
Under review as a conference paper at ICLR 2023

TOWARDS EXPRESSIVE GRAPH REPRESENTATIONS
FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Network (GNN) aggregates the neighborhood information into the
node embedding and shows its powerful capability for graph representation learn-
ing in various application areas. However, most existing GNN variants aggregate
the neighborhood information in a fixed non-injective fashion, which may map
different graphs or nodes to the same embedding, detrimental to the model ex-
pressiveness. In this paper, we present a theoretical framework to improve the
expressive power of GNN by taking both injectivity and continuity into account.
Based on the framework, we develop injective and continuous expressive Graph
Neural Network (iceGNN) that learns the graph and node representations in an
injective and continuous fashion, so that it can map similar nodes or graphs to simi-
lar embeddings, and non-equivalent nodes or non-isomorphic graphs to different
embeddings. We validate the proposed iceGNN model for graph classification
and node classification on multiple benchmark datasets. The experimental results
demonstrate that our model achieves state-of-the-art performances on most of the
benchmarks.

1 INTRODUCTION

Graph representation learning that maps graphs or their components to vector representations has
attracted growing attentions for graph analysis. Recently, graph neural networks (GNN) that can
learn a distributed representation for a graph or a node in a graph are widely applied to a variety of
areas, such as social network analysis (Hamilton et al., 2017; Ying et al., 2018a), molecular structure
inference (Duvenaud et al., 2015; Gilmer et al., 2017), text mining (Yao et al., 2019; Peng et al.,
2018), clinical decision-making (Mao et al., 2022b; Li et al., 2018) and image processing (Mao et al.,
2022a; Garcia & Bruna, 2018). GNN recursively updates the representation of a node in a graph by
aggregating the feature vectors of its neighbors and itself (Hamilton et al., 2017; Morris et al., 2019;
Xu et al., 2019). The graph-level representation can then be obtained through aggregating the final
representations of all the nodes in the graph. The learned representations can be fed into a prediction
model for different learning tasks, such as node classification and graph classification.

In GNN, the aggregation rule plays a vital role in learning expressive representations for the nodes and
the entire graph. There are many GNN variants with different aggregation rules proposed to achieve
good performances for different tasks and different problems (Kipf & Welling, 2017; Hamilton et al.,
2017; Zhang et al., 2018; Xinyi & Chen, 2019; Wang et al., 2020). However, most of the existing
GNN aggregation rules are designed based on a fixed non-injective pooling function, (e.g., max
pooling and mean pooling) or on non-continuous node types (e.g., graph isomorphism test). The
non-injective aggregation may map different (non-isomorphic) graphs or (non-equivalent) nodes
to the same embedding; and the non-continuous aggregation may map similar graphs or nodes to
quite different embeddings, both detrimental to the expressive power of GNN. For example, for the
graph with attributed nodes in Figure 1(a), mean pooling or sum aggregation on the neighborhoods
generates the same neighborhood representation for all the nodes (Figure 1(d)), thus cannot capture
any meaningful structure information. Xu et al. (2019) showed that a powerful GNN can at most
achieve the discriminative power of Weisfeiler-Lehman graph isomorphism test (WL test) which can
discriminate a broad class of graphs (Weisfeiler & Lehman, 1968), and proposed the powerful graph
isomorphism network (GIN). However, the theoretical framework of GIN is under the assumption
that the input feature space is countable, which makes GIN less expressive when applied to graphs
with continuous attributes.

1

Under review as a conference paper at ICLR 2023

Neighborhood as set Injective set to vector

(d) mean pooling
or sum aggregation

(a) original graph (b) 1 WL test

(-3,{0,0})

A

D

B

E

C

F

(3,{0})

(0,{0,3,-3})

(0,{0,1,2,-3})

(2,{0}) (1,{0})

(c) expressive representation

(-3,2,0,0,0,0)

A

D

B

E

C

F

(3,1,0,0,0,0)

(0,3,0,18,0,162)

(0,4,0,14,-18,98)

(1,1,0,0,0,0)
(2,1,0,0,0,0)

A

D

B

E

C

F

3

-3

2 1

0

0

(-3,0)

A

D

B

E

C

F

(3,0)

(0,0)

(0,0)

(2,0) (1,0)

Figure 1: An overview of our framework on an exemplar attributed graph in one iteration. (a) Original
graph with attributed nodes; (b) Graph nodes are represented by the corresponding attribute and
neighborhood set through WL test; (c) The node vector representations after an injective set function
on neighborhood sets, here the set function is f(X) =

∑
x∈X(1, x, x2, x3, x4); (d) A non-injective

alternative set function in GNNs, after aggregation, the node information remain unchanged, node B
and D still have the same representation despite their different neighborhoods.

We argue that the expressive power of a graph mapping should imply two aspects, injectivity and
continuity: the injectivity ensures different graphs are mapped to different representations and the
continuity ensures that similar graphs are mapped to similar representations. Most previous works
only took either one into account for GNN design; few considered both injectivity and continuity.
Here, we present a theoretical framework that can guide us to design highly expressive GNNs with
both injectivity and continuity for general graphs with continuous attributes. We also present a
necessary condition related to the representation dimension for a fully injective and continuous graph
mapping. The general idea of our framework is illustrated in Figure 1.

Our main contributions are summarized as follows. (1) We present a theoretical framework to
guide the design of expressive GNNs by ensuring the injectivity and continuity in the neighborhood
aggregation process. (2) We present a limitation about the representation dimension for a fully
injective and continuous graph mapping. (3) Based on the framework, we implement two injective
and continuous expressive GNN (iceGNN) models with a fixed and learnable aggregation function,
respectively. (4) We validate our models on multiple benchmark datasets including simple graphs and
attributed graphs for graph classification and node classification, the experimental results demonstrate
that our models can achieve state-of-the-art performances on most of the benchmarks. Our code is
available in the Supplementary Material. Common notations used throughout the paper are found in
Appendix A.1 Table 5.

2 RELATED WORK

Many GNN variants with different aggregation rules are proposed in the literature to achieve good
performances in different tasks. GIN proposed by Xu et al. (2019) is expected to be highly expressive
for simple graphs where node attributes are one-hot encoders on which sum aggregation is injective.
However, GIN cannot be directly extended to attributed graphs with the same expressive power,
because the sum aggregation is no longer injective in uncountable cases. GCN is another GNN
variant with simple element-wise mean pooling in a node’s neighborhood, including the node itself
(Kipf & Welling, 2017). Hamilton et al. (2017) tested 3 aggregators in GraphSAGE, including mean
aggregator, LSTM aggregator and max pooling aggregator, they found no significant performance
difference exists between the LSTM aggregators and pool aggregators, but GraphSAGE-LSTM is
significantly slower than GraphSAGE-pool. Mean aggregation and max pooling are permutation
invariant on sets, but the operation is not injective, which may result in the same embedding for
different inputs. LSTM aggregation could have large expressive capacity, but it is not permutation
invariant, this may cause equivalent nodes or isomorphic graphs to have different embeddings. Corso
et al. (2020) combined multiple aggregators with degree-scalers and proposed PNA to improve the
expressive power of GNN, but they did not provide a theoretical guidance on how to improve the
expressive power of GNN. In this article, we present a theoretical framework to guide the design of
expressive GNNs by ensuring the injectivity and continuity in the neighborhood aggregation process.
PNA can exactly fall into our framework by a simple comparison analysis.

2

Under review as a conference paper at ICLR 2023

Theoretical studies on GNNs showed the expressive power of GNNs has been linked to the WL test
(Morris et al., 2019; Xu et al., 2019). Xu et al. (2019) showed that GNNs with 1-hop neighborhood
aggregation can at most achieve the expressive power of the 1-WL test, and developed GIN that can
achieve this expressive power in countable space. Based on k-WL tests, Morris et al. (2019) proposed
k-GNN, which can take higher-order interactions among nodes into account. Maron et al. (2019a)
proved that order-k invariant graph networks are at least as powerful as the k-WL tests and developed
a GNN model that is more powerful than message passing GNNs, possessing the expressiveness of
3-WL, but the higher expressive power comes with a computational cost of processing high order
tensors. A survey on the expressive power of GNN can be found in Sato (2020).

3 PRELIMINARIES

3.1 GRAPH NEURAL NETWORKS

Most modern GNNs fall into the category of message passing neural networks (Gilmer et al., 2017)
that follow a neighborhood aggregation strategy that recursively updates a node representation by
aggregating representations of its neighbors and the node itself. The graph-level representation is
obtained through aggregating the final representations of all the nodes in the graph. Formally, the
propagation rule of a GNN layer can be represented as

H
(k)
N (v) = f

(k)
A

({
H(k)(w)|w ∈ N (v)

})
; (1)

H(k+1)(v) = f
(k)
C

(
H(k)(v), H

(k)
N (v)

)
(2)

where H(k)(v) is the representation vector of node v in the kth layer, and H(0)(v) is initialized with
X(v), the original attributes of node v. N (v) is the neighborhood of v. f (k)A (·) aggregates over the
neighborhood N (v) to generate a neighborhood representation H(k)

N (v), and f (k)C (·) combines the

node’s current representation H(k)(v) and its neighborhood’s representation H(k)
N (v) in the kth layer.

For node embedding, the node representation in the final layer H(K)(v) (suppose a total of K layers)
is considered as an informative representation that could be used for downstream tasks, e.g., node
classification. For graph or subgraph embedding, another aggregation function fR(·) is employed to
obtain the graph-level representation hG by aggregating the final representations of all nodes in the
graph or subgraph G, i.e.,

HG = fR

({
H(K)(v)|v ∈ G

}
)
)

(3)

fA(·), fC(·) and fR(·) are all crucial for the expressive power of a GNN. fA(·) and fR(·) are set
functions that map a set to a vector, they can be simple summations or sophisticated graph-level
pooling functions (Ying et al., 2018b; Zhang et al., 2018; Wang et al., 2020). fC(·) operates on
two vectors, it can be usually modeled by a multi-layer perceptron (MLP) or linear function on the
concatenated vector.

3.2 THE EXPRESSIVE POWER OF GNN

Recently, theoretical analysis showed that the expressive power of a GNN is associated with the
WL test (Morris et al., 2019; Xu et al., 2019). Xu et al. (2019) proved that the expressive power
of GNN is bounded by the one-dimensional Weisfeiler-Lehman test. The following Lemma and
Theorem from Xu et al. (2019) describe the relation between GNNs and WL test in expressive power
on discriminating graphs, refer to Xu et al. (2019) for the proofs.

Lemma 1. If the WL test decides two graphs G1 and G2 are isomorphic, any GNNs defined by Eq. 2
and 3 will map G1 and G2 to the same embedding.

Theorem 1. If WL test decides two graphs G1 and G2 are not isomorphic, a GNN with sufficiently
many GNN layers defined by Eq. 2 and 3 can also map G1 and G2 to different embeddings if the
functions fA(·), fC(·) and fR(·) are all injective.

3

Under review as a conference paper at ICLR 2023

The above Lemma and Theorem can guide us to design a GNN that has the discriminative power
equal to WL test. The key is to design injective functions for fA(·), fC(·) and fR(·). An injective
function for fC(·) that operates on two vectors can be easily obtained by concatenating the two
vectors. But designing an injective function for fA(·) or fR(·) that operates on a set is not trivial,
because sets can have different number of elements, and the operation on the set elements must be
permutation-invariant.

While Xu et al. (2019) considered the injectivity in their framework, the continuity of these functions
are also crucial to the model expressive capability, which was not considered in Xu et al. (2019).
Some popular aggregations by pooling, e.g., mean pooling and max pooling, are continuous but not
injective. Few works took both injectivity and continuity into account. In the following, we will
present how to design the continuous injective aggregation function on a set and show a necessary
condition related to the dimension for injective and continuous aggregation.

4 METHODS

4.1 SET REPRESENTATION

A set function is a function defined in a domain that is a collection of sets (specifically multisets
where the same object can repeat multiple times, a set means a finite multiset all through the paper).
In a finite graph, the neighborhood of each node is considered as a finite set. Thus, in this paper, we
only consider set functions of finite sets. A continuous set function is of real importance in practice
Wagstaff et al. (2019). The continuity of a function ensures that the change in output is very slight if
the input is altered slightly by any reason, such as truncating to machine precision. In this paper, we
consider the ordinary continuity, where the continuity of function f(x) at point c is defined by the
limit as limx→c f(x) = f(c).

For M ∈ N, a set function f(X) defined in domain XM = {X|X ⊂ Rd, |X| ≤ M} can be
represented as a sequence of permutation-invariant functions fi for different set sizes, i.e.,

f(X) = fi(x1, · · · , xi) if |X| = i ≤M, (4)

where x1, · · · , xi ∈ X .
Definition 1 (Continuous set function). For M ∈ N and a set function f(X) defined in domain
XM = {X | X ⊂ Rd, |X| ≤M}, f(X) is represented as Eq. 4, if fi(x1, · · · , xi) is continuous in
the Euclidean space for every i ≤M , we call f(X) a continuous set function.

Obviously, a continuous set function can also have the property that sufficiently small changes in the
input (a sufficiently small change will not change the set size) result in arbitrarily small changes in the
output. Thus, by a continuous set function, graphs with very similar structures and attributes could
be mapped to similar embeddings. An injective set function can map distinct sets to distinct values.
Thus, an injective and continuous set representation function can encode a set to a representation
such that different sets have different representations and similar sets have similar representations.

The following theorem provides a way to construct continuous injective set functions in uncountable
space by sum aggregation after a certain transformation.
Theorem 2. Assume XM is a set of finite subsets of Rd with size less than or equal to M , i.e., for
M ∈ N and XM = {X|X ⊂ Rd, |X| ≤M}, there exists an infinite number of continuous functions
Φ : Rd → RD such that the set function f : XM → RD, f(X) =

∑
x∈X Φ(x) is continuous and

injective.

Theorem 2 generalizes Lemma 6 in Zaheer et al. (2017) to multidimensional cases. We prove Theorem
2 in Appendix A.2. The proof contains three steps: 1. Constructing a satisfying function in one
dimensional cases (d = 1); 2. Constructing a satisfying function in multidimensional cases(d > 1)
based on the results in step 1; 3. The satisfying function can be used to generate infinitely many other
satisfying functions.

In our proof, we find a ΦM (x) defined in Eq. 5 (where i, j = 1, · · · , d) that can make f(X) =∑
x∈X Φ(x) continuous and injective if the first entries of all vectors in X are distinct. If the first

entries of all vectors in X are not distinct, we could add Pi to ΦM (x) (i.e., Φ′M (x)) to ensure fully
injectivity and continuity.

4

Under review as a conference paper at ICLR 2023

Pi =[1,x[i],x[i]2, · · · ,x[i]M]

Pi,j =[x[j],x[i]x[j],x[i]2x[j], · · ·x[i]M−1x[j]]

ΦM (x) =[P1, P1,2, · · · , P1,d]

Φ′M (x) =[ΦM (x), P2, · · · , Pd]

(5)

In the proof, we also provide a way to construct such a function Φ(x) by defining a continuous
injective function g : Rd → Rd, then Φ(g(x)) can also satisfy the condition if we have a function
Φ(x) satisfying the condition. We call Φ(x) the transformation function.

The following theorem tells a necessary condition of constructing an injective and continuous set
function by the sum aggregation.
Theorem 3. Let M ∈ N and XM = {X|X ⊂ Rd, |X| = M}, then for any continuous function
Φ : Rd → RN , if N < dM , the set function f : X → RN , f(X) =

∑
x∈X Φ(x) is not injective.

We prove Theorem 3 in Appendix A.3. Theorem 3 tells that, to construct a continuous injective set
function for sets with M d-dimensional vectors by sum aggregation with continuous transformation
Φ(x), Φ(x) must have at least dM dimensions. We are restricting Φ as a continuous function so that
it can be modeled by a neural network, because a neural network can approximate any continuous
function rather than any function by the universal approximation theorem (Cybenko, 1989).

4.2 INJECTIVE AND CONTINUOUS EXPRESSIVE GRAPH NEURAL NETWORKS

Since Theorem 2 tells that a set can be uniquely represented by a sum aggregation of its elements
through a continuous transformation function, we can use the unique set representation to model the
neighborhood of each node in a graph, and thus improve the expressiveness of graph representation.
From Theorem 1, to design an expressive GNN, we need to design injective and continuous functions
for fA(·), fC(·) and fR(·). Since fC(·) is easy to get continuous and injective, and fA(·) and
fR(·) both operate on a set of vectors in Rd, thus, we need Theorem 2 to guide us to construct
a continuous and injective set function for fA(·) and fR(·) by sum aggregation after a certain
continuous transformation.

COMBINE function. According to Theorem 3, for a set of M d-dimensional embeddings, the
transformation function must be at least dM -dimensional to construct a continuous injective set
function with sum aggregation, thus, without dimension reduction in fC(·), we get a (dM + d)-
dimensional embedding after one layer (dM for the set of neighbors and d for a node’s current
dimension). After k layers, the output embeddings have d(M + 1)k dimensions, which makes it
impractical to implement a fully injective and continuous GNN for large graphs. Nevertheless, in a
specific learning task, not all dimensions are related to the learning task, we could design learnable
neural networks (e.g., MLP) to adaptively reduce the output dimension in each layer as Eq. 6.

f
(k)
C (x1,x2) = MLP (k) ([x1,x2]) (6)

Note that an MLP mapping high-dimensional vectors to low-dimensional vectors cannot be continuous
and injective. Here, MLP is used for task-driven feature reduction.

AGGREGATE function. fA(·) operates on a set of node embeddings in the neighborhood of a node.
We have two choices of the transformation function of fA(·), i.e., fixed transformation and learnable
transformation.

Fixed transformation. In the proof of Theorem 2, we find the function Φ′M (x) defined in Eq. 5 can be
used as a continuous transformation function to make the sum aggregation continuous and injective
in most cases. Let Mn be the max neighborhood size for all nodes in all the graphs. Usually, if Mn is
not very large, we can set the transformation function as Φ′Mn

(x) for each layer k to maintain the
expressive power. Then fA(·) for layer k can be represented as

f
(k)
A

({
H(k)(w)|w ∈ N(v)

})
=

∑
w∈N (v)

Φ′Mn

(
H(k)(w)

)
(7)

Combining Eqs. 1, 2, 6 and 7, we get the propagation rule,

5

Under review as a conference paper at ICLR 2023

H(k+1)(v) = MLP (k)([H(k)(v),
∑

w∈N (v)

Φ′Mn
(H(k)(w))]) (8)

Though the function Φ′M (x) defined in Eq. 5 can make the sum aggregation continuous and injective,
it may result in numerical stability since the item x[i]M will make the number become very large or
very close to 0 if M is very large. To address this issue, we use a continuous and injective function
g(x) to normalize the power, since in the proof of Theorem 2 we know ΦM (g(x)) is also a qualified
transformation function to make the sum aggregation continuous and injective, if g(x) is continuous
and injective. In this paper, we set

g(x)[i] =

{
x[i]1/M , x[i] ≥ 0

−(−x[i])1/M , x[i] < 0
(9)

Learnable transformation. Due to the continuity of the transformation function, we can also set a
learnable MLP to approach the transformation function for fA(·) by the universal approximation
theorem (Cybenko, 1989), then we get the propagation rule as

H(k+1)(v) = MLP (k)
c ([H(k)(v),

∑
w∈N (v)

MLP
(k)
t (H(k)(w))]) (10)

where MLP
(k)
t and MLP

(k)
c serve as the transformation function and the combine function for

the kth layer, respectively. By this way, we get all the node embeddings for all graphs. For graph
or subgraph embedding, we need another aggregation function fR(·) to aggregate all the node
embeddings in a graph.

READOUT function. fR(·) operates on a set of all node embeddings in a graph. For large graphs
with many nodes, a fully injective and continuous set function will generate a high-dimensional
embeddings. We also use a learnable MLP as the transformation function to reduce the output
dimension.

HG = fR

({
H(K)(v)|v ∈ G

})
=
∑
v∈G

MLPG

(
H(K)(v)

)
(11)

Note that the final node embeddings are output from an MLP
(K)
c and directly input to MLPG, we

merge the two MLPs as one in the implementation. For graph classification, the output graph-level
embedding are input to an MLP classifier with nC outputs corresponding to the probabilities of the
nC classes. We only use the final GNN layer outputs for classification rather than concatenating all
layers’ outputs to construct a longer vector representation for classification as GIN did, because we
think the final layer outputs contain all information from middle layers and are expressive enough for
graph classification. In addition, this can reduce the input dimension of the final classifier, resulting
in a simpler classifier than GIN, especially in case of many layers.

Remark. By the propagation rule in Eqs. 8 and 10, we implement two variants of iceGNNs, namely
iceGNN-fixed and iceGNN-MLP, respectively. In practice, for a specific learning task, e.g., graph
classification that maps a graph to a single label, the whole process cannot be injective, and a certain
dimension reduction process must be applied. The key is to ensure the dimension reduction is guided
by the target task. For example, the sum aggregation is not injective, and moreover, the process
is fixed and cannot be adjusted by the loss function; thus, the aggregation could lose important
information that is related to the target task. In our framework, according to our theoretical result in
Theorem 2, we could achieve an injective and continuous aggregation by employing a transformation
function Φ(x). For iceGNN-fixed, a fixed transformation function is applied to make the aggregation
injective and continuous, and then a learnable MLP is applied to reduce the dimension. And for
iceGNN-MLP, we combine the aggregation and dimension reduction (linear function L) in one
learnable MLP. Thus, the learned low-dim features are related to the task.

5 EXPERIMENTS

5.1 GRAPH CLASSIFICATION

Datasets. We use 8 simple graph benchmarks and 5 attributed graph benchmarks for graph classifica-
tion, the 8 simple graph datasets contain 4 bioinformatics datasets (MUTAG, PTC, NCI1, PROTEINS)

6

Under review as a conference paper at ICLR 2023

Table 1: Accuracy for simple graph classification in test set (%). Top 3 performances on each dataset
are bolded. The best performances are underlined. The first two rows are our results, the middle part
corresponds the deep learning methods, the bottom part corresponds to the graph kernel methods.

MUTAG PTC NCI1 PROTEINS COLLAB IMDB-B IMDB-M RDT-B

iceGNN-fixed 91.1 ± 6.7 67.9 ± 7.3 82.9 ± 1.6 77.5 ± 6.2 – – – –
iceGNN-MLP 90.6 ± 7.9 68.8 ± 7.2 83.6 ± 1.9 76.5 ± 5.5 78.7 ± 1.5 72.8 ± 3.9 50.3 ± 2.3 92.0 ± 3.5

GIN-final 90.0 ± 5.4 65.9 ± 6.1 81.4 ± 1.6 76.2 ± 4.9 75.2 ± 2.0 72.5 ± 3.9 48.9 ± 2.7 90.1 ± 5.3
GIN (Xu et al., 2019) 89.4 ± 5.6 64.6 ± 7.0 82.7 ± 1.6 76.2 ± 2.8 80.2 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5
GCN (Kipf & Welling, 2017) 87.8 ± 6.0 62.7 ± 8.0 73.5 ± 1.4 71.0 ± 5.0 67.0 ± 3.6 71.3 ± 4.2 42.6 ± 5.2 65.1 ± 14.0
GraphSAGE (Hamilton et al., 2017) 85.1 ± 7.6 63.9 ± 7.7 77.7 ± 1.5 75.9 ± 3.2 – 72.3 ± 5.3 50.9 ± 2.2 –
PSCN (Niepert et al., 2016) 92.6 ± 4.2 60.0 ± 4.8 78.6 ± 1.9 75.9 ± 2.8 72.6 ± 2.2 71.0 ± 2.2 45.2± 2.8 86.3 ± 1.6
CapsGNN (Xinyi & Chen, 2019) 86.7 ± 6.9 - 78.4 ± 1.6 76.3 ± 3.6 79.6 ± 0.9 73.1 ± 4.8 50.3 ± 2.7 –
GCAPS-CNN (Verma & Zhang, 2018) – 66.0 ± 5.9 82.7 ± 2.4 76.4 ± 4.2 77.7 ± 2.5 71.7 ± 3.4 48.5 ± 4.1 87.6 ± 2.5
IEGN (Maron et al., 2019b) 84.6 ± 10 59.5 ± 7.3 73.7 ± 2.6 75.2 ± 4.3 77.9 ± 1.7 71.3 ± 4.5 48.6 ± 3.9 –
1-2-3 GNN (Morris et al., 2019) 86.1 60.9 76.2 75.9 – 74.2 49.5 –
HaarPool (Wang et al., 2020) 90.0 ± 3.6 – 78.6 ± 0.5 80.4 ± 0.8 – – – –
3WLGNN (Maron et al., 2019a) 90.5 ± 8.7 66.2 ± 6.5 83.2 ± 1.1 77.2 ± 4.7 81.4 ± 1.4 73.0 ± 5.8 50.5 ± 3.6 –
GHC (Nguyen & Maehara, 2020) 89.3 ± 8.3 – – – – 72.1 ± 2.6 48.6 ± 4.4 –
Ring-GNN (Chen et al., 2019) 78.1 ± 5.6 – – – – 73.0 ± 5.4 48.2 ± 2.7 –
InfoGraph (Sun et al., 2019) 89.0 ± 1.1 61.6 ± 1.4 – – – 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4
CMV-GR (Hassani & Khasahmadi, 2020) 89.7 ± 1.1 62.5 ± 1.7 – – – 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6

WL subtree (Shervashidze et al., 2011) 90.4 ± 5.7 59.9 ± 4.3 86.0 ± 1.8 75.0 ± 3.1 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1
GK (Shervashidze et al., 2009) 81.6 ± 2.1 57.3 ± 1.4 62.5 ± 0.3 71.7 ± 0.6 72.8 ± 0.3 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2
DGK (Yanardag & Vishwanathan, 2015) 87.4 ± 2.7 60.1 ± 2.6 80.3 ± 0.5 75.7 ± 0.5 73.1 ± 0.3 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4
WL-OA (Kriege et al., 2016) 84.5 ± 1.7 63.6 ± 1.5 86.1 ± 0.2 76.4 ± 0.4 80.7 ± 0.1 – – 89.3 ± 0.3
WWL (Togninalli et al., 2019) 87.3 ± 1.5 66.3 ± 1.2 85.7 ± 0.2 74.2 ± 0.5 – – – –
MLG (Kondor & Pan, 2016) 87.9 ± 1.6 63.3 ± 1.5 81.8 ± 0.2 76.3 ± 0.7 – 66.6 ± 0.3 41.2 ± 0.0 –

Table 2: Accuracy for attributed graph classification in test set (%). Top 3 performances on each
dataset are bolded. The best performances are underlined.

ENZYMES FRANKENSTEIN PROTEINSatt SYNTHETICnew Synthie

iceGNN-fixed 67.00± 6.40 74.59± 2.12 77.99± 1.77 97.67± 3.00 95.75± 2.25
iceGNN-MLP 71.50± 7.01 73.12± 2.59 77.27± 3.67 99.00± 1.53 99.25± 1.15

GIN-final 68.50± 4.86 68.66± 2.47 76.64± 2.94 83.33± 6.67 89.50± 2.18
GCN (Kipf & Welling, 2017) 44.17± 4.90 63.27± 1.15 68.83± 4.39 69.00± 7.00 49.25± 7.59
HGK-SP (Morris et al., 2016) 71.30± 0.86 70.06± 0.32 77.47± 0.43 96.46± 0.61 94.34±0.54
HGK-WL (Morris et al., 2016) 67.63± 0.95 73.62± 0.38 76.70± 0.41 98.84± 0.29 96.75± 0.51
GHK (Feragen et al., 2013) 68.80± 0.96 68.48± 0.26 72.26± 0.34 85.10± 1.04 73.18± 0.77
GIK (Orsini et al., 2015) 71.70± 0.79 76.31± 0.33 76.88± 0.47 83.07± 1.10 95.75± 0.50
P2K (Neumann et al., 2016) 69.22± 0.34 – 73.45± 0.48 91.70± 0.86 50.15± 1.92
WWL (Togninalli et al., 2019) 73.25± 0.87 – 77.91± 0.80 – –

and 4 social network datasets (COLLAB, IMDB-BINARY, IMDB-MULTI, and REDDIT-BINARY)
(Yanardag & Vishwanathan, 2015). For bioinformatics datasets, the categorical node labels are en-
coded as one-hot input features; for social network datasets, because nodes have no given features, we
initialize all node features to 1. The 5 attributed graph datasets contain 3 bioinformatics datasets (EN-
ZYMES, FRANKENSTEIN, PROTEINSatt) and 2 synthetic datasets (SYNTHETICNEW, Synthie).
More detailed information can be found in Appendix A.4 Table 6.

Baselines. We compared our model with a number of state-of-the-art methods listed in the first
column in Table 1 and 2 for simple graph classification and attributed graph classification, respectively.
Besides GIN which inspired this work and the popular GCN (Kipf & Welling, 2017), we also include
the recent studies on expressive power of GNNs, e.g., Ring-GNN (Chen et al., 2019), GHC (Nguyen
& Maehara, 2020) and state-of-the-art methods on neighborhood aggregation, e.g., GraphSAGE
(Hamilton et al., 2017) and HaarPool (Wang et al., 2020). For attributed graphs, few results on the
benchmarks with deep learning methods are available in the literature. We are only aware of graph
kernel related baselines, listed in the first columns in Table 2. We also compared iceGNN with our
implemented GIN-final and GCN for attributed graph classification, both implemented by adjusting
the corresponding official code.

Results. Table 1 and 2 list the classification accuracies on test set for simple graph classification
and attributed graph classification, respectively. We highlight the top 3 accuracies for each dataset
in boldface. From Table 1, for simple graph classification on bioinformatics datasets, iceGNN can
achieve top 3 on all the 3 datasets except for NCI dataset where we achieve the best results among
the deep learning models though. It seems that the graph kernel methods perform well on NCI1

7

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250 300

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(a) MUTAG

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(b) PTC

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(c) NCI1

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

iceGNN-fixed
iceGNN-MLP
GIN
GCN
GCNII
GCNII*

(d) Cora

Figure 2: The accuracy curves on training set in the training process.

datset. Especially, on the PTC dataset we achieve the best two performances, and improved 2 points
compared to the past best. Although iceGNN can only achieve top 3 on REDDIT-BINARY dataset
among the social network datasets, it can provide acceptable results overall. From Table 2, for all the
attributed graph datasets, iceGNN can achieve top 3 in these 10 models, especially, iceGNN-MLP
places first on 3 datasets. Comparing iceGNN and GIN-final, iceGNN can consistently outperform
GIN-final except for iceGNN-fixed on ENZYMES dataset.

Performance on training set. To evaluate the expressive power, Figure 2(a-c) illustrates accuracies
in training sets in the training process on 3 datasets for graph classification. More results on other
datasets can be found in Appendix A.6 Figure 4. We can see that iceGNN-MLP on different datasets
is able to fit the training sets perfectly and is better than GIN-final and iceGNN-fixed, specifically,
iceGNN-MLP>iceGNN-fixed>GIN-final>GCN, in terms of the expressive power. For MUTAG and
PTC datasets, GIN in Xu et al. (2019) can fit the training set well, while GIN-final cannot, since GIN
in Xu et al. (2019) concatenates all the middle layer outputs as the graph embedding, it may be the
reason that the final layer outputs of GIN may lose some information from middle layers.

We are aware of that iceGNN has more parameters than GIN-final (Appendix A.7 Table 8). To
identify whether the expressive power is just due to more parameters, we enlarge GIN with 5 hidden
layers in each MLP, so that the number of parameters achieve the same scale with iceGNN, denoting
the GIN architecture as GIN-mlp5. We found that GIN-mlp5 still cannot achieve the training accuracy
as iceGNN or even worse than GIN-final, as shown in Figure 2 (a-c).

Recent GNN benchmarks. The recent work by Dwivedi et al. (2020) proposed new GNN bench-
marks by which we also test our model on their ZINC and MNIST datasets for graph regression and
classification, respectively. To ensure a fair comparison, we followed their problem setting (data
splits, optimizer, etc.) and GNN structure (number of layers, normalization). Our results together
with some state-of-the-art results from Dwivedi et al. (2020) are listed in Table 3. From the results, we
can see that iceGNN-MLP performs best on both ZINC and MNIST datasets among all the models,
demonstrating its effectiveness.

Table 3: GNN performance on ZINC dataset for
graph regression and on MNIST dataset for graph
classification. Top 3 performances on each dataset
are bolded. The best performances are underlined.

ZINC MNIST
#Param Test MAE #Param Test Acc

iceGNN-MLP 231049 0.250±0.005 229140 97.340±0.083
iceGNN-fixed 252345 0.367±0.010 241568 96.490±0.124

GIN 103079 0.387±0.015 105434 96.485±0.252
GCN 505079 0.367±0.011 101365 90.705±0.218
GatedGCN 105735 0.435±0.011 104217 97.340±0.143
GraphSage 505341 0.398±0.002 104337 97.312±0.097
MoNet 504013 0.292±0.006 104049 90.805±0.032
GAT 531345 0.384±0.007 110400 95.535±0.205
RingGNN 97978 0.512±0.023 505182 91.860±0.449
3WLGNN 102150 0.407±0.028 108024 95.075±0.961
PNA – 0.320±0.032 – 97.190±0.080

Table 4: Node classification results. GCNII*
is a variant of GCNII from Chen et al. (2020).

Cora Citeseer Pubmed

Training accuracy

ICGNN-MLP 1.000±0.000 0.999±0.000 0.975±0.002
ICGNN-fixed 0.998±0.004 0.990±0.011 0.904±0.053
GIN-final 0.998±0.001 0.974±0.002 0.935±0.004
GCN 0.977±0.002 0.946±0.003 0.841±0.003
GCNII 0.675±0.009 0.596±0.011 0.844±0.003
GCNII* 0.679±0.012 0.609±0.010 0.852±0.004

Test accuracy

ICGNN-MLP 0.858±0.019 0.728±0.023 0.888±0.008
ICGNN-fixed 0.841±0.025 0.720±0.025 0.872±0.027
GIN-final 0.870±0.018 0.739±0.031 0.875±0.009
GCN 0.883±0.014 0.773±0.020 0.859±0.007
GCNII 0.855±0.006 0.728±0.006 0.869±0.002
GCNII* 0.852±0.008 0.736±0.004 0.880±0.003

8

Under review as a conference paper at ICLR 2023

5.2 NODE CLASSIFICATION

We use three popular citation network datasets Cora, Citeseer, and Pubmed (Sen et al., 2008) for semi-
supervised node classification. The detailed information of the dataset is summarized in Appendix
A.4 Table 7. We compared our performance with a recent state-of-the-art, GCNII (Chen et al., 2020).
Since the expressive power describes the ability of a model to discriminate different nodes, a larger
training set can reflect the expressive power better. Because the official splits have only a few nodes
in training, we split the nodes into training, validation and test sets by 8:1:1. The node classification
results on test sets are listed in Table 4, where we found that iceGNNs and can outperform all other
baselines on training set; especially on Cora and Citeseer dataset, iceGNNs achieve nearly 100%
accuracy, suggesting iceGNNs have strong expressive ability. For test set, iceGNN-MLP performs
better than all other models on Pubmed dataset, but does not perform that well on Cora and Citeseer
datasets comparing to GCN and GIN-final, suggesting that iceGNN-MLP also has good generalization
ability on Pubmed dataset rather than Cora and Citeseer datasets.

5.3 EXPRESSIVE CAPABILITY ANALYSIS

The expressive power describes how a model can distinguish different samples. Generally, a highly
expressive model will map different samples to different embeddings and similar samples to similar
embeddings. For classification problem, an expressive model should make samples in the same
class compact together and samples in different classes highly discriminative. Here, we fetch the
output embeddings of GNN before feeding to the classifier, and visualize them to see if GNN can
discriminate samples from different classes. Figure 3 shows the t-SNE visualization (Maaten &
Hinton, 2008) of output graph representations of different GNN models on training data of NCI1
dataset. More visualization results can be found in Appendix A.8. We can see that the output
embeddings of iceGNN-MLP and iceGNN-fixed are discriminative on both datasets, and the less
expressive GIN-final shows somewhat more overlaps between different classes, which validates the
expressive capability of iceGNN.

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

(a) iceGNN-MLP

75 50 25 0 25 50 75

60

40

20

0

20

40

(b) iceGNN-fixed

75 50 25 0 25 50 75 100
80

60

40

20

0

20

40

60

(c) GIN-final

Figure 3: t-SNE visualization of the output embeddings on training data of NCI1 dataset.

From the experimental results, we found that iceGNN-MLP often performs better than iceGNN-fixed.
We identify two reasons could make iceGNN-MLP outperform iceGNN-fixed. (1) By the discussion
in Section 4.2, iceGNN-MLP can also retain the graph label information. (2) iceGNN-fixed usually
has a much higher dimension input to each GNN layer, thus more parameters to train, having a high
risk of encountering local optimum and plateau. This phenomenon also exists in general MLP.

6 CONCLUSION

In this paper, we present a theoretical framework to design highly expressive GNNs for general
graphs. Based on the framework, we propose two iceGNN variants with fixed transformation function
and learnable transformation function, respectively. Moreover, the proposed iceGNN can naturally
learn expressive representations for graphs with continuous node attributes. We validate the proposed
GNN for graph classification and node classification on multiple benchmark datasets, including
simple graphs and attributed graphs. The experimental results demonstrate that our model achieves
state-of-the-art performances on most of the benchmarks. Future directions include extending the
framework to graph with continuous edge attributes.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In NeurIPS, pp. 2224–2232, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scalable
kernels for graphs with continuous attributes. In NeurIPS, pp. 216–224, 2013. Erratum available
at http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In ICLR, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pp. 1263–1272. JMLR. org, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pp. 1024–1034, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive toxicology
challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 2990–2998, 2016.

10

http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
http://graphkernels.cs.tu-dortmund.de

Under review as a conference paper at ICLR 2023

Nils M Kriege, Pierre-Louis Giscard, and Richard C Wilson. On valid optimal assignment kernels
and applications to graph classification. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, pp. 1623–1631, 2016.

Yifu Li, Ran Jin, and Yuan Luo. Classifying relations in clinical narratives using segment graph
convolutional and recurrent neural networks (seg-gcrns). JAMIA, 26(3):262–268, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(Nov):2579–2605,
2008.

Nathaniel Macon and Abraham Spitzbart. Inverses of vandermonde matrices. The American
Mathematical Monthly, 65(2):95–100, 1958.

Chengsheng Mao, Liang Yao, and Yuan Luo. Towards expressive graph representation. arXiv preprint
arXiv:2010.05427, 2020.

Chengsheng Mao, Liang Yao, and Yuan Luo. Imagegcn: Multi-relational image graph convolutional
networks for disease identification with chest x-rays. IEEE Transactions on Medical Imaging,
2022a.

Chengsheng Mao, Liang Yao, and Yuan Luo. Medgcn: Medication recommendation and lab test
imputation via graph convolutional networks. Journal of Biomedical Informatics, pp. 104000,
2022b.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In NeurIPS, pp. 2156–2167, 2019a.

Haggai Maron, Heli Ben Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR, 2019b.

Christopher Morris, Nils M Kriege, Kristian Kersting, and Petra Mutzel. Faster kernels for graphs
with continuous attributes via hashing. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), pp. 1095–1100. IEEE, 2016.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels:
efficient graph kernels from propagated information. Machine Learning, 102(2):209–245, 2016.

Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International Confer-
ence on Machine Learning, pp. 7306–7316. PMLR, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In ICML, pp. 2014–2023, 2016.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu Song, and Qiang
Yang. Large-scale hierarchical text classification with recursively regularized deep graph-cnn. In
WWW, pp. 1063–1072, 2018.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, pp. 488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. JMLR, 12(Sep):2539–2561, 2011.

11

Under review as a conference paper at ICLR 2023

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. ICLR, 2019.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Alexander Rieck, and Karsten
Borgwardt. Wasserstein weisfeiler-lehman graph kernels. Advances in Neural Information
Processing Systems 32, pp. 6439–6449, 2019.

Saurabh Verma and Zhi-Li Zhang. Graph capsule convolutional neural networks. arXiv preprint
arXiv:1805.08090, 2018.

Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and Michael Osborne. On the
limitations of representing functions on sets. In ICML, 2019.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, and Yanan Fan. Haar
graph pooling. In ICML, pp. 9952–9962. PMLR, 2020.

Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In ICLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM SIGKDD, pp. 1365–1374.
ACM, 2015.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In
AAAI, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In ACM SIGKDD, pp.
974–983. ACM, 2018a.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NeurIPS, pp. 4800–4810,
2018b.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and
Alexander J Smola. Deep sets. In NeurIPS, pp. 3391–3401, 2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, 2018.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 COMMON NOTATIONS USED THROUGHOUT THE PAPER

Table 5: Common notations used throughout the paper.

Notation Definition

R the set of all real numbers
N the set of all natural numbers
[x1, · · · ,xn] the concatenation of vectors x1, · · · ,xn,
H(k)(v) the vector representation of node v in the kth layer
N (v) the neighborhood of node v in a graph
x[i] the ith entry of vector x
x[i : j] the subvector of x between index i and j (including)

13

Under review as a conference paper at ICLR 2023

A.2 PROOF OF THEOREM 2

Theorem 2 Assume XM is a set of finite subsets of Rd with size less than or equal to M , i.e., for
M ∈ N and XM = {X|X ⊂ Rd, |X| ≤M}, there exists an infinite number of continuous functions
Φ : Rd → RD such that the set function f : XM → RD, f(X) =

∑
x∈X Φ(x) is continuous and

injective.

Proof. We prove the theorem by three steps, 1. constructing a satisfying function Φ(x) in one
dimensional cases (d = 1); 2. constructing a satisfying function Φ(x) in multi-dimensional cases
(d > 1); 3. The number of the satisfying functions is infinite.

1. One dimensional cases (d = 1):

In one dimensional case, the theorem can be easily proved by extending the following lemma from
Zaheer et al. (2017).

Lemma. Let X = {(x1, · · · , xM) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM}. The sum-of-power mapping
E : X → RM+1 defined by the coordinate functions

E(X) = [E0(X), E1(X), · · · , EM (X)] =

[∑
x∈X

1,
∑
x∈X

x, · · · ,
∑
x∈X

xM

]
(12)

is injective.

In Zaheer et al. (2017), this lemma is proved based on the famous Newton-Girard formulae, where the
domain X can be extended to XM = {X|X ⊂ R, |X| ≤M,M ∈ N} with the same proof process.
BecauseE0(X) =

∑
x∈X 1 = |X| is the number of elements inX ,E0(X1) = E0(X2) implies equal

set size between the two sets, it can be easily extended to XM = {X|X ⊂ R, |X| ≤M,M ∈ N}.

Since E(X) =
[∑

x∈X 1,
∑

x∈X x, · · · ,
∑

x∈X xM
]

=
∑

x∈X [1, x, · · · , xM]. Let Φ(x) =

[1, x, · · · , xM], obviously Φ(x) is continuous, thus, we get one Φ(X) such that f(X) =
∑

x∈X Φ(x)
is injective and continuous.

2. Multi-dimensional cases (d > 1):

For a d-dimensional vector x and a integer M , we define

Pi,j(x;M) =
[
x[j],x[i]x[j],x[i]2x[j], · · · ,x[i]M−1x[j]

]
(13)

where i, j ∈ [1, d], x[i] is the ith entry of x.

For a given i ∈ [1, d], define Φi : Rd → R(dM+1), Φi(x;M) = [1, Pi,1, · · · , P1,d], we will prove
that Φi(x;M) can meet the condition that f(X) =

∑
x∈X Φi(x;M) is injective and continuous if

x[i] is distinct for x ∈ X .

We only consider Φ1(x;M), for i = 2, · · · , d, the situations are similar. For a clear understanding,
we reshape Φ1(x;M) to d rows similar to a matrix, like

Φ1(x;M) =

1,x[1], x[1]2, · · · , x[1]M ,

x[2], x[1]x[2], · · · , x[1]M−1x[2],

...
...
. . .

...

x[d], x[1]x[d], · · · , x[1]M−1x[d]

 (14)

For a (dm + 1)-dimensional vector V from the image domain of XM through f(X) =∑
x∈X Φ1(x;M), we will identify the number of the preimages of V .

Let X is a preimage of V , we have the following equation which is exactly a equation group with
dM + 1 equations.

V =

∑

x∈X 1,
∑

x∈X x[1],
∑

x∈X x[1]2, · · · ,
∑

x∈X x[1]M ,∑
x∈X x[2],

∑
x∈X x[1]x[2], · · · ,

∑
x∈X x[1]M−1x[2],

...
...

. . .
...∑

x∈X x[d],
∑

x∈X x[1]x[d], · · · ,
∑

x∈X x[1]M−1x[d]

 (15)

14

Under review as a conference paper at ICLR 2023

Note that the first row of Eq. 15 is exactly the sum-of-power mapping we considered in one
dimensional cases, thus we can identify a unique set of the first entry of elements in X , and the
number of elements in X is also determined. Let X have M elements and X = {x1,x2, · · · ,xM},
the set {x1[1],x2[1], · · · ,xM[1]} is uniquely defined.

Consider the second row of Eq. 15, we can rewrite the equations in the second row as linear matrix
equation as Eq. 16

1 1 · · · 1
x1[1] x2[1] · · · xM[1]
x1[1]2 x2[1]2 · · · xM[1]2

...
...

. . .
...

x1[1](M−1) x2[1](M−1) · · · xM[1](M−1)

×

x1[2]
x2[2]

...
xM[2]

 = V [2, :]T (16)

Note that the coefficient matrix in left side of Eq. 16 is a Vandermonde matrix, if the x1[1], · · · ,xM[1]
are all distinct, the coefficient matrix is invertible (Macon & Spitzbart, 1958), Eq. 16 has a unique
solution for x1[2], · · · ,xM[2] corresponding to x1[1], · · · ,xM[1]. Similarly, by the ith (2 < i < d)
row of Eq. 15, x1[i], · · · ,xM[i] can be uniquely identified.

In the other case, if the x1[1], · · · ,xM[1] that solved from the first row of Eq. 15 are not all
distinct, Eq. 16 has infinitely many solutions. Φ(x) defined by Eq. 14 is not sufficient to make
f(X) =

∑
x∈X Φ(x) injective. We need some more dimensions appended in Φ(x).

Let x1[1] = x2[1] = · · · = xk[1], then by combining the items, Eq. 16 is shrinked to
1 1 · · · 1

xk[1] xk+1[1] · · · xM[1]
xk[1]2 xk+1[1]2 · · · xM[1]2

...
...

. . .
...

xk[1](M−1) xk+1[1](M−1) · · · xM[1](M−1)

×

∑

i=1···k xi[2]
xk+1[2]

...
xM[2]

 = V [2, :]T (17)

By solving Eq. 17, we have a unique sum
∑

i=1···k xi[2]. To iden-
tify a unique set of {x1[2],x2[2], · · · ,xk[2]}, we can define a unique∑

i=1···k xi[2]2,
∑

i=1···k xi[2]3, · · · ,
∑

i=1···k xi[2]k, we can add items
x[2]2,x[1]x[2]2,x[1]2x[2]2, · · · ,x[1]M−1x[2]2 to Φ(x) to uniquely identify

∑
i=1···k xi[2]2.

Similarly, add items x[2]k,x[1]x[2]k,x[1]2x[2]k, · · · ,x[1]M−1x[2]k to Φ(x) to uniquely identify∑
i=1···k xi[2]k. Thus all xi[2] are identified.

After the set {x1[2],x2[2], · · · ,xM[2]} is uniquely defined, by adding x[2]ix[j](i = 0, · · ·M −
1, j = 3, · · · d) to Φ(x), we can use xi[2] to construct a Vandermonde matrix to solve
xi[3], · · · ,xi[d], (i = 1, · · · ,M). If xi[1 : 2] are not all distinct, we can identify xi[3] similarly by
adding x[1]ix[3]j to Φ(x). By this way, the set X can be uniquely identified.

In our construction of Φ(x), all the functions are continuous, thus, there exists a continuous function
Φ(x) such that f(X) =

∑
x∈X Φ(x) is injective and continuous.

3. The number of the satisfying function is infinity:

To prove the number of this kind functions is infinity, we construct a continuous injective function
g : R → R, we will show that if we have a φ(x) satisfying the condition f(X) =

∑
x∈X φ(x)

is continuous and injective, then φ(g(x)) also satisfy the condition f(X) =
∑

x∈X φ(g(x)) is
continuous and injective.

We define a function h : X → X , h(X) = {g(x)|x ∈ X}, since g(x) is injective, h(X) is also
injective. If we have a function φ(x) such that f(X) =

∑
x∈X φ(x) is injective, f(h(X)) is injective.

f(h(X)) =
∑

x∈h(X)

φ(x) =
∑

x∈{g(x)|x∈X}

φ(x) =
∑
x∈X

φ(g(x)) (18)

Because φ(x) and g(x) are both continuous, φ(g(x)) is continuous, thus we find another function
φ(g(x)) such that

∑
x∈X φ(g(x)) is injective. Because we can have an infinite number of such

continuous injective functions g : Rd → Rd (e.g., g(x) = kx, k ∈ R), we have a infinite number of
such functions Φ(x) = φ(g(x)) such that f(X) =

∑
x∈X Φ(x) is injective.

15

Under review as a conference paper at ICLR 2023

A.3 PROOF OF THEOREM 3

Theorem 3 Let M ∈ N and X = {X|X ⊂ Rd, |X| = M}, then for any continuous function
Φ : Rd → RN , if N < dM , the set function f : X → RN f(X) =

∑
x∈X Φ(x) is not injective.

Proof. Suppose f(X) is injective. Because Φ(x) is continuous, f(X) is a finite sum of continuous
function, it is also continuous, thus, f(X) is continuous and injective.

All sets in X have M elements from Rd. In one dimensional cases (d = 1), X has a bijection to
S = {X = (x1, · · · , xM)|X ∈ RM , x1 ≤ x2 ≤ · · · ≤ xM}.
In multi-dimensional cases (d > 1), we can construct a bijection from X to S = {X =
(x1, · · · ,xM)|X ∈ RdM ,x1[1] ≤ x2[1] ≤ · · · ≤ xM[1], if xi[1 : k] = xi+1[1 : k],xi[k + 1] ≤
xi+1[k+ 1], i = 1, · · ·M − 1, k = 1, · · · , d− 1}. For X ∈ X , let X = {x1, · · · ,xM}, we can sort
elements in X by the first entry, for the elements whose first entries are equal, sort them by the second
entry, so repeatedly in this way, we get a final ordered sequence of the vectors, which is unique in S .

Note that S is a convex open subset of RdM , and is therefore homeomorphic to RdM . SinceN < dM ,
no continuous injection exists from RdM to RN . Thus no continuous injective function exist from X
to RN . Hence we have reached a contradiction.

16

Under review as a conference paper at ICLR 2023

A.4 DATASET DETAILS

The dataset information is in Table 6 and 7

Table 6: Dataset information for graph classification. All datasets are available from Kersting et al.
(2016). #G=number of graphs. #C=number of classes. #NC=number of node types. AvgN=average
number of nodes in one graph. AvgE=average number of edges in one graph. Dim=node attribute
dimension. MaxNb is the max 1-hop neighbors in all the nodes.

#G #C #NC AvgN AvgE MaxNb Dim Type Source

MUTAG 188 2 7 17.93 19.79 4 – bioinformatics (Debnath et al., 1991)
PTC 344 2 19 14.29 14.69 4 – bioinformatics (Helma et al., 2001)
NCI1 4110 2 37 29.87 32.30 4 – bioinformatics (Wale et al., 2008)
PROTEINS 1113 2 3 39.06 72.82 25 – bioinformatics (Borgwardt et al., 2005)
COLLAB 5000 3 1 74.49 2457.78 491 – social networks (Yanardag & Vishwanathan, 2015)
IMDB-B 1000 2 1 19.77 96.53 135 – social networks (Yanardag & Vishwanathan, 2015)
IMDB-M 1500 3 1 13.00 65.94 88 – social networks (Yanardag & Vishwanathan, 2015)
RDT-B 2000 2 1 429.63 497.75 3062 – social networks (Yanardag & Vishwanathan, 2015)

ENZYMES 600 6 3 32.63 62.14 9 18 bioinformatics (Borgwardt et al., 2005)
FRANKENSTEIN 4337 2 1 16.90 17.88 4 780 bioinformatics (Orsini et al., 2015)
PROTEINS-att 1113 2 3 39.06 72.82 25 1 bioinformatics (Borgwardt et al., 2005)
SYNTHETICnew 300 2 1 100.00 196.25 9 1 synthetic (Feragen et al., 2013)
Synthie 400 4 1 95.00 172.93 20 15 synthetic (Morris et al., 2016)

Table 7: Dataset information for node classification.

#Nodes #Edges #Classes Dim MaxNb Source

cora 2708 5429 7 1433 168 (Sen et al., 2008; Kipf & Welling, 2017)
citeseer 3327 4732 6 3703 99 (Sen et al., 2008; Kipf & Welling, 2017)
pubmed 19717 44338 3 500 171 (Sen et al., 2008; Kipf & Welling, 2017)

17

Under review as a conference paper at ICLR 2023

A.5 IMPLEMENTATION DETAILS

We implement 2 iceGNN variants: (1) iceGNN-fixed, where fixed transformation functions in all
layers are set as ΦM (x) or Φ′M (x) in Eq. (4) in the main paper; (2) iceGNN-MLP, where the
transformation functions in all layers are set as a learnable MLP. Since for simple graph with one-
hot node features, the summation with identical transformation is injective, we set whether the
transformation function in the first layer is identical or an MLP as an optional hyperparameter for
simple graph classification. For social network datasets, the max neighborhood size is too large that
a fixed transformation function will produce a large hidden dimension, we do not implement fixed
transformation function. Also, because the nodes have no initial features in the first layer. We also
implement GIN with the output of the final layer as node embeddings to sum to graph embedding,
denoted as GIN-final.

The two iceGNN variants and GIN-final are implemented with 5 layers, all MLPs in iceGNN have 2
layers. Batch normalization Ioffe & Szegedy (2015) is applied in every hidden layer (including GNN
layer and MLP layer) followed by a ReLU activation function. We use the Adam optimizer Kingma
& Ba (2015) with a initial learning rate and decay the learning rate by 0.5 every 50 epochs. The batch
size is 32, no dropout layer applied. The search space of hyper-parameters we tuned for each dataset
are: (1) The number of hidden units {16, 32, 64}; (2) the inital learning rate 0.01, 0.001; (3) for the
4 bioinformatic simple graph datasets, the transformation function in the first layer is set identical
or MLP; (4) For iceGNN-fixed, the transformation function is tuned with ΦM (x) or Φ′M (x) in Eq.
(4) in the main paper. For each dataset, we follow the standard 10-fold cross validation protocol and
use the same splits with Xu et al. (2019). Following the previous work Xu et al. (2019); Maron et al.
(2019a); Mao et al. (2020), we reported the best averaged validation accuracy across the 10 folds for
a fair comparison. All models are trained 300 epochs. To evaluate the expressive capability, we also
record the average training accuracy across the 10 folds of iceGNNs and GIN-final in each epoch.
All the experiments were run in 10 Tesla V100 GPUs with pytorch.

18

Under review as a conference paper at ICLR 2023

A.6 ADDITIONAL RESULTS

The accuracy curves on training set in the training process on more datasets are shown in Figure 4,
where Figures 4a-4j are for graph classification and Figures 4k-4l are for node classification.

0 50 100 150 200 250 300

0.60

0.65

0.70

0.75

0.80

0.85

0.90

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(a) PROTEINS

0 50 100 150 200 250 300
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(b) COLLAB

0 50 100 150 200 250 300

0.50

0.55

0.60

0.65

0.70

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(c) IMDBBINARY

0 50 100 150 200 250 300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(d) IMDBMULTI

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(e) RDT-B

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(f) ENZYMES

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp15
GCN

(g) FRANKENST

0 50 100 150 200 250 300
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(h) PROTEINSatt

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(i) SYNTHETICnew

0 50 100 150 200 250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

iceGNN-fixed
iceGNN-MLP
GIN-final
GIN-mlp5
GCN

(j) Synthie

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

iceGNN-fixed
iceGNN-MLP
GIN
GCN
GCNII
GCNII*

(k) Pubmed

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

iceGNN-fixed
iceGNN-MLP
GIN
GCN
GCNII
GCNII*

(l) Citeseer

Figure 4: The accuracy curves on training set in the training process. All the models have a hidden
dimension 16.

19

Under review as a conference paper at ICLR 2023

A.7 MODEL SIZE

Table 8 lists the comparison of number of trainable parameters in different models on different
datasets. GIN-mlp(n), the numbers in parentheses for different datasets are the number of layers
in an MLP. GIN-mlp(n) is implemented to enlarge the GIN model to the same parameter scale
with iceGNN-MLP to make a fair comparison of expressive power. All the models have a hidden
dimension 16, GIN-mlp(n) is a GIN model where all MLPs are implemented with n layers. Since
iceGNN-fixed cannot be implemented with a large MaxNb (MaxNb is defined in Tables 6 and 7), the
transformation functions in iceGNN-fixed are set as Φ4(x) (defined in Eq. (5) in the main paper). The
results show that, iceGNN is more expressive than GIN on most of the datasets, and the expressive
power of iceGNN comes from the injective and continuous aggregation scheme rather than the
number of parameters.

Table 8: Number of trainable parameters of different models on different datasets. All the models
have a hidden dimension 16.

models iceGNN-fixed iceGNN-MLP GIN-final GIN-mlp(n) GCN

MUTAG 8,706 8,574 4,256 8,816(5) 978
PTC 9,666 9,006 4,472 9,032(5) 1,170
NCI1 11,106 9,654 4,796 9,356(5) 1,458
PROTEINS 8,226 8,430 4,184 8,744(5) 914
COLLAB 8,227 7,815 4,213 8,773(5) 899
IMDBBINARY 8,162 7,750 4,148 8,708(5) 882
IMDBMULTI 8,227 7,815 4,213 8,773(5) 899
REDDITBINARY 8,162 7,750 4,148 8,708(5) 882
ENZYMES 10,086 9,338 4,768 9,328(5) 1,270
FRANKENSTEIN 70,546 36,402 18,170 37,930(15) 13,346
PROTEINSatt 34,892 8,466 4,202 8,762(5) 930
Synthie 9,476 8,992 4,530 9,090(5) 1,140
SYNTHETICnew 8,226 8,358 4,148 8,708(5) 882

20

Under review as a conference paper at ICLR 2023

A.8 VISUALIZATION

The graph embedding output from the final layer of GNNs on some other datasets is visualized with
t-SNE (Figures 5,6,7,8).

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

(a) iceGNN-MLP

40 20 0 20 40

75

50

25

0

25

50

75

(b) iceGNN-fixed

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

(c) GIN-final

Figure 5: t-SNE visualization of the output 16-dimensional graph embeddings on training data of
FRANKENSTEIN dataset.

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

(a) iceGNN-MLP

80 60 40 20 0 20 40 60

60

40

20

0

20

40

60

(b) iceGNN-fixed

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80

(c) GIN-final

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

(d) GCN

Figure 6: t-SNE visualization of the output 16-dimensional node embeddings on training data of
Citeseer dataset.

60 40 20 0 20 40 60
80

60

40

20

0

20

40

60

(a) iceGNN-MLP

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(b) iceGNN-fixed

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

(c) GIN-final

80 60 40 20 0 20 40 60
60

40

20

0

20

40

60

(d) GCN

Figure 7: t-SNE visualization of the output 16-dimensional node embeddings on training data of
Cora dataset.

75 50 25 0 25 50 75

75

50

25

0

25

50

75

(a) iceGNN-MLP

75 50 25 0 25 50 75

75

50

25

0

25

50

75

(b) iceGNN-fixed

80 60 40 20 0 20 40 60 80

75

50

25

0

25

50

75

(c) GIN-final

80 60 40 20 0 20 40 60 80

100

75

50

25

0

25

50

75

100

(d) GCN

Figure 8: t-SNE visualization of the output 16-dimensional node embeddings on training data of
Pubmed dataset.

21

Under review as a conference paper at ICLR 2023

A.9 HYPER-PARAMETER SETTING

For the reproducibility, Table 9 provides the hyper-parameters to achieve the results of iceGNN in
Table 1 and 2 in the main paper, and the code is also attached with this file. For the social network
datasets, since MaxNB is too large to implement iceGNN-fixed, we only implement iceGNN-MLP.
Since all nodes are of the same type, identical transformation function in the first layer is applied.
For attributed graphs, to preserve injective and continuous, the transformation function in the first
layer is not identical. The results of iceGNN, GIN and GCN in Table 4 in the main paper is achieved
hyper-parameters in Table 10, and all the learning rates are 0.01. The hyper-parameters of GCNII and
GCNII* are the same as the official code (https://github.com/chennnM/GCNII), where
the hidden dimensions are 64, 256, 256 for Cora, Citeseer and Pubmed, respectively.

Table 9: The hyper-parameters corresponding to the results of iceGNN in Table 1 and 2 in the main
paper. h=hidden dimension; lr=learning rate; TF=transformation function; FI=whether to apply a
identical transformation function for the first layer.

dataset model h lr FI TF

MUTAG iceGNN-fixed 16 0.01 FALSE Φ
iceGNN-MLP 16 0.01 FALSE MLP

PTC iceGNN-fixed 16 0.001 TRUE Φ′

iceGNN-MLP 16 0.001 FALSE MLP
NCI1 iceGNN-fixed 64 0.001 TRUE Φ

iceGNN-MLP 16 0.001 TRUE MLP
PROTEINS iceGNN-fixed 64 0.001 TRUE Φ′

iceGNN-MLP 64 0.01 TRUE MLP

COLLAB iceGNN-MLP 64 0.001 TRUE MLP
IMDB-B iceGNN-MLP 16 0.01 TRUE MLP
IMDB-M iceGNN-MLP 16 0.01 TRUE MLP
RDT-B iceGNN-MLP 16 0.01 TRUE MLP

ENZYMES iceGNN-fixed 64 0.001 FALSE Φ
iceGNN-MLP 64 0.001 FALSE MLP

FRANKENSTEIN iceGNN-fixed 32 0.001 FALSE Φ′

iceGNN-MLP 16 0.001 FALSE MLP
PROTEINSatt iceGNN-fixed 16 0.001 FALSE Φ′

iceGNN-MLP 64 0.01 FALSE MLP
SYNTHETICnew iceGNN-fixed 64 0.01 FALSE Φ

iceGNN-MLP 64 0.01 FALSE MLP
Synthie iceGNN-fixed 64 0.01 FALSE Φ

iceGNN-MLP 32 0.01 FALSE MLP

Table 10: The hyper-parameters corresponding to the results of iceGNN in Table 4 in the main paper.
h=hidden dimension; TF=transformation function; FI=whether to apply a identical transformation
function for the first layer.

dataset model h lr FI TF drop out rate weight decay

Cora iceGNN-fixed 128 0.01 TRUE Φ 0 0.01
iceGNN-MLP 128 0.01 TRUE MLP 0.6 0

Citesser iceGNN-fixed 128 0.01 TRUE Φ 0 0.01
iceGNN-MLP 128 0.01 TRUE MLP 0.6 0

Pubmed iceGNN-fixed 16 0.01 TRUE Φ 0 0.01
iceGNN-MLP 16 0.01 TRUE MLP 0.6 0

22

https://github.com/chennnM/GCNII

	Introduction
	Related Work
	Preliminaries
	Graph neural networks
	The expressive power of GNN

	Methods
	Set representation
	Injective and continuous expressive graph neural networks

	Experiments
	Graph classification
	Node classification
	Expressive capability analysis

	Conclusion
	Appendix
	Common notations used throughout the paper
	Proof of Theorem 2
	Proof of Theorem 3
	Dataset Details
	Implementation Details
	Additional Results
	Model size
	Visualization
	Hyper-parameter Setting

