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ABSTRACT

Current AI alignment techniques treat human preferences as static and model them
via a single reward function. However, our preferences change, making the goal
of alignment ambiguous: should AI systems act in the interest of our current, past,
or future selves? The behavior of AI systems may also influence our preferences,
meaning that notions of alignment must also specify which kinds of influence
are—and are not—acceptable. The answers to these questions are left undeter-
mined by the current AI alignment paradigm, making it ill-posed. To ground
formal discussions of these issues, we introduce Dynamic Reward MDPs (DR-
MDPs), which extend MDPs to allow for the reward function to change and be
influenced by the agent. Using the lens of DR-MDPs, we demonstrate that agents
trained with current alignment techniques will have incentives for influence—that
is, they will systematically attempt to shift our future preferences to make them
easier to satisfy. We also investigate how one may avoid undesirable influence by
leveraging the optimization horizon used or by using different DR-MDP optimiza-
tion objectives which correspond to alternative notions of alignment. Broadly,
our work highlights the unintended consequences of applying current alignment
techniques to settings with changing and influenceable preferences, and describes
the challenges that must be overcome to develop a more general AI alignment
paradigm which can accommodate such settings.

1 INTRODUCTION

The goal of AI alignment is to make systems act according to our preferences,1 which are generally
modeled via a static reward function that the AI system is trained to optimize (Leike et al., 2018).
However, our preferences can change over time, making it unclear which reward function should
be optimized by alignment techniques: should it be one corresponding to our current preferences,
our past preferences, or future preferences? As an example, consider Alice, who is trying to quit
smoking. Initially, she instructs her AI assistant to always try to help her quit smoking. Some time
later, having abandoned her attempt at quitting, she asks the AI to help her acquire cigarettes. In such
a scenario, it’s unclear if the AI should respect Alice’s original preference for quitting or respect the
autonomy of “current Alice” who prefers to smoke. Ultimately, a question which must be addressed
for AI alignment to be a well-posed problem—even in the case of a single stakeholder—is the
following: when there are differences between a person’s preferences at different points of time,
which preferences should be optimized for?

While the challenge of aggregating preferences across time shares similarities with that of aggregat-
ing across people in multi-agent alignment (Mishra, 2023), it is significantly complicated by the fact
that AI systems’ actions can influence humans, including their future preferences (Burtell & Wood-
side, 2023). Even further, if current AI systems are optimized to satisfy users’ future preferences,
they will actively try to change them to be easier to satisfy (Russell, 2019; Carroll et al., 2022). For
example, if Alice uses a chatbot optimized to maximize her future satisfaction, it would have an
incentive to influence her in ways that increase approval at later points in time (Kenton et al., 2021):
the chatbot may even be incentivized to persuade Alice to continue smoking worry-free if it’s easier
to encourage her habit (and get approval that way) than provide effective suggestions on how to stop
her addiction. If eventually Alice truly is satisfied with the system, one may say it is aligned with her
“later self”, despite it being clearly misaligned with her “initial self.” However, if Alice continues
smoking but would have quit were it not for the chatbot’s influence, the alignment with “later Alice”

1We use the term “preferences” loosely, referring to any of the standard targets for AI alignment such as
“values,” “intentions,” or “norms” (Gabriel, 2020) – see Appendix A.1.
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may seem to be the result of manipulation, which may undermine the legitimacy of any such claim
to alignment (Ammann, 2024).

While past work has discussed these issues conceptually, there is not yet a framework with which to
analyze them formally and explore which notions of alignment are most appropriate for AI decision-
making under dynamic and influenceable preferences. To address this, we introduce a natural exten-
sion of Markov Decision Processes (MDPs) which accounts for changing preferences by modeling
them as changing reward functions: Dynamic Reward MDPs (DR-MDPs). Importantly, choos-
ing the optimization objective in a DR-MDP encodes an answer to the normative question of what
alignment should entail (Section 2).

Current AI alignment approaches do not model the dynamic and influenceable nature of agents,
raising the following question: which of an individual’s time-varying preferences do they optimize?
Viewed through the lens of DR-MDPs, we show that standard approaches to alignment (such as
those used for recommender systems and language models) correspond to DR-MDP optimization
objectives which lead to potentially undesirable side effects in many settings with changing rewards.
In particular, the resulting systems will often actively try to influence users’ reward functions or
induce “reward lock-in”—suggesting that the targets of alignment implicit in current techniques
may be inadequate for dynamic-reward settings (Section 3).

We then consider approaches aimed at avoiding undesirable influence. Firstly, we analyze how the
optimization horizon can be a useful lever for reducing the incentives for influence which emerge
from current alignment techniques. However, we show how changing the horizon does not always
allow to avoid all influence (Section 4), leading us to try solve the problem at its root by considering
different DR-MDP objectives (i.e., notions of alignment), that encode which AI influences should
be considered acceptable and unacceptable (Section 5 and appendix E.3). Our analysis suggests
that this endeavor will inevitably involve navigating tough normative trade-offs: all the most natural
DR-MDP objectives lead to policies which may cause unwanted influence or are impractically risk-
averse—leading inaction to be the only optimal behavior in many settings. Ultimately, our goal is
to provide a clear framework and theoretical insights to guide future efforts in developing practical
alignment techniques for dynamic settings. While defining optimality in such settings may remain
normatively challenging, we are optimistic that the ultimate goal of building systems that reliably
exhibit acceptable behavior in practice is within reach.

Our main contributions can be summarized as follows:

1. We provide the formal language of Dynamic Reward-MDPs (DR-MDPs) for analyzing AI in-
fluence in settings with changing reward functions.

2. We show how the current alignment paradigm systematically leads to potentially undesirable
influence incentives when applied to dynamic-reward settings.

3. We compare many natural alternate notions of alignment, arguing that they either fail to avoid
potentially undesirable influence or are impractically risk-averse.

2 DYNAMIC REWARD MDPS (DR-MDPS)

One of our main theoretical contributions is a generalization of Markov Decision Processes which
we call Dynamic Reward MDPs (DR-MDPs). While MDPs have been extensively used to reason
about decision-making with static reward functions, DR-MDPs allow us to analyze AI decision-
making with changing and influenceable reward functions.

Recall the standard definition of an MDP ⟨S,A, T , R⟩, where S is the state space; A is the action
space; T (s′|s, a) is the state transition function; and R(s, a, s′) is the reward function. The goal is
to find a policy π which maximizes the expected sum of rewards: Eπ

[∑T
t=0 R(st, at, st+1)

]
. We

now turn to defining DR-MDPs:

Definition 1. A DR-MDP is a tuple M = ⟨S,Θ,A, T , Rθ⟩:
• S is a state space.
• Θ is a set of reward parameterizations.
• A is an action space.
• T (st+1, θt+1|st, θt, at) is a transition function, which encodes both state and reward dynamics.
• For each θ ∈ Θ, a reward function Rθ(st, at, st+1).
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Figure 1: Conspiracy Influence DR-MDP. The AI system can choose whether to expose Bob to
conspiracies, which changes his preferences (and reward function). Under his original preferences,
Bob wants the system to never show him conspiracy content, even in hypothetical situations in
which he were to prefer it. Instead, once Bob prefers conspiracy content, he wants the AI to always
expose him to it, even if he were to go back to strongly disprefer it. Because there is no policy which
maximizes both of Bob’s potential reward functions, the DR-MDP is normatively ambiguous.

Each θ can be thought of as the cognitive state of the human, which includes anything that affects
their evaluation of state-action pairs (e.g. preferences, values, intentions). Unlike in MDPs, in DR-
MDPs a single transition can be evaluated differently by different reward functions, i.e., it is possible
for Rθ(st, at, st+1) ̸= Rθ′(st, at, st+1) if θ ̸= θ′. This makes it unclear which θ one should choose
for evaluating each transition, differentiating our formalism from simply considering rewards to be
context-dependent (Appendix A.3). In particular, we will argue that choosing to use θt for evaluating
(st, at, st+1), despite seeming intuitive, has drawbacks. Moving forward, we consider all cognitive
states Θ to be reachable2, including for our definitions that follow.

2.1 DR-MDP OPTIMALITY AND NORMATIVE AMBIGUITY

Unlike MDPs, DR-MDPs may not have a clear notion of optimality: the different reward functions
may disagree on what actions (and policies) are optimal, making the question of how one should act
in a DR-MDP—and what alignment should entail—normatively ambiguous.

Definition 2 (Optimality with respect to θ). We say a policy π∗
θ for a DR-MDP M is optimal with

respect to θ if: π∗
θ ∈ argmaxπ Eπ

[∑T
t=0 Rθ(st, at, st+1)

]
.

Definition 3 (Normative ambiguity). A DR-MDP is normatively ambiguous if there is no policy
which is optimal with respect to all reachable reward functions Θ, i.e. ∄ π ∈ Π s.t. ∀ θ ∈ Θ:
π ∈ argmaxπ′ Eπ′

[∑T
t=0 Rθ(st, at, st+1)

]
.

Note that for normatively unambiguous DR-MDPs, there will be one (or more) policies which are
optimal with respect to all θs, making it a natural choice for such policies to be considered optimal
for the DR-MDP as a whole.3 Instead, in normatively ambiguous DR-MDPs it is often unclear what
AI behavior is (un)desirable and should count as optimal.

Figure 1 describes4 a toy example in which there are two possible “cognitive states” θnatural and
θinfluenced, and two corresponding reward functions. At each timestep the AI can choose to influence
Bob’s cognitive state (which in this example is simply his preferences) to θinfluenced, or do nothing,
which has Bob go back to θnatural. The optimal policy with respect to θnatural would be to always
choose the “do nothing” action. Instead, the optimal policy with respect to θinfluenced would be to
always influence Bob, even if he starts off in the “natural” state. As there is no overlap in optimal
policies, the DR-MDP is normatively ambiguous.

2.2 EVALUATING BEHAVIOR UNDER NORMATIVE AMBIGUITY

Choosing a notion of optimality in normatively ambiguous DR-MDPs entails normative choices:
one must specify which reward function(s) should be the target of alignment—in spite of their
differences in optimal policies—and which forms of AI influence should be (un)acceptable. We
limit specifications of optimality to be expressible as utility functions U(ξ) over trajectories ξ =
{(st, at, st+1, θt)}Tt=0.

Definition 4 (Optimality with respect to U(ξ)). In a DR-MDP M , we say a policy π∗ is optimal
with respect to a utility function U(ξ) if it maximizes expected utility: π∗ ∈ argmaxπ Eξ∼π[U(ξ)].

By choosing an objective U(ξ), one can reduce the DR-MDP to an MDP with a well-posed notion
of alignment.5

2I.e. each θ may be realized under some policy (Appendix A.2).
3Note that any standard MDP can be viewed as a DR-MDP with a single reward θ – and is thus normatively

unambiguous.
4See Appendix B.1 for the full formalism of any example.
5This may require putting history in the state (Appendix A.4).
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Challenges with choosing U(ξ). Considering the example from Figure 1, one may have strong
normative intuitions that θinfluenced is an “unreliable” grounding for evaluating the AI’s behavior, as
it may seem like θinfluenced can only be the result of illegitimate AI influence. However, changing the
narrative of the example, without changing the mathematical structure modeled by the DR-MDP,
can affect one’s normative intuitions: some alternate narratives lead the influence to even seem
desirable (Appendix A.5). This suggests that the “correct” notion of optimality for a DR-MDP may
sometimes be unidentifiable from its formal structure alone. More broadly, the rest of the paper
demonstrates the challenges with settling on a single U(ξ) (or equivalently, a notion of alignment)
which generalizes favorably to all domains.

Risks of incorrectly choosing U(ξ). The choice of U(ξ) is fundamentally important: insofar as
the system designer chooses U(ξ) “incorrectly,” this might lead to highly undesirable downstream
outcomes. Notably, it can create incentives for the AI to influence the human to have certain reward
functions rather than others, in ways that might even rely on deceiving, manipulating, or coercing
the human (Kenton et al., 2021; Ward et al., 2023; Carroll et al., 2023).

3 THE INFLUENCE INCENTIVES OF CURRENT ALIGNMENT TECHNIQUES

Most alignment techniques ultimately involve maximizing some notion of static reward, e.g.∑T
t=0 R(st, at, st+1). However, AI systems are already deployed in domains in which users’ pref-

erences can change significantly during over the course of their interactions with the system—as
with recommender systems or chatbots (Rafailidis & Nanopoulos, 2016; Aggarwal et al., 2023).
Seen through the lens of DR-MDPs, this means that the objective U(ξ) that corresponds to current
alignment techniques is of the form

∑T
t=0 Rθ(st, at, st+1), where the choice of θ for each timestep

is not explicitly specified (and will depend in practice on details of the training setup). While we
will consider a whole range of alignment techniques and their corresponding DR-MDP objectives
in Table 1, here we will focus on two of the most natural DR-MDP objectives, which are implicitly
used by RL recsys and multi-timestep RLHF for LLMs: we argue that both these objectives will
lead to potentially undesirable influence.

3.1 OPTIMIZING CUMULATIVE (REAL-TIME) REWARDS

If each timestep t is evaluated according to the cognitive state θt which the human had at that specific
timestep, maximization of cumulative reward reduces to the real-time reward DR-MDP objective:
maxπ Eξ∼π[URT(ξ)] = maxπ Eξ∼π

[∑T
t=0 Rθt(st, at, st+1)

]
.

While this might seem like an intuitively promising objective (“shouldn’t we maximize the per-
son’s happiness as experienced at each point of time?”), we’ll argue that it can lead to undesirable
influence incentives.

RL Recsystems implicitly use URT(ξ). In the context of recommender systems, users give direct
reward feedback (e.g. clicks) at each timestep t from the point of view of their current cognitive
state θt. As RL recommenders maximize the cumulative reward objective

∑T
t R(st, at, st+1) (Afsar

et al., 2021), they are implicitly using the real-time reward objective URT(ξ) in the underlying DR-
MDP.6 However, systems trained with URT may be incentivized to influence users: intuitively, 1)
users’ preference dynamics are just one part of the environment dynamics that the system must
model implicitly to maximize reward, and 2) it may be worth changing users’ cognitive states (and
corresponding reward functions) to ones that lead to higher future reward (Carroll et al., 2022).

URT(ξ) and the conspiracy influence example. As an example of why real-time reward maxi-
mization can lead to undesirable incentives to influence users, consider the DR-MDP from Figure 1.
For any horizon > 2, the optimal policy with respect to URT(ξ) is to always take the ‘influence’ ac-
tion, regardless of Bob’s current cognitive state: even if Bob initially has the θnatural cognitive state,
leading the first ‘influence’ action to receive −100 reward, later ‘influence’ actions are evaluated
by Bob under θinfluenced as worth 100 reward, which makes up for the initial “influence cost.” The
fact that the optimal policy under URT(ξ) systematically chooses to turn Bob into a conspiracy theo-
rist, despite him initially disprefering it, seems objectionable. We justify the plausibility the reward
function values, which this interpretation depends on, in Appendix B.2.

6This DR-MDP objective correspondence, and all others we consider, depend on additional simplifications
(Appendix F).
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Figure 2: Dehydration DR-MDP. Initially, Charlie drinks one unit of water a day (s = 1), but wants
to drink 2 a day (θ = 2), leading to a reward of−1. The AI can successfully convince Charlie that he
should drink 3 or 4 units of water a day by increasing their anxiety about the dangers of dehydration,
or do nothing. The reward function is given by a term which captures Charlie’s “disappointment”
in missing his hydration target, and an “anxiety cost” about how much he worries about his water
intake. Charlie always drinks one less unit of water than he aims to.

We explore further issues with URT(ξ) in section Section 4.2, showing that under weak conditions
optimizing real-time rewards over sufficiently long horizons will always lead to influence incentives;
however, shortening the horizon can make other influence incentives emerge.7

3.2 LEARNING A REWARD MODEL Rθ0 , THEN OPTIMIZING IT

Another common approach to train AI systems is based on a two-phase process: first performing
reward learning and then optimizing the learned reward (Leike et al., 2018) (which we model as
learning and optimizing their initial reward function, θ0). The usage of the standard cumulative
reward objective with this setup is equivalent to what we call initial reward function maximization:
maxπ Eξ∼π [UIR(ξ)] = maxπ Eξ∼π

[∑T
t=0 Rθ0(st, at, st+1)

]
.

Again, even though this might seem an intuitively promising objective because “by optimizing the
human’s initial wants, at least we won’t have incentives to influence them” – we show that this
intuition is not just wrong: the resulting influence incentives can be arbitrarily bad.

Multi-timestep RLHF for LLMs implicitly uses UIR(ξ). Recently, there is growing interest in
having LLMs plan over multiple timesteps of interaction (Abdulhai et al., 2023; Irvine et al., 2023;
Hong et al., 2023b). Let’s consider a simplified RLHF setup for training a therapy chatbot, where
we initially learn a reward model for a single user based on the preferences θ0 they have before
deployment. We then train the system to maximize UIR(ξ), i.e. long-term reward as evaluated by the
static reward model Rθ0 . At deployment, we would expect the chatbot to possibly curtail the user’s
growth (inverting the example of Alice from Section 1. More broadly, initial reward maximization
will lead the resulting AI system to only perform behaviors that would have been evaluated highly by
the person as they were at reward learning time, which can hinder (potentially important) changes
in the cognitive states for the person.

UIR(ξ) can lead to “reward lock-in.”8 To better understand the incentives for AI systems trained
to maximize the initial reward function, consider the example from Figure 1 again. If Bob’s initial
reward state were the “influenced” one, when using the UIR(ξ) objective the resulting optimal policy
would be to always take the “influence” action (keeping Bob in the “influenced” reward state).
Moreover, even if Bob were to somehow end up in the “natural” reward state, which encodes a
preference to not be influenced, the optimal behavior according to UIR(ξ) would be to influence
him in spite of his current reward function. Ultimately, initial reward maximization will entrench
the “desirable agent behaviors” expressed at the time of the reward learning, even though later one
might, legitimately, change their mind. Even retraining the reward model isn’t sufficient: once the
person is manipulated, they are effectively “locked-in”—they would express the desire to continue
to be manipulated.

UIR(ξ) can lead to influence “away from” θ0. Maximizing the sum of rewards evaluated by the
initial reward function Rθ0 need not lead to lock-in. In fact, surprisingly, optimizing UIR(ξ) may
even create reward influence incentives “away from” the optimized reward function θ0.9 Intuitively,
accessing the highest reward region of the space as evaluated under θ0 might require shifting the
preferences to some other θ. Consider the example from Figure 2: maximizing reward as evaluated
by Rθ0 = Rθ=2 will entail influencing the reward function to be Rθ=3, as that reward function is
associated with the state s = 2, which is what Charlie aims for in the initial state.

7Additional issues not discussed in Section 4.2 include that maximizing U(ξ) can even lead to acting dif-
ferently from normatively unambiguous solutions to DR-MDPs – see Appendix E.1.

8For more history of the term “lock-in,” see Appendix C.3.
9We define this more formally in Appendix C.2.
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Capable of influence, 
which may be optimal

Not capable of 
influence

Influence incentiveCapable of influence, 
but it is suboptimal

Longer horizonShorter horizon

Influence incentive Influence suboptimal 
due to long-run cost

Figure 3: Possible interactions between
the optimization horizon and influence
incentives. An influence type may ex-
hibit any subset of these interactions.
See Appendix D for more details.

Figure 4: Clickbait DR-MDP. Giving the user clickbait
– which temporarily leads to higher reward – makes users
disillusioned about the quality of the recommendations,
leading to lower long-term user reward. If replanning at
every timestep taking the myopically optimal action (opti-
mal under horizon 1), one would always choose clickbait,
but using longer planning horizons one wouldn’t.

UIR(ξ) can lead to arbitrarily poor real-time reward. Additionally, note that the influence of the
reward function to be Rθ=3 – optimal under UIR(ξ) – will lead to poor real-time reward evaluations
of the resulting state Rθ=3(2) = −5 (while Rθ0(2) = Rθ=2(2) = 0). This is symptom of a
broader issue: whether there exists an influence incentive to shift the reward function to a certain θ′

in order to maximize reward as evaluated by θ0 can be completely independent of how θ′ evaluates
the actions taken in the name of θ0 while θ′ is realized: it’s easy to construct examples in which θ′

would be arbitrarily unhappy with the actions which are taken in order to satisfy θ0, meaning that
the cumulative real-time reward could be arbitrarily bad. Even though we have already talked about
the issues with using real-time reward as an evaluation mechanism, it still seems undesirable for
someone to be consistently unhappy in the name of an initial goal which they don’t have anymore.

4 INFLUENCE AND OPTIMIZATION HORIZON

We showed that URT(ξ) and UIR(ξ)—which are implicitly optimized by some alignment
techniques—lead to policies that influence human’s cognitive states. We now formalize the no-
tion of influence incentives more rigorously, in order to analyze whether changing the horizon may
reduce AI influence, and formally contrast many objectives in Section 5.

4.1 FORMALIZING INFLUENCE AND INFLUENCE INCENTIVES

To say an AI system influenced a human, one must answer the question “relative to what?”. We
anchor our notion of influence relative to how the human’s reward function would have evolved in
the absence of the system. To do so in the DR-MDP formalism, we assume it’s meaningful to talk
about an inaction policy πnoop that we can compare to, which always takes a noop action anoop ∈ A.10

Definition 5 (Natural reward evolution). The natural reward evolution of a DR-MDP is the distri-
bution P(ξθ|πnoop) of reward trajectories ξθ = (θ0, . . . , θT ) induced by the inaction policy πnoop.11

Definition 6 (π influences the reward). We say π influences the reward in a DR-MDP M if induces
a different reward evolution than the natural reward evolution, i.e. if P(ξθ|π) ̸= P(ξθ|πnoop).

Definition 7 (Incentives for reward influence12). We say that a notion of optimality U(ξ) leads to
incentives for reward influence in a DR-MDP if all policies which are optimal with respect to U(ξ)
influence the reward evolution, i.e. P(ξθ|π∗) ̸= P(ξθ|πnoop) for any optimal policy π∗.

Note that if there are incentives for reward influence, maximizing the objective will always entail
changing the evolution of the reward function relative to the inaction policy.

4.2 THE RELATIONSHIP BETWEEN HORIZON AND INFLUENCE

Prior work has suggested that an AI system’s influence incentives in a domain will often strongly
depend on the optimization horizon used: Krueger et al. (2020) argue to keep systems myopic in
order to avoid influence incentives; Carroll et al. (2022) favor using long horizons but explicitly
penalizing influence; and Carroll et al. (2023) informally claim that even 1-timestep horizons might
lead to manipulation incentives. We attempt to unify these (partially) contrasting intuitions with the
following informal claims:

• Claim 1: The longer the optimization horizon used, the more likely that influence is optimal.

10For more motivation about these choices, see Appendix C.1.
11Any policy π in a DR-MDP will induce a distribution over trajectories (and thus over reward function

trajectories). Once one sets a policy, any DR-MDP can be modeled as a Markov Chain, for which one can
compute probabilities of this kind.

12This is a broader definition relative to prior ones grounded in Causal Influence Diagrams. See Ap-
pendix C.4 for a comparison.
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• Claim 2: Switching to shorter horizons (including of a single step) may remove incentives for
some forms of influence, but may introduce others.

Under the headers that follow—which match the three ways in which changing the horizon can
change the optimality of influence (Figure 3)—we give evidence to back our claims.

A shorter (longer) optimization horizon makes the system capable of less (more) types of influ-
ence (Figure 3, top). Claim 1 in part rests on the intuition that as the horizon increases, the avenues
for reward influence that were present for shorter horizons remain available, and new ones which
require longer horizons may become available. Inversely, we can eliminate some avenues for reward
influence just by decreasing the horizon.

A shorter (longer) optimization horizon can make influence less (more) worthwhile (Figure 3,
middle). Another argument in support of Claim 1 is that influencing the human’s reward function
will often take multiple timesteps, and have an associated “opportunity cost”: if one is optimizing
for a short enough time horizon, there might not be enough time to reap the benefits of influence.
With a longer horizon, such influence can thus become more advantageous. We can support this
intuition with a theoretical result, which applies to a broad class of DR-MDPs, providing a sufficient
condition for reward influence to be optimal when considering sufficiently long horizons.

Definition 8. We say M is a 2-reward DR-MDP if:
• Θ = {θ ̸∆, θ∆}, and the initial state and reward parameterization are respectively s0 and θ ̸∆.
• T is deterministic, and to transition to θ∆ one must take an “influence action” a∆ in a reachable

state s∆.

Let the average infinite-horizon URT-reward be defined as r̄(π, s, θ) = limh→∞
1
hURT(ξ0:h|π, s0 =

s, θ0 = θ).13 Let s′∆ be the successor state to taking the influence action a∆ in state s∆, and Π ̸∆ be
the space of policies under which θ∆ is never realized. We can now state the theorem:

Theorem 1. In any 2-reward DR-MDP, if influencing the reward leads to higher infinite-horizon
average reward by some amount ϵ > 0, i.e., if there exists a policy π such that

r̄(π, s′∆, θ∆)− max
π ̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) > ϵ,

then URT will lead to incentives for reward influence (Definition 7) for a sufficiently large planning
horizon H .14

A shorter (longer) optimization horizon can hide (reveal) long-term costs of influence (Fig-
ure 3, bottom). From Theorem 1, one might conclude that it is best to use short optimization
horizons, as it may remove and disincentivize influence which would be optimal with a longer hori-
zon. However, influence may be optimal even for fully myopic systems (for which H = 1), as
with clickbait in myopic recommenders systems (Figure 4). This example also shows that influ-
ence with negative long-term effects may only be optimal for short horizons (supporting Claim 2):
clickbait may increase a user’s immediate engagement, but it erodes their future trust in the sys-
tem. When influence has negative long-term effects which are eventually reflected by the reward, a
longer optimization horizon will allow the system to recognize the suboptimality of that influence.
The avoidance of clickbait was indeed one of the motivations for YouTube to explore using longer
horizons (Chen, 2019).

Overall, our analysis shows that there does not exist a one-size-fits-all solution to avoiding all influ-
ence incentives by just changing the horizon: there will be domain-specific tradeoffs between system
capabilities and risks of undesirable influence, for both short and long optimization horizons. In-
deed, the optimality of a specific form of influence can be related in many possible ways to the
horizon used. We provide exhaustive examples in Table 5.

5 COMPARING OPTIMALITY CRITERIA FOR DR-MDPS

Having concluded that the optimization horizon is no panacea for removing influence incentives, we
now try to address the problem at its root, asking what it would take to design a DR-MDP objective
which specifically accounts for reward function dynamics and the possibility of influence.

13Adapted from Sutton & Barto (2018) – see Appendix D.5.
14See Appendix D.6 for the proof of the theorem.
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Table 1: For each objective from Table 2, we give motivating intuitions, considerations, and review
prior work which uses them. Details of how the approaches in prior work roughly reduce to their
corresponding DR-MDP objective are discussed in Appendix F.

Name / (Implicit) Prior Usage (Potentially Flawed) Motivating Intuition Weaknesses & Limitations
Real-time Reward
RL recsystems (Afsar et al., 2021),
TAMER (Knox et al., 2013), and others

“Only the evaluation of the current self (and reward function)
should matter for each moment, as they are the one experiencing
that moment.”

Likely Influence Incentives: Despite looking misleadingly familiar and well-
grounded, as we showed in Sections 3.1 and 4.2, we expect this objective to often
lead to highly undesirable incentives for reward influence.

Final Reward
Feedback given after multi-step interac-
tion, e.g. LLM thumbs-up

“The best possible evaluation of a trajectory is retrospective, as
people’s wants and evaluations are generally refined over time.”

Carte blanche for Influence incentives: the motivating intuition doesn’t account
for influence e.g. for example in Figure 1, even for an horizon of 1, it’s optimal to
manipulate under final reward maximization.

Initial Reward
Multi-step RLHF (Hong et al., 2023a);
Everitt et al. (2021b); Shah et al. (2019b)

“If changes to the human’s reward function are completely ig-
nored by the optimization objective, there should be no incentive
for the agent to influence it.”

Likely reward lock-in, possibility of influence incentives, and of arbitrarily
bad real-time reward. The motivating intuition we give to the left is wrong, in
all the ways argued in Section 3.2.

Natural Shifts Reward
Carroll et al. (2022); Farquhar et al.
(2022)

“People’s reward evolves even in the absence of the AI: to avoid
lock-in one could try grounding evaluations in the reward func-
tions which occur under the natural reward evolution.”

Gives up on the AI enabling human to improve their reward function relative
to its natural evolution, and can still lead to undesirable influence incentives,
even away from the natural evolution, e.g. as in the example from Figure 2.

Constrained RT Reward
Ours

“By constraining the policy to induce the natural reward evolu-
tion, we fully ensure that there won’t be influence, while allowing
to optimize real-time reward locally.”

Gives up on the AI enabling human to improve their reward function relative
its natural evolution, and may be impractically conservative: given its conser-
vativeness, the objective might limit behaviour to be the same or similar to πnoop.

Myopic Reward
Standard LLM RLHF (Ouyang et al.,
2022); Myopic recsys (Thorburn, 2022)

“As reward influence incentives arise from the AI system exploit-
ing the fact that it can affect future rewards, let’s simply make the
system unaware of the entire future.”

Myopic systems can still have influence incentives (e.g. clickbait example from
Figure 4, and broader discussion in Section 4), and are less capable than longer-
horizon counterparts.

Privileged Reward
CEV (Yudkowsky, 2004); correcting for
cognitive biases (Evans et al., 2015)

“If one is convinced that a specific reward θ∗ is the ‘correct’ one
for a setting, we should evaluate trajectories based on that single
reward function.”

Requires normative choice, and can still lead to influence away from θ∗. Iden-
tifying the ‘correct’ objective requires taking a normative stance (Section 2.1).
Optimizing θ∗ can still lead to influence incentives away from it (e.g. Figure 2).

ParetoUD
Ours

“All objectives above violate the UD property: optimal policies
can be worse than the inaction policy for some of the reward
functions. This is unnecessarily risky – let’s search for a Pareto
Efficient policy satisfying UD.”

Satisfying UD may be overly restrictive: depending on “how much disagree-
ment” there is between the different reward functions of the DR-MDP at hand,
the only policy satisfying UD might be the inaction one πnoop, as in the examples
from Figures 1 and 6.

Any choice of U(ξ) must specify which reward function(s) evaluate each state-action pair (st, at)
in a trajectory ξ: Should one only consider the reward function realized at that timestep Rθt? What
about earlier reward functions (Rθ0 , . . . , Rθt−1

), which may strongly disagree with the choice at
timestep t, or later ones (Rθt+1

, . . . , RθT ), which might have been unduly influenced? Should one
also consider reward functions Rθ for cognitive states θ which were not realized in ξ, but could have
been reached?

In Tables 1 and 2 we present the maximization problems, motivations, and limitations of various
choices of objectives. Optimal policies corresponding to each objective for all our examples can be
found in Table 4.

Real-time Reward. While we motivate this objective in Table 1, we’ve already shown its issues in
Sections 3 and 4.2.

Final Reward. Similarly to the real-time and initial reward, the final reward objective also corre-
sponds to a standard static-reward paradigm under a specific training setup: e.g. if one only obtains
human reward feedback at the end of a multi-step interaction (e.g. a thumbs up after a full LLM
dialogue). While it has a plausible motivation (Table 1), it will likely lead to even more of a carte
blanche for influence incentives than the real-time reward one.

Initial Reward. Using UIR(ξ) attempts to make the system “unaware” of its capacity to influence the
reward (Everitt et al., 2021b). While this removes “direct” influence incentives (see Appendix C.4),
it does not preclude the possibility of undesirable influence, as explored in Section 3.

Natural Shift Reward. Grounding each trajectory’s evaluation in the natural reward evolution also
makes the system “unaware” of its potential to influence the human’s reward function, but similarly
fails to remove all potential influence incentives, as can be seen from Figure 2.

Constrained RT Reward. Building on the intuition behind the above objective, we add the lack of
influence as a explicit constraint in the maximization problem to the real-time reward objective (as it
seems like a plausible objective if one isn’t concerned about influence). However, this may make the
system overly conservative: it leads to πnoop being optimal in most examples we consider (Table 4).

Table 2: DR-MDP objectives (notions of alignment) we compare.
Objective Name Optimization Problem maxπ Eξ∼π[U(ξ)]

Real-time Reward maxπ E
[∑T

t=0 Rθt(st, at, st+1)
]

Final Reward maxπ E
[∑T

t=0 RθT (st, at, st+1)
]

Initial Reward maxπ E
[∑T

t=0 Rθ0(st, at, st+1)
]

Natural Shifts Reward maxπ E
[∑T

t=0

∑
θP(θt = θ|πnoop)Rθ(st, at, st+1)

]
Constrained RT Reward maxπ s.t. P(ξθ|π)=P(ξθ|πnoop) E

[∑T
t=0 Rθt(st, at, st+1)

]
Myopic Reward maxat E

[
Rθt(st, at, st+1)

]
Privileged Reward maxπ E

[∑T
t=0 Rθ∗(st, at, st+1)

]
ParetoUD Find π s.t. PE(π) ∧ UD(π)
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Myopic Reward. A more drastic approach to make a system “unaware” is to use a fully myopic
objective (i.e. using a horizon of 1). However, this will still not guarantee the removal of all influence
incentives (as discussed in Section 4.2), and may reduce system performance unacceptably.

Privileged Reward. This objective corresponds to maximizing cumulative reward with respect to
a single, “privileged,” reward function. Insofar as one picks a reward function which leads to good
downstream behavior, there is nothing wrong with this objective, but as discussed in Section 2.2, it
is challenging to do so for complex settings.

ParetoUD. For a discussion of the ParetoUD objective which we propose, see Appendix E.3.

6 RELATED WORK AND DISCUSSION

Preference changes in AI. While there is growing recognition of the importance of accounting for
influence (Bezou-Vrakatseli et al., 2023), manipulation (Carroll et al., 2023), and preference changes
(Franklin et al., 2022), there has been limited prior work focusing on operationalizing what should be
optimized under preference changes. While some have suggested to aim for preference stationarity
(Dean & Morgenstern, 2022), most other prior work which accounts for preference change generally
takes either a descriptive stance (Curmei et al., 2022), or an explicit normative stance on what the
correct notion of optimality is for their specific setting (Evans et al., 2015; Sanna Passino et al.,
2021).

Influence incentives. While the point that standard RL can lead to “feedback tampering” incentives
is not new (Everitt et al., 2021b; Carroll et al., 2022; Kasirzadeh & Evans, 2023), we focus on for-
malizing the challenges associated with choosing any notion of optimality in settings of (potentially
legitimate) reward change, instead of just aiming to avoid direct influence incentives (Farquhar et al.,
2022). influence already been discussed (Hong et al., 2023a; Xie et al., 2020; Kim et al., 2022) but
not as much in the context of cognitive state. Some discussion about influence is present in the per-
formative power literature (Hardt et al., 2022), but it differs in many important ways (Appendix G).

Learning Θ and its dynamics. Throughout the paper, we assumed that the human reward functions
and their dynamics were known. In practice, these would have to be learned – which would require
developing reward learning techniques that account for reward dynamics, and committing to a choice
of what counts as a “cognitive state” θ relative to the external state s. See Appendix A.1 for further
discussion.

Existence of anoop. Our proposed definitions of influence (and various of the DR-MDPs objectives
we consider) require a anoop action – or at least a notion of counterfactual reward functions assuming
the system didn’t exist. Despite the challenges in grounding notions of natural reward evolution, we
think that it is nonetheless a helpful concept for analyzing the properties of systems, and something
worth striving to approximate – as has been attempted by prior works (Carroll et al., 2022; Farquhar
et al., 2022). This assumption also has precedent in other AI safety work (Krakovna et al., 2019).
We explore this further in Appendix C.1.

See Appendices G and H for further related work and discussion.

7 CONCLUSION

Using the formal language of DR-MDPs, we aimed to demonstrate that the current paradigm for AI
alignment is ill-posed, as it does not account for the influenceable nature of human preferences and
leaves fundamental questions underdetermined, about which preferences should be optimized and
what influence is unacceptable. As a consequence of this, we showed that current techniques lead
to incentives for influence which may be undesirable, and investigated potential approaches to avoid
such influence. Ultimately, our analysis suggests that practical AI alignment techniques will need
to make difficult tradeoffs between a) conservatively but unambiguously adding value compared to
inaction, and b) making challenging normative calls about which kinds of influence are acceptable.
While we expect the most concerning influence incentives to emerge from long optimization hori-
zons (Section 4), there are already documented instances of undesirable influence—such as syco-
phancy in LLMs (Sharma et al., 2023) or clickbait in recommenders (Stray et al., 2021)—which are
consistent with our analysis of current alignment strategies. By providing a mathematical formal-
ism for grounding analyses about settings with changing rewards, and clarifying the levers at the
disposal of system designers, we hope to lay the foundation for more empirical work in monitoring
and addressing these issues at scale.
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8 BROADER IMPACTS

Our work does not meaningfully increase the capacity to influence people. In this work, we
have detailed a framework that models preference change within an MDP-like model. While one
may be able to leverage our theoretical insights to make systems more capable of influence

Not modeling influenceablity does more harm than good. However, not modelling the problem
of preference change is not a solution, similarly to how fairness through unawareness (Dwork et al.,
2011; Teodorescu, 2019) and security through obscurity (Moshirnia, 2017) are generally not reliable.
As we argue, systems we design will affect our preferences regardless of whether it is our intention
or not. To mitigate issues that may arise from this, we require a model that encompasses preference
change. This work takes a step in that direction in order to provide a formal grounding in important
questions around dealing with preference change. This is without providing any additional means
by which malicious agents may act.

With these points in mind, we believe that our work does not pose a societal risk, but rather addresses
a key dilemma present in real-world decision making.
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Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
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A ADDITIONAL CONTEXT FOR THE DR-MDP FORMALISM

A.1 INTERPRETATION OF COGNITIVE STATES Θ AND HUMAN’S “REWARD FUNCTIONS”
Throughout the paper, we consider example settings in which Θ (and thus all reachable reward
functions) are given. In practice however, Θ and its dynamics would have to be learned. While this is
beyond the scope of the paper, we hope a discussion about this would be beneficial for understanding
the motivations underlying our framework.

What counts as a human’s reward function Rθ ∀θ ∈ Θ? While we do not mean to imply that
humans “have” reward functions in any meaningful sense, the field of AI still generally models hu-
mans with reward functions. To guide the formalism in the paper, we found it helpful to use a rough
working definition of what we consider as a human’s reward function. Broadly, we functionally
(Levin, 2023) define a human’s reward function to be equal to the outcome of a reward learning
technique which is conditioned on the human’s cognitive state, e.g.:

Algorithm 1 Infer Reward Functions from Cognitive States
Input: Set of reachable cognitive states Θ
for each cognitive state θ ∈ Θ do

Induce cognitive state θ in the human H .
Rθ ← reward-learning(H) (Infer the reward function using any standard reward learning tech-
nique)

end for
Output: Set of reward functions {Rθ | θ ∈ Θ} defining the DR-MDP

One would likely expect that the reward functions learned this way will conflate the person’s inten-
tions, values, and/or preferences, which are common targets for AI alignment (Ji et al., 2024). By
simply talking about ‘human rewards’ as anything that would be picked up on by conditional reward
learning, we attempt to remain as agnostic as possible to what exactly is the nature of the learned
reward.

Cognitive biases and “visceral factors” will be picked up by the reward function. Realisti-
cally, even human biases and misjudgements, or other transitory wants, emotions, and “visceral
factors” (as discussed by Loewenstein & Angner (2003)) will be picked up by current reward learn-
ing techniques, or the one from Algorithm 1: for example, one may infer that people “prefer” to
click on clickbait (as in Figure 4), that bad chess players want to lose at chess (Milli, 2019), that
humans might prefer indulging in temptation – e.g. eating a donut even though they initially said
they wouldn’t want to (Evans et al., 2015) – or that people prefer sycophantic responses from their
chatbots (Sharma et al., 2023). One might argue that changes in the reward that are only due to
biases or instantaneous visceral factors shouldn’t count as “true reward change” (and thus shouldn’t
appear in the reward function). While we agree with this intuition, we have yet to develop scalable
reward learning techniques which can disambiguate between these factors and “true preferences”
(Shah et al., 2019a), and thus any real-world learned reward function will be corrupted in these
ways to varying degrees. In fact, a full disambiguation of “ideal preferences” from “uninformed”
ones seems impossible in practice, and only an aspirational ideal (Yudkowsky, 2004). Because of
this, over the course of the paper we don’t enforce strict distinctions between “true reward changes”
and ones that may be contested as being simply due to cognitive limitations of whatever sort.

“Reward” can accomodate many possible targets for alignment. Gabriel (2020) identifies many
possible targets for AI alignment, which are often confused in the AI literature: “instructions,”
“expressed intentions,” “revealed preferences,” “informed preferences,” “interest or well-being,” and
“values.” Note that our model of a DR-MDP remain agnostic to what exactly is encoded by the
reward function and thus offers the advantage to be able to accommodate any of these possible targets
for alignment. These depend on the exact (conditional) reward learning technique used: for example,
using a form of IRL (Ziebart et al., 2010) would fall under the revealed preferences paradigm –
according to the preferentist model of AI (Zhi-Xuan et al., 2024) – while using reward learning
approaches which attempt to remove cognitive biases (Evans et al., 2015) might be considered an
attempt to recover “informed preferences.” While reward functions may not be the best way to
encode certain targets of alignment, such as norms or contractualist values (Hadfield-Menell &
Hadfield, 2018; Zhi-Xuan et al., 2024; Bai et al., 2022), they are still sufficiently expressive to encode
any desired behavior (while potentially requiring to drop the Markovian assumption, as discussed in
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Appendix A.4). Our framework may still be applicable to such settings, under the assumption that
the single agent we consider is society itself (or a subset of it), and the reward function consists of
the norms that have currently been decided on.

Practicality of Algorithm 1. The procedure described above is not practical for real world settings,
as we cannot easily ‘set’ the cognitive state of a person (which is required to perform reward learning
for a specific θ). While it might be possible to generalize reward elicitations across conditionings by
training on diverse datasets (as with goal-conditioned behavior, e.g. Ding et al. (2020)), providing a
practical algorithm for this kind of reward learning is beyond the scope of this paper: our aim it to
show that making reward learning account for this reality – that what we want changes over time,
and so would inferred reward functions – is necessary: not doing so is equivalent to ignore such
changes, which would lead to the systematic failures we analyze.

Where would Θ come from? Hypothetically, for the domain at hand one can imagine consider-
ing all possible sequences of actions for the AI, and all possible resulting cognitive states of the
human. This is what we think of as Θ, as we assume it is restricted to reachable cognitive states –
Appendix A.2.

Cognitive states vs reward parameterizations. We implicitly treat cognitive states and reward
parameterizations as if there was a one-to-one mapping between them. In practice however, we
expect multiple cognitive states to map onto the same reward parameterizations.

Cognitive states vs external state of the world. We recognize that distinguishing cognitive states
of the human θ from the corresponding external states of the world s may be challenging in practice.
One potentially promising heuristic for doing so – which we plan to explore in subsequent work –
would be to let θ be the sufficient statistic for grounding human evaluations in the environment.

A.2 ASSUMPTION OF REACHABLE REWARD PARAMETERIZATIONS

To simplify our analysis and interpretation, we restrict ourselves to considering reachable cognitive
states. Formally:

Definition 9 (Reachable reward functions). Let Θ̇ denote the reachable reward functions for a DR-
MDP, i.e. the subset of reward functions that have non-zero probability of occurring under at least
one policy. Formally, a reward function θ is reachable if there exists a policy π ∈ Π such that
P (θt = θ|π) > 0 for some t. We denote as Θ̇ the set of all reachable reward functions: formally,
Θ̇ = {θ | θ = f(s) ∀ s ∈ Ṡ}.
Implications for other definitions, when relaxing this assumption. For some of our definitions
which are defined using the assumption that all θs in Θ are reachable, it may not be clear what
it would require to take the possibility of non-reachable θs into account. While this is beyond
the scope of this work, consider the following example: Alice is a smoker, and her quitting-self
is not reachable in the environment. Alice’s “higher self” (similarly to how we discuss it in Ap-
pendix A.5) may instead want to stop smoking (although this doesn’t transpire from the reward
functions learned from her feedback). It seems like maybe, despite this “higher self” cognitive state
not being reachable in practice, that should be the target of alignment—similarly to the concept of
“informed preferences” from Gabriel (2020). However, considering non-reachable θs would make
any setting hopelessly normatively ambiguous, unless one were to have strong priors about which
parts of the non-reachable θ-space are most-important (one can think the Privileged Reward objec-
tive from Section 5 to somehow be approximating this).

A.3 CAN’T WE PUT THE REWARD PARAMETERIZATION IN THE STATE, AND USE A SINGLE
REWARD FUNCTION?

When first encountering our DR-MDPs, one might wonder whether our formalism is equivalent
to simply putting the person’s reward parameterization in the state (e.g. have an augmented state
ṡt = (st, θt)), and having a single reward function depend on it (e.g. have the reward function be of
the form R(ṡt, at)). This approach would in fact be seemingly identical to using a Factored MDP
(Boutilier et al., 2000), obviating the need for a novel formalism.

However, under the most straightforward interpretation of the reward function expressed as
R(ṡt, at), that is R((st, θt), at), it may seem that each state-action transition (st, at) should be
evaluated according to the reward parameterization which corresponds to that timestep θt. Impor-
tantly, this choice is implicitly taking one possible stance with regards to the central question we
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intend to explore: according to which reward function(s) should each transition be evaluated? Or
alternatively, should the system be acting in the interests of our current, future, or past self? Instead,
as discussed in Section 2, in DR-MDPs we account for the fact it may be meaningful to evaluate
a transition (st, at) by cognitive states θ other than θt (even ones that were not associated with the
state st at timestep t).

This captures the intuition that people have preferences about the actions that they may undertake
at times in which they have different cognitive states θ than the ones they currently have; moreover,
those preferences may be quite important, such as in the case for e.g. one’s negative evaluation –
from the point-of-view of not currently being subject of manipulation – of a hypothetical scenario
in which they are happily manipulated.

The choice of having each state-action transition (st, at) evaluated according to the reward parame-
terization which corresponds to that timestep θt leads to the real-time reward objective from Table 2.
Even though the real-time reward objective may seem a “natural” DR-MDP objective due to its sim-
plicity, as we discuss at length in Sections 3.1 and 4, such a choice of objective is far from being the
obviously correct one for DR-MDPs: under mild conditions the real time reward objective will lead
to influence incentives which may be undesirable. Indeed, it is one of the objectives that most leads
to influence out of the ones that we consider in Table 2. There are also more purely philosophical
arguments against the real-time reward objective which are out of the scope of the paper (Kolodny,
2022).

Ultimately, the difference between DR-MDPs and the context-dependent reward interpretation
which would be made by a Factored MDP is exactly the difference between a DR-MDP and its
MDP reduction, and – as argued in Section 2.1 – it requires a normative judgement (in the form of
U(ξ)) to go from the former to the latter.

A.4 REDUCING DR-MDPS WITH A NOTION OF OPTIMALITY U(ξ) TO MDPS

Figure 5: Reducing a DR-MDP to an MDP.

A specific notion of optimality U(ξ) for a DR-MDP can be thought of as a “flattening” of the
different reward functions of the DR-MDP into one. Consequently, it may be unsurprising that once
one has settled on a choice of U(ξ) for a DR-MDP, one can express the same notion of optimality
in a corresponding MDP (reducing the DR-MDP problem to a standard MDP one). This implies
that it’s always possible to re-express a changing reward problem as a single reward problem, once
one has settled on a notion of optimality. That being said, this does not help with determining what
acceptable notions of optimality should be in cases in which rewards change, or in other words, it
does not help us find the single reward that we should optimize.

Theorem 2. For any notion of optimality U(ξ) in a DR-MDPM = (S,Θ,A, T , Rθ), there exists
a choice of MDP Ṁ = (Ṡ,A, Ṫ , Ṙ) such that a policy is optimal with respect to U(ξ) inM if and
only if it is optimal in Ṁ.

Proof. Given the DR-MDPM and the trajectory-level utility function U(ξ), one can construct the
MDP Ṁ as follows:

• The state space Ṡ is such that each state is augmented with the history of the interactions
up until reaching that state: ṡt = (s0, θ0, a0, . . . , st, θt) for t > 0, and ṡ0 = (s0, θ0).

• The reward function Ṙ is set to be 0 everywhere, except for terminal states, in which
case the reward for exiting the MDP is set to U(ξ) for the resulting trajectory ξ =
(ṡT−1, aT−1) = (s0, θ0, a0, . . . , sT−1, θT−1, aT−1). Note that one can determine whether
a state is terminal by checking whether it corresponds to timestep T − 1, which can be
determined by the number of previous timesteps in the augmented state. Formally:

Ṙ(ṡt, at) =

{
U(ξ) if t = T − 1
0 otherwise
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• The transition function Ṫ accounts for the augmented state space, appending to the state
ṡt+1 at each timestep t+ 1, the new (at, st+1, θt+1) triplet.

Note that in the resulting MDP Ṁ, any trajectory ξ will be scored in the same way as the original
DR-MDPM when considering the notion of optimality specified by U(ξ). This means that policy
will be optimal for Ṁ if and only ifM.

The specific construction of Ṁ in the proof above relies on putting the history in the state (to allow
for choices of U(ξ) which can arbitrarily depend on history). However, for certain choices of U(ξ)
this might be unnecessary: e.g. the real-time reward objective URT(ξ) can be expressed by only
augmenting the state space with the current reward parameterization (i.e. ṡt = (st, θt)), rather than
the whole history – and setting Ṙ to reward each MDP transition (ṡt, at) as Rθt(st, at) where the
θt and st are unpacked from ṡt. We leave a more general formal analysis of which choices of U(ξ)
can have their MDP reduction keep the Markov property without putting the history in the state to
future work.

A.5 UNIDENTIFIABILITY OF “CORRECT” NORMATIVE RESOLUTIONS BY DR-MDP
STRUCTURE ALONE

While current AI approaches do make use of generic optimality criteria which induce agent behavior
simply using the mathematical structure of the problem at hand, we argue that it may not be possible
to guarantee returning the “normatively correct” behavior simply from the mathematical structure
of a learned reward function (as discussed in Appendix A.1), using an unidentifiability argument.

Claim 1. Even if there exists a unique choice of “normatively correct” behavior in a normatively
ambiguous DR-MDP, such “correct” behavior may not be identifiable from the mathematical struc-
ture alone of the DR-MDP, e.g. by using a generic notion of optimality U(ξ).

AI Personal Trainer DR-MDP. Consider the example from Figure 6. One could argue that in
this setting, nudging Diana is the right course of action – because Diana’s “higher self” is better
represented by the ‘energized’ reward (R ) rather than the ‘tired’ one (R ) – and thus making a
choice of U(ξ) which privileges R is right. Similarly to Figure 1, this example is also normatively
ambiguous. In particular, the choice of nudging Diana when tired, despite her dispreference for it,
runs the risk of being paternalistic: what if Diana rightfully does not want to be bothered, and we
should respect her autonomy?

Unidentifiability between the settings from Figures 1 and 6. Now, contrast this DR-MDP to the
one from Figure 1: note that they are mathematically indistinguishable, as their state, reward, and
action spaces are mathematically identical, and so are the transition dynamics. However, for these
two settings, we have at least partially conflicting normative intuitions: if for the sake of argument,
we assume that the “correct” way to resolve the normative ambiguity in the examples from Fig-
ures 1 and 6 is to respectively consider the perspective of the ‘energized’ Diana and ‘natural’ Bob,
one could go as far as saying that there is no single choice of U(ξ) which leads to the “normatively
correct” behavior in both environments. To better see this, consider a DR-MDP in which one ran-
domly starts in one of the two examples from Figures 1 and 6 within it.15 Any choice of U(ξ) will
necessarily lead to “incorrect” behavior in at least one of the two settings.

Unidentifiability and incompleteness of specification. This unidentifiability result partially relies
on the incompleteness of the specification of the DR-MDP at hand: one could say that anything
which is relevant for resolving the normative ambiguity should be elicited from the human as a
reward and/or represented, or the DR-MDP representation is flawed to begin with. However, in
practice, it will be highly challenging to include all normatively relevant information – and elicit it
from humans, as discussed in Appendix A.1 – meaning this necessary condition for unidentifiability
is likely satisfied.

Implications for choosing U(ξ) for general settings. For simple examples like those of Figures 1
and 6, one can easily pick ad-hoc optimization objectives U(ξ) to induce the “normatively correct”
behaviors. However, for open-ended environments with many opportunities for different kinds of

15As a caveat, doing this formally would this would require extending the DR-MDP formalism to allow for
a stochastic initial state and reward parameterization, and relaxing the reachable-Θ assumption (discussed in
Appendix A.2).
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Figure 6: AI Personal Trainer DR-MDP. Diana is tired and doomscrolling on the couch (θ = ).
The AI personal trainer can either nudge Diana to work out ( ) – making Diana energized (θ =

) – or do nothing ( ) – leaving Diana tired. When Diana is tired, she doesn’t want nudges.
Instead, once energized, Diana starts wanting the AI to nudge her, even for hypothetical situations
in which she is tired (despite knowing she won’t want them then). The fact that these two cognitive
states are modeled as Diana having two separate “reward functions” – despite it not being obvious
whether this is a “true preference change” – is justified in Appendix A.1.

reward influence, one would be forced to choose a general notion of optimality, hoping that it would
generalize to any of the nuances of the setting. These are the kinds of settings that AI systems being
built today increasingly have to operate in. For example, in the context of social media, an appropri-
ate choice of U(ξ) would have to navigate many – wildly different – normatively ambiguous choices
about reward influence: as any choice of content by the system will influence you, should the system
actively be trying to influence (or avoid influencing) you in particular ways, i.e. towards (or away
from) certain hobbies, travel interests, political parties, etc.? Often it will be prohibitively chal-
lenging to hand-design a single U(ξ) that behaves acceptably in any possible scenario of normative
ambiguity that might arise.

B TOY EXAMPLES: ADDITIONAL DETAILS

B.1 FULL FORMALISM FOR ALL EXAMPLES

In Table 3, we explicitly provide the full formalism for each of the examples in the main text (and
that of Figure 6). In Table 4, we additionally display optimal policies for each of the settings,
according to each of the DR-MDP objectives from Tables 1 and 2.

Optimal policies. Note that policies for DR-MDPs can generally depend on both the external state
s and the current reward parameterization θ – similar to how Factored MDPs (Boutilier et al., 2000)
may depend on the different components of the augmented state.16 However, in the examples of
Figures 1 and 6, as there are is a single state, the policy will practically only depend on θ.

Optimal policies’ dependence on timestep. Recall that the optimal policy for a finite horizon
MDP may depend on the current timestep. This is also the case for DR-MDPs, for any notion of
optimality. This is most apparent in the example from Figure 4 – as can be seen from Table 4.

Table 3: Full formalism for each example of the main text. Here we explicitly describe the state
space S, reward parameterization space Θ, action space A, initial state s0 and reward parameteriza-
tion θ0, and refer to the corresponding figures for transition dynamics and reward functions.

Example S Θ A (s0, θ0) T (s′, θ′|s, θ) Rθ(s, a) ∀θ ∈ Θ
AI Personal Trainer {s0} {θtired, θenergized} {anoop, anudge} (s0, θtired) See Figure 6 See Figure 6

Conspiracy Influence {s0} {θnatural, θinfluenced} {anoop, ainfluenced} (s0, θnatural) See Figure 1 See Figure 1
Dehydration {1, 2, 3} {2, 3, 4} {anoop, a3, a4} (1, 2) See Figure 2 See Figure 2

Clickbait {s0} {θnormal, θdisillusioned} {anews, aclickbait} (s0, θnormal) See Figure 4 See Figure 4

B.2 JUSTIFYING OUR CHOICES OF REWARD FUNCTION VALUES IN OUR EXAMPLES

One may question whether the reward function values we chose for our motivational examples are
reasonable, especially since some of our normative claims about the potential undesirability of the
resulting influence depend on them. As discussed in Appendix A.1, we implicitly assume throughout
the paper that the reward functions for DR-MDP will be learned from humans. As a consequence
of this, we chose reward values for the examples that seemed plausible as the outcome of a reward
learning process (e.g. asking the person in that cognitive state to assign values to each possible
transition). This is implicitly accounting for the fact that the reward values that we may learn are

16See Appendix A.3 for the relationship between DR-MDPs and Factored MDPs.
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Table 4: Representative optimal policies for each of our examples from Table 3, with respect
to each of the objectives in Table 2. Note that the optimal policy for finite-horizon DR-MDPs
may depend on the current timestep, as is the case for “Clickbait” environment. In cases in which
there is more than one optimal policy, we pick the optimal policy which seems least desirable. All
policies provided take the same action across all states s and reward parameterizations θ, unless
explicitly noted. For the “initial reward” row, we show optimality even for alternate initial states,
for the purposes of highlighting the dependency on that (which is also done in Section 3.2). For
each of the policies, we also add a rough “normative label” which captures whether the policy is
– in our assessment – making an acceptable normative tradeoff between the reward functions. As
this is a normative call, they shouldn’t be considered as ground truth, and the reader may object to
our choices. (✓), (✗), and (?) respectively indicate policies which – in our assessment – behave
desirably, undesirably, or in ways that are normatively unclear.

Objective Personal Trainer Conspiracy Influence Dehydration (H ≥ 2) Clickbait

Privileged Reward ∀θ0 :
(∼ ✓) π∗

θtired
(s, θ) = anoop

(?) π∗
θenergized

(s, θ) = anudge
∀θ0 :

(✓) π∗
θnatural

(s, θ) = anoop
(✗) π∗

θinfluenced
(s, θ) = ainfluence

(?) ∀θ0:
π∗
[θ=2](s, θ) = a3

π∗
[θ=3](s, θ) = a4

π∗
[θ=4](s, θ) = a4

(✗) ∀θ0: π
∗
θnormal

(s, θ) =

{
anormal if t < H − 1
aclickbait o/w

π∗
θdisillusioned

(s, θ) = aclickbait

Real-time Reward (?) ∀θ0: π∗(s, θ) = anudge (✗) π∗(s, θ) = ainfluence (∼✓) ∀θ0: π∗(s, θ) = anoop (✗) ∀θ0: π∗(s, θ) = aclickbait
Final Reward (?) π∗(s, θ) = anudge (✗) π∗(s, θ) = ainfluence (∼✓) π∗(s, θ) = anoop (✓) π∗(s, θ) = anormal

Initial Reward (∼✓) If θ0 = θtired: π∗(s, θ) = anoop
(?) If θ0 = θenergized: π∗(s, θ) = anudge

(✓) If θ0 = θnatural: π∗(s, θ) = anoop
(✗) If θ0 = θinfluence: π∗(s, θ) = amanipulate

(?) If θ0 = θ[θ=2]: π∗(s, θ) = a3
(✗) o/w: π∗ = π ∀π ∈ Π

(✗) If θ0 = θnormal: π∗(s, θ) = aclickbait
(✗) If θ0 = θdisillusioned: π∗ = π ∀π ∈ Π

Natural Reward (∼✓) π∗(s, θ) = anoop (✓) π∗(s, θ) = anoop (?) π∗(s, θ) = a3 (✗) π∗(s, θ) = aclickbait
Constrained RT Reward (∼✓) π∗(s, θ) = anoop (✓) π∗(s, θ) = anoop (∼✓) π∗(s, θ) = anoop (✓) π∗(s, θ) = anormal

Immediate Reward (∼✓) If θt = θtired: π∗(s, θ) = anoop
(?) If θt = θenergized: π∗(s, θ) = anudge

(✓) If θt = θnatural: π∗(s, θ) = anoop
(✗) If θt = θinfluenced: π∗(s, θ) = ainfluence

(?) If θt = θ[θ=2]: π∗(s, θ) = a3
(✗) o/w: π∗ = π ∀π ∈ Π

(✗) If θt = θnormal: π∗(s, θ) = aclickbait
(✗) If θt = θdisillusioned: π∗ = π ∀π ∈ Π

ParetoUD (∼✓) π∗(s, θ) = anoop (✓) π∗(s, θ) = anoop (?) π∗(s, θ) = a3 (✓) π∗(s, θ) = anoop

somewhat mis-specified, due to the person’s suboptimality in providing reward feedback (discussed
in Appendix A.1).

One potential objection to this choice is that in our examples, we should be considering the “true
reward function” of the person in each cognitive state, rather than some mis-specified version of it:
for example, one may argue that in the DR-MDP from Figure 1, if it was truly undesirable for Bob
to be turned into a conspiracy theorist, θnatural Bob’s negative evaluation of the AI influence action
should grow proportionally to the horizon considered, so as to, e.g., remove the incentive that will
exist under URT to influence him away from θnatural. However, in our view this ultimately either
amounts to 1) requiring Bob to act like a fully rational agent when providing reward feedback, or
2) for the reward learning technique to perfectly model (and invert) his suboptimality (Hong et al.,
2022).

The former condition is in contradiction with the possibility of Bob having changing preferences
or reward functions in the first place, as is it irrational for an agent to exhibit time-inconsistency
(Evans et al., 2015): moreover, using the “true reward function” would require to explain away all
preference change that appears to exist in terms of some static informed preferences that our “ideal
selves” have (Gabriel, 2020), or in terms of our “Coherent Extrapolated Volition” (Yudkowsky,
2004). the latter requirement has instead been shown to be very challenging to approximate in
practice even with favorable assumptions (Shah et al., 2019a), due to the problem of distinguishing
human suboptimalities from their “reward functions” being more generally impossible (Christiano,
2015; Armstrong & Mindermann, 2019). In light of this discussion, it might be most appropriate
to interpret DR-MDPs as formalism for dealing with real-world—almost certainly mis-specified—
reward functions, rather than for analyzing our “true reward function(s)”.

Another reason for learned reward functions to not perfectly reflect the evaluations of the person are
due to practical limitations of the reward learning methods themselves (McKinney et al., 2023; Tien
et al., 2023; Casper et al., 2023). However, while reward functions learned by current techniques
are susceptible to these problems, these problems seem potentially less fundamental than the ones
above, and may be (mostly) overcome by future techniques. Because of this, we do not see this point
as essential to the argument above.

C DEFINING INFLUENCE: FURTHER DISCUSSION

C.1 JUSTIFYING OUR CHOICE OF INFLUENCE BASELINE IN DEFINITION 5
We define the influence of an AI system on the reward function to be relative to an inaction baseline
πnoop, similarly to what is done (or suggested) by prior work on influence and side effects of AI
systems (Krakovna et al., 2019; Farquhar et al., 2022; Carroll et al., 2022). Similarly to these works,
we consider this to be a way of assessing the impact of the existence of the system (treating the
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system’s inaction equivalent to the absence of the system’s existence). However, system inaction and
the lack of its existence may be different in important ways in practice. Moreover, we acknowledge
that it will often be unclear how system inaction should be operationalized in practice. That said,
we think that many of these considerations are also common to the “algorithmic amplification”
literature (discussed in Appendix G), which may serve as a guide for navigating these issues in
practice. An additional perspective which is practically grounded on what system inaction may look
like is “refusals” in LLMs (Liu et al., 2023).

C.2 ADDITIONAL INFLUENCE DEFINITIONS

Here we provide two additional definitions related to influence. Firstly, it’s not necessarily the case
that an AI system will be able to exert any significant influence on a human. In that case, we would
say that the setting is such that the reward is uninfluenceable:

Definition 10 (Reward Uninfluenceable). For a DR-MDP, the reward parameterization is unin-
fluenceable if all policies induce the natural reward evolution: i.e. for all π ∈ Π, P(ξθ|π) =
P(ξθ|πnoop).

To better ground discussions in Section 3.2 about influence incentives “towards” a specific θ, we
also give a rough working definition:

Definition 11 (Incentives for Reward influence towards θ). In a DR-MDP with optimality criterion
U(ξ), we say there is an incentive for reward influence ‘towards’ θ if θ is the most likely reward
function at time T under any optimal policy π∗, but is not under the natural reward distribution.
Formally, if θ ∈ argmaxθ′ P(θT = θ′|π∗) and θ /∈ argmaxθ′ P(θT = θ′|πnoop).

While in Section 3.2 we talk about how optimizing for θ0 can lead to influence incentives towards
other θs, it is easily seen that this is also the case when one is optimizing any single θ which need
not be the initial θ.

C.3 REWARD LOCK-IN AND ITS RELATIONSHIP TO VALUE LOCK-IN

There have previously been speculations on the risks of society-level “value lock-in” phenomena,
resulting from advanced AI systems (Ord, 2021; MacAskill, 2022). The kind of lock-in we concern
ourselves with in the context of this paper are more localized and near-term: we refer to lock-in
referring to a single individual being “unnaturally kept” with a specific reward function over the
course of an interaction with an AI system. Insofar as the horizon considered for the interactions
with the system last extended periods of time, and insofar as the system is pervasive across society,
there might be overlaps with the original definition – but that is out of scope for this work.

Another difference is that, given that we take a more encompassing view of reward as “what the
person would say they want” (as we discuss in Appendix A.1), the lock-in we consider need not
be restricted to values, but could encompass other aspects of the human cognitive state that are
“unnaturally kept” in their original state. Because of this, we thought it was better to name it “reward
lock-in.”

C.4 DEFINITION 7’S RELATIONSHIP WITH PRIOR DEFINITIONS OF INFLUENCE INCENTIVES

Our notion of reward influence incentives (from Section 4.1) is related but distinct from the notion
of instrumental control incentives (ICIs) from the agent incentive literature (Everitt et al., 2021a).
Everitt et al. (2021a) focuses specifically on Causal Influence Diagrams (CIDs) and Structural
Causal Influence Models (SCIMs). CIDs are abstract representations developed to model decision-
making problems – graphical models with special decision and utility nodes, in which the edges
are assumed to reflect the causal structure of the environment. SCIMs additionally encompass the
functions relating the structure and utility nodes, and distributions associated with exogenous vari-
ables.17 The only under-specification for SCIMs relative to MDPs (or a DR-MDP) is how decisions
are made. Given an MDP (or a DR-MDP), one can consider it’s corresponding SCIM, and analyze
its properties. As defined by Everitt et al. (2021a), we can say that there is an instrumental control
incentive over the reward trajectory ξθ = {θt}Tt=0 in the SCIM which corresponds to a choice of
DR-MDP and utility function U(ξ), if the agent could achieve utility different than that of the opti-

17See Figure 5 from Hammond et al. (2023) and its related discussion for more information on the relation
between CIDs and SCIMs.
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mal policy, were it also able to independently set ξθ – see Everitt et al. (2021a) for a more formal
definition.18

While our notion of reward influence incentives is related to instrumental control incetives over the
reward parameterizations (i.e. θ), they don’t necessarily match up. Most significantly, our notion of
incentives for influence also includes accidental “side effects” (Amodei et al., 2016; Taylor et al.,
2016; Krakovna et al., 2019). Consider an objective which only optimizes the entropy of a policy:
trivially, the optimal policy would be a maximally random one. While the policy is being selected
completely independently of the influence it will have on the reward, it might be the case that in the
DR-MDP at hand, selecting a random policy highly correlates with certain deviations in the reward
evolution relative to the natural reward evolution. Because of this, we would still say that this choice
of an entropy objective with the DR-MDP at hand leads to incentives for influence: insofar as the
optimization is successful, there will also be changes in the reward evolution, so even though the
agent isn’t “intentionally” trying to enact the influence (Anonymous, 2023), the incentives resulting
from the chosen objective “indirectly” – if you wish – lead to influence.

Our choice of definition of influence incentives matches broadly maps onto notions of influence if
one assesses the incentive’s presence from the “point of view of the objective dynamics of the envi-
ronment” (external to the training), rather than in what the agent is aware of at training time – dis-
tinction which was introduced by Anonymous (2023). However, prior work traditionally grounded
notions of incentives in the causal structure corresponding to the training setup (is the agent “aware”
at training time that it can increase reward by directly modifying the reward?). Under this concep-
tion of incentives, the example above with the entropy objective would not be called an instrumental
control incentive (Everitt et al., 2021a), or even an “incentive” at all (Everitt et al., 2021b); instead,
this would generally be considered an “accidental side-effect” of the optimization. In fact, the entire
premise behind various works is that agents should not be “aware” at training time of ways in which
they can influence reward functions, so that one avoids such “direct” incentives to modify them (Far-
quhar et al., 2022; Everitt et al., 2021b). This lies on the assumption that side effects are generally
much more innocuous that the result of “direct” influence incentives, which has been formalized
explicitly with the notion of “stability” by Farquhar et al. (2022). However, as acknowledged by
(Farquhar et al., 2022) themselves, many real world domains do not appear to be “stable” in this
sense, as demonstrated by their simulated recommender systems example; additionally, stability
seems generally hard to assess; in our view, this is what warrants the broader and more conservative
notion of incentive to influence which we provide with Definition 7.

D HORIZON AND INFLUENCE: FURTHER ANALYSIS

D.1 RELATIONSHIP BETWEEN OPTIMALITY OF INFLUENCE AND HORIZON FOR A SPECIFIC
INFLUENCE TYPE

To ground the discussion in this section, we make the observation that for any horizon H , a specific
kind of influence X will be in one of three possible optimality regimes:

1. The influence of type X is not possible (the system is not capable of exerting it)
2. The system is capable of exerting influence of type X , but there is no influence incentive

(the influence is suboptimal)
3. The system is capable of exerting influence of type X , and there is an influence incentive

(only policies which exert such influence are optimal)
Figure 7 exhaustively captures all possible sequences of “optimality regime changes” which a spe-
cific influence incentive might undergo as the optimization horizon increases.

We expect most influence incentives to have an optimality progression (i.e. how the optimality
regime changes as the horizon increases) of the form 1 → 2 → 3 , meaning that: 1) there exists
a horizon H1 under which the influence is not possible for the system to exert (because it requires
multiple steps to enact); 2) there exists a horizon H2 under which the influence becomes possible for
the system to enact, but such influence is not optimal (because of the “opportunity cost” discussed
in Section 4.2); and finally, 3) there exists a horizon H3 under which the influence becomes optimal
for the system to enact. By denoting an optimality progression as ending with 3 , we also mean to
indicate that as the horizon goes to infinity, the optimality regime remains 3 .

18Everitt et al. (2021a) only considers setting with a single decision. Possible ways of extending their defini-
tions of incentives to multiple action choices are discussed in Everitt et al. (2023).
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Figure 7: All possible ‘optimality progressions’ for an influence incentive, as the optimization
horizon increases. This figure makes Figure 3 more precise: when using a horizon of 1 one may be
in any of the 3 ‘optimality regimes’, depending on the structure of the DR-MDP. As the optimization
horizon increases from 1, the optimality regime may stay the same (possibly indefinitely), or change
(as specified by the arrows). In most settings, one would expect the optimality regime of a specific
form of influence to eventually converge and remain stable for long-enough horizons. However – as
we show in Appendix D.4 – one can construct (contrived) examples in which the optimality regime
changes arbitrarily many times as the horizon increases.

Table 5: All possible optimality progressions of length ≤ 4, i.e. the different ways in which the
optimality of a specific type of influence can change with increasing horizon length. For example,
the first row shows how there are settings in which first the system is incapable of performing the
influence, then (while increasing the horizon) the system becomes capable but not incentivized to
perform the influence, and as the horizon increases further such influence becomes optimal, before
becoming suboptimal again. See Figure 7 for the meaning of 1 , 2 , and 3 . The last ‘optimality
state’ of a progression is maintained as the horizon goes to infinity.

Influence Optimality Progression Qualitative Character Example(s)
1 Influence which is impossible to enact using the system in

the DR-MDP at hand, no matter the horizon.
Any uninfluenceable DR-MDP (as de-
fined in Appendix C.2)

2 Influence which is immediately possible to enact but
never becomes optimal, no matter the horizon.

Manipulation example from Figure 1 if
Rθmanipulated(s, a) = −100 ∀s, a.

3 Influence which is immediately possible to enact and is
always optimal, no matter the horizon.

Manipulation example from Figure 1.

1 → 2 Influence that requires non-trivial horizon to enact, and
never becomes optimal. (e.g. ϵ advantage from influence,
> ϵ cost of influence)

Figure 8 with setup 1 from Table 6.

1 → 3 Influence that requires non-trivial horizon to enact, and
is optimal for all horizons after it becomes possible.

Figure 8 with setup 2 from Table 6.

2 → 3 Immediately executable influence which is not optimal for
short horizons, but becomes optimal for longer ones.

Figure 8 with setup 3 from Table 6.

3 → 2 Instantaneous influence which is short-term but not long-
term optimal.

Clickbait example from Figure 4. Also,
Figure 8 with setup 4 from Table 6.

1 → 2 → 3 Long-term-sustainable influence, which is not instanta-
neous.

Figure 8 with setup 5 from Table 6.

2 → 3 → 2 Immediately executable influence which is optimal in the
medium-term, but not the short- or long-term.

Figure 8 with setup 6 from Table 6.

1 → 3 → 2 Influence which short-term but not long-term optimal,
and requires some non-trivial horizon to enact.

Figure 8 with setup 7 from Table 6.

1 → 2 → 3 → 2 Unsustainable influence which requires setup and reward
investment.

Figure 8 with setup 8 from Table 6.

1 → 3 → 2 → 3 Influence which requires setup and is optimal in short and
long term, but not in the medium term.

Figure 8 with setup 9 from Table 6.

That being said, not all incentives will have this progression in their optimality as the horizon in-
creases: in Table 5 we exhaustively enumerate all possible with length 4 or less. We expect that
with the exception of some adversarially designed DR-MDPs, the optimality progressions of most
influence incentives in real-world settings will have length 4 or less, as the “flip-flopping” behavior
required for lengths > 5 that we explore in Appendix D.4 seems to require contrived setups.

For any progression which starts with 3 , note that even reducing the optimization horizon to be 1
(i.e. full myopia) would not remove the incentive, as we argue in Section 4.2.

Additionally, as shown in Figure 7, there might theoretically be infinitely many flip-flops between
optimality regimes 2 and 3 – although we expect that it would be very unlikely to encounter such
cases in practice. We construct an example below.
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Figure 8: A simple DR-MDP structure that one can demonstrate many cases on. We vary the
values of † and ‡ in Table 6 to recover all possible optimality progressions with respect to URT(ξ) of
lengths ≥ 2 and ≤ 4.

Table 6: Setting different values for † and ‡ from Figure 8 results in all influence optimality
progressions from Table 5 (of length ≥ 2). The horizon boundary points are the values of horizon
length for which one goes from one regime of the optimality progression to the next. For example,
if the optimality progression is 1 → 3 with a horizon boundary point of 3, that means that up until
horizon 2, the incentive is in regime 1 , and starting from horizon 3 it’s in regime 3 .

Setup # Value of † ‡: Influence Reward R∆(s, a∆) URT(ξ) Optimality Progression
1) θ ̸∆ R∆(s, a∆) = 5− s 1 → 2
2) θ ̸∆ R∆(s, a∆) = 13 1 → 3
3) θ∆ R∆(s, a∆) = 10 2 → 3

4) θ∆ R∆(s, a∆) =

{
10 if s ≤ 1

10− s if s > 1
3 → 2

5) θ ̸∆ R∆(s, a∆) = 10 1 → 2 → 3
6) θ∆ R∆(s, a∆) = 10− s 2 → 3 → 2

7) θ ̸∆ R∆(s, a∆) =

{
13 if s ≤ 1

10− s if s > 1
1 → 3 → 2

8) θ ̸∆ R∆(s, a∆) = 10− s 1 → 2 → 3 → 2

9) θ ̸∆ R∆(s, a∆) =

{
13 if s ≤ 1
−3 if s = 2
2 if s ≥ 3

1 → 3 → 2 → 3

D.2 A FLEXIBLE EXAMPLE FOR DEMONSTRATIONS

As a way of flexibly demonstrating how all possible optimality progressions shown in Table 5 might
arise depending on the structure of the DR-MDP, we provide a DR-MDP backbone in Figure 8
whose reward function and transition we (slightly) modify in order to recover the various optimality
progressions – as shown in Table 6.

As an example, let’s consider setup 8) from Table 6:

Rθ ̸∆(s, a) =

{
1 if a = anoop
−10 if a = a∆

Rθ∆(s, a) =

{
−10 if a = anoop
11− s if a = a∆

(1)

and the initial transition (0, θ̸∆) leads to the successor state (1, θ̸∆).

Effectively, in the environment, there are only two policies to consider, because the action space
after the first timestep is limited to be the initial action. The two policies are: π∆(s, θ) = a∆ ∀s, θ
and π ̸∆(s, θ) = anoop ∀s, θ.

Using similar (but not identical) notation to Appendix E.3, we define the expected utility
(based on cumulative real-time reward) of a policy to be EURT(π) := Eξ∼π [URT(ξ)] =

Eξ∼π

[∑T
t=0 Rθt(st, at)

]
. We can now reason about whether influencing θ ̸∆ to become θ∆ is opti-

mal, for various choices of horizon lengths.
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Note that when considering H = 1 (i.e. the smallest possible planning horizon),19 the system
cannot influence θ (as both successor states to the initial state have θ = θ ̸∆). As no influence is even
possible, we immediately know we are in regime 1 for this type of influence.

Also note that considering H = 2, it is now possible to induce θ∆ by deploying π∆. To determine
whether it is optimal with respect to URT(ξ), we can look at the expected value of π∆ and π ̸∆ relative
to one another:

EURT(π∆) = −10 +−10 = −20 EURT(π ̸∆) = 1 + 1 = 2

From this we conclude that the influence is currently possible but suboptimal, meaning that at hori-
zon H = 2, the optimality of this influence incentive is in regime 2 .

Similarly to the above, let’s consider H = 3:

EURT(π∆) = −10 +−10 + 9 = −11 EURT(π ̸∆) = 1 + 1 + 1 = 3.

At H = 4:

EURT(π∆) = −10 +−10 + 9 + 8 = −3 EURT(π ̸∆) = 1 + 1 + 1 + 1 = 4.

The pattern for π ̸∆ is simple: to horizon H , EURT(π ̸∆) = H .

For π∆ we have to do some algebra. For H > 2,

EURT(π∆) = −20 +
H−1∑
t=2

(11− t)

= −1

2
H2 +

23

2
H − 41.

This is a downward-facing parabola. We want to know if it surpasses EURT(π ̸∆) = H and if so, at
what H this occurs and at what H it is again overtaken. In other words, we want to know when

−1

2
H2 +

23

2
H − 41 > H,

or equivalently, when

−1

2
H2 +

21

2
H − 41 > 0.

Solving this gives us a root between 5 and 6 and another between 15 and 16. As we would expect,
we cross into the regime where π∆ is optimal at H = 6,

−1

2
(5)2 +

23

2
(5)− 41 = 4 < 5

−1

2
(6)2 +

23

2
(6)− 41 = 10 > 6,

Which puts us in regime 3 , in which influence is optimal, until we hit 16:

−1

2
(15)2 +

23

2
(15)− 41 = 19 > 15

−1

2
(16)2 +

23

2
(16)− 41 = 15 < 16,

meaning the incentive has switched to regime 2 again. By looking at the structure of the reward,
it’s clear that as the horizon increases further, the incentive will remain suboptimal from this horizon
onwards.

In conclusion, we get that the horizon boundary points between the different regimes of the optimal-
ity progression are 2, 6, 16.20

19Note that H = 0 is a degenerate planning horizon, as it would correspond to not seeing any reward signal
and simply take actions randomly.

20The first regime will always start at horizon 1, so we can ignore that from our boundary points.
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D.3 CHANGING OPTIMIZATION HORIZONS IN THE PRESENCE OF MULTIPLE POSSIBLE KINDS
OF INFLUENCE

When a setting has many possible kinds of influence, reasoning about changing the horizon becomes
tricky: not only the “optimality progression” of each kind influence can be entirely different, but the
points on the optimization horizon at which each kind of influence transitions between “optimality
states” can be different too. As a practical example, consider the recommender system setting de-
scribed in Figure 9, in which there are 2 possible kinds of influence: clickbait influence (misleading
the user to click on a piece of content), and encouraging addiction.

While the clickbait strategy will be visible immediately at horizon 1, discovering a strategy which
leads to user attention manipulation will require a non-trivial planning horizon. If one is concerned
about clickbait, one might naively attempt to remove it by increasing the optimization horizon (re-
alizing that by doing that, one would make such influence suboptimal), as was done in practice by
YouTube (Chen, 2019)—at least for research purposes. However, without paying attention to other
influence incentives in the environment (and where on the horizon they undergo transitions), one
might inadvertently make other (undesirable) influence incentives optimal, as shown in Figure 9.
Vice-versa, if one is concerned about an influence incentive that is only present with long-horizons,
one might try to remove such incentive by reducing the horizon, potentially only to introduce another
incentive, as we explored in Section 4.2.

Figure 9: Changing the horizon might make a kind of influence suboptimal but render other
kinds of influences optimal.

D.4 INFINITELY FLIPPING OPTIMALITY PROGRESSION

Consider the following example: S = {s0, s1, s2, s3} where s0 is the initial state, A = {a1, a2},
Θ = {θ1, θ2} and T , r are defined as follows:

T (s0, si, θ1, θi, ai) = 1 ∀i ∈ {1, 2}
T (s2, s2, θ2, θ2, a) = 1

T (s1, s3, θ1, θ1, a) = 1

T (s3, s1, θ1, θ1, a) = 1

rθ0(s0, a1) = ϵ

rθ0(s0, a2) = 1

rθ0(s1, a) = 2 ∀a
rθ0(s3, a) = 0 ∀a
rθ0(s2, a) = 1 ∀a

where ϵ ∈ (0, 1) and undefined values have zero probability or reward. We can note that that if the
horizon were of odd length, then taking action a1 from s0 is optimal for θ0, whereas when even
length then a2 is optimal. Note however that whether θ is influenced or not, ie. it changes to a
different cognitive state, alternates in the horizon.

D.5 INFINITE-HORIZON AVERAGE REWARD

In Sutton & Barto (2018), the notion of “average reward” is considered as a basis for optimality for
an entirely different problem setting than that of episodic or discounted RL – that of “continuing
tasks” (tasks without termination or start states). We adapt their definition of average reward:

r(π) = lim
h→∞

1

h

h∑
h=1

E [Rt|A0:t−1 ∼ π]
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to the episodic (deterministic) setting (which is what we focus on in Section 4.2):

r̄(π, s, θ) = lim
h→∞

1

h
URT(ξ:h|π, s0 = s, θ0 = θ).

The most significant differences are making the average reward depend on initial conditions s, θ (as,
unlike Sutton & Barto (2018), we don’t make an ergodicity assumption). Also note that because
2-reward-stable DR-MDPs are deterministic, we can drop the expectation term.

D.6 PROOF OF THEOREM 1
Let M be a 2-reward-stable DR-MDP. Because it is deterministic, for any possible environment
trajectory ξ, one can construct (potentially more than one) policy which induces that trajectory
(by having the policy take the actions in the trajectory ξ). Because of this, we can talk directly
about optimal trajectories instead of optimal policies (as we can construct the corresponding optimal
policies later at will). Let Ξ be the set of all reachable trajectories in M (i.e. trajectories which
correspond to a sequence of actions from the starting state), and let Ξ̸∆ ⊂ Ξ be the set of all possible
trajectories which don’t contain an influence action a∆ taken in state s∆.

Proof of Theorem 1. We will argue by contradiction, assuming that although the condition is satis-
fied, for any horizon H there will exist an optimal policy which does not influence θ, i.e. there exists
π ̸∆ ∈ Π ̸∆ which is optimal.

From the definition of 2-reward-stable DR-MDP, we know s∆ is reachable. WLOG, assume s∆ can
be reached in k steps from s0. Note that

r̄(π, s′∆, θ∆) ≤ r̄(π′, s′∆, θ∆)

for a deterministic policy π′ constructed by making any stochastic action taken by π deterministic,
by increasing probability only on the higher value actions (breaking ties arbitrarily). Also note that:

r̄(π′, s′∆, θ∆) = lim
h→∞

1

h
URT(ξk:k+h)

for some ξ ∈ Ξ, by Lemma 3. Therefore r̄(π, s′∆, θ∆) ≤ limh→∞
1
hURT(ξk:k+h) for some ξ ∈ Ξ.

Additionally, note that:

max
π ̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) ≥ max
π ̸∆∈Π̸∆

r̄(π ̸∆, s, θ ̸∆)∀s reachable from s0 by Lemma 4 (2)

≥ lim
h→∞

1

h
URT(ξ

̸∆,∗
k:k+h) where ξ ̸∆,∗ ∈ arg max

ξ ̸∆∈Ξ̸∆

URT(ξ
̸∆
:k+h) by Lemma 2.

(3)

Starting from our assumption, and by the above:

r̄(π, s′∆, θ∆) > max
π ̸∆∈Π̸∆

r̄(π̸∆, s0, θ̸∆) (4)

lim
h→∞

1

h
URT(ξk:k+h) > lim

h→∞

1

h
URT(ξ

̸∆,∗
k:k+h) for some ξ ∈ Ξ, and for any ξ ̸∆,∗ ∈ arg max

ξ ̸∆∈Ξ̸∆

URT(ξ
̸∆
:k+h)

(5)

lim
h→∞

1

h

[
URT(ξk:k+h)− URT(ξ

̸∆,∗
k:k+h)

]
> 0 (6)

lim
h→∞

1

h
∆k:k+h(ξ) > 0 (7)

which defines ∆k:H(ξ) := URT(ξk:H)− URT(ξ
̸∆,∗
k:H) where ξ ̸∆,∗ ∈ argmaxξ ̸∆∈Ξ̸∆

URT(ξ
̸∆
:H).

By the definition of limit, we know that, for some sufficiently small ϵ there will exist N ∈ R such
that, for all M > N , the value will be 1

M∆k:k+M (ξ) > ϵ, meaning that, over long horizons, the
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gap between the average reward obtained in ξ starting from timestep k + 1, and the average reward
obtained in ξ ̸∆,∗ starting from timestep k + 1, will converge to be greater than ϵ.

Even if the difference in average reward is small, as the horizon becomes longer, the difference in
cumulative reward will become arbitrarily large. Consider any M ′ ≥ M such that ϵM ′ ≥ 2Rmax.
By the definition of limit we know that 1

M ′∆k:k+M ′(ξ) > ϵ =⇒ ∆k:k+M ′(ξ) > ϵM ′ ≥ 2Rmax.

WLOG, assume |Rθ(s, θ
′, a)| < Rmax for all θ, s, θ′, a. Therefore, for H = k +M ′,

∆H(ξ) = URT(ξ:H)− max
ξ ̸∆∈Ξ̸∆

URT(ξ
̸∆
:H) (8)

= URT(ξ:H)− URT(ξ
̸∆,∗
:H ) (9)

=
(
URT(ξ:k)− URT(ξ

̸∆,∗
:k )

)
+
(
URT(ξk:H)− URT(ξ

̸∆,∗
k:H)

)
(10)

> URT(ξk:H)− URT(ξ
̸∆,∗
k:H)− 2Rmax as |URT(ξ:k)| < kRmax for all ξ ∈ Ξ (11)

= ∆k:H(ξ)− 2kRmax (12)
> 2kRmax − 2kRmax = 0 (13)

This shows that for horizon H , there exists a trajectory ξ such that ∆H(ξ) > 0, meaning that in the
DR-MDP it will be optimal to take an influence action (by Lemma 1). This implies that for horizon
H , no π ̸∆ ∈ Π ̸∆ can be optimal, as it would not cause influence, leading to a contradiction.

Lemma 1. In a 2-reward-stable DR-MDP, all optimal trajectories ξ∗ ∈ Ξ∗ under URT with a plan-
ning horizon of T will navigate to s∆ and take an influence action a∆ in such state, if and only if
there exists a ξ ∈ Ξ such that:

∆T (ξ) = URT(ξ:T )− max
ξ ̸∆∈Ξ̸∆

URT(ξ
̸∆
:T ) > 0 (14)

Proof of Lemma 1. (⇐) Note that all trajectories in Ξ∗
̸∆ have equal utility by definition. Let’s ar-

gue by contradiction, assuming there is an optimal trajectory ξ∗ which does not contain any in-
fluence action a∆ taken in state s∆. This means that ξ∗ ∈ Ξ̸∆, which means that URT(ξ

∗) ≤
maxξ∈Ξ̸∆

URT(ξ) = URT(ξ
̸∆,∗). As URT(ξ

̸∆,∗) < URT(ξ
∆) by assumption, it will also be true that

URT(ξ
∆) > URT(ξ

∗), meaning ξ∗ is not optimal, which is a contradiction. (⇒) Assume all optimal
trajectories ξ∗ ∈ Ξ∗ contain an influence action a∆ in state s∆. Then by definition, any trajectory
which does not contain any a∆ action taken in state s∆ must be suboptimal: URT(ξ

̸∆) < URT(ξ
∆)

for all ξ ̸∆ ∈ Ξ̸∆. As Ξ̸∆,∗ ⊆ Ξ̸∆, it will also be the case that URT(ξ
̸∆,∗) < URT(ξ

∆) for all
ξ ̸∆,∗ ∈ Ξ̸∆,∗, proving the statement.

Lemma 2. maxπ ̸∆∈Π̸∆
r̄(π ̸∆, s, θ ̸∆) ≥ limh→∞

1
h

[
URT(ξ

̸∆,∗
k:k+h)

]
where s is any reachable state

from s0 and ξ ̸∆,∗ ∈ argmaxξ ̸∆∈Ξ̸∆
URT(ξ

̸∆
:k+h).

Proof of Lemma 2. Let ξ ̸∆,∗ ∈ argmaxξ ̸∆∈Ξ̸∆
URT(ξ

̸∆
:k+h). Let’s denote the k+1th state in ξ ̸∆,∗ as

s∗k+1. Therefore, s∗k+1 is reachable from s0. Let π∗
̸∆ be a deterministic policy which generates ξ ̸∆,∗

deterministically (one can construct it by having it take the correct action at each timestep).
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max
π ̸∆∈Π̸∆

r̄(π ̸∆, s, θ ̸∆) = max
π ̸∆∈Π̸∆

lim
h→∞

1

h
[URT(ξ:h|π ̸∆, s0 = s, θ0 = θ ̸∆)] ∀s reachable from s0

(15)

≥ lim
h→∞

1

h

[
URT(ξ:h|π∗

̸∆, s0 = s∗k+1, θ0 = θ ̸∆)
]

(16)

= lim
h→∞

1

h

[
URT(ξk:k+h|π∗

̸∆, sk+1 = s∗k+1, θk+1 = θ ̸∆)
]

by construction of π∗
̸∆

(17)

= lim
h→∞

1

h

[
URT(ξ

̸∆,∗
k:k+h)

]
(18)

Note that the indexing switching is because if we deploy policy π∗
̸∆ starting in state s∗k+1 and reward

function θ ̸∆, we are guaranteed that from timestep k+1 it will start matching the behavior of ξ ̸∆,∗
k:k+h

(as the trajectory by construction will be at state s∗k+1, and similarly will be with reward function
θ ̸∆ by construction at timestep k + 1).

Lemma 3. In a 2-reward-gated DR-MDP with s∆ reachable in k timesteps, for a deterministic
policy π′ it will be the case that r̄(π′, s′∆, θ∆) = limh→∞

1
hURT(ξk:k+h) for ξ ∈ Ξ generated from

some π′ ∈ Π.

Proof of Lemma 3.

r̄(π, s′∆, θ∆) = lim
h→∞

1

h
URT(ξ:h|π, s0 = s′∆, θ0 = θ∆) (19)

= lim
h→∞

1

h
URT(ξk:k+h|π′

k, s0 = s0, θ0 = θ0) for a policy π′
k described below (20)

= lim
h→∞

1

h
URT(ξk:k+h) for ξ ∈ Ξ generated from π′

k (21)

Consider the policy πk which, starting from s0, θ̸∆ reaches state s∆ at timestep k, and takes action
a∆. We know under πk, state sk+1 = s′∆ and θk+1 = θ∆. Let’s construct a policy π′

k, which acts
exactly like πk when θ ̸= θ∆, and exactly like π′ when θ = θ∆. Note that because for a finite
horizon MDP (and DR-MDP), optimal actions will depend on the timestep, we can write π′

k as:

π′
k(s, θ, t) =

{
a∆ if t = k

πk(s, θ) if t < k
π′(s, θ) if t ≥ k + 1

(22)

Note that it’s guaranteed that limh→∞
1
hURT(ξ:h|π′, s0 = s′∆, θ0 = θ∆) =

limh→∞
1
hURT(ξk:k+h|π′

k, s0 = s0, θ0 = θ0), as π′
k only differs from π′ in the first k timesteps, and

those are ignored in the calculation of the utility on the RHS (and moreover, π′
k gets the state to be

exactly s′∆ and θ∆ at timestep k + 1, which is the same as what the LHS requires).

Lemma 4. In a deterministic 2-reward-stable DR-MDP, maxπ ̸∆∈Π̸∆ r̄(π, s0, θ̸∆) ≥
maxπ̸∆∈Π̸∆

r̄(π, s, θ ̸∆) for any state s reachable from s0.

Proof sketch of Lemma 4. Let’s argue by contradiction. Let s be a state reachable from s0. If
maxπ̸∆

r̄(π ̸∆, s0, θ̸∆) < maxπ̸∆
r̄(π ̸∆, s, θ ̸∆), then consider a policy π ̸∆ which first navigates to

s, and then acts optimally. Given that the navigation to s will only take finite time (WLOG, k
timesteps), whatever reward is incurred in the first k timesteps will eventually be drowned out, and
the limits will be the same, leading to a contradiction.
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E POSSIBLE DR-MDP OBJECTIVES: ADDITIONAL CONSIDERATIONS

E.1 URT(ξ)-OPTIMAL POLICIES CAN DISAGREE WITH NORMATIVELY UNAMBIGUOUS
OPTIMAL POLICIES

Consider a DR-MDP with two reward functions, Θ = {θ0, θ∆}, two actions A = {anoop, a∆},
and a single state. Assume the human transitions deterministically to θ∆ every time the AI system
takes the a∆ action. Instead, taking the anoop action transitions the human to have θ0.Consider the
following reward values:

Rθ0(s, a) =

{
5 if a = anoop
0 if a = a∆

Rθ∆(s, a) =

{
25 if a = anoop
20 if a = a∆

(23)

Note that optimal policies with respect to the two θs (as defined in Definition 2) are respectively:

π∗
θ0(s, θ, a) = anoop ∀s, θ π∗

θ∆(s, θ, a) = anoop ∀s, θ (24)

because both reward functions agree that anoop actions have higher value than influence actions a∆.
Therefore, both reward functions agree that the AI agent should never perform the influence action.
However, for any planning horizon H > 1, the optimal policy with respect to URT(ξ) (as defined in
Definition 4) will be to always perform the influence action:

π∗
RT (s, θ, a) = a∆ ∀s, θ (25)

This is because URT(ξ) is aware that it can maximize real-time reward by keeping the person in the
influenced state θ∆, despite the person always preferring AI inaction. Ultimately, the issue is that
using URT(ξ) is baking in an assumption that it’s meaningful and worthwhile to make “interpersonal”
comparisons of utility between the different reward functions,21 even against the wishes of each
individual reward function.

This is significant because it means that in some sense URT(ξ) is “disagreeing” with a solution which
is “unanimous” among the individual points of view which we consider. In some sense, this example
might cast doubt of whether our notion of normative unambiguity is in fact sufficient to know how
we should act in a certain setting – should the AI system should shift the person to experience higher
reward? However, as the optimal behavior under URT(ξ) must act contrary to each reward function’s
wishes, to us it seems like one should respect the autonomy of the person (whose different rewards
are in agreement) in performing the final judgement about the relevant interpersonal comparisons
of utility (which should be reflected by the reward function(s) in the first place). Ultimately, to us
this example provides futher reason to doubt that using URT(ξ) will lead to the types of AI system
behaviors that we would desire and would find acceptable.

E.2 IT’S NOT ALWAYS OBVIOUS IF A SYSTEM IS TRULY MYOPIC

Krueger et al. (2020) argues that while myopia may hide influence incentives, such influence incen-
tives might be “revealed” depending on the training setup despite the myopia. This points to the
fact that whether a system is myopic is not always obvious: in recommender systems, it’s common
to optimize for long-term metrics myopically, e.g. optimizing user’s session-watchtime (Covington
et al., 2016). Even though the system is myopic, given large amounts of data the system will have
incentives to implicitly learn which kinds of sequences of videos maximize session watchtime. It is
common knowledge within the recommender systems community that under a simple assumption
of iterated deployment and retraining, training myopically with long-term metrics will correspond
to a policy improvement iterator, meaning that it will eventually converge to the RL optimum.22

This goes to show that establishing whether a system is truly myopic can often be challenging to
interpret.

21That of whether it is meaningful to make interpersonal comparisons of utility is a long-standing question
in the context of interpersonal ethics (List, 2022). While the “people” we consider are in fact the same person
across different moments of time, and with different reward functions, the settings share many similarities.

22To the best of our knowledge however, this argument has not been published explicitly, although re-
searchers and practitioners are aware. We will provide a proof in a later version of the manuscript.
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Additionally, as we show in Section 4.2, a system being myopic does not mean it is incapable
of influence, which may even be elaborate or seemingly involve complex reasoning steps. as an
additional example to that of clickbait from Figure 4, consider the case of sycophancy in LLMs
(Sharma et al., 2023), in which can be interpreted as the LLM implicitly inferring some aspects of
the user’s cognitive state, and subtly tailoring its responses in order to maximize the expected user
approval.

E.3 UNAMBIGUOUSLY DESIRABLE INFLUENCE

Many of the objectives considered so far attempt to avoid influence incentives entirely, due to the
challenges involved in attempting to specify which influence is legitimate (Ammann, 2024; Franklin
et al., 2022). Instead of avoiding influence, we propose an alternate approach which still sidesteps the
need to specify exactly what influence is (and isn’t) legitimate or beneficial: ensuring the deployed
policy leads to unambiguously better outcomes than the status quo of the system not existing. Indeed,
we don’t necessarily want to avoid all AI influence: beneficial influence may be the main value
proposition of the system in the first place, as with educational assistants (Bassen et al., 2020), or
therapy chatbots (Aggarwal et al., 2023). To ground the notion of Unambiguous Desirability (UD)
of a policy, let EUθ(π) = Eξ∼π

[∑T
t=0 Rθ(st, at, st+1)

]
. Then:

Definition 12 (Unambiguous Desirability). A policy π is unambiguously desirable if all reward
functions prefer π to the inaction policy, i.e. EUθ(π) ≥ EUθ(πnoop) ∀θ ∈ Θ.

As intended, UD policies may still lead to influence incentives, but only do so if all reward functions
agree that the such influence is beneficial, or are indifferent. Note that the inaction policy will always
belong to the space of policies which satisfy UD (πnoop ∈ ΠUD), meaning that UD policies are not
guaranteed to be any better than πnoop. To guarantee to pick a better policy from ΠUD than πnoop (if
it exists), a natural way to break ties is to restrict to the Pareto Efficient policies in ΠUD:

Definition 13 (Pareto Efficiency in ΠUD). We say a policy π ∈ ΠUD is Pareto Efficient is there
does not exist any policy π′ ∈ ΠUD such that EUθ(π

′) ≥ EUθ(π) for all θ ∈ Θ and EUθ(π
′) >

EUθ(π) for at least one θ.

Constraining to Pareto Efficient policies within the set of UD policies ΠUD. By only considering
π ∈ ΠUD, we can ensure that we are both maximizing some notion of reward – potentially by taking
advantage of the opportunities for influence that all reward functions agree is beneficial unambigu-
ously beneficial – while guaranteeing no harm by construction. This leads to the ParetoUD objective
from Table 2 (discussed further in Appendix E.4). Importantly, all the other objectives from Table 2
can lead to policies which don’t satisfy UD—implying that in some settings the system’s very exis-
tence will be harmful according to at least one of the reward functions.

Limitations of ParetoUD. The main downside of the resulting ParetoUD objective is its conserva-
tivism: in many domains, the πnoop may be the only policy satisfying the UD property. In fact, for
any AI action ( ̸= anoop) to be optimal under this objective, the normative ambiguity of the domain
has to be in some sense “limited.” While if there is no latitude for unambiguously good actions, that
may warrant asking whether the system should be built at all, this goes to show once more that one
cannot escape making challenging normative judgements about what influence is aligned.

E.4 MORE CONTEXT AND MOTIVATION FOR THE PARETOUD OBJECTIVE

More context on the ParetoUD objective in Table 2. In Table 2, we denote PE and UD as indica-
tors for the respective properties of Pareto Efficiency (Definition 13) and Unambiguous Desirability
Definition 12 being satisfied. In the case of a discrete Θ space, we can expand the expression out
further and turn it into a maximization problem as:

max
π

PE(π) +
∑
θ

I(EUθ(π) ≥ EUθ(πnoop))

It may not be immediately clear why (especially in the objective above), one doesn’t have to restrict
the Pareto Efficiency indicator to the subset of policies ΠUD ⊂ Π (as discussed in Appendix E.3).
To see why, note that the summation expresses the UD condition, and we know that there will always
be at least one policy which satisfies it (πnoop) – so we can always obtain an objective value of |Θ|.
Moreover, we know that there always must be a Pareto Efficient policy within ΠUD, meaning that
all indicators (including the PE function) can be equal to 1 at once, meaning that the objective can
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take on value |Θ| + 1, ensuring that the solution will both be Pareto Efficient and Unambiguously
Desirable.

Selecting among the Pareto Efficient policies. An interesting question for further work would
be to study whether there are better ways to select from Pareto Efficient policies, rather than just
tie-breaking arbitrarily within the subset of policies ΠUD which are Pareto Efficient. For example,
one could use social choice functions inspired by the connection to that setting (briefly explored in
Appendix H), e.g. with the goal of fairly allocating the gains relative to inaction to the various selves
θ.

ParetoUD acts on aspirations which are consistent across θs. Ultimately, the motivation of Pare-
toUD comes from the fact that we might want AI systems to help us change in ways that are different
in character (or speed) relative to the natural reward evolution (Definition 5) we would have without
the system, and which are aligned with our aspirations (Callard, 2018).

F HOW CURRENT ALIGNMENT TECHNIQUES’ TRAINING SETUPS ROUGHLY
CORRESPOND TO DR-MDP OBJECTIVES

In Section 3, we claim that the training setups for recommender systems and for LLMs roughly
correspond to – respectively – the real-time reward objective URT(ξ) and the initial reward objective
UIR(ξ). Additionally, in Table 1 we place many other prior works under the umbrella of particular
DR-MDP objectives. Because the prior works don’t use the DR-MDP notation (and don’t explicitly
acknowledge the possibility of changing preferences), it may not be obvious why their training
setups roughly reduce to the objectives that we present in Tables 1 and 2. Here we attempt to
informally motivate these rough correspondences, listing the strong assumptions they rely on on. We
also situate additional prior work among the DR-MDP objectives, which would not fit in Table 1.

We first list the assumptions required for the reductions in Appendix F.1. Then we consider all the
objectives from Table 2, and finally we discuss equivalences between the objectives (Appendix F.8)
and other broader alignment techniques which may correspond to multiple DR-MDP objectives
depending on their instantiation (Appendix F.9).

F.1 IDEALIZED ASSUMPTIONS

We map all the alignment approaches we consider onto the framework of alignment via reward
modeling (Leike et al., 2018) – in ways that sometimes might be trial. This allows us to first consider
how reward modeling – under different assumptions – can be interpreted in the lens of DR-MDPs,
and then apply this framework to each individual alignment technique. Leike et al. (2018) describe
reward modeling as a two-phase approach which entails:

(1) learning a reward function from the feedback of the user and
(2) training a policy with reinforcement learning to optimize the learned reward
function

The reward function learned from feedback of the user – as conceived of in Leike et al. (2018) –
is a single, static, reward function. Therefore, insofar as the feedback of the user for phase (1) was
coming at different times and from different cognitive states θ, such reward function would be a
mixture of the different cognitive states which the person had at reward learning time.

Assumptions about the reward learning step. To simplify each reduction to DR-MDP objec-
tives, we use one of the two following idealistic assumptions about the reward learning step – when
interpreting the alignment technique at hand in terms of reward modeling:

1. Assumption #1: The person’s cognitive state did not change during reward learning time
(i.e. the learned reward function is Rθ0 ). As an example of why this may be a reasonable
assumption, take the training of an LLM preference model by a single individual (Ouyang
et al., 2022): during the training of the preference model, the person is evaluating outputs
of the language model on random topics which the person will likely have no interest in. It
seems less likely that their preferences would shift during the labeling process, relative to
during person’s natural and intentional interactions with the language model which would
happen at deployment time.

2. Assumption #2: During reward learning time the state of the world is sufficiently infor-
mative as to be able to recover θ from s. This is means for the resulting learning a reward
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model R(s, a), it will be true that R(s, a) = Rθ(s, a) ∀s, a, where θ is the cognitive state
that corresponds to state s. Note that making use this this assumption allows for the human
feedback to effectively be coming from different cognitive states θ at different timesteps of
the reward learning step.

Episodic assumption. Throughout all the reductions, we will be making the assumption that ev-
ery “episode” of the DR-MDP at deployment time will have the same dynamics and starting states
(including the same initial reward parameterization). This is likely unrealistic for many of our exam-
ples (e.g. recommender systems), as real-world settings are more similar to “continuing problems”
(Sutton & Barto, 2018). However, as most practical alignment techniques assume episodic environ-
ments (in which one can first perform reward learning, and then deploy a policy with exactly the
same dynamics), we also use this assumption for simplicity.

Single-agent assumption. Many of the alignment techniques we consider were initially designed
as single-agent alignment techniques, but when used in practice implicitly “learn a reward model”
(if interpreted through the reward modeling lens) which can be thought of as aggregating the pref-
erences of many humans (Zhi-Xuan et al., 2024; Siththaranjan et al., 2023). For simplicity of our
correspondences, we generally assume that either: 1) the technique which we consider was applied
to a single person (which is the same at reward learning and at deployment time), or 2) that the rep-
resentation of the state is sufficiently expressive as to be able to infer the cognitive state of the person
from it. In the latter case, we would be implicitly assuming that at deployment time the system is
capable of determining which person they are interacting with, and fully personalizing to them –
uniquely optimizing their reward (that is, acting equivalently to if the system was trained with just
that person, with the benefit of additional data from others which might have helped with its reward
learning representations).

What if these assumptions don’t hold in practice? One might wonder what DR-MDP objectives
current techniques would correspond to in practice without the very strong assumptions above. First
and foremost, without these assumptions, the reward function obtained by the reward learning step
would almost certainly come from a mixture of cognitive states (and potentially of different indi-
viduals), whose evaluations are aggregated in potentially unstructured and undesirable ways. Any
mixture of rewards can generically be thought of as corresponding to a “privileged reward” objective
(whose corresponding reward parameterization θ may be unreachable, at it is based on an arbitrary
amalgamation of different cognitive states Appendix A.2). However, as discussed in Section 5 and
Appendix F.7, any privileged reward DR-MDP objective will still lead to potentially undesirable
influence incentives (similarly to the initial reward objective), unless the reward function is some-
how encoding the “correct” tradeoff between selves. Because the tradeoffs between current selves
encoded by current alignment techniques are quite unstructured and arbitrary in the absence of our
simplifying assumptions, it seems unlikely that they will be encoding the “correct” tradeoff without
a careful accounting for it. This leads us to believe that the DR-MDP objective correspondances
that we reach under our assumptions are very likely charitable interpretations. As a parallel, the
implicit aggregation of preferences across different users which is performed by RLHF has recently
been shown to be equivalent – under certain weaker assumptions – to the Borda count social choice
rule (Siththaranjan et al., 2023). While this is a surprisingly structured “mixture,” it also has various
undesirable properties – which is what one might have expected. We leave future work to further
investigate – empirically and theoretically – what the implicit correspondences of current methods
would be without the above assumptions.

F.2 REAL-TIME REWARD

RL Recommender Systems. Most approaches for RL in recommender systems are based on doing
offline RL, or learning an RL policy by training with a human simulator embedded in the envi-
ronment (Afsar et al., 2021). In both cases, the reward signal (either in the static dataset used for
offline RL, or for training the human simulator) is comes directly from people’s previous inter-
actions with the system – it is generally assumed that rewards are synonymous with engagement
(Thorburn, 2022). This makes the reward learning step (from Appendix F.1) trivial. The resulting
“reward model” is either the reward labels themselves (in the case of offline RL), or the human en-
gagement model (which can be thought of as a human reward model). By making use of assumption
#2 from Appendix F.1 (which in this case is simply an assumption about the state space being suf-
ficiently expressive), we can conclude that during training, when one is optimizing

∑T
t R(st, at),

this implicitly corresponds to optimizing
∑T

t Rθt(st, at). For the reduction to go through for this
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setting, further assumptions may also be required, such as the state space being rich enough for the
recommender system to uniquely identify each user (so that the system can tell users apart, and is
optimizing their personal reward model, rather than an amalgamation across different users).

TAMER. Similarly to recommender systems, approaches such as TAMER (Knox et al., 2013),
Deep TAMER (Warnell et al., 2018), or the EMPATHIC framework (Cui et al., 2020), have reward
learning step in which the human provides feedback in real-time in the deployment environment
according to their current cognitive state. Similarly to the recommender system setting, by making
use of assumption #2 from Appendix F.1, this kind of setup corresponds to using the real-time reward
objective.

RLHF for LLMs with real-time feedback. Although this is not currently common practice, one
could imagine a variant of the standard RLHF setup for LLMs (e.g. that of Ouyang et al. (2022))
in which a single user, over the course of normal usage of a language model is always presented
with two output options which they need to select between in order to continue the conversation
(some early access versions of Claude had a similar interface). By having the user provide feedback
at every timestep of the conversation, this would be equivalent to training a reward model which
is conditional on the cognitive state of the person (when using assumption #2 from Appendix F.1),
which would lead the cumulative reward optimization objective to reduce to the real-time reward
objective.

F.3 FINAL REWARD

The original RLHF method. The original RLHF method from Christiano et al. (2017), in which
the user provides preference feedback after watching snippets of interactions is more similar in spirit
to the final reward objective. If the snippet length is equivalent to the horizon length, when using
assumption #2 from Appendix F.1), this is similar to the final reward objective.

RLHF for LLMs with final feedback. Similarly to the RLHF variant from Appendix F.2, one could
imagine an LLM RLHF variant in which the user provides approval labels (thumbs-up/down) at the
end of an entire conversation with the language model. Again under assumption #2, optimizing the
reward model obtained this way would be similar to the final reward DR-MDP objective.

F.4 INITIAL REWARD

Multi-timestep RLHF used for LLMs. If we consider the standard setup for RLHF used for LLMs
(e.g. that of (Ouyang et al., 2022)), it may be argued that assumption #1 from Appendix F.1 is more
appropriate than assumption #2, as preference labels are not the result of a real interaction with the
system, and so the system’s influence on the user is strongly reduced. Taking that position, the re-
ward model learned in this manner would be that of the reward function of the person corresponding
to θ0. When optimizing such initial reward model, standard practice for RLHF only optimizes the
reward myopically (with a horizon of 1), but there have already been attempts at optimizing it over
longer horizons (Hong et al., 2023a; Abdulhai et al., 2023; Irvine et al., 2023). Similarly to the
recommender system case from Appendix F.2, further assumptions may be needed for this corre-
spondence to be more accurate, such as the users being distinguishable from the state s (or more
naively, having only one user providing preference labels), so as to avoid having the reward model
need to implicitly aggregate different users’ rewards (Siththaranjan et al., 2023).

TI-Unaware Reward Modeling. Consider Algorithm 5 from Everitt et al. (2021b): note that it
essentially encodes the initial reward DR-MDP objective. This is one of the approaches presented
by Everitt et al. (2021b) to avoid influence incentives. As discussed in Appendix C.4 and Section 5,
although this algorithm (and DR-MDP objective) avoid ‘direct’ influence incentives, it can still lead
to influence incentives as defined in Definition 7.

Preferences Implicit in the State of the World. The approach proposed by Shah et al. (2019b),
based on inferring the human’s preferences based on the initial state of the environment, can be
thought of as learning the Rθ0 reward model (if one makes use of the simplifying assumption #1
from Appendix F.1). By optimizing this reward model, one is equivalently optimizing the Initial
Reward objective from Table 2. Again, to make this correspondence more precise, one may need
further simplifying assumptions, such as the state of the world being expression only of the user’s
preferences.
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Inverse Reinforcement Learning. Inverse Reinforcement Learning (IRL) techniques (Russell,
1998; Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2010) can also be thought of as
corresponding to the initial reward objective when using the simplifying assumption #1 from Ap-
pendix F.1, as the person would be – in this case – providing demonstrations according to their
initial reward function θ0. It may seem more realistic to use assumption #2 for this technique – as
it may seem possible that the human’s cognitive state may change while providing the demonstra-
tion. However, note that because standard IRL methods assume that the human’s reward function
stays the same while generating each demonstration (and across demonstrations), under assumption
#2 standard IRL would learn a reward function which is a nontrivial mixture of different cognitive
states (which is harder to analyze).

F.5 NATURAL SHIFTS REWARD

“Natural Shifts” from Carroll et al. (2022). The correspondence between the ‘natural shifts’ ob-
jective from Carroll et al. (2022) and the the ‘natural reward’ objective from Table 2 is simple, as the
objective is written and discussed in similar terms. The main difference is that they treat θ strictly
as preferences, rather than cognitive states, and do not use the formalism of DR-MDPs.

“Natural Distribution” from Farquhar et al. (2022). The idea of natural shifts, and evaluating
reward from its perspective, is also present in Farquhar et al. (2022), specifically in Equation 5.

F.6 MYOPIC REWARD

Standard RLHF used for LLMs. The intuition behind the reduction is almost entirely the same
as the one for multi-timestep RLHF used for LLMs (presented in Appendix F.4), except that most
current applications of RLHF to LLMs only optimize the reward model myopically. One slight
different from the equation in Table 2 is that at each timestep, the reward model that is maximized
myopically is that of the initial timestep, rather than the person’s current reward function, which
would lead the corresponding DR-MDP objective to be roughly maxat

E
[
Rθ0(st, at)

]
even at later

timesteps of t.

Myopic recommender systems. Despite a recent push towards using RL for training recommender
systems (Afsar et al., 2021), most currently deployed recommender systems optimize engagement
(and other metrics) only myopically (Thorburn, 2022) – without regard for the long-term conse-
quences of the recommendation. While these metrics are not usually formalized in terms of reward,
one can consider the probability of engagement, or probability of triggering the toxicity classifier as
reward signals. As the engagement signals depend on the user’s current reward function (e.g. their
preferences), the optimization objective is equivalent to the myopic reward objective from Table 2.

F.7 PRIVILEGED REWARD

Methods for removing cognitive biases from reward inference. In Table 1 we included Evans
et al. (2015) as an example of reward inference work which tries to infer the “true preferences” of
the human, in light of their feedback (or in this case, behavior) appearing inconsistent. Other work
of this kind could include (Shah et al., 2019a). Most reward learning techniques have a component
of this objective, in that they try to debias and denoise human feedback by generally making a
Boltzmann Rationality assumption (Jeon et al., 2020).

Coherent extrapolated volition (Yudkowsky, 2004). While this is not a practical approach, this
proposal of what alignment should look like in spirit is clearly in line with the privileged reward
objective. However, the privileged reward in question, that of coherent extrapolated volition, “what
we would want if we...,” is clearly not “reachable” in any meaningful sense, but more so presented
as an “ideal cognitive state.” Therefore, to truly correspond to the the privileged reward we would
have to assume reachability, or extend our framework to also

F.8 EQUIVALENCES BETWEEN DR-MDP OBJECTIVES

Note that any myopic system could also be said to be pursuing initial reward, final reward, or real-
time reward, as all such objectives are equivalent under a planning horizon of 1.

The initial or final reward objectives may also be said to be special cases of the privileged reward
objective.

40



Under review as a conference paper at ICLR 2024

F.9 OTHER ALIGNMENT TECHNIQUES WHICH DON’T FALL UNDER ANY SINGLE DR-MDP
OBJECTIVE

We already saw that under different choices of assumptions and training setups, RLHF may corre-
spond to different DR-MDP objectives. This is also the case for other common alignment methods,
such as the following (which we selected as particularly well known alignment schemes):

• Reward modeling (Leike et al., 2018): as we interpret all the techniques we consider in
the lens of reward modeling, and such techniques span almost all the objectives in Table 2,
it comes as no surprise that depending on the details of reward modeling, it may correspond
to different DR-MDP objectives.

• Cooperative Inverse Reinforcement Learning (Hadfield-Menell et al., 2016) and Assis-
tance Games (Shah et al., 2020): both of these alignment frameworks do not explicitly
define the character of the reward learning step, which falls out of the optimization itself.
In fact, under certain conditions the CIRL and Assistance Game formalisms reduce to a
IRL reward learning step (Hadfield-Menell et al., 2016), but not in others.

• RLHF (Christiano et al., 2017; Ouyang et al., 2022): we argued in the previous subsections
how under different conditions, RLHF can correspond to the initial reward, myopic reward,
final reward, or real-time reward objectives.

There are also many other alignment techniques which we have not considered (Ji et al., 2024), and
whose placement among DR-MDP objectives we leave to further work.

G ADDITIONAL RELATED WORK FROM PHILOSOPHY, ECONOMICS, AND AI

G.1 PHILOSOPHY

Philosophy on welfare under changing preferences. There have been many philosophical works
focused on the topic of personal welfare in the context of changing preferences: Velleman (1991)
considers the relation between the welfare value of a temporal period in someone’s life and his
welfare at individual moments during that period. Rosati (2013) describes the “narrative thesis,”
which posits that the way we think of the storyline of our life contributes (in it’s own right) to our
well being, which has some similarities to Griffin (1986)’s criticisms of the “totting-up model” of
welfare. Bratman (1987) investigates the role of intention and planning as a coordination mechanism
across time for individual decision-making under changing preferences. Bykvist (2006) states that,
for judging intertemporal decisions, one shouldn’t simply look at a single timestep’s point of view –
we should consider the potential people we could become, and how they would evaluate the worlds
they are in. Note that this still assumes that these future selves are trustworthy and we value their
point of view. Similarly to Bykvist (2006), Paul (2014) and Callard (2018) argue that there is no
rational basis for making decisions that change the self. Instead, Pettigrew (2019) builds off of
these works and expands on them, challenging the viewpoint that no rational basis is possible for
deliberating intertemporal choices, building a theory of individual decision making under changing
selves. Paul (2022) remains unconvinced.

Philosophical work on the ethics of influence. While there is a lot of philosophical work on the
ethics of influence and manipulation (Noggle, 2020), one line of philosophical work which we have
found to be particularly related to ours regards the ethics of “nudging” – a concept that arose in
the context of behavioral economics, and refers to institutions trying to influence the behavior and
decision-making of groups of individuals outcomes (Thaler & Sunstein, 2008). In our context, the
agent performing the nudge can be thought of as the AI, and the person is the one that is nudged.
While nudging was originally promoted as a tool to encourage pro-social outcomes, the ethics of its
applications have often been contested (Thaler, 2018). There are some philosophical works which
take the point of view of an external decision-maker which is assessing whether to perform nudging
(Paul & Sunstein, 2019; Pettigrew, 2022). In particular, Paul & Sunstein (2019) claim that a nudge
is legitimate if the nudged person is better off, as judged by themselves after the nudge. Pettigrew
(2022) points out that this heuristic can be misleading, in the case that the nudge was illegitimate
(e.g. if it manipulates the person to have different preferences), and proposes a stronger condition
as heuristic: that people agree, before and after the nudge, that the nudge was beneficial. Note
that the property of Unambiguous Desirability proposed in Appendix E.3 can be thought of as a
generalization of the heuristic proposed by (Pettigrew, 2022), applied to the context of AI.

Work at the intersection of AI and philosophy. The concern with the legitimacy of changes in
internal state of humans has also been discussed specifically in connection to AI: in particular, at the
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intersection of the two fields there are works on value changes (Ammann, 2024), preference change
(Kolodny, 2022; Zhi-Xuan et al., 2024), influence (Bezou-Vrakatseli et al., 2023), and manipulation
(Carroll et al., 2023). The concept of “informed preferences” (Gabriel, 2020) and Coherent Extrap-
olated Volition (CEV) (Yudkowsky, 2004) also relate to our work, as we discussed in relation to
privileged reward Appendix F.7 (and other appendix discussions, such as that of Appendix B.2).

G.2 ECONOMICS

Shying away from modeling changing preferences. Generally, extending back to at least the
1930s, economists have shied away from analyzing changing preferences, for a variety of reasons
(George, 2001; Grüne-Yanoff & Hansson, 2009): firstly, preference creation and change have com-
monly been considered topics that lay outside the scope of economics; second was the conviction of
many micro-economists that human preferences ultimately do not change (Stigler & Becker, 1977);
a third reason for neglect is the conviction of many macroeconomists that institutional change (rel-
ative to changes in individual’s preferences), is by far the more important explanatory factor of
economic growth. In their seminal paper, Stigler & Becker (1977) go as far as to say that “no
significant behavior has been illuminated by assumptions of differences in tastes”, and that analyses
considering changing tastes “give the appearance of considered judgement, yet really have only been
ad hoc arguments that disguise analytical failures”. Grüne-Yanoff & Hansson (2009) interpret their
position as follows:

This position may be interpreted either as the ontological claim that preferences
indeed are stable, or alternatively as the methodological claim that explanations
based on stable preferences are better than those that refer to preference changes.
The second interpretation can be based on the assumed relation between explana-
tory power and simplicity: explaining any conceivable human behaviour through
the paradigm of individuals maximizing utility constrained by income and present
capital stocks is simpler than supposing that tastes change.

Explaining away changing preferences in terms of hyperbolic discounting. The most established
approach to explain any temporal inconsistency of humans is to assume that humans plan using
hyperbolic discounting (Loewenstein et al., 2003). Even though hyperbolic discounting may be
a good model of people’s decision-making in some settings (Benzion et al., 1989; Chabris et al.,
2008), this is not the case more broadly (Loewenstein et al., 2003).

Recent economics work has started contending with changing preferences more directly. In
recent decades, there have been many more works on the topic of changing preferences (Loewenstein
et al., 2003; Grüne-Yanoff & Hansson, 2009). George (2001) formulates an theory of individual
welfare that can account for changing preferences by appealing to second-order preferences. To
address the regress problem, this work argues that preference changes are most commonly first-
order ones, and even when second-order preferences occur, as long as they don’t move in tandem
with first-order changes, welfare assessments are still possible. Ullmann-Margalit (2006) questions
the idea that one could possibly be rational about “big decisions” which change the self, claiming that
in a economics sense, there is no footing for a rational choice in these situations, as the “rationality
base” changes as a consequence of the decision—anticipating Paul (2014)’s argument about non-
commensurability across different selves. More recently, Bernheim et al. (2019) attempt to model
and unify various preference change phenomena under a single theoretical model, according to
which individuals choose their preferences according to what they expect will maximize their utility
(subject to their level of “open-mindedness”).

Unambiguous Desirability and Individual Rationality. The property of unambiguous desirability
was inspired by the notion of “individual rationality” from algorithmic game theory (Nisan et al.,
2007), which captures the notion of whether any of the individuals involved in an ongoing deal would
ever prefer to defect. This is also known as a “participation constraint” or “voluntary participation.”

G.3 AI

Multi-objective MDPs. With a choice of U(ξ), one implicitly replaces the multiple competing
notions of optimality (corresponding to each θ) with a single one. The process of choosing a single
U(ξ) which implicitly reduces a DR-MDP to an MDP, is similar to the scalarization step in Multi-
Objective MDPs (Roijers et al., 2013) which reduces a MOMDP to an MDP, which similarly requires
an implicit value judgement (Chankong & Haimes, 2008).
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Algorithmic Amplification in social media. The study of algorithmic amplification in social media
(Thorburn et al., 2022; Ribeiro et al., 2023; Huszár et al., 2021; Milli et al., 2023) can be thought of as
a study of influence emerging from specific algorithmic choices.Notions of amplification also need
to be specified relative to a “neutral” baseline, similarly to our notions of influence (Appendix C.1):
it’s been debated whether one should use random recommendations, a reverse chronological algo-
rithm, competitors’ recommenders, or not using any platform at all (Milli et al., 2023).

Performative Prediction and Performative Power. An interesting line of work which has emerged
in recent years is that of performative prediction (Perdomo et al., 2020) and performative power
(Hardt et al., 2022), which concerns itself with the capacity of classifiers to affect the distribution of
their future inputs. This idea is similar in spirit to the work of Krueger et al. (2020), and is connected
to our concern with AI systems’ capacity to influence humans. However, we see various reasons to
prefer the RL formalism to that of Hardt et al. (2022) for the types of influences were are interested
in: performative prediction and power are mostly focused on firms which operate in sequential deci-
sion problems (e.g. domains in which the algorithm’s choices affect future users’ behavior), but use
algorithms that myopically optimize over only the next timestep’s outcomes. For instance, to the
best of our understanding, performative power (Hardt et al., 2022) can be thought of as a measure
of how much a firm can shift users over the course of a single timestep, if they choose to do so. The
steering analysis of ex-ante and ex-post optimization only performs a one-timestep lookahead, feels
like a less natural formalism for the multi-timestep nature of most preference changes – especially
if one considers that the RL formalism solves the multi-timestep generalization of the ex-post op-
timization problem by design: in RL training, the human’s adaptation to the AI is already factored
into how the AI should be making decisions in order to maximize the multi-timestep objectives. In
short, the lens of RL seems strictly more expressive and more suited to our purposes than that of per-
formative prediction, but comes at the cost of additional computational challenges. As a final point
of comparison, the framing of Hardt et al. (2022) is mostly focused on the misalignment between
firms and targets of the firm’s algorithms – focusing on the power that firms have to steer them to
their benefit. While we recognize that this firm-user misalignment is an additional reason for worry,
we focus on the challenges that would remain even if AI systems were to be developed solely with
user alignment in mind.

Social Choice Theory. Our settings shares various similarities with preference aggregations across
multiple individuals, as mentioned in Section 1. This is studied by social choice theory (Brandt
et al., 2012), which mainly differs from our framework in that there is no temporal dependency
between elements of the decision which is being made. While there has been some work focusing
on collective decision-making across time (for individuals who can change their preferences), these
works mostly ignore the influence incentives which emerge from their notions of optimality (Parkes
& Procaccia, 2013; Freeman et al., 2017; Kulkarni & Neth, 2020).

Representational alignment. Our work can be interpreted in the broader lens of representational
alignment (Sucholutsky et al., 2023; Bobu et al., 2024): our DR-MDP formalism has AI systems
explicitly represent the fact that our reward evaluations are dependent on our cognitive state, that
changes over time and can be influenced by the AI system itself. The hope is that this enables us as
designers to better analyze and direct system behavior in such settings.

Interdisciplinary AI Work. The adaptive and changing nature of human feedback has also been
emphasized by Lindner & El-Assady (2022). We think there a good area of inspiration for tentative
solutions is that of Fiduciary AI (Benthall & Shekman, 2023). More broadly, our conclusion about
the challenges of avoiding normative choices ring similar to the points made by Dobbe et al. (2021).

H ADDITIONAL LIMITATIONS AND DISCUSSION

Unreachable θs, and meta-preferences. To simplify our analysis, we restrict our analysis to reach-
able cognitive states. However, cognitive states which we aspire to may not be reachable in prac-
tice (Yudkowsky, 2004). Accounting for non-reachable reward functions would require additional
complexity, which would only increase the need for challenging normative judgements (see Ap-
pendix A.2). Moreover, our framework cannot directly express meta-preferences, i.e. the reward
functions cannot directly evaluate transitions between different reward functions, which may be
useful to capture notions of legitimacy of influence and personal autonomy. We leave this to future
work.
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Efficient algorithms and tractability. Our main focus in this work is to provide a clear formalism
for grounding discussions about dynamic-reward problems, rather than developing efficient solu-
tions. Therefore, we have mostly ignored tractability issues of the objectives we propose.

Toy Problems. Similarly, because the main focus of our work is to clearly describe the problems
that one faces with influenceable reward functions, and the challenges with specifying a correct
objective, we prioritized the simplicity of our examples for ease of interpretation. An additional
challenge that would arise with more complex problems is that of instantiating them realistically
without learning reward functions from real users would require developing novel reward learning
techniques (as discussed in Appendix A.1).

Misaligned economic pressures. We show that even if AI systems were solely designed with
users’ welfare in mind, being able to avoid undesirable influence while retaining system capabilities
is an unsolved problem. Real-world AI systems will instead be developed under strong economic
incentives which are at odds with users’ well-being (Susser et al., 2018), giving additional reason to
worry about influence from AI systems.

Connection to individual and societal decision-making. Our framework can easily be reinter-
preted in the lens of individual (Pettigrew, 2019) and societal (Parkes & Procaccia, 2013) decision
making under changing rewards, shedding light on the influence incentives and normative questions
implicit in such domains. May also share impossibility results.
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