
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPACETGN: AUGMENTED MINI-BATCH NEGATIVE
SAMPLING FOR CONTINUOUS-TIME DYNAMIC GRAPH
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continuous-Time Dynamic Graph (CTDG) learning has significantly advanced
link prediction performance by leveraging random negative sampling and incorpo-
rating adaptive temporal information. Recent studies aim to improve performance
by introducing random sampling to obtain hard negative samples, whose qual-
ity is limited by randomness, capturing few categories of negative samples, and
leading to false positive (FP) and false negative (FN) problems. Here we present
SPACETGN, a CTDG learning framework, with a augmented hard negative sam-
pling mini-batches (AMNS) strategy and two new feature extraction strategies
that derive space-temporal locality subgraph and historical occurrence informa-
tion to emphasize the graph’s temporal discriminative properties. The AMNS
strategy sample mini-batches comprised of instances that are hard-to-distinguish
(i.e., hard and true negatives with respect to each other) based on the target distri-
bution, thereby effectively augmenting the discriminative features and the diver-
sity of historical and inductive samples. Furthermore, to mitigate the challenges
posed by false positives and false negatives, our architecture SPACETGN employs
a conceptually straightforward approach that investigates temporal subgraphs and
historical interactions between source and destination nodes. This enables the
model to leverage complex and historically accurate interactions among predicted
entities. Our extensive evaluation of dynamic link prediction on seven state-of-the-
practice datasets reveals that SPACETGN achieves state-of-the-art performance in
most datasets, demonstrating its effectiveness in ameliorating model bias.

1 INTRODUCTION

Dynamic graph modeling offers a versatile representation of real-world scenarios by abstracting
entities as nodes and the time-varied interactions or relationships between these entities as temporal
edges. This modeling framework is applicable to a wide range of domains, including social networks
Kumar et al. (2019); Huo et al. (2018); Alvarez-Rodriguez et al. (2021), traffic networks Zhao et al.
(2019); Yu et al. (2017); Wu et al. (2019); Guo et al. (2019); Yu et al. (2021), the recommendation
system Song et al. (2019); Dong et al. (2012); Wang et al. (2021b), and financial transactions Wang
et al. (2021c); Zhang et al. (2022); Feng et al. (2019). To facilitate efficient learning on dynamic
graphs, many efforts have been devoted to the development of discrete-time dynamic graph models
(DTDG) Zhao et al. (2019); Pareja et al. (2020); Yang et al. (2021) and continuous-time dynamic
graph models (CTDG) Kumar et al. (2019); Rossi et al. (2020); Cong et al. (2022); Yu et al. (2024).

Despite the state-of-the-art (SOTA) work achieving continuous optimization and nearly perfecting
many existing benchmark datasets, they exhibit two notable limitations: only select negative sam-
ples at a ”random” level and difficult to capture periodic dependency and historical occurrence
informations. Firstly, most of them Yu et al. (2024); Kumar et al. (2019); da Xu et al. (2020); Cong
et al. (2022); Wang et al. (2021a) widely exploit random negative sampling to improve the efficiency
and effectiveness of CTDG learning, but this strategy often results in overfitting of the model. Their
negative sampling strategy randomly selects destination nodes from the entire set of nodes, retain-
ing the timestamps, features, and source nodes of positive edges. However, this strategy introduces
extreme variation between the negative and positive edges, leading to overfitting problems in recent
models. The models, after training, can only judge the datasets with obvious positive and negative
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Figure 1: Average AP for transductive dynamic link prediction in recent work with random(rnd),
historical(hist), and inductive(ind) measurements. GMixer is the abbreviation for GraphMixer.
differences. Poursafaei et al. (2022) presented the first investigation to introduce negative sampling
measurements (historical and inductive negative sampling) to robust dynamic graph link prediction,
revealing the suboptimal performance of recent models and the weak generality. For example, Fig-
ure 1 illustrates that the performance of most SOTA methods decreases significantly (more than
11%) when different negative samplings (random, historical and inductive) are introduced in the test
time. State-of-the-art models frequently tend to overfit positive examples while neglecting nega-
tive ones, greatly limiting their applicability in real-world scenarios. Therefore, we conclude that it
is necessary for selecting real hard negtive samples to balance the divergence in negative sample
distribution in the training and testing stages.

Secondly, existing studies Cong et al. (2022); Yu et al. (2024); Tian et al. (2024) exploit direct
neighbor sampling to capture the characteristics of the graph structure, access first-hop neighbors,
and employ random walks to generate wandering sequences without exploiting periodic subgraph
patterns. The lack of historical and inductive sampling information makes it difficult to distinguish
hard negative samples and leads to information discrimination. For example, existing studies mainly
capture the historical neighbors of node u and v separately without modeling their periodic indi-
rect interactions. When extracting periodic timing information, current methods only capture local
neighbor interactions, resulting in loss of global information on the graph such as message passing
da Xu et al. (2020), memory networks Kumar et al. (2019); Trivedi et al. (2019); Rossi et al. (2020),
and feature encoding Yu et al. (2024); Tian et al. (2024). As a result, previous methods cannot still
effectively capture the periodic dependency and historical occurrence information.

In this paper, we design a new CTDG learning framework, namely SPACETGN. Internally, we
outline two following key technical contributions in SPACETGN to address the above challenges:

We propose a new augmented mini-batch negative sampling (AMNS) strategy for better
continuous-time graph learning. The central idea of this paper is to sample mini-batches of hard-
to-distinguish instances to emphasize CTDG’s discriminative temporal properties. Specifically, we
generate these mini-batches to cover hard yet true negatives by dynamically maintaining a collection
of previously encountered, high-smilarity temporal edges and persistently sampling from this col-
lection. This hard negative sampling strategy is integrated with a sample augmentation module that
uses a targeted distribution to enrich the data set, which improves diversity among negative samples
for training.

We present a novel Time-Sequence-based dynamic graph learning model (SPACETGN). Two
CTDG features are explicitly utilized to capture periodic and historical interactions in SPACETGN:
space-temporal dependency and historical occurrence. The space-temporal locality dependency
captures the interaction sequence of the current node preceding a specific time point, which rep-
resents the temporal local features. This sequence is then combined with the historical neighbor
sequence of the node, reflecting the local spatial features. Furthermore, we introduce a historical oc-
currence encoding scheme to capture the factual interactions among predicted entities. SPACETGN
introduces an optimized MLP-Mixer layer to distill the intrinsic features of the extracted sequences,
which significantly improves the capture of temporal information in the model.

From our empirical validation, SPACETGN significantly outperforms existing SOTA methods on
most datasets, proving the efficacy of our design and coding strategies. Furthermore, all models are
evaluated for their statistical performance that is significantly higher than previous results in both
historical and inductive scenarios, confirming the effectiveness of our negative sampling strategy.

2 RELATED WORK
Continuous-Time Dynamic Graph Learning Architectures. Dynamic graph neural networks can
be broadly classified into discrete-time dynamic graphs (DTDG) Zhao et al. (2019); Pareja et al.
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(2020); Sankar et al. (2020); You et al. (2022) and continuous-time dynamic graphs (CTDG) Ku-
mar et al. (2019); Rossi et al. (2020); Trivedi et al. (2019); da Xu et al. (2020); Wang et al. (2020).
CTDG approaches Yu et al. (2024); Tian et al. (2024); Rossi et al. (2020) depict dynamic graphs as
chronologically ordered interaction lists, offering a more flexible, general, and challenging paradigm
for representation learning. In the context of CTDG, models typically capture neighbor sequences
of nodes utilizing foundational frameworks such as Recurrent Neural Networks or Self-Attention
mechanisms, exemplified by TGAT da Xu et al. (2020) and JODIE Kumar et al. (2019). Further-
more, storage update-based models include TGN Rossi et al. (2020) and APAN Wang et al. (2021c);
CAWN Wang et al. (2020) utilizes a random walk strategy; models leveraging ordinary differential
equations Liang et al. (2022) and temporal point processes Chang et al. (2020); GraphMixer Cong
et al. (2022) employs a purely MLP-based architecture; DyGFormer Yu et al. (2024) integrates a
Transformer-based Vaswani et al. (2017) approach; and FreeDyG Tian et al. (2024) incorporates
Fourier transform techniques.

Negative Sampling on CTDG Learning. Negative sampling uses a selected subset of non-observed
or negative data points to significantly improve training efficiency and model performance, which
is widely used in various domains, including natural language processing Grbovic et al. (2015);
Zhang & Zweigenbaum (2018); Wu et al. (2021), computer vision Wu et al. (2017); Robinson et al.
(2020); Wu et al. (2020), and recommendation systems Rendle et al. (2009; 2012). The exist-
ing work has been classified into two lines: static negative sampling and hard negative sampling.
The initial approach, static negative sampling, involves assigning a fixed probability to each dy-
namic candidate for selection. This includes methods such as random negative sampling (RNS)
and popularity-based negative sampling. In contrast, hard negative sampling emphasizes the selec-
tion of challenging negative samples, which are characterized by their similarity to positive samples
within dynamic distributions.Yang et al. (2020); Shrivastava et al. (2016), as a specialized variant
of negative sampling, offer more informative training signals, allowing for a more precise charac-
terization of dynamic characteristics. Inspired by this technique, we utilized hard negative samples
to mitigate significant discrepancies observed in the model performance across random, historical,
and inductive continuous-time link prediction scenarios. This method not only addresses the inher-
ent variability in model testing conditions, but also improves the robustness and accuracy of our
learning algorithms under diverse operational settings.

3 PRELIMINARIES

Definition 3.1 (Dynamic Graph) We define the set of nodes as N and the collection of temporal
edges as E = {(u1, v1, t1), (u2, v2, t2), . . .}, where the timestamps follow an ascending order, 0 ≤
t1 ≤ t2 ≤ . . .. Here, ui and vi from N represent the nodes originating and terminating at the edge
ith at the time instant ti, respectively. Each node u ∈ N is endowed with a node feature xu ∈ RdN ,
whereas each edge e ∈ E carries an edge feature xe ∈ RdE . Together, the set of nodes and edge
features are denoted by FN and FE , respectively. Note that if the raw dynamic graph inputs lack
node and edge features, these features are default configured to a null vector. To encapsulate, we
conceptualize the continuous-time dynamic graph as G = {N,E, FN , FE}, formalizing temporal
interactions within graph-structured data.

Definition 3.2 (Continuous-Time Link Prediction) Given a dynamic graph G and a source node
u ∈ N , a destination node v ∈ N , a specific timestamp t, along with a set of historical edges
E = {(u′, v′, t′)|t′ < t} that precede t, the objective of edge prediction is to design algorithms
capable of deriving representations ht

u ∈ Rd and ht
v ∈ Rd for nodes u and v, respectively, where d

denotes the dimensionality of these representations. The ultimate goal is to use these representations
to infer the likelihood of an edge between u and v at the timestamp t.

4 PROPOSED METHOD

This section details our framework SPACETGN that incorporates two key designs: an augmented
mini-batch negative sampling strategy and a new architecture for CTDG learning. In particular,
the architecture is newly designed with two novel feature extraction for space-temporal locality
dependency and historical occurrence.
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4.1 AUGMENTED MINI-BATCH NEGATIVE SAMPLING STRATEGY

Figure 2: A Comparative Study of Augmented
Mini-Batch Hard Negative Sampler (with high-
light color) and Random Negative Sampler (with-
out highlight color). The process encompasses
two stages: the construction of proximity candi-
dates and the sampling of instances.

Previous methods Yu et al. (2024); Tian et al.
(2024); Rossi et al. (2020) randomly selected
destination nodes from the entire set of nodes
for negative sampling, as illustrated in Figure 2.
This approach often results in negative samples
that do not have a connection to positive sam-
ples, making them easy to distinguish. How-
ever, in real-world applications, it is essential
to consider negative samples that have relation-
ships similar to the positive samples to chal-
lenge the model’s discriminative capabilities.

Paradigm. To achieve robust CTDG learning,
we propose the augmented mini-batch negative
sampling (AMNS) paradigm, initially optimiz-
ing the alignment of the distributions of positive
and negative samples. The truly hard negative
samples are selected to exhibit a high likelihood
of interaction yet are absent in the observed
data. Figure 2 gives an illustration of the aug-
mented mini-batch negative sampling on graph
G. AMNS executed based on mini-batches satisfies the following three key criteria:

• Criteria 1: The hardness of a selected negative sample should have a high predicted
intensity. The hard negative sample should be negatively correlated with the frequency
of interaction of the historical-aware pair of nodes. In contrast to setting predetermined
random negative samples for each training epoch as described in Huang et al. (2024), the
AMNS approach is anticipated to ascertain higher priority levels of hardness based on the
frequency of historical occurrences.

• Criteria 2: The hardness of a selected negative sample should be negatively related to
its positive sample of high similarity. First, since historical events encompass extended
timestamps, it is advisable to select negative samples characterized by lower degrees of
hardness Poursafaei et al. (2022). In contrast, as the temporal proximity to the prediction
instance increases, the selection of negative samples with higher degrees of hardness be-
comes pertinent, which can expedite the optimization of positive samples while ensuring
that negative samples of greater difficulty remain temporally recent, thereby mitigating the
false-positive challenge.

• Criteria 3: The proportional distribution between the positive samples and the se-
lected hard negative samples should be adaptive adjustive. To cover the diverse variety
of real-world CTDG learning, for example, different datasets or evaluation metrics , the
addition of random samples can improve the robustness of the model. Therefore, the ratio
of HNS (hard negative samples) to SNS (soft negative samples), as well as the ratio of
positive samples to hard negative samples in each minibatch, can be adaptively adjusted.

Instantiation of Augmented Mini-Batch Negative Sampling We give a concrete instantiation of
our new hard negative sampling strategy (HNS), which involves incorporating selected adaptive
mini-batch negative samples (as shown in Figure 2). We mark three sets of candidates: the positive
candidate as Et

pos, the historical candidate as Et
hist, and the random candidate as Et

rnd. Our AMNS
dynamically constructs the proximity candidate set Et

pro = Et
hist ∪ Et

rnd \ Et
pos . Then, during the

augmented mini-batch hard negative sampling stage, the edges absent at the current moment are
identified as negative examples by sampling the set Et

pro , Ernd−Et
pos and Et

pro following the formula
1. Taking the dynamic graph sample in Figure 2 as an example, the positive sample (u, b, t11) ∈
Et11 , the previous negative sample (u, h, t11) ∈ Ernd, and the hard negative sample (u, c, t11) ∈
Et11

pro .

Consequently, we propose three metrics to evaluate the specified criteria and the sample Et
pro: 1)

we measure the intensity term based on recency: ϕint(u, v, t) = exp
(
−δ · (t− t

(u,v)
last )

)
; 2) the
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Figure 3: Framework of the proposed , consisting of four modules: (a) Adaptive Sampling, (b)
Extracting Key Sequences, (c) Encoding Features, and (d) Mixing Features.

similarity ranking of the pair of nodes (u, v) is measured as ϕr(u, v, t) = r(u,v)(t), indicating their
relative likelihood of interaction compared to other pairs; 3) given the node embeddings hu(t) and
hv(t), the similarity measure can be measured as ϕsim(u, v, t) = hu(t)

⊤hv(t). In addition, we
design an innovative optimal proportional distribution function within the AMNS framework. For
each candidate negative sample, as discussed in Et

pro −Et, the rating function is defined as follows:

λ∗
(u,v)(t) = exp

(
α · exp

(
−δ · (t− t

(u,v)
last )

)
+ β ·

(
1−

r(u,v) − 1

N − 1

)
+ γ · hu(t)

⊤hv(t) + b

)
(1)

where α > 0, β > 0, γ > 0 are predefined hyperparameters to represent the proportion of Et
hist,

Et
rnd, and Et

pos, t
(u,v)
last is the time of the last interaction between u and v, and δ is a decay rate,

r(u,v) as the relative likelihood of interaction between u and v. After calculating and filtering the
high scores of all proximity structures, we obtain a set of ratings HNS, and then the final set of
negative samples is identified. This proximity makes hard negative samples particularly valuable for
training, as they push the model to learn more nuanced distinctions between similar pairs, enhancing
its overall discriminatory power and effectiveness.

4.2 SPACE-TEMPORAL LOCALITY AWARE CTDG ARCHITECTURE

Compared with the existing CTDG negative sampling strategy, our proposed negative sampling is
closer to the positive samples, which poses a greater challenge to the model’s information extraction
capabilities. Existing models mostly employ message passing mechanisms to capture topological
features or to aggregate information from low-order neighboring nodes; nevertheless, deriving tem-
poral locality and periodicity remains particularly challenging. We propose two types of information
extraction methods based on current feature extraction: Space-Temporal Locality and Historical
Occurrence, which significantly emphasize the temporal discriminative properties of CTDG.

SPACETGN, as illustrated in Figure 3, begins by extracting three key sequences for a given source
node u, destination node v, and timestamp t: the historical sequences of the first hop neighbors for
both nodes, the sequences of dynamic edges occurring before t, and the temporal sequences marking
the occurrence of the edge (u, v) in historical data.

• Extracting the historical sequences of the first hop neighbors for both nodes u and
v. Given the predicted nodes u, v, and timestamp t, we extract the historical sequences
of the first hop neighbors for u and v, denoted as St

u and St
v , respectively, where St

u =
{(u, u′, t′)|t′ < t} ∪ {(u′, u, t′)|t′ < t} and St

v = {(v, v′, t′)|t′ < t} ∪ {(v′, v, t′)|t′ < t}
Yu et al. (2024). We introduce a parameter l to represent the maximum length of first-hop
neighbor sequences. If a sequence exceeds l, excess neighbors are truncated. If a sequence
is shorter than l, it is padded with zero vectors to reach the required length.

• Extracting the sequences of dynamic edges occurring before the timestamp ti.
Existing methods primarily capture the historical neighbors of node u and v with-
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out modeling their periodic indirect interactions. In contrast, we present a tem-
poral dependency extraction to capture the periodic interaction subgraph in a fixed
time window, denoted St

e. The subgraph is composed of edge sequences St
e =

{(ui−r, vi−r, ti−r), (ui−r+1, vi−r+1, ti−r+1), . . . , (ui−1, vi−1, ti−1)}, where the time
window series are ordered such that ti−r ≤ ti−r+1 ≤ · · · ≤ ti−1 < ti. Here, r is in-
troduced as a tunable parameter that governs the size of the window, configured by the
breadth of the local subgraph.

• Extracting the temporal sequences marking the occurrences of the edge (u, v) in his-
torical data. To handle edge prediction in dynamic graphs, previous methodologies, both
discrete-time and continuous-time models, usually overlooked the significance of a node’s
historical occurrences for feature extraction. However, temporal features reveal crucial
cyclic patterns and information interaction dynamics. To bridge this gap, we introduce the
extraction of historical occurrence time series, denoted as St

occur = {ti|(ui, vi, ti), ui =
u, vi = v, ti < t}, for each pair of nodes individually. Similarly, we introduce a parameter
o to indicate the maximum sequence length. Sequences longer than o are truncated, while
shorter sequences are padded with zero vectors to the desired length.

After encoding the extracted sequences, SPACETGN learn intricate correlations within the features
through an MLP-Mixer layer. The MLP-Mixer output representations are then aggregated via a fully
connected sequence aggregation layer, integrating various feature representations into a unified rep-
resentation that captures the temporal dynamics of the nodes at time t. Using learnable parameters,
the model combines these features to construct a holistic temporal perception for the nodes u and
v. Finally, a Link Prediction layer executes a probabilistic forecast to determine the likelihood of a
connection between nodes u and v at the given timestamp.Detailed descriptions of SPACETGN are
available in Section A.

5 EXPERIMENTS

In this section, we present experimental results that demonstrate that our proposed negative sampling
method surpasses the random negative sampling methods utilized in DyGLib and TGB Huang et al.
(2024). Detailed descriptions of these baselines are available in Section D. In addition, we provide
a comprehensive analysis of negative sampling techniques, focusing on their impact on the distri-
bution of sampled data, as well as their implications for model training.Finally, by implementing
our improved negative sampling method, we conducted a comprehensive comparison between our
proposed SPACETGN and the eight state-of-the-art models in DyGLib in the seven publicly avail-
able real-world datasets. Our experiments demonstrated that SPACETGN consistently outperforms
existing models in extracting valuable information, highlighting the advantages of utilizing dynamic
graphs for information extraction.

5.1 EXPERIMENTAL SETTINGS

To evaluate our model’s performance, we adhere to the established benchmarks in the field by uti-
lizing Average Precision (AP) and Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) as primary metrics. The experimental setup encompasses two distinct scenarios for link pre-
diction: (1) transductive setting, whose goal is to predict the formation of an edge between two
nodes, both of which have been observed during the training phase, and (2) inductive setting, which
aims to predict edge formation involving at least one node that was not present during the training
phase. We note that a node is considered inductive if it does not appear in the training data. To
facilitate training, validation, and testing, we split these datasets into three chronological segments
with ratios of 70%/15%/15%.

We optimized all Adam Kingma & Ba (2014) models (excluding EdgeBank, which has no trainable
parameters). We train the models 100 times over time and use an early stopping strategy with
a patience value of 20. We select the model with the best performance on the validation set for
testing. We configure all methods’ learning rate and batch size on all datasets to 0.0001 and 200,
respectively. We run these methods with 0 to 4 seeds five times and report the average performance
to eliminate bias. The parameters of the recent models are detailed in the Section F. Experiments
were performed on an NVIDIA GeForce RTX4080 16GB GPU device.
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5.2 EFFECTIVENESS OF NEGATIVE SAMPLING APPROACH

We validate the efficacy of the negative sampling enhanced training method across various datasets
from DyGLib by incorporating AMNS with three distinct models: TCLWang et al. (2021a), Graph-
MixerCong et al. (2022), and DyGFormerYu et al. (2024). We quantify the performance of methods
in terms of average precision (AP) in historical measurements by evaluating their implementation w/
AMNS and w/o AMNS, in which Table 1 reports their performance. Table 5 in Section E.1 shows
further their performance in terms of average precision (AP) under inductive measurements.

We find that TCL, GraphMixer, and DyGFormer usually produce substantial improvements in var-
ious methods and datasets after integrating our advanced negative sampling strategy, achieving an
average improvement of 16.18%, 11.85%, and 9.44%. The TCL method exhibits a marked per-
formance improvement, benefiting from the AMNS approach. In particular, TCL w / AMNS can
achieve an improvement of 46.26%, with AP soaring from 59.30 to 86.73 on the LastFM dataset,
which shows the best negative sampling enhancement. These significant advances verify the ef-
fectiveness of our self-adaptive hard negative sampling approach and highlight the importance of
capturing discriminative properties of positive and negative samples.

Table 1: AP in hist for different methods when equipped with AMNS. Note that the AP results are
multiplied by 100 for a better display layout.

Datasets TCL GraphMixer DyGFormer
Original Enhanced Improv. Original Enhanced Improv. Original Enhanced Improv.

Wikipedia 85.78 92.55 7.89% 90.76 94.14 3.72% 73.10 94.50 22.65%
Reddit 77.18 82.43 6.80% 78.25 89.44 14.30% 81.71 90.54 9.75%
MOOC 77.08 96.15 24.74% 78.01 96.91 24.23% 86.53 97.94 11.65%
LastFM 59.30 86.73 46.26% 72.47 91.82 26.70% 81.57 88.79 8.13%
Enron 72.79 78.88 8.37% 78.07 84.42 8.13% 76.86 79.55 3.38%

Social Evo. 95.96 99.31 3.49% 95.00 99.25 4.47% 97.09 99.49 2.41%
UCI 73.91 85.50 15.68% 83.98 85.68 2.02% 80.91 87.92 7.97%

5.3 IMPACT OF NEGATIVE SAMPLING ON MODEL TRAINING

We conducted AMNS analysis experiments on the wiki dataset using TGB. DyGFormer achieved
state-of-the-art mean reciprocal rank (MRR) with the original random sampling method. Upon
applying AMNS to DyGFormer, we observed improvements of over 1% in both Validation MRR
and Test MRR, as shown in the Table 2.

Fig 4 illustrates the comparison of the MRR metrics of DyGFormer under the original random
negative sampling (RND) and the proposed negative sampling method (AMNS) during the training
phase. The experimental results show that the validation MRR of the RND method reaches a peak
(about 0.82) in the first 10 epochs, and then there is almost no enhancement with large fluctuations,
which shows its limitation for model learning. In contrast, the AMNS method continues to increase
after 20 epochs and achieves a new peak ( 0.84) at 40 epochs, and the validation MRR then remains
stable. This suggests that AMNS effectively facilitates the model’s learning of difficult samples,
significantly improves performance, and demonstrates its advantages and potential for improvement
during training. Thus, AMNS is able to better guide model learning and enhance its generalization
ability compared to the traditional RND negative sampling method.

Table 2: Comparison of MRR Metrics for DyGFormer: Original Random Negative Sampling (RND)
vs. Proposed Negative Sampling (AMNS) on the tgbl-wiki Dataset

Method Validation MRR Test MRR

RND 81.60 ± 0.50 79.80 ± 0.40
AMNS 85.36 ± 0.25 81.12 ± 0.19

5.4 IMPACT OF NEGATIVE SAMPLING ON SAMPLE DISTRIBUTION

In this section, we analyze the distribution of positive and negative samples from a single training
run using the wiki dataset from TGB. We utilize the historical occurrences of positive and negative
samples as statistics to present the distribution plots for positive samples, original random negative
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Figure 4: Comparison of MRR Metrics for DyGFormer during Traning Stage: Original Random
Negative Sampling (RND) vs. Proposed Negative Sampling (AMNS) on the tgbl-wiki Dataset
sampling, and AMNS negative sampling. As shown in Figure 6, the Log Distribution of Positive
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Figure 5: Distribution of Positive Samples, Original Random Negative Sampling, and AMNS Neg-
ative Sampling Based on Historical Occurrences in the Wiki Dataset from TGB

Pairs shows a pronounced peak around log values of 1 to 4, indicating a substantial concentration of
occurrences in this range.In comparison, the Log Distribution of Negative Pairs with AMNS exhibits
a distribution that closely resembles that of the positive pairs, particularly in the log value range of 1
to 5. This proximity highlights AMNS’s ability to capture hard negative samples, which challenge
the model effectively and facilitate stronger learning.Conversely, the Log Distribution of Negative
Pairs with RND demonstrates a stark contrast, with a rapid decline in density as log values increase.
Most of the negative samples are concentrated at lower log values, suggesting that they provide
fewer informative challenges for the model during training.

To further illustrate that AMNS captures negative samples with a higher degree of similarity to
positive samples compared to RND, we conducted an analysis comparing the cosine similarity of
historical occurrences for both AMNS and RND across each epoch, as shown in the figure 6. The
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Figure 6: Comparison of Cosine Similarity of Historical Occurrences Between Positive Samples
and Negative Samples Captured by AMNS and RND Across Epochs

results reveal that the cosine similarity for AMNS remains consistently higher and more stable,
peaking around 0.056, indicating that AMNS effectively captures hard negative samples that closely
align with the positive samples. In contrast, the similarity values for RND fluctuate significantly
between 0.030 and 0.040, suggesting that the random sampling approach yields less relevant neg-
ative samples that may not contribute effectively to model learning. This analysis underscores the
superiority of AMNS in enhancing the model’s performance by selectively sampling informative
negatives, thereby facilitating improved discernment of relationships during training.

5.5 PERFORMANCE COMPARISON WITH BASELINES AND DISCUSSIONS

We report the performance of recent methods by comparing our SPACETGN framework against
the baseline methods in both transductive and inductive dynamic link prediction. Table 3 presents
the average precision scores (APs) metric for all datasets under random, historical, and inductive
measurements, as proposed in Poursafaei et al. (2022).

First, we observe that SPACETGN usually achieves higher accuracy than the baselines, with an
average rank ranking of 1.29/1.0/1.14 across the three measurements, respectively. And, for the UCI
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Table 3: AP for transductive link prediction under random, historical, and inductive measurements.
We denote the best and second-best results by emphasizing bold and underlined fonts. Note that the
results are multiplied by 100 for a better display layout. MS is the abbreviation of measurements.
MS Datasets JODIE DyRep TGAT TGN EdgeBank TCL GraphMixer DyGFormer SPACETGN

Wikipedia 93.54 ± 0.49 91.54 ± 0.30 95.69 ± 0.20 96.71 ± 0.06 90.37 ± 0.00 95.26 ± 0.19 95.99 ± 0.04 98.06 ± 0.10 98.41 ± 0.10
Reddit 96.36 ± 0.38 96.72 ± 0.20 97.54 ± 0.03 97.4 ± 0.13 94.86 ± 0.00 95.96 ± 0.06 95.36 ± 0.08 98.10 ± 0.05 98.08 ± 0.12
MOOC 81.34 ± 1.52 81.17 ± 0.57 85.75 ± 0.09 90.39 ± 1.27 57.97 ± 0.00 83.22 ± 1.28 82.86 ± 0.18 87.55 ± 0.30 89.23 ± 0.08
LastFM 70.42 ± 1.08 71.34 ± 1.77 71.35 ± 0.11 76.16 ± 2.63 79.29 ± 0.00 75.81 ± 0.64 73.78 ± 0.18 90.77 ± 0.14 90.95 ± 0.20
Enron 82.00 ± 3.18 79.29 ± 2.71 68.29 ± 1.75 85.81 ± 1.54 83.53 ± 0.00 85.65 ± 0.45 80.82 ± 0.42 91.33 ± 0.33 91.78 ± 0.28

Social Evo 89.17 ± 0.77 88.96 ± 0.13 92.74 ± 0.09 92.93 ± 0.36 74.95 ± 0.00 93.64 ± 0.20 92.59 ± 0.09 94.48 ± 0.03 94.66 ± 0.03

rnd

UCI 84.73 ± 1.38 50.80 ± 5.25 76.42 ± 1.75 87.24 ± 0.86 76.20 ± 0.00 85.81 ± 5.87 88.44 ± 2.01 93.90 ± 0.23 94.16 ± 0.38
Avg. Rank 7.00 7.57 5.71 3.29 7.43 5.00 5.71 2.00 1.29
Wikipedia 88.92 ± 0.62 85.25 ± 0.45 91.63 ± 0.19 92.57 ± 0.45 73.09 ± 0.00 92.55 ± 0.46 94.14 ± 0.80 94.50 ± 0.47 96.92 ± 0.12

Reddit 88.18 ± 0.39 83.46 ± 0.67 84.02 ± 0.13 87.26 ± 0.31 73.66 ± 0.00 82.43 ± 0.14 89.44 ± 0.07 90.54 ± 0.13 93.03 ± 0.25
MOOC 94.03 ± 0.54 84.69 ± 3.42 94.43 ± 0.49 97.42 ± 0.41 60.71 ± 0.00 96.15 ± 0.26 96.91 ± 0.13 97.94 ± 0.20 98.80 ± 0.19
LastFM 82.07 ± 1.35 76.29 ± 2.96 79.60 ± 0.97 77.43 ± 3.88 73.21 ± 0.00 86.73 ± 1.28 91.82 ± 0.09 88.79 ± 0.35 94.60 ± 0.25
Enron 80.32 ± 2.09 74.13 ± 2.55 67.16 ± 2.04 74.52 ± 1.12 76.90 ± 0.00 78.88 ± 0.48 84.42 ± 0.71 79.55 ± 0.76 89.59 ± 0.37

Social Evo 89.56 ± 3.35 95.23 ± 0.16 99.03 ± 0.06 98.79 ± 0.37 80.60 ± 0.00 99.31 ± 0.06 99.25 ± 0.05 99.49 ± 0.01 99.74 ± 0.01

hist

UCI 90.53 ± 0.07 49.70 ± 5.38 81.05 ± 1.81 85.92 ± 0.83 65.03 ± 0.00 85.50 ± 6.16 85.68 ± 2.81 87.92 ± 1.24 97.67 ± 0.26
Avg. Rank 5.14 7.86 6.43 5.14 8.43 5.14 3.29 2.57 1.00
Wikipedia 83.75 ± 0.34 82.41 ± 0.86 91.19 ± 0.46 92.76 ± 0.48 80.65 ± 0.00 91.37 ± 0.30 91.15 ± 1.26 94.77 ± 0.47 95.05 ± 0.27

Reddit 86.48 ± 0.91 84.16 ± 1.37 90.74 ± 0.12 87.96 ± 0.72 85.57 ± 0.00 88.48 ± 0.11 88.33 ± 0.13 92.86 ± 0.43 92.25 ± 0.22
MOOC 79.82 ± 0.73 66.16 ± 3.67 89.61 ± 0.57 92.46 ± 1.14 49.44 ± 0.00 92.71 ± 0.35 91.81 ± 0.29 92.61 ± 0.37 93.68 ± 0.52
LastFM 70.31 ± 2.31 65.58 ± 2.27 78.74 ± 0.96 71.18 ± 5.15 75.47 ± 0.00 76.30 ± 1.30 85.14 ± 0.15 83.31 ± 0.70 85.16 ± 0.65
Enron 74.86 ± 3.66 70.44 ± 2.00 65.19 ± 2.36 73.02 ± 2.91 73.91 ± 0.00 76.11 ± 0.53 79.44 ± 0.69 80.38 ± 0.53 86.37 ± 0.23

Social Evo 90.66 ± 2.87 95.29 ± 0.17 98.97 ± 0.06 98.92 ± 0.31 83.70 ± 0.00 99.28 ± 0.07 99.16 ± 0.06 99.52 ± 0.01 99.74 ± 0.01

ind

UCI 71.13 ± 0.17 53.56 ± 1.35 78.21 ± 1.10 71.87 ± 1.92 57.41 ± 0.00 81.74 ± 4.36 81.33 ± 1.43 78.83 ± 1.79 92.35 ± 0.35
Avg. Rank 7.00 8.29 5.29 5.57 7.86 3.43 4.00 2.43 1.14

dataset with inductive measurement, SPACETGN achieves an accuracy of 92.35%, which is much
higher (10.6%) than the second-ranked 81.74%. The reasons behind this phenomenon are that (i) the
self-adaptive negative sampling approach (AMNS) and pattern extraction help SPACETGN extract
more discriminative information from the original dynamics and negative samples, and (ii) the two
temporal locality dependency and historical occurrence extraction strategies allow SPACETGN fully
capture the distinct temporal feature differences between positive and negative samples. Second,
in Table 3, our evaluations show that SPACETGN achieves significant performance improvement
across historical and inductive measurements than other baselines. This is because the AMNS in
SPACETGN improves the model’s discriminative ability during the training process.

We also present the results of the Average Precision (AP) for inductive dynamic link prediction
and the AUC-ROC (Area Under the Receiver Operating Characteristic Curve) for both transductive
and inductive predictions in Section E.2 and E.3. From these results, we find SPACETGN usually
achieves better performance, with average rankings around 1−1.57, especially rank 1−1.14 across
historical and inductive ones. Therefore, we conclude that SPACETGN consistently obtains better
performance than most baselines, achieving an impressive average rank of 1.2 among them, further
demonstrating its superiority and the effectiveness of AMNS approach.

Further, we conduct ablation studies on SPACETGN to validate the efficacy of our proposed tem-
poral locality and historical occurrence feature extraction. The detailed results of these experiments
can be found in Section E.4. Our model, SPACETGN, achieves the highest performance (93.34%-
96.75%) with the two feature extraction methods. Performance declines without this feature ex-
traction. In conclusion, our Space-Temporal feature extraction effectively distills accurate temporal
information, while the Historical Occurrence feature extraction captures the dynamic graph’s cycli-
cal information. Together, these tailored methods demonstrate both necessity and effectiveness.

6 CONCLUSION

This paper introduces a new self-adaptive negative sampling approach to effectively mitigate the
overfitting issues previously encountered in continuous-time dynamic graph learning. Leveraging
the negative sampling approach, we developed SPACETGN, an MLP-Mixer architecture incorpo-
rating comprehensive encoding strategies. Our model has demonstrated state-of-the-art (SOTA)
performance across seven publicly available datasets under three distinct negative sampling strate-
gies. Our work offers a fresh perspective by addressing the dynamic graph edge prediction problem
through the lens of dynamic feature mining and feature fusion.
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7 APPENDIX

A DETAILS OF SPACETGN.

A.1 ENCODING FEATURES

Space-Temporal Dependency Encoding. Inspired by the neighbor co-occurrence encodingYu et al.
(2024), we propose an advanced encoding strategy named Space-Temporal Locality Dependency
Encoding. This approach captures the topological structure and integrates the temporal dynamics
better for discriminating hard negative samples (see Section E.4).

Space Locality Dependency. For space locality encoding, we quantify the frequency of neighbors
within historical sequences St

u and St
v , encoding this data into frequency features Yu et al. (2024).

E.g., the neighbors of nodes u and v are {a, a, b, b, c} and {a, b, c, d, e} respectively, with interac-
tion frequencies {a : 2, b : 2, c : 1, d : 0, e : 0} for u and {a : 1, b : 1, c : 1, d : 1, e : 1}
for v, the dependency sequences are encoded as F t

u = [[2, 1], [2, 1], [1, 1], [0, 1], [0, 1]]T and
F t
v = [[1, 1], [1, 1], [1, 1], [1, 1], [1, 1]]T . These sequences are further processed through a function

f(·), which maps inputs into a dspace dimensional space using a two-layer perceptron with ReLU
activation:

F t
∗,space = f(F t

∗[:, 0]) + f(F t
∗[:, 1]) ∈ RL×dspace , (2)

where ∗ can represent either nodes u or v.

Temporal Locality Dependency. The temporal locality encoding calculates the amount of interac-
tions in St

u and St
v relative to St

e detailed as sequences St
u,e and St

v,e for source and destination
nodes respectively. These counts are transformed using the function f(·) into a dtemporal dimensional
space, generating outputs F t

u,temporal ∈ RL×dtemporal for node u, and F t
v,temporal ∈ RL×dtemporal for node

v.

Historical Occurrence Encoding. Upon extracting the historical occurrences time series St
occur,

we apply time encoding to generate F t
occur ∈ Ro×doccur , where doccur represents the dimension

dedicated to capturing the temporal patterns of occurrences. This encoding scheme is particularly
beneficial when applied to enhanced hard negative sample learning, as it provides a robust frame-
work for distinguishing between genuine and artificially introduced patterns in the data. This method
benefits a better understanding of the underlying temporal dynamics and significantly improves the
model’s ability to generalize from both positive and negative examples in the dataset.

A.2 MIXING FEATURES

Single-Channel Mixing. Upon finalizing the feature encoding process, each feature is indepen-
dently processed through the MLP-Mixer, which is structured to elucidate the inherent relationships
within the sequences. The MLP-Mixer is articulated through two principal equations:

Ftoken = Ftoken +W 2
token · ReLU

(
W 1

token · LayerNorm(input)
)
, (3)

Fchannel = Ftoken + ReLU
(
LayerNorm(Ftoken) ·W 1

channel

)
·W 2

channel, (4)

where the input pertains to F t
u,∗ ∈ Rl×d and F t

v,∗ ∈ Rl×d, spanning feature categories such as
node (N ), edge (E), time (T ), topological structure (space), temporal dynamics (temporal), and
occurrence (F t

occur ∈ Ro×d). Here, W ∗
token and W ∗

channel denote the adjustable parameters in the
token-mixing and channel-mixing MLPs, respectively. Fchannel is the output of the MLP-Mixer.

Multi-Channel Aggregation. We employ a fully connected layer with learnable parameters for ag-
gregation. Specifically, W agg,∗ ∈ Rld×doutput and bagg ∈ Rdoutput are utilized to aggregate features,
resulting in:

ht
u,∗ = F t

u,∗ ·W agg
u,∗ + bagg, (5)

ht
v,∗ = F t

v,∗ ·W agg
v,∗ + bagg, (6)

where ∗ signifies the feature types (N , E, T , space, temporal). For the occurrence features
F t
occur, aggregation is performed similarly, employing W agg,∗ ∈ Rod×doutput , resulting in:

ht
occur = F t

occur ·W agg
occur + bagg. (7)
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A.3 LOSS FUNCTION

For edge prediction tasks, we employ the cross-entropy loss function to measure the discrepancy
between the true labels and the predicted probabilities. The loss function is defined as follows:

Loss = − 1

K

S∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (8)

where K denotes the number of positive and negative samples, yi represents the true label, and ŷi
signifies the predicted probability for each sample.samples, optimizing the model’s performance in
predicting the existence of edges within the dynamic graph.

B COMPLEXITY ANALYSIS OF SPACETGN

In our analysis, we adopt a batch-wise approach to evaluate the computational complexity of
SPACETGN, where b denotes the batch size and N represents the number of temporal edges in-
volved.

Extracting Key Sequences.Initially, each node within a batch retrieves its first-hop neighbors, en-
tailing a bisection lookup with a complexity of O(logN). Subsequently, the selection of neigh-
boring nodes incurs a complexity of O(l), where l is the length of the neighbors list. Thus, the
total complexity for processing one batch in this phase is O(b× (logN + l)). For the extraction of
the Space-Temporal Series and Historical Occurrences sequences, the complexities are computed as
O(b× (logN + br)) and O(b× (logN + bo)), respectively, where r and o represent the lengths of
the respective sequences.

Encoding Features.The complexities for Node/Edge encoding are O(b× l×dN ) and O(b× l×dE),
where dN and dE are the original dimensions of each feature, respectively. Time Encoding incurs
a complexity of O(b × l × dT ), where dT is the dimension of the time feature. Space-Temporal
Dependency Encoding is characterized by O(b×(l log l+r log r+l+r))+O(l×dtemporal+l×d2temporal)

and O(b× (l log l+ l)) +O(l× dspace + l× d2space), where dtemporal and dspace are the dimensions of
temporal locality and space locality features, respectively. Historical Occurrence Encoding features
a complexity of O(b× o× doccur), where doccur represents the dimension dedicated to capturing the
temporal patterns of occurrence.

Mixing Features.The MLP-Mixer processes these features with complexities O(b× (l2 + d2)) and
O(b × (o2 + d2)). Finally, the aggregation layer, which merges features for the final output, incurs
complexities of O(l×d×doutput) and O(o×d×doutput), where doutput represents the output dimension.

C DETAILS OF DATASETS.

Table 4: Dataset statistics
Dataset Nodes Edges Unique Edges Node/Link Feature Time Granularity Duration

Wikipedia 9227 157474 18257 0/172 Unix timestamp 1 month
Reddit 10984 672447 78516 0/172 Unix timestamp 1 month
MOOC 7144 411749 178443 0/4 Unix timestamp 17 month
LastFM 1980 1293103 154993 0/0 Unix timestamp 1 month
Enron 184 125235 3125 0/0 Unix timestamp 3 years

Social Evo. 74 2099519 4486 0/2 Unix timestamp 8 months
UCI 1899 59835 20296 0/0 Unix timestamp 196 days

We use seven datasets collected by Poursafaei et al. (2022) in the experiments, which are publicly
available:

Wikipedia: This dataset comprises edits made to Wikipedia pages over the course of one month,
modeling both editors and Wiki pages as nodes, with edges represented by timestamped edit re-
quests. Edge features include LIWC feature vectors derived from the text of the edits.
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Reddit: This dataset captures the interactions within a one-month period on Reddit, where nodes
represent users or posts, and edges denote timestamped posting actions.

MOOC: This graph represents interactions between students and online course content units, such
as problem sets and videos. Each edge in the graph signifies a student’s access to a specific content
unit, mapping the educational engagement over a certain period.

LastFM: In this dataset, users and songs are modeled as nodes, with edges capturing the relationship
of users listening to songs. It encompasses the interactions of 1000 users with the 1000 most listened
to songs within a one-month timeframe. The graph is non-attributed, focusing solely on user-song
interactions.

Enron: This dataset is comprised of approximately 50,000 emails exchanged among employees of
the Enron Corporation over a span of three years, forming a complex network of email correspon-
dence.

Social Evo.: This mobile phone proximity graph tracks the daily interactions within an entire under-
graduate dormitory from October 2008 to May 2009, reflecting the social dynamics and connectivity
patterns.

UCI: This dataset represents an on-line communication network similar to Facebook among students
at the University of California, Irvine, with edges timestamped to the second, offering a granular
view of social interactions over time.

These datasets provide a rich basis for analyzing dynamic networks on different temporal scales and
in varying contexts, which is ideal for comprehensive studies of network dynamics and behavior
modeling in social, educational, and corporate settings.

D DETAIL DESCRIPTIONS OF BASELINES.

In this study, we evaluate the performance of our models against eight baseline methods, each
uniquely designed to handle dynamic graph data:

JODIE: This model is tailored for temporal bipartite networks, specifically user-item interactions.
Using two synchronized recurrent neural networks, it continuously updates the state of the user
and the item. In addition, it integrates a projection operation to model the future trajectory of the
representation of each entity Kumar et al. (2019).

DyRep: This approach features a recurrent architecture that updates node states after each interac-
tion. It incorporates a temporal-attentive aggregation module to account for the evolving structural
information within dynamic graphsTrivedi et al. (2019).

TGAT: The Temporal Graph Attention Network leverages the self-attention mechanism to aggregate
features from each node’s temporal-topological neighbors. It includes a time-encoding function to
capture temporal patterns effectivelyda Xu et al. (2020).

TGN: This model maintains a dynamic memory for each node, updating it upon observing new
interactions via a combination of message function, aggregator, and memory updater. A dedicated
embedding module generates temporal representations for the nodesRossi et al. (2020).

EdgeBank: This is a memory-based, parameter-free method for the prediction of transductive dy-
namic links. It manages observed interactions within a memory unit and updates this memory via
several strategies. The system categorizes an interaction as positive if retained in memory, and
negative otherwisePoursafaei et al. (2022).

TCL: The Temporal Contextual Linking model begins by generating each node’s interaction se-
quence through a breadth-first search on the temporal dependency interaction subgraph. It then
employs a graph transformer that integrates graph topology and temporal information, enhancing its
learning capabilities with a cross-attention mechanism for the interdependencies between interacting
nodes Wang et al. (2021a).

GraphMixer: This model demonstrates the efficacy of a fixed time encoding function over a train-
able version. It integrates this function into a link encoder based on the MLP-Mixer architecture to
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analyze temporal links, while a node encoder with neighbor mean-pooling summarizes node fea-
turesCong et al. (2022).

DyGFormer introduces a novel architecture based on the Transformer framework. DyGFormer
primarily leverages the first-hop interactions of nodes through two innovative techniques: a neighbor
co-occurrence encoding scheme, which explores the correlations between source and destination
nodes based on their historical sequences, and a patching technique, which divides each sequence
into multiple patches before feeding them into the Transformer, thereby enabling the model to benefit
effectively and efficiently from longer historiesYu et al. (2024).

These baselines provide a comprehensive set of tools for benchmarking dynamic graph analysis
methods, offering insights into the various strategies for handling temporal and structural changes
in network data.

E DETAILED EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS FOR NEGATIVE SAMPLING

In Table 5, we present the performance of each model (TCL, GraphMixer, DyGFormer) in terms
of average precision (AP) under inductive settings. We compare the results both before (original
model) and after (enhanced model) the implementation of our training method. This comparison
illustrates the impact of our hard negative sampling strategy on improving model performance.

Table 5: AP in inductive for different methods when equipped with the negative sampling augmen-
tation training method.Note that the results AP are multiplied by 100 for a better display layout.

Datasets TCL GraphMixer DyGFormer
Original Enhanced Improv. Original Enhanced Improv. Original Enhanced Improv.

Wikipedia 72.53 91.37 25.98% 88.56 91.15 2.92% 65.27 94.77 45.20%
Reddit 86.80 88.48 1.94% 85.26 88.33 3.60% 91.29 92.86 1.72%
MOOC 74.87 92.71 23.83% 74.66 91.81 22.97% 81.17 92.61 14.09%
LastFM 58.21 76.30 31.08% 68.12 85.14 24.99% 73.56 83.31 13.25%
Enron 71.69 76.11 6.17% 74.63 79.44 6.45% 78.18 80.38 2.81%

Social Evo 96.12 99.28 3.29% 94.85 99.16 4.54% 97.52 99.52 2.05%
UCI 72.63 81.74 12.54% 79.62 81.33 2.15% 71.46 78.83 10.31%

Table 5 illustrates the significant impact of our advanced negative sampling augmentation training
method on average precision (AP) scores across various models and datasets. The TCL method
achieves an overall improvement of 14.97%, with the LastFM dataset showing a remarkable increase
of 31.08%, raising the AP from 58.21 to 85.14. GraphMixer also benefits, displaying an average
improvement of 9.66%, particularly excelling on LastFM with a 24.99% enhancement. DyGFormer
records a 12.78% average improvement, with the Wikipedia dataset achieving the highest increase
of 45.20%. These results validate the efficacy of our AMNS approach and emphasize its role in
enhancing the discriminative properties of positive and negative samples.

E.2 ADDITIONAL RESULTS FOR TRANSDUCTIVE DYNAMIC LINK PREDICTION

We show the AUC-ROC for transductive dynamic link prediction under random, historical, and in-
ductive measurements in Table 6. Our proposed model, SPACETGN, consistently outperforms the
baselines, with an average rank of 1.57/1.0/1.29. In particular, it achieves an accuracy of 90.50%
on the UCI dataset under inductive measurement, exceeding the second-ranked model by 12.69%
(77.81%). The outstanding performance of SPACETGN validates (i) the efficacy of the self-adaptive
negative sampling approach (AMNS) and pattern extraction techniques in capturing more discrim-
inative information, and (ii) the effectiveness of temporal locality dependency and historical occur-
rence strategies in distinguishing positive and negative samples.

E.3 ADDITIONAL RESULTS FOR INDUCTIVE DYNAMIC LINK PREDICTION

We present the AP and AUC-ROC for inductive dynamic link prediction with three negative sam-
pling strategies in Table 7 and Table 8. Our model, SPACETGN, consistently performs well relative
to the baselines, achieving an average rank of 1.29/1.14/1.14 across the measurements. Specifically,
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Table 6: AUC-ROC for transductive link prediction under random, historical, and inductive mea-
surements. The best and second-best results are emphasized by bold and underlined fonts. Note that
the results are multiplied by 100 for a better display layout.MS is the abbreviation of measurements.
MS Datasets JODIE DyRep TGAT TGN EdgeBank TCL GraphMixer DyGFormer SPACETGN

Wikipedia 93.13 ± 0.46 90.99 ± 0.36 95.27 ± 0.22 96.50 ± 0.08 90.78 ± 0.00 94.36 ± 0.25 95.56 ± 0.08 97.90 ± 0.07 98.28 ± 0.12
Reddit 96.50 ± 0.25 96.78 ± 0.15 97.55 ± 0.03 97.53 ± 0.11 95.37 ± 0.00 96.10 ± 0.05 95.42 ± 0.07 98.11 ± 0.05 97.99 ± 0.14
MOOC 80.06 ± 2.07 82.16 ± 1.84 85.90 ± 0.20 92.23 ± 0.78 60.86 ± 0.00 82.71 ± 0.13 82.27 ± 0.11 85.47 ± 0.53 87.69 ± 0.28
LastFM 69.01 ± 0.82 70.44 ± 1.65 68.78 ± 0.13 77.02 ± 2.27 83.77 ± 0.00 68.94 ± 0.82 70.48 ± 0.28 90.90 ± 0.12 90.58 ± 0.21
Enron 85.03 ± 2.54 81.62 ± 2.45 66.30 ± 1.94 87.42 ± 1.18 87.05 ± 0.00 83.51 ± 0.81 83.01 ± 0.44 91.81 ± 0.37 92.47 ± 0.39

Social Evo 91.40 ± 0.52 90.72 ± 0.11 94.23 ± 0.10 94.64 ± 0.42 81.60 ± 0.00 95.17 ± 0.12 94.53 ± 0.08 95.97 ± 0.03 96.37 ± 0.01

rnd

UCI 87.43 ± 0.55 52.65 ± 7.39 74.96 ± 2.88 87.37 ± 0.84 77.30 ± 0.00 83.99 ± 5.64 86.07 ± 2.24 92.19 ± 0.34 92.14 ± 0.58
Avg. Rank 6.14 7.29 6.14 3.29 7.14 5.86 5.71 1.86 1.57
Wikipedia 87.09 ± 0.58 83.81 ± 0.48 88.93 ± 0.28 90.38 ± 0.50 77.10 ± 0.00 89.78 ± 0.70 92.14 ± 1.23 93.37 ± 0.58 96.32 ± 0.16

Reddit 86.71 ± 0.33 82.26 ± 0.33 82.43 ± 0.15 85.45 ± 0.33 78.63 ± 0.00 80.64 ± 0.17 87.82 ± 0.09 89.43 ± 0.18 92.43 ± 0.29
MOOC 94.19 ± 0.57 87.41 ± 2.61 93.83 ± 0.55 97.36 ± 0.43 61.90 ± 0.00 95.24 ± 0.28 96.71 ± 0.15 97.72 ± 0.26 98.79 ± 0.19
LastFM 83.28 ± 1.15 76.24 ± 3.23 74.62 ± 1.06 77.53 ± 3.17 78.22 ± 0.00 83.24 ± 2.38 92.04 ± 0.13 87.34 ± 0.34 94.22 ± 0.32
Enron 83.79 ± 2.25 77.18 ± 2.90 63.93 ± 2.79 76.46 ± 0.79 79.83 ± 0.00 76.87 ± 1.41 85.67 ± 0.77 79.33 ± 0.82 87.29 ± 0.60

Social Evo 94.13 ± 1.04 95.20 ± 0.19 98.86 ± 0.06 98.62 ± 0.45 85.83 ± 0.00 99.20 ± 0.08 99.20 ± 0.06 99.39 ± 0.02 99.73 ± 0.01

hist

UCI 90.59 ± 0.06 49.35 ± 7.71 74.73 ± 3.16 85.01 ± 0.86 69.13 ± 0.00 81.46 ± 7.39 80.34 ± 3.65 85.66 ± 1.16 97.31 ± 0.30
Avg. Rank 4.86 7.57 7.00 5.29 7.71 5.43 3.43 2.71 1.00
Wikipedia 79.54 ± 0.56 79.00 ± 0.83 88.08 ± 0.60 90.24 ± 0.62 81.74 ± 0.00 88.07 ± 0.46 87.53 ± 2.05 93.06 ± 0.68 93.61 ± 0.37

Reddit 83.29 ± 0.80 81.14 ± 0.69 88.00 ± 0.14 84.88 ± 0.59 85.97 ± 0.00 85.72 ± 0.13 85.88 ± 0.13 91.00 ± 0.48 90.96 ± 0.24
MOOC 78.60 ± 0.96 67.30 ± 3.58 88.09 ± 0.80 91.95 ± 1.05 48.17 ± 0.00 92.11 ± 0.37 91.29 ± 0.33 92.02 ± 0.40 93.75 ± 0.53
LastFM 69.53 ± 2.03 63.40 ± 2.33 73.75 ± 1.06 69.31 ± 4.12 77.36 ± 0.00 73.64 ± 2.36 84.78 ± 0.15 80.77 ± 0.38 81.35 ± 1.01
Enron 76.49 ± 3.58 71.56 ± 2.80 61.25 ± 2.77 72.75 ± 2.79 75.03 ± 0.00 73.71 ± 1.16 79.01 ± 0.87 76.76 ± 0.64 82.68 ± 0.54

Social Evo 94.56 ± 0.81 95.19 ± 0.20 98.80 ± 0.06 98.77 ± 0.37 87.88 ± 0.00 99.17 ± 0.08 99.12 ± 0.07 99.43 ± 0.02 99.72 ± 0.01

ind

UCI 69.84 ± 0.08 51.62 ± 1.04 72.14 ± 1.87 66.36 ± 2.12 57.99 ± 0.00 77.55 ± 5.33 77.81 ± 1.52 74.92 ± 1.74 90.50 ± 0.56
Avg. Rank 6.86 8.43 5.29 6.00 6.57 4.43 3.57 2.57 1.29

under the UCI dataset with inductive measurement, SPACETGN records an AP of 93.04% and a
AUC-ROC of 91.91%, significantly higher than the second-best score.

The strong performance of SPACETGN can be attributed to (i) the self-adaptive negative sampling
approach (AMNS) and pattern extraction techniques, which enhance the extraction of discriminative
information, and (ii) effective utilization of temporal locality dependency and historical occurrence
strategies in differentiating positive and negative samples.

Moreover, the results in Table 7 highlight that SPACETGN exhibits substantial improvements across
historical and inductive measurements compared to other methods. This effectiveness is primarily
due to AMNS, which strengthens the model’s discriminative ability during training, thereby solidi-
fying its efficacy in link prediction tasks.

E.4 EFFECTIVENESS OF TEMPORAL-SPACE LOCALITY AND HISTORICAL OCCURRENCE
FEATURE EXTRACTION

We conduct ablation studies on SPACETGN to validate the efficacy of our proposed temporal lo-
cality and historical occurrence feature extraction. Specifically, we assess the impact of the feature
extraction by comparing the standard SPACETGN model against variants where one or both of these
optimizations are not incorporated. The variants are labeled as follows: without Space-Temporal
Locality (w/o ST), without Historical Occurrence Encoding (w/o HO), and without both types of
coding (w/o Both).
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Figure 7: Ablation study of SPACETGN, where w/o ST and w/o HO represent SPACETGN without
space-temporal locality dependency encoding and historical occurrence encoding techniques respec-
tively. The performance is an average AP score under three measurements(rnd, hist, ind).

The detailed results of these experiments are illustrated in Figure7. We observe that SPACETGN
obtains the best performance (93.34%−96.75%) when using the two feature extraction, and the re-
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Table 7: AP for inductive link prediction under random, historical, and inductive measurements.
The best and second-best results are emphasized by bold and underlined fonts. Note that the results
are multiplied by 100 for a better display layout.MS is the abbreviation of measurements.

MS Datasets JODIE DyRep TGAT TGN TCL GraphMixer DyGFormer SPACETGN
Wikipedia 91.26 ± 0.62 88.39 ± 0.52 94.87 ± 0.14 95.68 ± 0.18 95.02 ± 0.23 95.31 ± 0.21 97.29 ± 0.08 97.85 ± 0.12

Reddit 92.26 ± 0.93 93.41 ± 0.83 95.27 ± 0.12 95.57 ± 0.27 91.40 ± 0.10 92.63 ± 0.17 96.90 ± 0.11 97.30 ± 0.16
MOOC 77.51 ± 0.65 78.97 ± 1.23 84.32 ± 0.30 90.19 ± 0.95 81.60 ± 0.26 79.63 ± 0.16 84.30 ± 0.53 86.94 ± 0.13
LastFM 82.21 ± 1.62 83.60 ± 1.37 76.71 ± 0.23 80.35 ± 1.43 80.36 ± 0.62 80.38 ± 0.25 92.18 ± 0.19 92.88 ± 0.17
Enron 78.41 ± 1.69 74.29 ± 1.61 65.07 ± 1.39 77.98 ± 2.76 82.94 ± 0.41 74.84 ± 0.32 87.72 ± 0.63 87.76 ± 0.33

Social Evo 91.72 ± 0.53 89.82 ± 0.75 90.93 ± 0.06 89.79 ± 0.37 92.22 ± 0.17 90.87 ± 0.14 92.97 ± 0.08 92.91 ± 0.04

rnd

UCI 69.51 ± 2.00 48.02 ± 3.33 76.60 ± 1.03 82.73 ± 0.61 83.65 ± 6.02 87.30 ± 1.48 92.21 ± 0.21 92.98 ± 0.34
Avg. Rank 5.86 6.43 5.71 4.57 4.86 5.14 2.14 1.29
Wikipedia 78.34 ± 0.34 73.56 ± 0.84 89.23 ± 0.29 90.18 ± 0.56 90.10 ± 0.35 91.34 ± 0.84 90.66 ± 0.88 93.21 ± 0.19

Reddit 70.38 ± 0.28 64.66 ± 2.36 68.42 ± 0.35 73.87 ± 0.72 65.85 ± 0.50 80.11 ± 0.05 78.39 ± 0.45 83.20 ± 0.85
MOOC 77.34 ± 0.56 67.89 ± 2.32 89.58 ± 0.58 92.31 ± 1.51 92.22 ± 0.35 91.24 ± 0.34 92.65 ± 0.43 93.52 ± 0.65
LastFM 76.10 ± 0.95 72.07 ± 2.29 82.42 ± 0.76 72.12 ± 3.67 81.40 ± 1.04 88.09 ± 0.15 82.94 ± 0.37 87.46 ± 0.39
Enron 73.76 ± 1.71 63.82 ± 1.55 63.82 ± 2.44 65.68 ± 2.20 75.92 ± 0.55 78.76 ± 0.58 69.90 ± 1.09 86.03 ± 0.64

Social Evo 91.30 ± 0.84 88.59 ± 0.97 98.52 ± 0.13 97.97 ± 0.61 99.04 ± 0.08 98.78 ± 0.04 99.14 ± 0.02 99.34 ± 0.05

hist

UCI 70.87 ± 0.12 55.33 ± 4.01 79.44 ± 0.55 71.71 ± 2.21 82.38 ± 3.84 83.73 ± 1.32 79.59 ± 1.07 93.03 ± 0.45
Avg. Rank 6.14 8.00 5.57 5.14 4.29 2.57 3.14 1.14
Wikipedia 78.33 ± 0.33 73.56 ± 0.84 89.23 ± 0.29 90.18 ± 0.56 90.10 ± 0.36 91.34 ± 0.85 90.67 ± 0.88 93.21 ± 0.19

Reddit 70.39 ± 0.28 64.66 ± 2.36 68.45 ± 0.35 73.88 ± 0.72 65.84 ± 0.49 80.11 ± 0.05 78.38 ± 0.45 83.20 ± 0.84
MOOC 77.34 ± 0.56 67.89 ± 2.32 89.58 ± 0.58 92.30 ± 1.52 92.21 ± 0.35 91.25 ± 0.34 92.66 ± 0.42 93.52 ± 0.65
LastFM 76.10 ± 0.96 72.07 ± 2.29 82.42 ± 0.76 72.13 ± 3.67 81.40 ± 1.04 88.09 ± 0.15 82.94 ± 0.36 87.46 ± 0.39
Enron 73.76 ± 1.71 63.82 ± 1.55 63.81 ± 2.43 65.68 ± 2.20 75.92 ± 0.55 78.76 ± 0.57 69.90 ± 1.09 86.03 ± 0.64

Social Evo 91.30 ± 0.84 88.59 ± 0.97 98.52 ± 0.13 97.97 ± 0.61 99.04 ± 0.08 98.78 ± 0.04 99.14 ± 0.02 99.34 ± 0.05

ind

UCI 70.89 ± 0.11 55.32 ± 4.01 79.44 ± 0.54 71.75 ± 2.22 82.39 ± 3.84 83.75 ± 1.32 79.60 ± 1.08 93.04 ± 0.45
Avg. Rank 6.14 7.86 5.71 5.14 4.29 2.57 3.14 1.14

Table 8: AUC-ROC for inductive link prediction under random, historical, and inductive measure-
ments. The best and second-best results are emphasized by bold and underlined fonts. Note that the
results are multiplied by 100 for a better display layout.MS is the abbreviation of measurements.

NSS Datasets JODIE DyRep TGAT TGN TCL GraphMixer DyGFormer SPACETGN
Wikipedia 90.72 ± 0.52 87.63 ± 0.56 94.40 ± 0.17 95.40 ± 0.19 94.19 ± 0.28 94.88 ± 0.07 97.11 ± 0.04 97.71 ± 0.13

Reddit 92.73 ± 0.41 93.43 ± 0.75 95.35 ± 0.13 95.73 ± 0.24 91.77 ± 0.10 92.61 ± 0.19 96.85 ± 0.10 97.07 ± 0.21
MOOC 80.86 ± 0.68 82.41 ± 0.96 85.60 ± 0.31 91.68 ± 0.87 81.00 ± 0.21 80.71 ± 0.17 84.89 ± 0.42 87.19 ± 0.22
LastFM 80.92 ± 1.49 82.79 ± 1.47 74.49 ± 0.17 80.94 ± 1.21 74.51 ± 0.83 77.33 ± 0.30 92.08 ± 0.17 92.64 ± 0.13
Enron 79.90 ± 1.51 76.18 ± 0.84 62.24 ± 1.69 78.92 ± 2.56 81.16 ± 0.81 74.89 ± 0.73 88.57 ± 0.68 87.52 ± 0.57

Social Evo 93.10 ± 0.40 90.81 ± 0.71 92.75 ± 0.10 91.78 ± 0.46 94.19 ± 0.12 93.19 ± 0.09 94.96 ± 0.07 95.25 ± 0.03

rnd

UCI 71.93 ± 1.36 45.43 ± 5.20 74.15 ± 1.80 81.07 ± 0.57 80.13 ± 6.17 85.04 ± 1.79 89.85 ± 0.22 90.71 ± 0.45
Avg. Rank 5.86 6.14 5.71 3.86 5.43 5.57 2.14 1.29
Wikipedia 74.96 ± 0.20 71.65 ± 0.98 85.67 ± 0.38 87.14 ± 0.62 86.66 ± 0.57 87.82 ± 1.44 88.32 ± 1.14 91.04 ± 0.32

Reddit 65.94 ± 0.57 61.80 ± 1.45 67.07 ± 0.28 69.74 ± 0.68 64.23 ± 0.44 76.62 ± 0.12 74.34 ± 0.44 79.35 ± 1.05
MOOC 76.14 ± 0.51 69.40 ± 2.69 88.06 ± 0.75 91.58 ± 1.51 91.31 ± 0.37 90.52 ± 0.41 91.78 ± 0.44 93.37 ± 0.65
LastFM 74.12 ± 0.99 69.72 ± 1.59 78.14 ± 0.91 70.11 ± 2.26 79.37 ± 1.72 87.28 ± 0.10 79.12 ± 0.38 83.09 ± 0.65
Enron 72.78 ± 2.36 63.78 ± 1.39 59.98 ± 2.21 64.77 ± 1.41 72.26 ± 0.80 77.63 ± 0.43 68.15 ± 1.09 82.01 ± 0.62

Social Evo 91.24 ± 0.54 87.72 ± 0.97 98.24 ± 0.14 97.64 ± 0.77 98.85 ± 0.11 98.65 ± 0.06 99.00 ± 0.04 99.32 ± 0.03

hist

UCI 69.33 ± 0.22 52.49 ± 3.56 73.17 ± 0.93 64.65 ± 2.38 77.96 ± 4.84 79.82 ± 1.49 75.28 ± 1.09 91.16 ± 0.68
Avg. Rank 6.00 7.86 5.71 5.28 4.14 2.71 3.14 1.14
Wikipedia 74.96 ± 0.20 71.64 ± 0.98 85.68 ± 0.38 87.14 ± 0.62 86.66 ± 0.58 87.82 ± 1.44 88.33 ± 1.14 91.05 ± 0.32

Reddit 65.94 ± 0.57 61.80 ± 1.45 67.10 ± 0.28 69.74 ± 0.68 64.22 ± 0.43 76.62 ± 0.12 74.34 ± 0.44 79.35 ± 1.05
MOOC 76.14 ± 0.50 69.40 ± 2.69 88.06 ± 0.75 91.58 ± 1.51 91.31 ± 0.37 90.52 ± 0.41 91.78 ± 0.43 93.38 ± 0.65
LastFM 74.13 ± 0.99 69.73 ± 1.59 78.15 ± 0.91 70.11 ± 2.26 79.37 ± 1.72 87.28 ± 0.10 79.12 ± 0.38 83.09 ± 0.65
Enron 72.78 ± 2.36 63.78 ± 1.39 59.98 ± 2.21 64.78 ± 1.41 72.26 ± 0.79 77.63 ± 0.42 68.15 ± 1.09 82.01 ± 0.62

Social Evo 91.24 ± 0.54 87.72 ± 0.97 98.24 ± 0.14 97.64 ± 0.77 98.85 ± 0.11 98.65 ± 0.06 99.00 ± 0.04 99.32 ± 0.03

ind

UCI 69.30 ± 0.22 52.46 ± 3.57 73.14 ± 0.94 64.73 ± 2.40 77.97 ± 4.85 79.85 ± 1.48 75.30 ± 1.10 91.18 ± 0.67
Avg. Rank 6.00 7.86 5.71 5.29 4.14 2.71 3.14 1.14

sults decline without our feature extraction. In conclusion, our Space-Temporal feature extraction
distills more accurate temporal information, and the Historical Occurrence feature extraction effec-
tively captures the dynamic graph’s cycle information. Together, these tailored feature extraction
demonstrate their necessity and effectiveness.

F HYPERPARAMETER CONFIG

The parameters used for our comparison model are the optimal parameters in DyGLib Yu et al.
(2024), and the parameters used for SPACETGN are shown below.

SPACETGN:
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• Number of first-hop neighbors l : 20
• Number of time-window series r: 64
• Number of historical occurrences o: 64
• Dimension of node encoding dV : 172
• Dimension of edge encoding dE : 172
• Dimension of time encoding dT : 100
• Dimension of topological structure encoding dspace: 50
• Dimension of temporal dynamics encoding dtemporal: 50
• Dimension of historical occurrence encoding doccur: 50
• Dimension of aligned encoding d: 50
• Number of MLP-Mixer layers L: 2
• Dimension of output representation doutput: 172
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