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ABSTRACT

DETR has made notable performance improvements in object detection tasks by
leveraging the long-range modeling capabilities of Transformers, but encoding
all tokens indiscriminately significantly escalates computational cost and leads to
slow convergence. Recent sparsification strategies effectively reduce computa-
tional cost through sparse encoders. However, these methods rely heavily on a
fixed sparse ratio, which overlooks the coherence of feature representation across
levels, leading to performance degradation in complex scenes. To address this
issue, we propose a novel object detection approach aimed at constructing con-
sistent representations of multi-level features. The approach composes two steps:
First, we introduce a perspective proposal module that leverages the spatial infor-
mation of high-level foreground features to guide the sparse sampling of low-level
features, ensuring both integrity and coherence of multi-scale feature information.
Furthermore, we integrated semantic probability to perform hierarchical and dy-
namic adjustments to the saliency of queries, thereby refining the semantic inter-
action among foreground queries. Experimental results demonstrate that on the
challenging task-specific VisDrone dataset, our pPDETR method enhances AP by
1.8% compared to DINO. On the COCO 2017 dataset, the performance improve-
ment of pDETR is even more apparent, achieving a +2.5% increase in AP: under
the 1x schedule, pDETR attains an AP of 51.5%, and under the 2x schedule, the
AP further increases to 52.0%. Moreover, it exhibits faster convergence, exceed-
ing 40% AP in just 2 training epochs while reducing computational cost by 13%
in terms of FLOPs, indicating superior detection capability.

1 INTRODUCTION

Object detection is one of the most challenging and influential tasks in the field of computer vi-
sion, with widespread applications in autonomous driving, video surveillance, and robotic naviga-
tion. In recent years, traditional object detection methods based on convolutional neural networks
(CNNs)(Cai & Vasconcelos, [2018; Redmon, [2016) have made significant advancements, thanks to
the rapid development of deep learning technologies(He et al., 2016)). However, these methods still
rely on hand-crafted designs(Ren et al., 2015) for preprocessing, candidate region generation, and
post-processing steps, which limit their flexibility and scalability. But the introduction of DETR (De-
tection Transformer)(Carion et al.| [2020) eliminates the dependence on manually designed convolu-
tional detectors. As an end-to-end object detection framework, DETR incorporates the Transformer
architecture, harnessing its capacity for long-range modeling, leading to substantial improvements
in object detection.(Arnab et al.| 2021)

Despite DETR’s strong performance on large-scale general-purpose datasets like COCO(Lin et al.}
2014), its effectiveness is highly dependent on the scale and quality of the training data, and it suf-
fers from slow convergence(Zhu et al.| 2020; [Hou et al., [2024b)). The core issue lies in the conflict
between the sparse distribution of foreground objects and the Transformer’s uniform processing of
all tokens, which results in negative predictions dominating the training process, thereby requiring
more samples to achieve effective convergence. The Transformer was initially designed for natural
language processing (NLP)(Vaswani, 2017), where language consists of highly abstract sequences of
symbols containing rich syntactic and semantic information. It operates without imposing structural
bias on the input sequence, treating all tokens uniformly, and captures long-range dependencies be-
tween tokens through the self-attention mechanism. However, in images, many pixels are redundant,
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Figure 1: Distribution of foreground tokens retained across feature maps in Baseline and pDETR.
Red dots indicate the locations of retained tokens on the original image, adjusted according to the
stride. We use Salience DETR as the baseline module to illustrate the semantic misalignment issues.

lacking a specific order or meaning, and applying uniform attention to all tokens results in encoding
redundancy. Moreover, flattening two-dimensional images into one-dimensional sequences results
in the loss of original spatial relationships(Roh et al., [2021} |Zhu et al., 2020). In contrast, convolu-
tional neural networks (CNNs) effectively preserve local spatial information, as their local receptive
fields allow the model to focus on neighboring pixel relationships, thereby enhancing feature rep-
resentation and speeding up convergence. This analysis motivates the introduction of task-specific
biases to expedite DETR’s convergence and lessen its dependence on large-scale datasets.

Recently proposed sparsification strategies offer new approaches to addressing the redundancy prob-
lem caused by the indiscriminate encoding mechanism in Transformers. These methods dynami-
cally select foreground tokens for attention encoding, which not only accelerates the convergence of
DETR but also significantly reduces computational overhead. First, Sparse DETR(Roh et al., [2021])
proposed selecting the top-p% tokens in the encoder layers using Decoder cross-Attention Map
(DAM), thereby reducing the number of tokens processed. Building upon this, Focus DETR(Zheng
et al., 2023) introduced ground truth supervision to precisely guide the model in selecting fore-
ground tokens. Salience DETR(Hou et al.| [2024a) refines the selection of tokens by introducing a
salience mechanism. However, these sparsification strategies rely on foreground score prediction
to select foreground tokens, which depend on static sparsification ratios or fixed selection rules. In
each feature layer, they choose the tokens with the highest scores for attention encoding, which dis-
rupts information continuity between layers and leads to semantic misalignment. Here, we further
conduct a visual analysis of the semantic misalignment issues caused by relying on a static sparsity
ratio. As shown in Figure[I] the baseline that depends on a static sparsity ratio exhibits an imbalance
in the selection across different feature levels, leading to the omission of some key object tokens.

To address these challenges, we propose the pDETR model, which innovatively integrates a Per-
spective Proposal Module and a Semantic-Aware Module, aiming to comprehensively enhance the
performance of the DETR framework. First, the Perspective Proposal Module uses high-level fore-
ground features to guide sparse sampling in lower layers, maintaining feature transmission across
scales and focusing on key features during processing. Secondly, we developed the Semantic-Aware
Module, which integrates semantic probabilities to dynamically adjust the saliency of each token at
a fine-grained level. This enhances the interaction between semantic information and object queries,
thereby improving the model’s object detection performance in complex scenes.

The main contributions of this paper can be summarized as follows:

* We propose a Perspective Proposal Module that leverages the spatial position information
of high-level foreground features to guide sparse sampling in lower-level features, ensuring
the integrity and continuity of multi-scale feature information.

* We design a Semantic-Aware Module that uses semantic probability to perform hierar-
chical and dynamic adjustments to the saliency of queries, thereby refining the semantic
interaction among foreground queries.
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» Experimental results on the COCO and VisDrone dataset demonstrate that the proposed
method achieves outstanding detection performance while maintaining a low computational
cost, significantly improving the efficiency and accuracy of DETR.

2 RELATED WORK

Efficient computation in detection transformer.

As is well known, DETR suffers from high computational complexity and memory usage(Carion
et al., [2020). In efforts to reduce redundant computations, several advancements have been made.
Deformable DETR(Zhu et al., [2020) enhances convergence speed by limiting its attention mech-
anism to a small set of key sampling points around reference points, thus reducing unnecessary
calculations. Efficient-DETR(Neubeck & Van Gool, [2006) simplifies the model by initializing ob-
ject containers with dense priors, which allows for reducing the number of layers in both the encoder
and decoder while maintaining detection performance. Lite DETR(Li et al.,[2022) introduces an in-
terleaved update mechanism between high-level and low-level features, optimizing the flow of infor-
mation. PnP-DETR(Wang et al [2021a) abstracts image feature maps into fine-grained foreground
object feature vectors and coarse background context vectors, effectively balancing detail and con-
text. Additionally, recent approaches have adopted sparse encoding strategies to limit the number
of queries involved in self-attention within the encoder. Sparse DETR(Roh et al.| [2021) refines
only the top-p% of tokens across all encoder layers based on Decoder cross-Attention Map results.
Focus DETR(Zheng et al., 2023) and Salience DETR(Hou et al., [2024a)) introduce token scoring
mechanisms within the encoder to prioritize more informative tokens for attention. However, these
methods still rely on static sparsity ratios to select foreground tokens, implemented by performing
hierarchical top-k selection at each feature level, which fails to fully leverage the complementary
nature of features across different layers. Independently performing sparse query encoding at each
feature level leads to semantic mismatches and spatial inconsistencies between tokens in different
layers. This issue becomes particularly evident when dealing with complex datasets. To address this
problem, we propose a method that uses the spatial position information of high-level foreground
tokens as priors to guide sparse encoding sampling of lower-level features, ensuring the consistency
of semantic and spatial information of the foreground tokens.

Multi-Scale Features for Object Detection

In the field of object detection, effectively representing and handling objects at different scales has
always been a core challenge. Traditional CNN-based detectors widely employ multi-scale fea-
ture extraction techniques such as Feature Pyramid Networks (FPN)(Lin et al.,2017), Bidirectional
Feature Pyramid Networks (BiFPN)(Chen et al.| [2021)), Path Aggregation Networks (PANet)(Wang
et al.l 2019), and NAS-FPN(Ghiasi et al., [2019). These methods achieve effective multi-scale ob-
ject detection by fusing features at different scales, significantly improving model efficiency and
performance. However, DETR faces significant challenges when processing multi-scale features.

First, handling multi-scale features directly in DETR leads to substantial computational overhead.
Since DETR relies on the self-attention mechanism, it processes all tokens indiscriminately, lacking
a specialized mechanism to handle objects at different scales(Roh et al., |2021). This global pro-
cessing not only fails to capture the details of small objects effectively but also wastes considerable
computational resources on irrelevant background areas. This issue becomes particularly prominent
when processing high-resolution images, where redundant computations are more pronounced. As
aresult, DETR performs worse in multi-scale scenarios compared to CNN-based detectors, particu-
larly in detecting small objects(Yang et al.,|[2024).

To address this problem, we propose pDETR. Specifically, we first use spatial information from
high-level foreground features to guide the sparse sampling of lower-level features, enabling the
model to focus on foreground features while significantly reducing computational costs. Secondly,
we utilize semantic probabilities to further refine the focus on foreground areas in a fine-grained
manner, preventing distraction by irrelevant background regions. pDETR strikes a balance between
accuracy and efficiency, providing a superior solution for multi-scale object detection.
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3 APPROACH

As shown in Figure 2] pDETR consists of a backbone, a deformable Transformer encoder, and a
decoder. The backbone can be equipped with ResNet50 to obtain multi-scale feature maps { f;}/
(L = 4). Each feature map f; € RE>HxWi where C; is the number of channels for each feature
map, and H; and W are the height and width of the [-th layer feature map. Before being fed into the
encoder, the multi-scale feature maps {f;}/, (L = 4) first pass through the foreground selection
module to determine whether each token belongs to the foreground. Then, the selected foreground
tokens are passed through the Perspective proposal module, which uses high-level tokens to guide
sparse sampling in lower-level features (Section[3.2). These object tokens are then further introduced
into the semantic-aware module for fine-grained dynamic adjustment of each token’s weight (Section
[3:3). Before delving into the specific details, we first review transformers and sparse object detectors.
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Figure 2: Illustration of the proposed pDETR object detector.

3.1 PRELIMINARY

DETR

We first review the basic workflow of the DETR(Carion et all,[2020) detector. Initially, it extracts
a 2D feature map from the backbone network, denoted as F' € REXWXD where H and W are
the height and width of the feature map, and D is the feature dimension. The feature map is then
flattened into a sequence Fy, € RM*P where N = H x W represents the number of tokens.
These tokens are processed by the Transformer encoder, generating enhanced memory Z € RV <P,
In the decoding stage, DETR introduces a set of learnable object queries Q € RM*P where M
denotes the number of queries. The decoder interacts with the output from the encoder and the
object queries, predicting a class probability s,, € R and a bounding box b,, € R* for each
query ¢, where C' is the number of object classes. The final detection results consist of the set
{(Sm, bm ) YM_,, representing the predictions for the objects in the image.

Sparse DETR-like Detectors

To mitigate the high computational cost associated with the self-attention mechanism in DETR,
sparse DETR-like detectors introduced sparsification strategies focused on foreground feature se-
lection. These approaches aim to reduce the number of tokens participating in self-attention by se-
lecting only the most relevant foreground tokens, thus improving computational efficiency. Sparse
DETR employs the Decoder cross-Attention Map from the decoder as a supervision signal, dynami-
cally selecting the top-p% tokens in the encoder layers. Building on this, Focus DETR uses a binary
supervision signal (foreground or background) derived from ground truth labels, where foreground
tokens are marked as 1 and background tokens as O.
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Salience DETR further refines this process by introducing a saliency scoring mechanism. Specifi-
cally, Salience DETR assigns a saliency score % 5 to each token qéi ) where the token is mapped
back to its position in the original image as ¢ = («x,y). The saliency score is calculated based on
the distance d(c, DBbox) between the pixel ¢ and the ground truth bounding box DBbox. Tokens

located inside the bounding box receive a non-zero score:

gl — d(c,DBbox), if ¢ € DBbox "
=, if ¢ ¢ DBbox
2
where d(c, DBbox) = 1— (%)2 + (%) ,and (x,y, w, h) define the bounding box coordinates

and dimensions. Inspired by the Salience DETR method, we assign a saliency score to each token.
Specifically, we first determine the high-level foreground tokens through their saliency scores, then
use their spatial positions as priors to construct the perspective proposal. In this proposed spatial
range, we perform sparse sampling on the lower-level features, thereby avoiding the problem of
hierarchical top-k selection disrupting the internal connections between multi-scale features and
causing semantic mismatches.

3.2 PERSPECTIVE PROPOSAL MODULE

In multi-scale feature representations, high-level features offer rich semantic information crucial for
object detection, whereas low-level features capture fine spatial details for accurate localization. To
harness the complementary strengths of these hierarchical features, we employ the spatial positions
of high-level foreground tokens as priors, progressively constructing a Perspective Proposal to guide
sparse sampling in the lower-level features.

In order to capture shape variations more accurately, we introduce a more efficient strategy that re-
places the traditional anchor-based approach. By interpolating the positions of high-level foreground
tokens onto lower-level feature maps, much like upsampling, we define this resulting mapped area
as the Perspective Proposal.

For the query qf i) in the {-th layer, its position (4, j) in the feature map corresponds to coordinate
¢ = (z,y) in the original image, calculated as:

CZQ%J*”'S%L%J‘H.'SZ) )

where s; denotes the stride in the /-th layer, and ¢ and j represent the row and column of the salient
token. To map these positions to lower-level features, we use:

Z/:\‘I;SQZJ+ZSZJ7 J/:\‘\‘SQLJ+‘7QSZJ (3)
Si—1 Si—-1

This method efficiently maps salient tokens between different layers, ensuring spatial consistency
and allowing salient tokens to propagate across scales. The lower-level salient tokens are selected
and encoded based on the positions derived from higher levels. Let F'~!(q) represent the feature
value in the [ — 1-th layer, and P' denote the mapped positions in the [-th layer. Salient tokens in
the lower layers are selected as:

Tt ={F'""(q) | g € P'} )

In the encoder, the salient token sets 7" from all four feature layers participate in self-attention:

T
Q71 = softmax (Qz ) \% (®)]

where ), K,V are the query, key, and value matrices, all belonging to F! (¢), and V/d is the feature
dimension normalization factor.
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This layer-by-layer foreground token selection ensures information flow and consistency across fea-
ture levels. The Perspective Proposal module enhances the system’s sparse query encoding, particu-
larly in complex environments. Importantly, we eliminated isolated foreground tokens, as they lack
representational power in lower layers and introduce cumulative errors during interpolation, leading
to suboptimal token selection. Various mapping strategies were explored to optimize the Perspective
Proposal, detailed in the appendix.

3.3 SEMANTIC AWARE MODULE

To enhance semantic interaction among foreground queries, we developed a Semantic Aware Mod-
ule. This module further refines the localization of target categories within the foreground areas
identified by the Perspective Proposal while effectively suppressing background noise. In the DINO
model, it was observed that using unrefined content queries as object query initialization could intro-
duce noise that misleads the decoder. Based on this insight and to maintain simplicity in the encoder
design, our Semantic Aware Module does not rely on label information but dynamically adjusts the
weight of each token in the query using semantic probability information. This approach allows for
more precise localization of target categories while effectively suppressing background noise.

The Semantic Aware Module captures the semantic probability information for each salient token
across different categories. Specifically, given a set of tokens, each token has predicted scores for m
semantic categories. Let S € RY*™ represent the matrix of predicted scores for N tokens across
m categories. We perform semantic context modeling across four feature layers and generate the
semantic context score map M as follows: for each token, the maximum predicted score across all
categories is calculated.

M = softmax (ma)éSZ—j> , Vie{l,...,N} (6)

1,5 <

Here, M € RY contains the maximum predicted score for each token across C' categories. The
original query embedding Q: € RM*9 where d is the embedding dimension, is dynamically
adjusted using the semantic focus map. The adjusted query embedding @, is calculated as:

Qe = sof QK
= softmax(M © Qi + V) (7

Vd

In this formula, © denotes element-wise multiplication. This adjustment allows the model to focus
more effectively on tokens with high saliency while reducing interference from background informa-
tion. Experimental results demonstrate that this module offers significant advantages when handling
complex backgrounds or dense scenes, with minimal additional computational cost.

3.4 OPTIMIZATION

We design a multi-task loss function for pDETR to improve query supervision. The total loss is
composed of the standard loss L,,, denoising loss Ly, focal loss L, and hybrid 10ss Liybrid:

Ltotal = )\mLm + )\dnLdn + )\fo + /\hybridLhybrid (8)

Here, L,, includes classification, bounding box regression, and IoU losses, while L, mitigates
noise sensitivity. Ly handles varying object sizes, and Lpypig supervises both classification and
regression. Details are in Appendix [A3]

4 EXPERIMENT

To comprehensively evaluate the performance of our proposed pDETR’s improvements in object
detection in large-scale general scenarios and small-scale complex environments, we selected the
COCO02017 and VisDrone datasets.
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Dataset The COCO2017 dataset is a widely adopted benchmark for general object detection in the
field of computer vision. In contrast, the VisDrone dataset is specifically designed for object detec-
tion tasks from a drone perspective, representing a typical small-scale and complex scene dataset.
To provide a clearer comparison between the COCO and VisDrone datasets, we have summarized
the key parameters of both datasets, including the number of images and the proportion of large,
medium, and small objects, as shown in the table E}

Table 1: Comparison of COC02017 and VisDrone Datasets

Dataset Images class Large Objects Medium Objects Small Objects

COCO02017 118,287 80 264,373 219,928 160,473
VisDrone 10,209 11 133,718 445,322 1,934,483

Implementation Details

The implementation details of pDETR are consistent with other detectors similar to DETR. We used
the AdamW optimizer to train the model on four NVIDIA RTX 3090 GPUs (24GB each), with
weight decay set to 1 x 10~%. The initial learning rate was set to 1 x 10~ for the backbone and
1 x 10~ for the other parts of the model, with the learning rate reduced to 0.1 of the initial value
during the later stages of training. The batch size per GPU was set to 2, resulting in a total batch size
of 4. For the COCO2017 dataset, we conducted 12 and 24 epochs of training, respectively. For the
VisDrone dataset, given the smaller object sizes and more complex scenes, we performed 36 epochs
of training and adjusted the learning rate at the 30th epoch to further optimize the model’s detection
performance.

4.1 MAIN RESULTS

Method Pub/Year \ Epochs \ Backbone \ APt  AP50T APzt APst APyt  APLT
Deformable-DETR (Zhu et al.|[2020) 50 R50 46.2 65.2 50.0 28.8 49.2 61.7
DAB-DETR (Liu et al.|[2022) 50 R50 48.6 66.0 50.4 29.1 49.8 62.3
Sparse-DETR (Roh et al.[[2021) 50 R50 46.3 66.0 50.1 29.0 49.5 60.8
Anchor-DETR (Wang et al.|[2021b) 50 R50 42.1 63.1 44.9 223 46.2 60.0
DN-DETR (L1 et al.[2022) 50 R50 44.1 64.4 46.7 229 48.0 63.4
DINO (Zhang et al.[|2022) 12 R50 49.0 66.6 53.5 32.0 53.2 63.0
H-DETR (J1a et al.}|2023) 12 R50 48.7 66.4 52.9 31.2 51.5 63.5
Align-DETR (Cai et al.||2023) 12 R50 50.2 67.8 54.4 329 53.3 65.0
Focus-DETR (Zheng et al.|[2023) 12 R50 48.8 66.2 52.8 31.7 50.7 62.5
Salience-DETR (Hou et al.|[2024a) 12 R50 49.2 67.1 53.8 32.7 53.0 63.1
pDETR Ours 12 R50 51.5 68.9 56.0 351 554 67.1
DINO (Zhang et al.|[2022) 24 R50 50.4 68.3 54.8 333 53.7 64.8
DINO (Zhang et al.|[2022) 36 R50 50.9 69.0 55.3 34.6 54.1 64.6
H-DETR (J1a et al.][2023) 36 R50 50.0 68.3 54.4 329 52.7 65.3
Align-DETR (Cai et al.|[2023) 24 R50 51.3 68.2 56.1 355 55.1 65.6
Salience-DETR (Hou et al.}|[2024a) 24 R50 51.2 68.9 55.7 33.9 55.5 65.6
pDETR Ours 24 R50 52.0 69.8 56.2 36.0 55.6 67.1

Table 2: Comparison with state-of-the-art methods on COCO val2017 using ResNet50 (IN-1K) as
backbone.

To demonstrate the effectiveness of our method, we conducted a thorough comparison with represen-
tative state-of-the-art methods on the COCO2017 dataset, as shown in the table |2l pDETR showed
significant advantages over both DINO and Salience-DETR. Compared to DINO, pDETR achieved
an AP of 51.5% in just 12 epochs, whereas DINO required 24 epochs to reach 51.2%, demonstrating
the faster convergence of pDETR. For small object detection, pDETR achieved an APg of 35.1%, a
substantial improvement over Salience-DETR’s 32.7%, highlighting pDETR’s stronger capability in
recognizing small objects. Similarly, in large object detection, pDETR achieved an APy, of 67.1%,
surpassing Salience-DETR’s 63.1%.
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Hyb. Per. Sem. AP AP50 AP75 APS APM AP,
50.0 677 542 333 544 644

v 505 679 548 338 543 655
v 50.7 684 547 339 544 659
v v 512 689 558 355 549 664
v v v 515 689 560 351 554 67.1

Table 3: Ablation study results on COC0O2017.

4.2 ABLATION STUDY

The ablation studies on the COCO dataset shown in tabld3|fully demonstrate the significant improve-
ments brought by our three key enhancements: Hybrid Queries(Hyb.), Perspective Proposal(Per.),
and Semantic-Aware(Sem.). First, after introducing Hybrid Queries, the overall AP of the model
increased from the baseline of 50.0% to 50.7%, while AP50 and AP75 improved by both 0.7%, re-
spectively, highlighting the contribution of this mechanism in enhancing detection accuracy. Next,
with the addition of the Perspective Proposal module, the model’s AP further increased to 51.2%,
and the small object detection accuracy (APg) rose from 34.4% to 35.5%, demonstrating the mod-
ule’s effectiveness in capturing small objects in complex scenes. Finally, when we integrated the
Semantic-Aware Contrastive Loss module, the model achieved the best performance across all de-
tection metrics, with an overall AP of 51.5%, AP50 reaching 68.9%, and APg further improving
to 35.1%. In addition, to better illustrate the roles of Perpective Proposal and Semantic-Aware, we
visualized the gradient heatmaps under the model’s effect, as shown in Figure[3]
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Figure 3: Comparison of Gradient Heatmaps under Different Modules.

4.3 TOWARDS COMPLEX OBJECT DETECTION

Method Pub/Year | Backbone | APT AP5y APr; APs APy AP
Faster R-CNN (Ren et al.] 2015b R50 214 40.7 19.9 - - -
Cascade R-CNN  (Cai & Vasconcelos][2018) R50 22.6  38.8 232 - - -
QueryDet R50 28.3 48.1 28.8 - - -
Sparse-DETR* R50 30.7 526 30.0 222 41.8 495
CZDet . R50 332 583 3311 260 425 433
Focus-DETR* Zheng et al.|[2023 R50 312 528 30.8 223 420 527
DINO* Zhang et al.||2022 R50 323 544 322 237 430 524
Salience-DETR* (Hou et al.|[2024a) R50 316 533 31.8 23.1 424 528
pDETR* Ours | R50 | 341 565 343 252 452 55.6

Table 4: Comparison with state-of-the-art methods on Visdrone using ResNet50 (IN-1K) backbone.
The * means that we re-implement the methods and report the corresponding results.

The experimental results on the VisDrone dataset, which is shown in tableEL not only demonstrate
the effectiveness of pDETR in complex scenarios but also reveal the performance differences com-
pared to other models. Interestingly, on the large-scale dataset COCO2017, Salience-DETR sig-
nificantly outperformed DINO, but on the Visdrone dataset, DINO achieved better results than
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Salience-DETR. We believe this is due to the static sparsification ratio used by Salience-DETR,
which struggles to adapt well to complex scenes. In contrast, our proposed pDETR achieved the
best performance among DETR-like detectors in complex scenarios such as Visdrone, surpassing
the strong DINO baseline across all performance metrics, with an improvement of 1.8 AP.

4.4 CONVERGENCE ANALYSIS

35
50
30
% 45 % 05
® ®
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—e— pDETR —e— pDETR
30 Salience-DETR 5 Salience-DETR
—— DINO —— DINO
25 0
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(a) COCO2017-val Convergence Curve (b) VisDrone-val Convergence Curve

Figure 4: Convergence Curves on COC0O2017-val and VisDrone-val Datasets

According to figure [d]the convergence curves on the COCO2017-val and VisDrone-val datasets,
pDETR demonstrates a faster convergence rate and higher final performance compared to Salience-
DETR and DINO during the training process. In the COCO2017-val dataset, pDETR significantly
improved its performance within the first two training epochs, with the average precision (AP)
quickly approaching 40%, surpassing both Salience-DETR and DINO. In the VisDrone val dataset,
despite the challenges posed by small objects and complex backgrounds, pDETR maintained a rapid
convergence speed in the early stages of training. This indicates that pDETR not only excels on
large-scale general datasets but also exhibits robust applicability and efficiency when handling com-
plex scenes and small objects.

5 CONCLUSION

This paper proposes a novel end-to-end object detection transformer framework, named pDETR.
In pDETR, a Perspective Proposal mechanism is introduced to guide sparse sampling in the lower-
level features. To enhance semantic interaction among foreground queries, we developed a Se-
mantic Aware Module. This module further refines the localization of target categories within the
foreground areas identified by the Perspective Proposal while effectively suppressing background
noise. Experimental results demonstrate that our pPDETR method achieves significant performance
improvements on multiple public datasets. Specifically, it achieves a +2.5% improvement in Av-
erage Precision (AP) on the large-scale COCO2017 dataset and a 1.8% AP improvement on the
complex-scene VisDrone dataset. Moreover, pDETR significantly accelerates convergence speed
while maintaining high-precision detection performance, showcasing an excellent balance between
efficiency and performance. We hope that this work will inspire further insights into improving
DETR-like detectors.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF THE PERSPECTIVE PROPOSAL

The Perspective Proposal Module is designed to resolve spatial and semantic inconsistencies be-
tween feature layers by constructing proposals progressively. The process starts with the top feature
layer, which contains the richest semantic information, and proceeds downward, ensuring that the
higher-layer semantics effectively guide the spatial details in lower layers. For the topmost layer,
the original saliency mask is directly used as foreground tokens, determined by saliency scores from
Salience DETR (as shown in equation 1). These scores are calculated based on the distance between
each token’s position in the original image and the ground truth bounding box, ensuring the accuracy
of the selected tokens.

In subsequent layers, the foreground token positions from the previous layer are upsampled using
nearest-neighbor interpolation to match the resolution of the current layer. This upsampling ensures
that the high-level tokens are correctly projected onto the lower-resolution feature maps, maintaining
semantic consistency across layers. After upsampling, we refine the foreground token selection by
applying a 3x3 convolution to the mask, expanding each token’s influence to its neighboring pixels.
Tokens with activation values below a set threshold are considered isolated and removed. This
process helps ensure that the remaining foreground tokens are semantically relevant and spatially
consistent.

These operations are intended to prevent isolated tokens from negatively affecting the next layer’s
Perspective Proposal. Without removal, these tokens may lead to suboptimal proposals in later
layers, as they may lack sufficient information. By iteratively applying this refinement across layers,
the Perspective Proposal Module ensures the semantic information from higher layers aligns with
the spatial structure in lower layers, improving proposal quality and avoiding the negative effects of
isolated tokens.

A.2 IMPLEMENTATION DETAILS OF THE SEMANTIC-AWARE

The Semantic Aware Module (SCM) dynamically adjusts the query embeddings based on the
saliency of tokens across different semantic categories. Given a set of token embeddings Q) € RV >4,
where N is the number of tokens and d is the embedding dimension, the SCM applies a linear clas-
sification head that maps the token embeddings to m semantic categories:

S = Linear(Q), S e RN*m 9)

Here, S;; represents the predicted score for token 7 in category j. Next, a softmax function is applied
to S to normalize the scores across all categories for each token:

M = softmax (ma}éSij> , Vie{l,...,N} (10)

1,j<

Finally, the adjusted query embeddings @, are calculated dynamically by applying the softmax
operation and element-wise multiplication over the query matrix in feature layer 7":

KT
Q' = softmax (M ©Q+ QT\L[dTlVTL> (11)

In this formula, ® denotes element-wise multiplication, Q7 is the query matrix in feature layer
T!, and K+ and Vi represent the key and value matrices, respectively. d is the feature dimension
normalization factor.

This approach allows the model to focus more effectively on the salient tokens, while reducing the
interference from background noise.

12



Under review as a conference paper at ICLR 2025

A.3 COMPARISON OF DIFFERENT SELECTION STRATEGIES FOR PERSPECTIVE PROPOSAL

We compared two distinct selection strategies for the Perspective Proposal: Layer-by-Layer Per-
spective and Top-Layer Perspective, to evaluate their performance on the COCO 2017 dataset, as
detailed in Table[5] The Layer-by-Layer Perspective strategy progressively transfers high-level fea-
ture information across each layer, where the foreground tokens in each layer guide the Perspective
Proposal for sparse sampling in the subsequent lower layer. In contrast, the Top-Layer Perspective
strategy directly employs the foreground token positions from the highest layer to guide feature
selection in all lower layers, bypassing the intermediate layers’ transmission process.

Method AP T AP50 AP75 APg AP,; AP,

Layer-by-Layer 515 689 56.0 351 554 67.1
Top-Layer Perspective 494  66.8 533 330 529 649

Table 5: Comparison of methods across different AP metrics.

A.4 WHY WE NEED SPARSE ENCODING?

Backbone Model epoch AP Method Parameters (M) FLOPs (G)
R-50 DINO 12 48.0 Salience DETR 56 201
R-50 Salience DETR 12 50.7 DINO 48 298
R-50 pDETR 12 51.5 pDETR (Ours) 50 260

Table 6: Model performance with Hybrid Table 7: Comparison of parameters and
Querie. FLOPs.

We noticed that when using only the highest-level foreground tokens to construct Perspective Pro-
posal, the performance dropped by 2% AP. This is because the highest-level foreground tokens,
when mapped to lower-level features, almost covered all regions, failing to focus specifically on the
foreground area, and thus could not undergo further refined encoding. It is worth mentioning that we
adopted the Hybrid Queries (HQ) strategy. According to the study by H-DETR, directly applying
HQ on DINO results in a 1% AP drop. We believe this is because DINO does not perform specific
refinement for query tokens. The unrefined tokens add extra supervision signals, which easily lead
to erroneous learning in the decoder, thus reducing performance. Similarly, this is also why using
only the highest-level foreground tokens to construct Perspective Proposal without further refined
encoding leads to a performance drop when using hybrid query supervision.

In contrast, Salience-DETR employed a sparse coding approach with some degree of refinement
and achieved a 0.7% AP improvement after introducing HQ. This further demonstrates that sparse
coding can effectively reduce interference from irrelevant regions and improve model performance
in complex scenarios. However, Salience-DETR still uses a static sparsification ratio, which limits
its adaptability to diverse scenes.

Our pDETR adopts a more refined layer-by-layer strategy. It uses Perspective Proposal to sparsely
match query tokens with the foreground regions, followed by a semantic-aware refinement step to
focus further on foreground objects. Unlike DINO, which processes all query tokens indiscrimi-
nately, pDETR’s sparse coding approach is more targeted, ensuring that the HQ strategy focuses on
useful foreground features. This approach not only avoids interference from irrelevant information
but also fully exploits the advantages of sparse coding, leading to better performance across all met-
rics compared to DINO, while also reducing FLoPS by 13%, significantly improving the model’s
overall efficiency.

A.5 THE DETAIL OF LOSS FUNCTION

The focal loss L is used to supervise the selection of foreground tokens. The formula for the focal
loss is:

Ly = —ay(1 —p;)7 log(p:) (12)
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where o is a balancing factor used to adjust the weights of positive and negative samples, and y is a
modulation factor that controls the model’s focus on hard-to-classify samples. The object confidence
p; represents the model’s confidence that a sample belongs to the target class, and is calculated as:

pr=00+(1-0)(1-0) (13)

This formula combines the predicted value 6 and the ground truth value 6 to generate an assessment
of confidence. We keep the same parameter settings as Salience DETR, as oy = 0.25 and y = 2.

A.6 ANALYZING THE COMBINATION OF FOREGROUND AND BACKGROUND

Foreground + Background Tokens Entering the Decoder: This strategy allows the decoder to
access richer contextual information by incorporating both foreground and background tokens. This
approach is particularly effective in complex scenes, as background tokens assist the model in distin-
guishing between foreground and background objects more accurately. The results indicate that this
method shows improved performance in detecting large objects (APL) and medium objects (APM).
Specifically, with backbone background encoding, the model achieves an overall Average Precision
(AP) of 51.5, AP50 of 68.9, and AP75 of 56.0. The inclusion of additional background informa-
tion enhances the decoder’s ability to grasp the global features of objects. However, it is important
to note that this strategy may also introduce unnecessary background noise, which could adversely
affect the detection accuracy of small objects (APs), where the model recorded an AP of 35.1.

Only Foreground Tokens Entering the Decoder: In contrast, this strategy focuses exclusively on
the high-saliency regions of the foreground, minimizing interference from background noise. By
processing only salient feature information related to the target, this method excels in small object
detection (APs), as it enables the decoder to operate without the distractions posed by irrelevant
background information. Without backbone background encoding, the model achieves an AP of
51.2, with an AP50 of 68.9, and AP75 of 55.8; however, the small object detection accuracy (APS)
drops to 34.3.

Backbone background encoding epoch AP AP;y AP7;; APs APy APp

R-50 v 12 515 689 560 351 554 67.1
R-50 X 12 512 689 558 343 549 66.6

Table 8: Model performance with and without background embedding.
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