

i=1 (U
new
i )⊤Ui. We then backpropagate the core C

integrating (5) starting from C(0) = C̃. Finally, we perform a rank adjustment step by computing
the best Tucker approximation of C̃ to a relative tolerance τ > 0. This step corresponds to solving
the following optimization (rounding) task:

Find Ĉ ∈M≤2ρ of smallest rank ρ′ = (r′1, . . . , r
′
d) such that ∥C̃ − Ĉ∥ ≤ τ∥C̃∥

where ρ = (r1, . . . , rd) and M≤2ρ denotes the set of tensors with component-wise Tucker rank
lower than 2ρ. In practice, this is done by unfolding the tensor along each mode and computing a
truncated SVD of the resulting matrix. The tensor Ĉ ∈Mρ′ is then further decomposed in its Tucker
decomposition yielding a factorization Ĉ = C ′ ×d

i=1 U
′
i ∈Mρ′ . The parameter τ is responsible for

the compression rate of the method, as larger values of τ yield smaller Tucker ranks and thus higher
parameter reduction. To conclude, the computed U ′

i ∈ R2ri×r′i with r′i ≤ 2ri are then pulled back to
the initial dimension of the filter by setting Ui = U new

i U ′
i ∈ Rni×r′i , and the new core tensor C is

then assigned C ′.

This implementation shares the robust error bound of Algorithm 1. However it comes at an increased
computational cost due to d+ 1 necessary evaluations of the network and gradient tape, where the
first d are due to the basis updates Ki and the last for the coefficient update S.

C Additional experiments

C.1 Additional experiments for ResNet18 on Tiny-Imagenet

Table 3 displays the compression to test accuracy results for ResNet18 on Tiny ImageNet as a
supplement to the results in section 4.1.
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Algorithm 2: TDLRT: Standard Dynamical Low-Rank Training of convolutions in Tucker format.
Input :Initial low-rank factors C ∼ r1 × · · · × rd; Ui ∼ ni × ri;

adaptive: Boolean flag that decides whether or not to dynamically update the ranks;
τ : singular value threshold for the adaptive procedure.

1 for each mode i do
2 QiS

⊤
i ← QR decomposition of Mati(C)

⊤

3 Ki ← UiSi

4 Ki ← descent step; direction∇Ki
L(Teni(Q⊤

i )×j ̸=i Uj ×i Ki); starting point Ki

5 if adaptive then /* Basis augmentation step */
6 Ki ← [Ki | Ui]

7 U new
i ← orthonormal basis for the range of Ki

8 C̃ ← C ×d
i=1 (U

new
i )⊤Ui

9 C ← descent step; direction∇CL
(
C̃ ×d

i=1 U
new
i

)
; starting point C̃

10 if adaptive then /* Rank adjustment step */
11 (C,U1, . . . , Ud)← Tucker decomposition of C up to relative error τ
12 Ui ← U new

i Ui , for i = 1, . . . , d
13 else
14 Ui ← U new

i , for i = 1, . . . , d

Table 3: Tiny-imagenet benchmark with ResNet18. TDLRT outperforms standard Tucker factoriza-
tion in terms of the compression-to-accuracy ratio.

test acc [%] c.r. [%]

Baseline 51.1 0.0

TDLRT, τ = 0.02 50.90 83.95
TDLRT, τ = 0.06 49.32 92.12
Tucker-factorized 49.66 83.66

C.2 Additional experiments VGG16 on Cifar10

The rank evolution over the optimization steps of VGG16 on Cifar10 are displayed in Figure 3. The
color gradients indicate the position of the respective tensor basis in the network, where lighter green
denotes bases near the input and darker green denotes bases near the output layer of VGG16. Higher
singular value cutoff tolerance τ results in faster rank decay; however, across different choices of tau,
a monotonous decrease in the ranks to a steady state is observable.

The proposed method Algorithm 1 allows us to choose any Tucker ranks at initialization In Figure 3,
we initialize the network layers with full rank. The decay of the layers’ ranks over time is typical for
Alg1 and, indeed observed for other architectures as well. This is aligned with theoretical [5] and
empirical [18] findings stating that neural networks trained with SGD exhibit a low-rank structure.
The results of Fig 3 indicate that Alg. 1 can identify this low-rank manifold during training.

C.3 Additional experiments for AlexNet on Cifar 10

Tab.4 contains the Tucker ranks of Alexnet compressed with TDLRT as a supplement to the results
presented in section4.1. All the test cases were run with the rank adaptive version of the integrator.

For Cifar10, a standard random crop and random flip are used for data augmentation at training time.
All methods are trained for 70 epochs using a batch size of 128. All methods are trained using the
SGD optimizer, with a starting learning rate of 5× 10−2 with a scheduler that reduces it by a factor
of 10 whenever validation loss reaches a plateau. Polyak momentum was 0.1 for all layers but batch
normalizations, which was set to 0.9.

17



0 100 200 300
optimization iter

0

166

333

500

ba
si

s 
ra

nk
s

(a) τ = 0.1

0 100 200 300
optimization iter

0

166

333

500

ba
si

s 
ra

nk
s

(b) τ = 0.08

0 100 200 300
optimization iter

0

166

333

500

ba
si

s 
ra

nk
s

(c) τ = 0.05

Figure 3: Rank evolution of the Tucker bases over optimization steps of all rank adaptive layers of
VGG16 for Cifar10 using Algorithm 1. The lighter color indicates ranks of bases of deeper layers
of the network. A higher singular value cutoff threshold τ results in faster rank decay and smaller
steady-state ranks, leading to a potentially higher compression rate.

Table 4: Reproduction of the results of Alexnet on Cifar10. The ranks reported refer to the Tucker
ranks of each convolutional layer.

test acc.[%] layers’ ranks test compression rate [%]
Baseline 79.63 [64, 3, 3, 3] 0.0

[192, 64, 3, 3]
[384, 192, 3, 3]
[256, 384, 3, 3]
[256, 256, 3, 3]

TDLRT τ = 0.6 76.26 [25, 3, 3, 3] 74
[76, 25, 3, 3]
[153, 76, 3, 3]
[102, 153, 3, 3]
[102, 102, 3, 3]

TDLRT τ = 0.7 73.08 [19, 3, 3, 3] 83.5
[57, 19, 3, 3]
[115, 57, 3, 3]
[76, 115, 3, 3]
[76, 76, 3, 3]

For more complicated datasets and architectures like Cifar10 on VGG16 and Alexnet, results in
Tab.1 and Fig.1 show that our proposal consistently gets better results than all the methods under
comparison at parity of compression.

D Proof of Theorem 2.1

Theorem. Let W = C ×d
i=1 Ui ∈ Mρ be such that (3) holds. Let Mati(C)

⊤ = QiS
⊤
i be the QR

decomposition of Mati(C)
⊤ and let Ki = UiSi. Then,

K̇i = −∇Ki
L
(
Teni(Q

⊤
i )×j ̸=i Uj ×i Ki

)
and Ċ = −∇CL(C ×d

j=1 Uj) (8)

where Teni denotes “tensorization along mode i”, i.e. the inverse reshaping operation of Mati.

Proof. The proof follows the path first suggested in [52, §4], i.e., the quantity Vi defined next is
frozen in time: V̇i = 0. A detailed derivation of the matrix-tensor equations for Ki and C is beyond
the scope of the present work and it is provided in [40, 53, 54, 12, 11].

We begin recalling the evolution equations for the factors of the projected gradient flow (3):{
U̇i = −(I − UiU

⊤
i )Mati

(
∇WL(W )×j ̸=i U

⊤
j

)
Mati(C)

† , i = 1, . . . , d

Ċ = −∇WL(W )×j=1 U
⊤
j .
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where † denotes the pseudoinverse. We assume that the tensor W admits a differentiable Tucker
tensor representation, i.e., W (t) = C(t) ×d

i=1 Ui(t) ∈ Mρ for t ∈ [0, λ] satisfying the associated
gradient-flow tensor differential equation

Ẇ (t) = −∇WL(W (t)) .

For sake of brevity, the parameter is going to be omitted. Next, we perform a QR-factorization

Mati(C)
⊤ = QiS

⊤
i .

Thus, we observe that the matrix Mati(W ) admits an SVD-like decomposition as follows

Mati(W ) = UiSiV
⊤
i with V ⊤

i := Q⊤
i

⊗
j ̸=i

U⊤
j ,

where the matrix Qi possess othornormal columns, i.e., Q⊤
i Qi = I . We introduce the quantity

Ki := UiSi where Si = Mati(C)Qi .

By construction, we observe that
Si = U⊤

i Mati(W )Vi .

The tiny matrix Si satisfies the following differential equation

Ṡi = U̇⊤
i Mati(W )Vi + U⊤

i Mati(Ẇ )Vi + U⊤
i Mati(W )V̇i

=
(
U̇⊤
i Ui

)
︸ ︷︷ ︸

=0

SiV
⊤
i Vi + U⊤

i Mati(Ẇ )Vi + U⊤
i Mati(W ) V̇i︸︷︷︸

=0

= −U⊤
i Mati(∇WL)Vi .

The first null identity follows from the gauge condition on Ui. The second null identity follows by
the initial assumption V̇i = 0. Therefore, the matrix Ki satisfies the differential equation

K̇i = ˙(UiSi)

= U̇iSi + UiṠi

= −(I − UiU
⊤
i )Mati(∇WL ×j ̸=i U

⊤
j )Mati(C)

†Si − UiU
⊤
i Mati(∇WL)Vi

= (UiU
⊤
i − I)Mati(∇WL ×j ̸=i U

⊤
j )Qi − UiU

⊤
i Mati(∇WL)Vi

= (UiU
⊤
i − I)Mati(∇WL) · ( ⊗

j ̸=i
Uj)Qi − UiU

⊤
i Mati(∇WL)Vi

= (UiU
⊤
i − I)Mati(∇WL)Vi − UiU

⊤
i Mati(∇WL)Vi

= −Mati(∇WL)Vi .

(9)

To conclude, we set Z = KiV
⊤
i and let W = Teni(KiV

⊤
i ) = Teni(Z). We obtain

∇Ki
L(W ) = ∇ZL(Teni(Z))∇ZKi = ∇ZL(Teni(Z))Vi .

where we remind that V ⊤
i Vi = I . Hence

Mati(∇WL(W ))Vi = ∇ZL(Teni(Z))Vi = ∇Ki
L(W ) . (10)

The first Ki-differential equation is then obtained combining (11) and (10)

K̇i = −Mati(∇WL)Vi = −∇KiL
(
Teni(KiV

⊤
i )

)
. (11)

The right-hand side can be further reduced using standard tensorization formulas [41]

Teni(KiV
⊤
i ) = Teni(Q

⊤
i ) ×

j ̸=i
Uj ×i Ki .

The second differential equations follows by observing that

∇WL = ∇CL ×i Ui +
∑
j

L ×j U̇j ×i̸=j Ui .
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The tensor C satisfies the differential equation

Ċ = −∇WL(W )×i U
⊤
i

= −∇CL(W )×i Ui ×i U
⊤
i

= −∇CL(W )×i U
⊤
i Ui︸ ︷︷ ︸
=I

= −∇CL(C ×i Ui) .

where the extra terms disappear due to the imposed gauge conditions U⊤
i U̇i = 0.

E Proof of Corollary 2.2

Corollary E.1. Let W = C ×d
i=1 Ui ∈Mρ be such that (6) holds. Let Mati(C)

⊤ = QiS
⊤
i be the

QR decomposition of Mati(C)
⊤ and let Ki = UiSi. Then,

span
([
Ui, K̇i

])
= span

([
Ui,∇UiL

(
W

)])
. (12)

Proof. From Eq. (9) of the proof in Theorem 2.1 it is apparent, that

K̇i = U̇iSi + UiṠi = −Mati(∇WL
(
Teni(W )

)
)Vi. (13)

Moreover, we observe that using the chain rule,

∇Ui
L = Mati(∇WL)∇Ui

(UiSiV
⊤
i ) = Mati(∇WL)ViS⊤

i

Then, with (13) we have

∇Ui
L = Mati(∇WL)ViS⊤

i = −K̇iS
⊤
i .

Using full-rankness of Si concludes the proof.

F Proofs of descent and approximation theorems

Theorem. Let W (λ) = C×d
j=1Uj be the Tucker low-rank tensor obtained after one training iteration

using Algorithm 2 and let W (0) be the previous point. Then, for a small enough learning rate λ, it
holds LW (W (λ)) ≤ LW (W (0))− αλ+ βτ , where α, β > 0 are constants independent of λ and τ ,
and where LW denotes the loss as a function of only W .

Proof. Let Ŵ (t) = Ĉ(t)×i Û
1
i . Here, Ŵ (t) and Ĉ(t) denote the augmented solutions for t ∈ [0, λ]

arising from the intermediate steps of the TDLRT Algorithm 2. We observe that
d

dt
L(Ŵ (t)) = ⟨∇L(Ŵ (t)),

˙̂
W (t)⟩

= ⟨∇L(Ŵ (t)),
˙̂
C(t)×i Û

1
i ⟩

= ⟨∇L(Ŵ (t))×i Û
1,⊤
i ,

˙̂
C(t)⟩

= ⟨∇L(Ŵ (t))×i Û
1,⊤
i , −∇L(Ŵ (t))×i Û

1,⊤
i ⟩ = −∥∇L(Ŵ (t))×i Û

1,⊤
i ∥2 .

If we define α := min0≤τ≤1 ∥∇L
(
Ŵ (τλ)

)
×i Û

1,⊤
i ∥2, it follows that for t ∈ [0, λ]

d

dt
L(Ŵ (t)) ≤ −α . (14)

Integrating (14) from t = 0 until t = λ, we obtain

L(Ŵ (λ)) ≤ L(Ŵ (0))− αλ.

Because the augmented subspaces Ûi contain by construction the range and co-range of the initial
value, we have that Ŵ (0) =W (0). Furthermore, the truncation is such that ∥W (λ)− Ŵ (λ)∥ ≤ τ .
Therefore

L(W (λ)) ≤ L(Ŵ (λ)) + βτ

where β = max0≤τ≤1 ∥∇L
(
τW (λ) + (1− τ)Ŵ (λ)

)
∥.
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Lemma F.1. The following estimate holds

∥W (λ)−W (λ)×j Uj(λ)Uj(λ)
⊤∥ ≤ Θ = O(h(h+ ϵ)) ,

where the hidden constants depend only on L1 and L2.

Proof. It has been shown in [68, Appendix] that there exists a constant θ ∝ O(h(h+ ϵ)) such that

∥UjU
⊤
j Matj(W (λ))−Matj(W (λ))∥ ≤ θ ∀j = 1, . . . , d ,

where the value θ has been shown to depend only on the constants L1, L2 and λ. The proof of the
Lemma follows a recursive constructive argument

∥W (λ)−W (λ)×d
j Uj(λ)Uj(λ)

⊤∥
≤ ∥W (λ)−W (λ)×d−1

j Uj(λ)Uj(λ)
⊤∥+ ∥W (λ)×d−1

j Uj(λ)Uj(λ)
⊤ −W (λ)×d

j Uj(λ)Uj(λ)
⊤∥

≤ ∥W (λ)−W (λ)×d−1
j Uj(λ)Uj(λ)

⊤∥+ ∥
(
W (λ)×d Ud(λ)Ud(λ)

⊤ −W (λ)
)
×d−1

j Uj(λ)Uj(λ)
⊤∥

≤ ∥W (λ)−W (λ)×d−1
j Uj(λ)Uj(λ)

⊤∥+ ∥W (λ)×d Ud(λ)Ud(λ)
⊤ −W (λ)∥

≤ ∥W (λ)−W (λ)×d−1
j Uj(λ)Uj(λ)

⊤∥+ θ .

The conclusion is obtained iterating the provided argument.

Theorem F.2. For an integer k, let t = kλ, and let W (t) be the full convolutional kernel, solution of
(2) at time t. Let C(t), {Ui(t)}i be the Tucker core and factors computed after k training steps with
Algorithm 2, where the one-step integration from 0 to λ is done exactly. Finally, assume that for any
Y in a neighborhood of W (t), the gradient flow −∇LW (Y ) is “ε-close” toMρ. Then,

∥W (t)− C(t)×d
j=1 Uj(t)∥ ≤ c1ε+ c2λ+ c3τ/λ

where the constants c1, c2 and c3 depend only on L1 and L2.

Proof. First, we provide a bound for the local error, i.e., the error obtained after one training epoch.
If we apply Lemma F.1, we obtain that

∥W (λ)− C(λ)×d
j=1 Uj(λ)∥

≤ ∥W (λ)−W (λ)×d
j=1 Uj(λ)Uj(λ)

⊤∥+ ∥W (λ)×d
j=1 Uj(λ)Uj(λ)

⊤ − C(λ)×d
j=1 Uj(λ)∥

≤ Θ+ ∥
(
W (λ)×d

j=1 Uj(λ)
⊤ − C(λ)

)
×d

j=1 Uj(λ)∥
≤ Θ+ ∥W (λ)×d

j=1 Uj(λ)
⊤ − C(λ)∥ .

It suffices to study the latter term. For t ∈ [0, λ], we define the quantity

C̃(t) :=W (t)×d
j=1 Uj(λ)

⊤

It satisfies the differential initial value problem

˙̃
C = −∇WL(W )×d

j=1 Uj(λ)
⊤, C(0) =W (0)×d

j=1 Uj(λ)
⊤ .

The term W (t) can be written as a perturbation of C̃

W (t) = C̃ ×d
j=1 Uj(λ) +R(t) ,

where
R(t) =W (t)−W (t)×d

j=1 Uj(λ)Uj(λ)
⊤ .

Then, we observe that

∥W (t)−W (λ)∥ ≤
∫ λ

0

∥Ẇ (s)∥ds =
∫ λ

0

∥−∇WL(W (s))∥ds ≤ C1λ .

The remainder can be estimated as follows

∥R(t)∥ ≤∥R(t)−R(λ)∥+∥R(λ)∥ ≤ 2L1λ+ 2Θ .
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Furthermore, the full gradient can be re-written as

∇WL(W (t)) = ∇WL(C̃(t)×d
j=1 Uj(λ) +R(t)) = ∇WL(C̃(t)×d

j=1 Uj(λ)) +D(t) ,

where the defect D(t) is defined as

D(t) := ∇WL(C̃(t)×d
j=1 Uj(λ) +R(t))−∇WL(C̃(t)×d

j=1 Uj(λ)) .

Because of the Lipschitiz assumption, we have that

∥D(t)∥ ≤ L2∥R(t)∥ ≤ 2L2(L1λ+Θ) .

Next, we compare the two differential equations{
˙̃
C(t) = −∇WL(C̃(t)×d

j=1 Uj)×d
j=1 U

⊤
j +D(t),

Ċ(t) = −∇WL(C(t)×d
j=1 Uj)×d

j=1 U
⊤
j ,

where C(0) = C̃(0), by construction. The solution C(λ) of the second tensor-differential equation
coincides with the solution of the last training step of the TuckerDLRT algorithm. The first differential
equation has been constructed such that its solution is C̃(λ) =W (λ)×j U

⊤
j . Therefore, the study of

the local error follows by a direct application of the Gronwall inequality

∥C(λ)− C̃(λ)∥ ≤ exp(C2λ)2L2(L1λ+Θ)λ .

To conclude, the global error in the training epochs follows by using the Lipschitz continuity of the
gradient flow: We move from the local error in time to the global error in time by a standard ODEs
argument of Lady Windermere’s fan [82, §II.3].

G Proof of stochastic convergence

In this section, we provide the details of the proof of convergence to stationary points in the stochastic
setting, Theorem 3.2. The proof extends the approach of [31] to the tensor case and relaxes some of
the assumptions there made on the matrix case, while following the same overall structure.

Theorem G.1 (Convergence). Let W̃ (t) be the weight tensor after t ∈ N iterations of Algorithm 1
before the rank truncation step, and W (t) as the one obtained after the rank truncation. Assuming
that

• Algorithm 1 is implemented using SGD as the descent method.

• The loss function is assumed to be positive, locally bounded, and differentiable with a Lipschitz
gradient.

• The learning rate sequence λt satisfies the Robbins-Monro conditions, i.e.∑
t

λt = +∞
∑
t

λ2t < +∞ .

• The spectral distribution stabilizes fast enough over time, i.e.∑
t≥0

E
[
∥W̃ (t)−W (t)∥

]
< +∞ (15)

• The projected stochastic gradient has a controlled drift, namely

E
[
∥∇L(W (t− 1))×j PŨj(t)

∥2 | t− 1
]
≤ µ+ν∥∇L(W (t−1))×jPUj(t−1)∥2 for some µ, ν ≥ 0 ,

(16)

where PU = UUT is the orthogonal projection onto the range of U , and E [·|t] =
E
[
·|W (t), {Ui(t)}di=1

]
denotes the conditional expectation. Then the following convergence condi-

tion holds
lim inf
t→∞

E
[
∥∇L(W (t− 1))×j PUj(t−1)∥2

]
= 0
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The convergence proof of Theorem 3.2 is based on the following technical lemmas.
Lemma G.2. Let L be a differentiable loss function, and assume that its gradient ∇L(W ) is one-
sided Lipschitz continuous with constant L2. Then, for any W and W ′, the following inequality
holds

L(W ) ≤ L(W ′) + ⟨∇L(W ′),W −W ′⟩+ L2

2
∥W −W ′∥2

Proof. By using Cauchy-Schwartz inequality, we have that

L(W ) = L(W ′) +

∫ 1

0

d

dt
L
(
W ′ + t(W −W ′)

)
dt

= L(W ′) + ⟨∇L(W ′),W −W ′⟩ −
∫ 1

0

⟨∇L(W ′)−∇L
(
(W ′ + t(W −W ′)

)
,W −W ′⟩ dt

≤ L(W ′) + ⟨∇L(W ′),W −W ′⟩+ L2∥W −W ′∥2
∫ 1

0

t dt

= L(W ′) + ⟨∇L(W ′),W −W ′⟩+ L2

2
∥W −W ′∥2 .

Lemma G.3. Let Ũj,1 = [Uj,1|Uj,0] be a given basis set with orthonormal columns, L denote the
loss function computed on the whole dataset, and LB denote the loss calculated on a batch B. Then,
for any j∗ ∈ {1, . . . , d} and W , it holds that

E
[ 〈
∇L(W ), ∇LB(W )×j ̸=j∗ PUj,0 ×j∗ PUj∗,1

〉 ]
≥ 0

Proof. We introduce first the function

ϕ(Û) :=
〈
∇L(W )×j ̸=j∗ PUj,0 ×j∗ PÛ ,∇LB(W )×j ̸=j∗ PUj,0 ×j∗ PÛ

〉
.

Let m be the the infimum on the set U as defined below

m = inf
Û∈U

ϕ(Û) with U = {U ∈ Rnj∗×rj∗ | rank(U) ≤ rj∗} .

Because the term∇L(W ) can be decomposed into a sum of ∇LB(W )×j ̸=j∗ PUj∗,0
×j∗ PUj,1

and
its orthogonal component, we observe that the infimum satisfies

m ≤ ϕ(Uj∗,1) =
〈
∇L(W ),∇LB(W )×j ̸=j∗ PUj∗,0

×j∗ PUj,1

〉
.

Hence, by taking the expectation on both sides, we can conclude that

E
[〈
∇L(W ),∇LB(W )×j ̸=j∗ PUj,0

×d
j∗ PUj,1

〉]
≥ inf

Û∈U
E
[
ϕ(Û)

]
≥ inf

Û∈U
∥∇L(W )×j ̸=j∗ PUj,0

×j∗ PUj∗,1
∥2

The conclusion follows by observing that the most right term in the inequality is positive.

With the technical lemmas established above, we are now in the position to prove the theorem 3.2.

Proof. (Thereom 3.2) To simplify the notation, we will denote by Et[·] the conditional expectation
Et[ · ] := E[ · |W (t−1) ]. We first remind the reader of two properties of the conditional expectation.
Specifically, for any deterministic function ψ and any random variable X , we have that

Et

[
ψ(W (t− 1))

]
= ψ(W (t− 1)) , E

[
Et[X]

]
= E[X] .

We will begin by examining an upper bound for the one-step drift of 2. We denote by W̃ (t) =

C̃(t) ×j Ũj(t) the weight tensor before truncation at step t ∈ N. As per the assumption, the
optimization in the C-step of 2 is defined using an SGD update. Therefore, we have

C̃(t) =
(
C(t−1)×jUj(t−1)−λt∇L(W (t−1)))

)
×jŨj(t)

⊤ =
(
W (t−1)−λt∇L(W (t−1))

)
×jŨj(t)

⊤ .
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Hence
W̃ (t) = C̃(t)×j Ũj(t) =

(
W (t− 1)− λt∇L(W (t− 1))

)
×j PŨj(t)

.

where PU = UUT is the orthogonal projector onto the range of arbitrary matrix U . Applying G.2 we
have that

Et

[
L(W̃ (t))− L(W (t− 1))

]
≤ −λtEt

[
⟨∇L(W (t− 1)),∇LB(W (t− 1))×j PŨj(t)

⟩
]
+
λ2tL2

2
Et

[
∥∇LB(W (t− 1))×j PŨj(t)

∥2
]

We notice that for the augmented basis Ũj(t) = [Uj(t−1)|Uj(t)], it holds PŨj(t)
= PUj(t−1)+PUj(t).

When we expand LB(W (t− 1))×j PŨj(t)
using its sum representation and apply Lemma G.3 to the

mixed terms, we obtain

Et

[
L(W̃ (t))− L(W (t− 1))

]
≤ −λtEt

[
⟨∇L(W (t− 1)),∇LB(W (t− 1))×j PUj(t−1)⟩

]
+
λ2tL2

2
Et

[
∥∇LB(W (t− 1))×j PŨj(t)

∥2
]

= −λt⟨∇L(W (t− 1)),∇L(W (t− 1))×j PUj(t−1)⟩+
λ2tL2

2
Et

[
∥∇LB(W (t− 1))×j PŨj(t)

∥2
]

= −λt∥∇L(W (t− 1))×j PUj(t−1)∥2 +
λ2tL2

2
Et

[
∥∇LB(W (t− 1))×j PŨj(t)

∥2
]
.

(17)

The locally bounded loss computed on the truncated approximation W (t) is bounded via

L(W (t)) ≤ L(W̃ (t))+⟨∇L(sW (t)+(1−s)W̃ (t)),W (t)−W̃ (t)⟩ ≤ L(W̃ (t))+C∥W (t)−W̃ (t)∥
(18)

By combining equations (17) and (18), we arrive at the following bound

Et

[
L(W (t))− L(W (t− 1))

]
≤ −λt∥∇L(W (t− 1))×j PUj(t−1)∥2 +

λ2tL2

2
Et

[
∥∇LB(W (t− 1))×j PŨj(t)

∥2
]
+ CEt

[
∥W (t)− W̃ (t)∥

]
(19)

Following assumption (16), we have

Et

[
L(W (t))− L(W (t− 1))

]
≤ −λt∥∇L(W (t− 1))×j PUj(t−1)∥2 +

λ2tL2

2

(
µ+ ν∥∇L(W (t− 1))×j PUj(t−1)∥2

)
+ CEt

[
∥W (t)− W̃ (t)∥

]
= −λt(1−

1

2
λtL2ν)∥∇L(W (t− 1))×j PUj(t−1)∥2 +

λ2tL2µ

2
+ CEt

[
∥W (t)− W̃ (t)∥

]
≤ −λt∥∇L(W (t− 1))×j PUj(t−1)∥2 +

λ2tL2µ

2
+ CEt

[
∥W (t)− W̃ (t)∥

]
,

where we assume that λt ≤ 2/L2ν. Finally, by taking the expectation on both sides, we obtain

E
[
L(W (t))−L(W (t−1))

]
≤ −λtE

[
∥∇L(W (t−1))×jPUj(t−1)∥2

]
+
λ2tL2µ

2
+CE

[
∥W (t)−W̃ (t)∥

]
By summing the last equation over t = 1, . . . , T we get

−L(W (0)) ≤ E
[
L(W (t))− L(W (0))

]
≤

−
T∑

t=1

λtE
[
∥∇L(W (t− 1))×j PUj(t−1)∥2

]
+
L2µ

2

T∑
t=1

λ2t + C

T∑
t=1

E
[
∥W (t)− W̃ (t)∥

]
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By rearranging the terms of the latter equation and by sending T → +∞, we finally obtain

+∞∑
t=1

λtE
[
∥∇L(W (t− 1))×j PUj(t−1)∥2

]
≤

L(W (0)) +
L2µ

2

+∞∑
t=1

λ2t + C

+∞∑
t=1

E
[
∥W (t)− W̃ (t)∥

]
< +∞

The conclusion follows by the Robbins-Monro conditions, i.e.

lim inf
t→∞

E
[
∥∇L(W (t− 1))×j PUj(t−1)∥2

]
= 0
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paper’s contributions and scope?
Answer: [Yes]
Justification: See statements in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the analysis is discussed after the corresponding theorem
statements and in Section 5
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• The answer NA means that the paper has no limitation while the answer No means that
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated in the corresponding theorems, and their proofs are
linked and stated in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The numerical examples are fully described in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The numerical examples, the neural network training parameters for all
computer vision tests, and the data-augmentation for the used datasets are described in are
described in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The test case statistics are explained in the corresponding sections in Section 4.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an overview of the used compute resources in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is fundamental mathematical research. We do not see how it
violates any aspect of the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impact is discussed in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use open datasets and very fundamental benchmarks, so we think our work
does not has risk for missuses.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We neither crowdsource experiments nor perform researchw ith human sub-
jects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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