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ABSTRACT

In real world applications, it is usually necessary for a reinforcement learning
algorithm to handle partial observability, which is not captured by a Markov
decision process (MDP). Although partially observable Markov decision pro-
cesses (POMDPs) have been precisely motivated by this requirement, they raise
significant computational and statistical hardness challenges in learning and plan-
ning. In this work, we introduce the Energy-based Predictive Representation (EPR)
to support a unified approach to practical reinforcement learning algorithm design
for both the MDP and POMDP settings, which enables learning, exploration, and
planning to be handled in a coherent way. The proposed framework relies on a
powerful neural energy-based model to extract a sufficient representation, from
which Q-functions can be efficiently approximated. With such a representation,
confidence can be efficiently computed to allow optimism/pessimism in the face of
uncertainty to be efficiently implemented in planning, enabling effective manage-
ment of the exploration versus exploitation tradeoff. An experimental investigation
shows that the proposed algorithm can surpass state-of-the-art performance in both
MDP and POMDP settings in comparison to existing baselines.

1 INTRODUCTION
Reinforcement learning (RL) based on Markov Decision Processes (MDPs) has proved to be extremely
effective in several real world decision-making problems (Levine et al., 2016; Jiang et al., 2021).
However, the success of most RL algorithms (Ren et al., 2022b; Zhang et al., 2022) relies heavily
on the assumption that the environment state is fully observable to the agent. In practice, such an
assumption can be easily violated in the presence of observational noise. To address this issue,
Partially Observable Markov Decision Processes (POMDPs) (Åström, 1965) have been proposed for
capturing the inherent uncertainty about the state arising from partial observations.

However, the flexibility of POMDPs creates significant statistical and computational hardness in
terms of planning, exploration and learning. In particular, i), partial observability induces a non-
Markovian dependence over the entire history; and ii), the expanded spaces of observation sequences
or state space distributions incur significant representation challenges. In fact, due to the full history
dependence, it has been proved that the planning for even finite-horizon tabular POMDPs is NP-hard
without additional structural assumptions (Papadimitriou & Tsitsiklis, 1987; Madani et al., 1998),
and the sample complexity for learning POMDPs can be exponential with respect to the horizon (Jin
et al., 2020a). These complexities only become more demanding in continuous state spaces and
real-world scenarios.

On the other hand, despite the theoretical hardness, the widely used sliding window policy parameter-
ization has demonstrated impressive empirical performance (Mnih et al., 2013; Berner et al., 2019),
indicating that there is sufficient structure in real-world POMDPs that can be exploited to bypass the
aforementioned complexities. Recently, observable POMDPs with invertible emissions have been
investigated to justify the sliding window heuristic in tabular cases (Azizzadenesheli et al., 2016;
Guo et al., 2016; Jin et al., 2020a; Golowich et al., 2022a), which has been further extended with
function approximation for large and continuous state POMDPs (Wang et al., 2022; Uehara et al.,
2022). Although these algorithms can exploit particular structure efficiently in terms of the sample
complexity, they rely on unrealistic computation oracles, and are thus not applicable in practice. In
this paper, we consider the following natural question:

How can one design efficient and practical algorithms for structured POMDPs?
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In particular, we would like to exploit special structures that allows approximation to bypass inherent
worst-case difficulties. By “efficient” we mean considering learning, planning and exploration in a
unified manner that can balance errors in each component and reduce unnecessary computation, while
by “practical” we mean the algorithm retains sufficient flexibility and can be easily implemented and
deployed in real-world scenarios.

There have been many attempts to address this question. The most straightforward idea is to
extend model-free RL methods, including policy gradient and Q-learning, with a memory-limited
parametrization, e.g., recurrent neural networks (Wierstra et al., 2007; Hausknecht & Stone, 2015; Zhu
et al., 2017). Alternatively, in model-based RL (Kaelbling et al., 1998), an approximation of the latent
dynamics can be estimated and a posterior over latent states (i.e., beliefs) maintained, in principle
allowing an optimal policy to be extracted via dynamic programming upon beliefs. Following this
idea, Deisenroth & Peters (2012) and Igl et al. (2018); Gregor et al. (2019); Zhang et al. (2019); Lee
et al. (2020) consider Gaussian process or deep model parametrizations, respectively. Such methods
are designed based on implicit assumptions about structure through the parameterization choices
of the models. However, these approaches suffer from sub-optimal performance due to several
compounding factors: i), approximation error from inaccurate parametrizations of the learnable
components (policy, value function, model, belief), ii), a sub-optimal policy induced by approximated
planning (through policy gradient or dynamic progamming), and iii), the neglect of exploration when
interacting with the environment.

As an alternative, spectral representation approaches provide an alternative strategy based on ex-
tracting a sufficient representation that can support learning, planning and exploration. In this
vein Azizzadenesheli et al. (2016) investigate spectral methods (Anandkumar et al., 2014) for latent
variable model estimation in POMDPs, but only consider tabular scenarios with finite state and
action cases. Predictive State Representations (PSR) (Littman & Sutton, 2001; Boots et al., 2011)
also leverage spectral decomposition, but instead of recovering an underlying latent variable model,
they learn an equivalent sufficient representation of belief. These methods have been extended to
real-world settings with continuous observations and actions by exploiting kernel embeddings (Boots
et al., 2013) or deep models (Downey et al., 2017; Venkatraman et al., 2017; Guo et al., 2018).
However, efficient exploration and tractable planning with spectral representations has yet to be
thoroughly developed (Zhan et al., 2022).

In this paper, we propose Energy-based Predictive Representation (EPR) to support efficient and
tractable learning, planning, and exploration in POMDPs (and MDPs), as a solution to the aforemen-
tioned question. More specifically:

• We propose a flexible nonlinear energy-based model for induced belief-state MDPs without
explicit parameterization of beliefs, providing a principled linear sufficient representation for
the state-action value function.

• We reveal the connection between EPR and PSR, while also illustrating the differences, to
demonstrate the modeling ability of the proposed EPR.

• We provide computationally-tractable learning and planning algorithms for EPR that implement
the principles of optimism and pessimism in the face of uncertainty for online and offline RL,
balancing exploration and exploitation.

• We conduct a comprehensive comparison to existing state-of-the-art RL algorithms in both MDP
and POMDP benchmarks, demonstrating superior empirical performance of the proposed EPR.

2 PRELIMINARIES
In this section, we briefly introduce POMDPs and their degenerate case of MDPs, identifying the
special structures that will be used to derive the proposed representation learning method.
Partially Observable Markov Decision Processes. Formally, we define a partially observable
Markov decision process (POMDP) as a tuple P = (S,A,O, r,H, µ, P,O), where H is a positive
integer denoting the length of horizon; µ is the initial distribution of state, r : S × A → [0, 1], the
reward function, and S,A,O denote the state, action and observation space, respectively. P (·|s, a) :
S × A → ∆(S) is the transition kernel, capturing the dynamics between states, and O(·|s) : S →
∆(O) is the emission kernel, where ∆(·) denotes the set of probability measures over the support.

Initially, given a state s1 ∼ µ(s) as a starting point, at each step h ∈ [1, H], the agent takes an action
a ∈ A, a new state sh+1 is generated sh+1 ∼ P (·|sh, ah), and the agent observes oh+1 ∼ O(·|sh+1)
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and reward r(sh+1, ah+1). Due to partial observability, the dependence between observations is
non-Markovian, hence, we define a policy π = {πt} where πt : O×(A×O)t → ∆(A) to depend on
the whole history, i.e., xt = {o0, {ai, oi+1}t−1

i=0}. The corresponding value for policy π can be defined

as V π = Eπ

[∑H
h=1 r(sh, ah)

]
, and the objective is to find the optimal policy π∗ = argmaxπ V

π .

Markov decision processes (MDPs) are a degenerate case of POMDPs, where S = O and
O(o|s) = δ(o = s), and can be specified as M = (S,A, r,H, µ, P ). One can also convert a
POMDP to an MDP by treating the whole history xt = {o0, {ai, oi+1}t−1

i=0} as the state. Specifically,
following (Kaelbling et al., 1998), we define the belief b : O × (A×O)t → ∆(S), ∀t ∈ N+, which
can be recursively defined as: b(s1|o1) = P (s1|o1), and

b(st+1|xt+1) =
b(st|xt)P (st+1|st,at)O(ot+1|st+1)∫

b(st|xt)P (st+1|st,at)O(ot+1|st+1) dst dot+1
. (1)

Each entry of the belief state describes the probability of the underlying state given the past history.
Furthermore, with a slight abuse of notation, we use bt to denote the belief state at step t. Then, one
can construct the equivalent belief MDP Mb = (X ,A, Rh, H, µb, Tb) with X denoting the set of
possible histories, and

µb :=

∫
b(s|o1)µ(o1)do1, Rt(b, a) =

∫
bt(sh)r(st, a)dsh (2)

Tb (bt+1|bt, at) :=
∫
O
1bt+1=b(xt+1)P (ot+1|bt, at) dot+1. (3)

Therefore, the corresponding value function V π
h (bh) and Qπ

h(bh, ah) for the belief MDP given a
policy π can be defined as:

V π
h (bh) = E

[∑H
t=hRt(bt, at)|xh

]
, Qπ

h(bh, ah) = E
[∑H

t=hRt(bt, at)|bh, ah
]
.

Following the MDP perspective, we also have the Bellman recursive equation:
V π
h (bh) = Eπ [Q

π
h(bh, ah)] , Qπ

h(bh, ah) = Rh(bh, ah) + ETb

[
V π
h+1(bh+1)

]
. (4)

One can still apply a dynamic programming style approach to solve POMDPs according to (4),
however since the belief depends on the entire history the number of possible beliefs can still be
infinite even the number of states is finite. To combat with these essential difficulties, we will leverage
two particular structures, observability and linearity, as introduced below.

Observability in POMDPs. It has been shown (Even-Dar et al., 2007; Golowich et al., 2022b;
Uehara et al., 2022) that for POMDPs with an observability assumption, one can safely relax the
history dependence with a short window, bypassing the exponential sample and planning complexity
w.r.t. horizon length (Golowich et al., 2022a;b). Specifically, the observability property for POMDPs
is defined as follows.

Assumption 1 ((Even-Dar et al., 2007; Golowich et al., 2022b)). The POMDP with emission modelO
satisfies γ-observability if for arbitrary beliefs b and b′ over states, ∥⟨O, b⟩ − ⟨O, b′⟩∥1 ⩾ γ ∥b− b′∥1,
where ⟨O, b⟩ :=

∫
O(o|s)b(s)ds.

A key consequence of observability is that, the belief can be well approximated with a short history
window (Golowich et al., 2022b), and one can construct an approximate MDP based on a finite belief
history, which eliminates the exponential complexity induced by full history dependence. Specifically,
we denote L as the length of the window. Then, defining xLt =

{
ot−L, {ai, oi+1}ti=t−L

}
∈ XL,

the approximated beliefs bL follow the same recursive definition as (1) but with only finite history
xLt starting from the uniform belief. This immediately induces an approximate MDP ML

b =(
XL,A, RL

h , H, µb, T
L
b

)
according to (3) with bL, instead of b. Theorem 2.1 in Golowich et al.

(2022a) proves that the approximation error of the finite-memory belief MDP is small for observable
POMDPs. Hence, with slight abuse of notation, we still use b to represent bL throughout the paper.

Linearity in MDPs. To handle the complexity induced by large state spaces, linear/low-rank
structures have been introduced in MDPs (Jin et al., 2020b; Agarwal et al., 2020) for effective
function approximation, which leverages spectral factorization of the transition dynamics and reward:

P (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩ , r(s, a) = ⟨ϕ(s, a), θ⟩ , (5)
where ϕ : S × A → H, µ : S → H are two feature maps to a Hilbert space H. Under such an
assumption, we can represent the state-action value function Qπ for an arbitrary policy π by:

Qπ(s, a) = r(s, a) + γ
∫
V π(s′)P (s′|s, a)ds′ =

〈
ϕ(s, a), θ + γ

∫
V π(s′)µ(s′)ds′

〉
,
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which implies that instead of a complicated function space defined on the raw state space, one can
design a computationally efficient planning and sample efficient exploration algorithm in the space
linearly spanned by ϕ. In fact, from the correspondence between policy and Q-function as discussed
in (Ren et al., 2022a), ϕ can be understood as representing primitives for skill set construction.
Efficient and practical algorithms have been designed for exploiting linearity in MDPs (Zhang et al.,
2022; Qiu et al., 2022), which inspires us to exploit similar properties in POMDPs.
Energy-based Models. Energy-based Models are one of the most flexible models to represent the
conditional probability measure. It takes the form of p(y|x) = exp(−f(x, y))/Z(x) where f(x, y),
which can be parametrized by deep models, is the energy of (x, y) and Z(x) is a partition function
that only depends on x to guarantee p(y|x) is a valid probability measure. When y is discrete, we
have that p(y|x) = exp(−f(x, y))/

∑
y exp(−f(x, y)), which corresponds to the standard softmax

probability where −f(x, y) is the softmax logits. We refer the interested readers to Song & Kingma
(2021) for the training methods of energy-based models.

3 ENERGY-BASED PREDICTIVE REPRESENTATION
We propose Energy-based Predictive Representation (EPR), which introduces linearity into finite-
history approximated POMDPs, allowing the complexity induced by large state spaces and long
histories to be overcome, yielding improved efficiency for learning, planning and exploration. We
emphasize that the proposed method is also applicable to MDPs.

The approach builds upon recent progress in large-state MDPs (Zhang et al., 2022; Qiu et al., 2022)
that leverages linear structure in the dynamics, P (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩, to obtain an efficient
and practical framework for learning, planning and exploration. Recall the construction of a finite-
memory belief MDP to approximate a POMDP discussed in Section 2, which avoids full history
dependence. For such a constructed belief MDP, a natural idea is to apply linear MDP algorithms,
i.e., extracting the linear decomposition for TL

b (b′|b, a) = ⟨ϕ(b, a), µ(b′)⟩, to handle the hardnesses
of POMDPs mentioned in Section 1. However, there are several difficulties in such a straightforward
extension:

i, the set of beliefs is proportional to the number of states, which could be infinite;
ii, the factorization of the transition dynamics (3) in the belief MDP is difficult.

These difficulties hinder the extension of linear MDPs to observable POMDPs. However, note that we
never explicitly require the beliefs and their dynamics, but only the representation ϕ(b, a). As beliefs
are functions over finite-window histories, the representation can also be rewritten as ϕ(xt, at), which
suggests that one might bypass the inherent difficulties by a reprameterization trick. Consider the
energy-based parametrization (Arbel et al., 2020) for P (ot+1|b(xt), at) where b(xt) is the belief for
history xt:

P (ot+1|b(xt), at) = p(ot+1) exp
(
f(xt, at)

⊤ (g(ot+1) + λf(xt, at))
)
, (6)

Eot+1

[
exp

(
f(xt, at)

⊤ (g(ot+1) + λf(xt, at))
)]

= 1,∀ (xt, at) ∈ XL, (7)
where λ is a scalar, p(o) is a fixed distribution and the normalization condition enforces that the energy-
based model P (ot+1|b(xt), at) is a valid distribution. We avoid any explicit parametrization and
computation of beliefs b, while preserving dependence through f and g, which will be learned jointly.
Compared to standard parametrizations, we do not need to specify unnecessary model parameters for
the transition dynamics P and emmission O, and bypass any learning and approximation of beliefs
that induce compounding errors. As a special case, we note that the observable Linear-Quadratic
Gaussian (LQG) actually follows (6) with a specific λ and p(o). See Appendix C for details.

Meanwhile, this approach also provides a linear factorization of T (bt+1|bt, at) almost for free. By
viewing the proposed parameterization (6) as a kernel and following the random Fourier feature
trick (Rahimi & Recht, 2007; Choromanski et al., 2020; Ren et al., 2022b), one can write

P (ot+1|bt, at) = Eω [ϕω(xt, at)ψω(ot+1)] , (8)
where ωi ∼ N (0, Id) and

ϕ(xt, at) =

[
exp

((
λ− 1

2

)
∥f(xt, at)∥2 + ω⊤

i f(xt, at)

)]d
i=1

, (9)

ψ(xt+1) =

[
p(ot+1) exp

(
ω⊤
i g(ot+1)−

∥g(ot+1)∥2

2

)]d
i=1

, (10)
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which can be derived from the softmax random feature from Choromanski et al. (2020). We also
provide a derivation in Appendix B. Substituting (8) into (3) yields the factorization of Tb as

Tb (bt+1|bt, at) =
∫
O
1b(·|xt+1)=b(·|xt,at,ot+1)Eω [ϕω(xt, at)ψω(ot+1)] dot+1 (11)

=Eω [ϕω(xt, at)µ(bt+1)] , (12)
where µ(bt+1) :=

∫
O 1b(·|xt+1)=b(·|xt,at,ot+1)ψω(ot+1) dot+1. With this formula, we obtain a valid

linear representation ϕ(bt, at) as an Energy-based Predictive Representation (EPR) for a belief MDP
without any explicit beliefs.

To learn the EPR given data D := {ot−1, at, rt}Ht=1, we exploit maximum likelihood estima-
tion (MLE) of (6),

min
f,g

−ÊD
[
f(xt, at)

⊤ (g(ot+1) + λf(xt, at))
]
, (13)

s.t., Ep(ot+1)

[
exp

(
f(xt, at)

⊤ (g(ot+1) + λf(xt, at))
)]

= 1,∀ (xt, at) ∈ XL. (14)
To ensure the constraints, we add a regularization term(

log
(
Eo

[
exp(f(xt, at)

⊤ (g(o) + λf(xt, at)))
]))2

(15)

≈

(
log

(
1

m

m∑
i=1

exp(f(xt, at)
⊤ (g(oi) + λf(xt, at)))

))2

, (16)

with oi ∼ p. The objective will be

minf,g ÊD

[
− f(xt, at)

⊤ (g(ot+1) + λf(xt, at))

+ α

(
log

(
1

m

m∑
i=1

exp(f(xt, at)
⊤ (g(oi) + λf(xt, at)))

))2 ]
. (17)

In practice, we can further simplify the objective by normalizing the f̃(xt, at) =
f(xt,at)

∥f(xt,at)∥2
, obtain-

ing the final objective

minf̃ ,g ÊD

[
−f̃(xt, at)⊤g(ot+1) + λ+ α

(
log
(∑m

i=1 exp(f̃(xt, at)
⊤g(oi) + λ)

))2]
, (18)

which reduces to a contrastive loss that can be optimized by stochastic gradient descent with a deep
network parameterization of f̃ and g. We obtain negative samples {oi}mi=1 ∼ p(o) from a mixture of
replay buffer and collected trajectories.

Before we introduce an exploration-exploitation mechanism with EPR in Section 3.1, we first discuss
the relationship between the proposed EPR, predictive state representations (PSR) (Littman & Sutton,
2001; Singh et al., 2004), and spectral dynamics embedding (SPEDE) (Ren et al., 2022b).

Connection to PSR (Littman & Sutton, 2001; Singh et al., 2004): The predictive state rep-
resentation (PSR) was also proposed for bypassing belief calculation by factorizing a variant of
the transition dynamics operator. Specifically, given the history (xt, at), the probability for ob-
serving a test, i.e., the finite sequence of events y = (at+1, ot+1, · · · , at+k, ot+k) with k ∈ N, is
p(y|x) := p(ot+k

t+1 |xt, a
t+k
t ). For time step t, one can construct a set of core tests U = {ui, . . . , uk}

as sufficient statistics for history xt, such that for any test τ , p(τ |xt) = ⟨p(U |xt), wτ ⟩ for some
weights wτ, ∈ R|Ut|. The forward dynamics can be represented in a PSR by Bayes’ rule:

p(τ |xt, at, ot+1) =
w⊤
(τ,at,ot+1)

p(U |xt)

w⊤
(at,ot+1)

p(U |xt)
, which implies that a PSR updates with new observations and

actions by repeating a calculation for each ui ∈ U . Although originally defined for tabular cases,
PSRs have been extended to continuous observations by introducing kernels (Boots et al., 2013) or
neural networks (Guo et al., 2018; Downey et al., 2017; Hefny et al., 2018).

Obviously, the proposed EPR shares similarities with PSR. Both factorize conditional distributions
defined by the dynamics. However, these representations are designed for different purposes, and
thus, with different usages and updates. Concretely, EPR is proposed for seeking a linear space that
can represent the Q-function. The representation is designed to preserve linearity with successive
observations without the need for Bayesian updates, which induce extra nonlinearity in PSRs. This
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Algorithm 1 Energy-based Predictive Representation
1: Input: History Embedding f(x, a), Observation Embedding g(o), Random Feature {ωi}ni=1

where ωi ∼ N (0, Id), Initial Random Policy π0, Initial Dataset D = ∅ for online setting.
2: for Episode i = 1, · · · ,K do
3: Collect data {(xi,j , ai,j , oi,j , ri,j)}Hj=1 with π̃i = ξπi + (1− ξ)π0, and add the data to D.
4: Optimize f and g with (18) using the data from D.
5: Obtain the representation ϕ(xt, at) via (9) using {ωi}ni=1.
6: Add the bonus (19) to the reward and obtain the optimal policy πi+1 with the Q(xt, at)

parameterize as ϕ(xt, at) and optimize via FQI.
7: (Optional) Extract policy by soft-AC from learned Q.
8: end for
9: Return πK .

linear property leads to efficient exploration and planning in EPR; while an efficient exploration and
planning algorithm has not yet been discussed for PSR.
Connection to SPEDE (Ren et al., 2022b): Linear random features have been proposed for
solving planning in MDPs with nonlinear dynamics in (Ren et al., 2022b), where the transi-
tion operator is defined as T (s′|s, a) ∝ exp

(
−∥s′ − f(s, a)∥22 /(2σ2)

)
, corresponding to dy-

namics s′ = f(s, a) + ϵ with Gaussian noise ϵ ∼ N (0, σ). In addition to the generaliza-
tion of EPR for POMDPs, even in an MDP, EPR considers a general energy-based model,
T (s′|s, a) ∝ p(s′) exp

(
f(s, a)⊤ (g(s′) + λf(s, a))

)
for the dynamics, which is far more flexible

than the Gaussian perturbation model considered in SPEDE.
3.1 ONLINE EXPLORATION AND OFFLINE POLICY OPTIMIZATION WITH EPR
With an EPR ϕ(xt, at) learned for a POMDP, we can represent the Q-function linearly for the
approximated belief MDP, and thus, achieve computationally efficient planning, while calculating
confidence bounds for implementing the optimism/pessimism in the face of uncertainty.
Exploration and Exploitation with Elliptical Confidence Bound. Given the learned repre-
sentation ϕ(xt, at), the confidence bounds can be calculated efficiently, which allows efficient
implementation of optimism/pessimism in the face of uncertainty via upper/lower confidence
bound (Abbasi-Yadkori et al., 2011; Jin et al., 2020b; Uehara et al., 2021). This is achieved simply
by adding an additional elliptical bonus to the R(x, a). Specifically, given the dataset we collect
D = {(xLi , ai, Ri, oi+1)}ni=1, and calculate the confidence bound as the bonus,

b(xt, at) =

√
ϕ(xt, at)Σ

−1
n ϕ(xt, at) (19)

where λ is a pre-specified hyperparameter, and Σn =
∑n

i=1 λI + ϕ(xLi , ai)ϕ(x
L
i , ai)

⊤. One can
then implement UCB/LCB by adding/subtracting the bonus to R(xt, at), and performing planning
on the modified reward function.
Planning with Obtained Representation. Planning can be conducted by Bellman recursion within
the linear space spanned by ϕ(xLt , at) without a bonus. However, with an additional bonus term, the
Qπ no longer lies in the linear space of ϕ, since

Qπ
(
xLt , at

)
= R(xLt , at) + b(xLt , at) + ETL

b π [Q
π (xt+1, at+1)] .

As discussed in (Zhang et al., 2022), one can augment the feature space ψ (x, a) := {ϕ(x, a), b(x, a)}
to ensure the Q-functions can be linearly represented but with an extra O

(
d2
)

memory cost. In prac-
tice, we perform fitted Q iteration with a nonlinear component extending the linear parameterization,
i.e., Q(x, a) = {w1, w2}⊤

[
ϕ(x, a), σ

(
w⊤

3 ϕ(x, a)
)]

.

We provide an outline of our implementation of UCB in Algorithm 1. LCB for pessimistic offline
RL is similar but using a pre-collected dataset D̂ without data collection iteration in Step 2, and with
the bonus subtracted in Step 6. Our algorithm follows the standard interaction paradigm between the
agent and the environment, where for each episode, the agent executes the policy and logs the data to
the dataset. Then we perform representation learning and optimistic planning with the Q function
parameterized upon the learned representation. Finally, we also extract a policy from the learned Q
by soft actor-critic (Haarnoja et al., 2018).

4 RELATED WORK
Partial Observability in Reinforcement Learning. Despite the essential hardness of POMDPs in
terms of learning, planning and exploration (Papadimitriou & Tsitsiklis, 1987; Madani et al., 1998;
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Vlassis et al., 2012; Jin et al., 2020b), the study of reinforcement learning with partial observations,
from both theoretical and empirical aspects, is still attractive due to its practical importance.

Algorithmically, model-based/-free algorithms have been extended to POMDPs, explicitly or implic-
itly exploiting structure. Model-based RL algorithms parameterize and learn latent dynamics with an
emission model explicitly, and planning through the simulation upon the learned models. A variety of
deep models have been proposed recently for better modeling (Watter et al., 2015; Karl et al., 2016; Igl
et al., 2018; Zhang et al., 2019; Lee et al., 2020; Hafner et al., 2019a;b; 2020). Although deep models
indeed provide better approximation ability, they also bring new challenges in terms of planning
and exploration, which has not been fully handled. On the other hand, model-free RL algorithms
have been extended for POMDPs by learning history dependent value functions and/or policies,
through temporal-difference algorithms or policy gradients. For example, deep Q-learning (Mnih
et al., 2013) concatenates 4 consecutive frames as the input of a deep neural Q-net, which is then
improved by recurrent neural networks for longer windows (Bakker, 2001; Hausknecht & Stone,
2015; Zhu et al., 2017). Recurrent neural networks have also been exploited for history dependent
policies (Schmidhuber, 1990; Bakker, 2001; Wierstra et al., 2007; Heess et al., 2015) in policy
gradient algorithms as well as actor-critic approaches (Ni et al., 2021; Meng et al., 2021). Model-free
RL for POMDPs bypasses the planning complexity of model-based RL algorithms. However, the
difficulty in exploration remains, which leads to suboptimal performance in practice. By contrast, the
proposed EPR not only can be efficiently learned, but is also equipped with simple yet principled
planning and exploration methods, which has not been previously achieved.

Representation Learning for RL. Successful vision-based representation learning methods have
been extended to RL for extracting compact and invariant state-only information from raw-pixels,
e.g., (Laskin et al., 2020a;b; Kostrikov et al., 2020). However, such vision-based features are not
specially designed for capturing properties in POMDPs/MDPs essential for decision making. To
reveal structure that is particularly helpful for RL, many representation learning methods have
been designed for different purposes, such as bi-simulation (Ferns et al., 2004; Gelada et al., 2019;
Zhang et al., 2020), successor features (Dayan, 1993; Barreto et al., 2017; Kulkarni et al., 2016),
spectral decomposition of transition operators (Mahadevan & Maggioni, 2007; Wu et al., 2018; Duan
et al., 2019), latent future prediction (Schwarzer et al., 2020; Stooke et al., 2021) and contrastive
learning (Oord et al., 2018; Mazoure et al., 2020; Nachum & Yang, 2021; Yang et al., 2021). These
representation methods ignore the requirement of planning tractability. Moreover, they are learning
based on a pre-collected dataset, which ignores the exploration issue.

Features that are able to represent value functions are desirable for efficient planning and exploration.
Based on the linear MDPs structure (Jin et al., 2020b), several theoretical algorithms (Agarwal et al.,
2020; Uehara et al., 2021) have been developed. Ren et al. (2022b); Zhang et al. (2022); Qiu et al.
(2022); Ren et al. (2022a) bridge the gap between theory and practice and bypass computational
intractability via different techniques, demonstrating advantages empirically. The proposed EPR is
inspired from this class of representations, but extended to POMDPs, which is highly non-trivial.

5 EXPERIMENTS

Our experiments investigate how our algorithm performs in robotic lomocation simulation environ-
ments. We extensively evaluate the proposed approach on the Mojuco (Brockman et al., 2016) and
DeepMind Control Suites (Tassa et al., 2018). We conduct experiments on both the fully observable
MDP and partially observable POMDP settings.

5.1 FULLY OBSERVABLE MDP
Dense-Reward Mujoco Tasks. We first conduct experiments in the fully observable MDP setting
in Mujoco locomotion tasks. This is a test suite commonly used for both model-free and model-
based RL algorithms. We compare EPR with model-based RL baselines PETS (Chua et al., 2018)
and ME-TRPO (Kurutach et al., 2018), and model-free RL baselines SAC (Haarnoja et al., 2018),
TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017). In addition, we also compare to
the representation learning RL baselines Deep Successor Feature (DeepSF) (Kulkarni et al., 2016)
and SPEDE (Ren et al., 2022b). We list the best model-based RL results (except for iLQR (Li &
Todorov, 2004)) in MBBL (Wang et al., 2019) for comparison. All algorithms are run for 200K
environment steps. The results are averaged across four random seeds with a window size of 10K.
We show that in Tab. 1, EPR significantly outperforms all the baselines including the strong previous
SoTA model-free algorithm SAC.
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Table 1: Performance on various MuJoCo control tasks. All the results are averaged across 4 random seeds
and a window size of 10K. Results marked with ∗ is adopted from MBBL. EPR achieves strong performance
compared with baselines.

HalfCheetah Reacher Humanoid-ET Pendulum I-Pendulum

Model-Based RL

ME-TRPO∗ 2283.7±900.4 -13.4±5.2 72.9±8.9 177.3±1.9 -126.2±86.6
PETS-RS∗ 966.9±471.6 -40.1±6.9 109.6±102.6 167.9±35.8 -12.1±25.1
PETS-CEM∗ 2795.3±879.9 -12.3±5.2 110.8±90.1 167.4±53.0 -20.5±28.9
Best MBBL 3639.0±1135.8 -4.1±0.1 1377.0±150.4 177.3±1.9 0.0±0.0

Model-Free RL
PPO∗ 17.2±84.4 -17.2±0.9 451.4±39.1 163.4±8.0 -40.8±21.0
TRPO∗ -12.0±85.5 -10.1±0.6 289.8±5.2 166.7±7.3 -27.6±15.8
SAC∗ (3-layer) 4000.7±202.1 -6.4±0.5 1794.4±458.3 168.2±9.5 -0.2±0.1

Representation RL

DeepSF 4180.4±113.8 -16.8±3.6 168.6±5.1 168.6±5.1 -0.2±0.3
SPEDE 4210.3±92.6 -7.2±1.1 886.9±95.2 169.5±0.6 0.0±0.0
EPR 5107.6±195.4 -5.6±0.3 1494.6±131.3 169.4±4.1 0.0±0.0

Ant-ET Hopper-ET S-Humanoid-ET CartPole Walker-ET

Model-Based RL

ME-TRPO∗ 42.6±21.1 1272.5±500.9 -154.9±534.3 160.1±69.1 -1609.3±657.5
PETS-RS∗ 130.0±148.1 205.8±36.5 320.7±182.2 195.0±28.0 312.5±493.4
PETS-CEM∗ 81.6±145.8 129.3±36.0 355.1±157.1 195.5±3.0 260.2±536.9
Best MBBL 275.4±309.1 1272.5±500.9 1084.3±77.0 200.0±0.0 312.5±493.4

Model-Free RL
PPO∗ 80.1±17.3 758.0±62.0 454.3±36.7 86.5±7.8 306.1±17.2
TRPO∗ 116.8±47.3 237.4±33.5 281.3±10.9 47.3±15.7 229.5±27.1
SAC∗ (3-layer) 2012.7±571.3 1815.5±655.1 834.6±313.1 199.4±0.4 2216.4±678.7

Representation RL

DeepSF 768.1±44.1 548.9±253.3 533.8±154.9 194.5±5.8 165.6±127.9
SPEDE 806.2±60.2 732.2±263.9 986.4±154.7 138.2±39.5 501.6±204.0
EPR 4081.3±973.9 2191.4±502.8 1326.3±20.8 200.8±0.1 1975.4±751.3

Table 2: Performance of on various Deepmind Suite Control tasks. All the results are averaged across four
random seeds and a window size of 10K. Comparing with SAC, our method achieves even better performance
on sparse-reward tasks.

cheetah run cheetah run sparse walker run walker run sparse humanoid run

Model-Based RL Dreamer
542.0 ± 27.7 499.9±73.3 337.7±67.2 95.4±54.7 1.0±0.2

Model-Free RL
PPO 227.7±57.9 5.4±10.8 51.6±1.5 0.0±0.0 1.1±0.0
SAC (2-layer) 222.2±41.0 32.4±27.8 183.0±23.4 53.5±69.3 1.3±0.1
SAC (3-layer) 595.2±96.0 419.5±73.3 700.9±36.6 311.5±361.4 1.2±0.1

Representation RL

DeepSF 295.3±43.5 0.0±0.0 27.9±2.2 0.1±0.1 0.9±0.1

Proto RL 305.5±37.9 0.0±0.0 433.5±56.8 46.9±34.1 0.3±0.6
EPR 611.6±53.5 469.8±30.6 792.8±35.7 701.8±30.4 11.5±5.4

In particular, we observe that most model-based algorithms have a hard time learning the walk and
hop behavior in the Walker and Hopper environments respectively. We suspect that this is due to the
fact that the quality of the data is bad at the initial data collection process (e.g., the agent often fall to
the ground or has a hard time standing up). As a result, the behavior learned by most model-based
algorithms can be suboptimal. For example, some model-based algorithms only learn to stand up
without hopping in the Hopper environment. In contrast, EPR achieves SoTA performance in the
Hopper task and Ant task, demonstrating the behavior of doing good exploration in the task domain.
Sparse-Reward DM Control Tasks. Manually-designed dense reward functions are extremely
hard to obtain, while it is difficult to gain access to a good dense reward function in practical real-robot
settings. Thus, exploration in the sparse-reward settings is a key consideration for the success of
RL in robotics settings. We test our algorithm EPR with SAC and PPO in such cases. Here we
compare with DeepSF as an additional representation RL baseline. Note that the critic network used
in SAC and PPO is deeper than EPR. From Tab. 2, we see that EPR achieves a particularly huge gain
compared to SAC and PPO in sparse reward tasks walker-run-sparse.

5.2 PARTIAL OBSERVABLE MDP COVERING VELOCITY
Mujoco. Often in practice, it is hard to recover a full observation of the states. Thus, the ability
to handle a partially-observed MDP (POMDP) is also important if we can only recover partial
observations. To conduct experiments in this setting, we mask the the velocities in the observations
(replacing them by 0). We compare to algorithms with different embedding approaches that maps a
given history sequence to a latent representation, which is used as the input for a SAC planner. We
consider four embedding methods as baselines: Transformer (Trans), GRU, PSR (Guo et al., 2018),
and finally a simple MLP baseline for sanity check, which concatenates the history sequence and
directly maps that to a latent feature using a MLP. We find that this setting is very challenging and the
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Table 3: Performance on various MuJoCo control tasks. All the results are averaged across 4 random seeds
and a window size of 10K. Results marked with ∗ is adopted from MBBL. EPR achieves strong performance
compared with baselines.

HalfCheetah Humanoid-ET Walker-ET

Representation RL EPR 3441.6 ± 993.0 865.6 ± 107.3 416.6 ± 145.6
PSR 2679.75 ± 386 534.4 ± 36.6 862.4 ± 355.3

Model-Free RL MLP 1612.0 ± 223 614.15 ± 67.6 236.5 ± 65.6
Trans 1443.5 ± 227.2 387.1 ± 8.4 388.7 ± 224.9
GRU 1664.3 ± 431.2 467.7 ± 43.4 1020.6 ± 364.9

Ant-ET Hopper-ET S-Humanoid-ET

Representation RL EPR 1508.1 ± 594.4 1059.4 ± 582.5 805.7 ± 65.9
PSR 1128.3 ± 166.6 818.8 ± 87.2 493.3 ± 65.2

Model-Free RL MLP 1262.0 ± 68.7 260.6 ± 63.7 294.17 ± 49.4
Trans 928.5 ± 44.2 470.8 ± 50.3 447.9 ± 112.6
GRU 1190.8 ± 79.4 777.5 ± 113.3 485.9 ± 25.8

Table 4: Performance of on various Deepmind Suite Control tasks. All the results are averaged across four
random seeds and a window size of 10K. Comparing with SAC, our method achieves even better performance
on sparse-reward tasks.

cheetah run cheetah run sparse walker run walker run sparse humanoid run

Explicit Model SLAC 105.1 ± 30.1 0.0 ± 0.0 139.2 ± 3.4 0.0 ± 0.0 0.9 ± 0.1

Model-Free RL
MLP 743.3 ± 7.2 0.0 ± 0.0 279.8 ± 190.6 0.0 ± 0.0 1.2 ± 0.1
Trans 379.6 ± 80 0.0 ± 0.0 68.06 ± 39.9 0.0 ± 0.0 0.92 ± 0.1

Representation RL
PSR 173.7 ± 25.7 0.0 ± 0.0 57.4 ± 7.4 0.0 ± 0.0 0.89 ± 0.1
EPR 526.5±61.1 411.0±51.6 509.8±24.4 460.3±51.6 6.1±2.5

performance of all algorithms degrades comparied to the fully-observable setting. Nevertheless, the
proposed algorithm still achieves SoTA performance in tasks like Halfcheetah, Ant, SlimHumanoid.
This demonstrates the capability of handling partial observability in EPR which can have an important
effect in practice.

DM Control Suite. Correspondingly, we conduct POMDP experiments in the DM Control Suite.
However, we find that covering all the velocities is very challenging and thus we cover only the last 3
dimensions of the velocity.

5.3 IMAGE-BASED ENVIRONMENTS

Figure 1: EPR in image-based environment:
EPR gets a good performance compared to all
baselines (e.g. SPR and SAC+AE).

To test the capability of our method on image-
based environments, we conduct an additional
experiment on MetaWorld (Yu et al., 2020).
We choose one of the fetch-reach tasks
and compare against the model-free algorithm
SAC+AE (Yarats et al., 2021) and a popular repre-
sentation learning method SPR (Schwarzer et al.,
2020). We show the results in Fig. 1 and note
that the minimum distance between the current
state and the goal is used as the evaluation metric
(the smaller distance means better performance).
We can see that EPR manages to reach the distant
goal within 100K steps. Comparing to SAC+AE,
EPR strictly dominate its performance. For SPR,
although it learns faster at the beginning, EPR has
better final performance.

6 CONCLUSION

We exploit Energy-based Predictive Representation (EPR) for linearly representing value functions
for arbitrary policies and supporting reinforcement learning in partially observed environments with
finite memories. The proposed EPR shows that planning and strategic exploration can be implemented
efficiently. The coherent design of each component brings empirical advantages in RL benchmarks
considering both the MDP and POMDP settings. Such superior performance makes the theoretical
understanding of EPR more intriguing, which we leave as future work.
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bandits. Advances in neural information processing systems, 24, 2011.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank mdps. Advances in neural information processing systems,
33:20095–20107, 2020.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of machine learning research, 15:
2773–2832, 2014.

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. arXiv preprint
arXiv:2003.05033, 2020.
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A MORE RELATED WORK

Provably RL for POMDPs. Besides the statistical and computational hardness results for learning
and planning upon POMDPs, most recent theoretical research focuses on overcoming the statistical
complexity from the “curse of history” by considering tractable POMDPs (Krishnamurthy et al.,
2016; Azizzadenesheli et al., 2016; Guo et al., 2016; Jin et al., 2020a; Liu et al., 2022). Similarly
to the observability structure we exploited in our algorithm, these work bypass the curse of history
by different special structures, reducing the whole history dependency to finite-length memory.
Recently, Uehara et al. (2022); Wang et al. (2022) generalize these special structures with function
approximation beyond tabular cases. Golowich et al. (2022a) consider the complexity planning and
exploration together with learning, but only valid for tabular MDPs.

B DERIVATION OF THE RANDOM FEATURE IN EQUATION 8

We have that
P (ot+1|xt, at) =p(ot+1) exp

(
f(xt, at)

⊤ (g(ot+1) + λf(xt, at))
)

=p(ot+1) exp

((
λ− 1

2

)
∥f(xt, at)∥2

)
exp

(
−∥g(ot+1)∥2

2

)
exp

(
∥f(xt, at) + g(ot+1)∥2

2

)
,

where we have that

exp

(
∥f(xt, at) + g(ot+1)∥2

2

)
=(2π)−d/2 exp

(
∥f(xt, at) + g(ot+1)∥2

2

)∫
exp

(
−∥ω − (f(xt, at) + g(ot+1))∥2

2

)
dω

=(2π)−d/2

∫
exp

(
−∥ω∥2

2
+ ω⊤(f(xt, at) + g(ot+1))

)
dω

=Eω∼N (0,Id)

[
exp

(
ω⊤f(xt, at)

)
exp

(
ω⊤g(ot+1)

)]
,

which concludes the proof for equation 8.

C OBSERVABLE LQG AS EPR

Follow the standard notations, the dynamics of Linear-Quadratic Gaussian is defined as
st =Ast−1 +Bat + wt,

ot =Cst−1 + zt,

where wt and zt are Gaussian noise. Define the matrix

GL = [C⊤, CA⊤, . . . ,
(
CAL−1

)⊤
]⊤,

and reduced observation

õt = ot − zt − C

[
t−2∑
k=0

AkBat−k−1 +

t−2∑
k=0

Akwt−k−2

]
.

By the observability condition of LQG, GL is full column rank, one can identify s0 by

s0 =
(
G⊤

LGL

)−1
L∑

j=1

(
A⊤)j−1

C⊤õj .
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Therefore, we have

s1 =As0 +Ba0 + w0 = A

(G⊤
LGL

)−1
L∑

j=1

(
A⊤)j−1

C⊤õj

+Ba1 + w0,

s2 =As1 +Ba1 + w1 = A2

(G⊤
LGL

)−1
L∑

j=1

(
A⊤)j−1

C⊤õj

+ABa1 +Ba2 +Aw0 + w1,

sL+1 =AsL +BaL + wL = AL

(G⊤
LGL

)−1
L∑

j=1

(
A⊤)j−1

C⊤õj

+

L∑
j=0

AL−jBaj+1 +

L∑
j=0

AL−jwj ,

oL+1 =Cst+1 + zt = CAL

(G⊤
LGL

)−1
L∑

j=1

(
A⊤)j−1

C⊤õj

+ C

L∑
j=0

AL−jBaj+1 + C

L∑
j=0

AL−jwj + zt,

which means oL+1 follows a Gaussian distribution with mean as a function of history xL ={
(oi−1, ai)

L
i=1

}
and action aL+1, and variance as a function of σw, σz , and (A,B,C). There-

fore, we have some function fA,B,C,σw,σz
and gA,B,C,σw,σz

, such that
gA,B,C,σw,σz (oL+1) = fA,B,C,σw,σz (xL, aL+1) + ξ, ξ ∼ N (0, I) .

On the other hand, we set λ = − 1
2 , and p(o) = N (0, I) in (6), then, we obtain

p(oL+1|xL, aL) ∝ exp

(
−
∥g(oL+1)− f(xL, aL)∥22

2

)
,

which reproduces the observable LQG with specific fA,B,C,σw,σz
and gA,B,C,σw,σz

.

D EXPERIMENT DETAILS

D.1 ONLINE SETTING

In Table 9, we list all the hyperparameters and network architecture we use for our experiments. We
see that we don’t use the additional exploration bonus term in the mojuco tasks. But this is very
helpful in DM control suite tasks, especially in those sparse-reward tasks.

For evaluation in Mujoco, in each evaluation (every 5K steps) we test our algorithm for 10 episodes.
We average the results over the last 4 evaluations and 4 random seeds. For Dreamer and Proto-RL, we
change their network from CNN to 3-layer MLP and disable the image data augmentation part (since
we test on the state space). The architecture we used for the transformer is following the Trajectory
Transformer (Janner et al., 2021). The attention used is the causal attention. We tried to tune some of
their hyperparameter (e.g., exploration steps in Proto-RL) and report the best number across our runs.
However, due to the short time, it is also possible that we didn’t tune the hyperparameter enough.

D.2 LEARNING CURVES

We provide the performance curves for online DM Control Suite experiments in Figure 2. As we can
see in the figures, the proposed EPR converges faster and achieve the state-of-the-art performances
in most of the environments, demonstrating the sample efficiency and the ability to balance of
exploration vs. exploitation of EPR. We also provide additional curves for POMDP setting in
Figure 3.

D.3 IMAGE-BASED EXPERIMENTS

We provide the details of metaworld image-based experiments here. We first provide an illustration
of the reach environment in Figure 4. We then provide some more experiment details in the following
section.
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Table 5: Hyperparameters used for EPR in all the environments in MuJoCo and DM Control Suite.
Hyperparameter Value

Bonus Coefficient (MuJoCo) 0.0
Bonus Coefficient (DM Control) 5.0
Actor lr 0.0003
Model lr 0.0003
Actor Network Size (MuJoCo) (256, 256)
Actor Network Size (DM Control) (1024, 1024)
ERP Embedding Network Size (MuJoCo) (1024, 1024, 1024)
ERP Embedding Network Size (DM Control) (1024, 1024, 1024)
Critic Network Size (MuJoCo) (1024, 1)
Critic Network Size (DM Control) (1024, 1)
Discount 0.99
Target Update Tau 0.005
Model Update Tau 0.005
Batch Size 256

Figure 2: Performance Curves for online DM Control Suite.

Table 6: Settings of adapted OpenAI Fetch-Reach Environment.
Hyperparameter Value

Maximum Episode Steps 50
Reward Type ’sparse’
Observation Size (3, 64, 64)
Fixed Goal Position (1.27, 0.90, 0.66)
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Figure 3: Performance Curves for online POMDP DM Control Suite.

Figure 4: Reach environment: Using a robot arm to reach a specific position.

Table 7: Hyperparameters used for EPR in FetchReachImage.
Hyperparameter Value

Bonus Coefficient (MuJoCo) 0.0
Bonus Coefficient (DM Control) 5.0
Actor lr 0.0003
Model lr 0.0003
Actor Network Size (MuJoCo) (256, 256)
Actor Network Size (DM Control) (1024, 1024)
ERP Embedding Network Size (MuJoCo) (1024, 1024, 1024)
ERP Embedding Network Size (DM Control) (1024, 1024, 1024)
Critic Network Size (MuJoCo) (1024, 1)
Critic Network Size (DM Control) (1024, 1)
Discount 0.99
Target Update Tau 0.005
Model Update Tau 0.005
Batch Size 256
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Table 8: Hyperparameters used for SPR in FetchReachImage.
Hyperparameter Value

lr 0.0001
Dropout 0.5
Discount 0.99
Batch Size 32
Augmentation off
Target Update Tau 0.005
Model Update Tau 0.005
Batch Size 256
Update Distributional Q
Dueling True
Optimizer Adam
Optimizer: learning rate 0.0001
Max gradient norm 10
Priority exponent 0.5
Noisy nets parameter 0.5
Min replay size for sampling 2000
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8 × 8, 4 × 4, 3 × 3
Q network: stride 4, 2, 1
Q network: hidden units 256
Non-linearity ReLU
Target network: update period 1
λ (SPR loss coefficient 2
K (Prediction Depth) 5

Table 9: Hyperparameters used for SAC-AE in FetchReachImage.
Hyperparameter Value

Critic lr 0.001
Actor lr 0.001
Discount 0.99
Batch Size 128
Critic Q-function soft-update rate τQ 0.01
Critic encoder soft-update rate τenc 0.05
Critic target update frequency 2
Actor update frequency 2
Actor standard deviation bounds [−10, 2]
Autoencoder learning rate 0.001
Temperature learning rate 0.0001
Temperature Adam’s β1 0.5
Init temperature 0.1
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