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Abstract

Much of Abstract Meaning Representation001
(AMR) parsing is currently concentrated002
on fine-tuning pre-trained language models.003
Large Language Models (LLMs) bring a new004
paradigm for NLP research, prompting. LLMs005
also show impressive ‘reasoning’ capabilities006
and a certain kind of interpretability with Chain-007
of-Thought (CoT) prompting. In this paper,008
we apply a variety of prompting strategies to009
induce GPT to do AMR parsing. We demon-010
strate that GPT models are insufficient as AMR011
parsers, but CoT prompting may shed light on012
how errors arise.013

1 Introduction014

Abstract Meaning Representation (AMR, Langk-015

ilde and Knight, 1998; Banarescu et al., 2013) is a016

graph-based semantic representation of a sentence,017

which represents the semantic relations within the018

sentence as a directed, acyclic graph (Fig. 1). State-019

of-the-art AMR parsers mainly adopt the paradigm020

of fine-tuning pre-trained language models (Va-021

sylenko et al., 2023; Lee et al., 2022) to generate022

string representations of AMRs.023

Even larger language models (LLMs), such as024

GPT-4 (OpenAI et al., 2024) have taken the world025

by storm. In addition to generating natural lan-026

guage texts, they can be used for downstream tasks027

by applying instructive prompts, without any fine-028

tuning (Zhao et al., 2023; Liu et al., 2023). This029

paper explores the possibility that GPT can work030

out of the box as an AMR parser. Despite trying031

a wide variety of prompting methods and models,032

we answer in the negative: GPT is not usable as an033

AMR parser.034

The methods explored are: just asking the model035

to provide an AMR for a sentence (a.k.a. zero-036

shot), one-shot (in which one example is provided037

in the prompt), five-shot (5 examples; we tried038

1AMR graph visualisation powered by VULCAN
(Groschwitz, 2023).

sampling these from the training set randomly and 039

by similarity), and two Chain-of-Thought prompts, 040

in which it is demonstrated how to build the AMR 041

step by step, with short explanations of each step 042

(Wei et al., 2022b). The experiments took place 043

on two 175B models (Instruct-GPT) of the GPT- 044

3.5 family (Ouyang et al., 2022) and the GPT-4o 045

model2 (OpenAI et al., 2024). 046

We apply a range of evaluation techniques, from 047

standard Smatch to fine-grained metrics to human 048

evaluation. The best method-model combination 049

we found – using GPT-4o with five-shot prompting 050

and post-processing – achieves a Smatch F-score 051

of only 60, compared to the SOTA at 85.4 (Lee 052

et al., 2022). Moreover, without post-processing, 053

even our best version yields strings that cannot be 054

interpreted as single AMRs 15% of the time. The 055

purest version of out-of-the-box methodology is 056

the zero-shot setting; the results here are near 0. 057

2 Background & Related Work 058

AMR An AMR (Fig. 1) is composed of labelled 059

nodes and edges, where nodes represent ‘concepts’ 060

– roughly the words of the sentence – and the edges 061

represent the relationships between the concepts. 062

AMR guidelines include such details as the use 063

of PropBank (Choi et al., 2010) verb senses (e.g. 064

receive-01) and argument numbers (e.g. ARG0), 065

complex subgraphs for named entities (e.g. the sub- 066

graph dominated by person), and negation, anno- 067

tated with (:polarity -). AMRs can be encoded 068

as text (Penman notation), so text-based models 069

can be used to generate AMRs (van Noord and 070

Bos, 2017). 071

AMR Parsing is the task of generating an AMR 072

given a sentence. Existing AMR parsers mainly 073

fall into three categories: transition-based mod- 074

els, sequence-to-graph models, and sequence-to- 075

sequence (seq2seq) models. Transition-based mod- 076

2https://openai.com/index/hello-gpt-4o/

1

https://openai.com/index/hello-gpt-4o/


Figure 1: AMR graph example1(bottom left), corresponding Penman format (bottom left), and the sentence (top).

els generate new nodes, edges, or subgraphs based077

on the words of the sentence (Peng et al., 2018;078

Naseem et al., 2019; Fernandez Astudillo et al.,079

2020; Zhou et al., 2021; Lindemann et al., 2020).080

Sequence-to-graph models derive the graph from081

existing nodes without transition processes, directly082

extending new nodes and edges (Zhang et al., 2019;083

Cai and Lam, 2020). Seq2seq models directly gen-084

erate the text format of AMRs from raw sentences085

(van Noord and Bos, 2017; Blloshmi et al., 2020;086

Lee et al., 2022; Vasylenko et al., 2023; Bai et al.,087

2022). We use GPT as a seq2seq model.088

Large Language Models (LLMs) such as GPT089

are pre-trained on vast quantities of raw text, and090

are trained to predict a continuation of given text (a091

prompt). Because this training data contains more092

than just natural language, a well-designed prompt093

can sometimes elicit text that can be interpreted as094

something other than language. For example, Chat-095

GPT is capable of providing Python code given096

a plain-language description of what it should do097

(Poldrack et al., 2023). There are evidently some098

AMRs in GPT’s training data – our zero-shot re-099

sults are terrible, but some outputs are AMRs – and100

so AMR parsing may in principle be possible.101

In-context learning/k-shot/few-shot prompting102

is a gradient-free “learning” strategy for lan-103

guage models that provides k task-related exam-104

ple question-answer pairs before asking the target105

question (Brown et al., 2020; Dong et al., 2023;106

Wei et al., 2022a). Few-shot prompting generally107

has better performance than zero-shot prompting108

(Zhao et al., 2021; Liu et al., 2022; Min et al.,109

2022), which only provides instructions. LLM per-110

formance is sensitive to the prompt, including the111

number of shots (Cao et al., 2020) and the choice 112

of examples (Zhao et al., 2021). 113

Chain-of-Thought (CoT) Prompting Unlike 114

regular few-shot prompting, CoT prompts include 115

not only example question-answer pairs but also in- 116

termediate reasoning steps that can derive the final 117

answer (Wei et al., 2022b). CoT prompting can sig- 118

nificantly enhance the capabilities of LLMs in com- 119

plex reasoning in several benchmarks (Lewkowycz 120

et al., 2022; Saparov and He, 2023), and bring 121

more interpretability with the generated reasoning 122

process (Weng et al., 2023). Madaan and Yazdan- 123

bakhsh (2022) for instance claim that, through CoT 124

prompting, LLMs can better understand the task 125

by extracting commonsense knowledge from the 126

questions, and generalize to unseen tasks by mim- 127

icking the expert’s intermediate reasoning steps 128

(Yang et al., 2022). However, final answers can be 129

inconsistent with reasoning steps (Lyu et al., 2023). 130

Exactly what sort of interpretability CoT reason- 131

ing adds to LLMs is a matter of debate. Since CoT 132

text is simply a part of the model’s output, there 133

is no particular reason to think that it’s related to 134

how the model actually produces its output. For 135

instance, in our experiments, partial results in the 136

CoT output are usually – but not always – part of 137

the output AMR, and reasoning text is usually re- 138

lated to the partial results they are paired with, but 139

often doesn’t precisely match them (§4.3). 140

3 Methods 141

3.1 Prompt Design 142

In our experiments we compare a number of types 143

of prompts, which we describe in this section, 144

and give full examples in Appendix A. All of our 145
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Figure 2: A toy example of CoT reasoning for Dorothy Gale danced. Each box is a reasoning step, where the top
part is the CoT reasoning text and the bottom part is a visualization1 of the corresponding subgraph.

prompts request an AMR given a sentence; some146

include examples. Asking GPT to role-play can147

improve model performance (Reynolds and Mc-148

Donell, 2021; Kong et al., 2023), so all our prompts149

begin with You are a computational linguist. The150

simplest prompt template we use is in (1):151

(1) You are a computational linguist. Let’s do152

some semantic parsing. Please give me an153

Abstract Meaning Representation (AMR) of154

[sentence].155

3.1.1 Zero-shot and Few-shot Prompt Design156

The zero-shot setting uses the prompt in (1). One-157

and five-shot prompts use the zero-shot prompt but158

add examples, each introduced with Q: Please give159

me an Abstract Meaning Representation (AMR) of160

[sentence]. A: [AMR].161

For k-shot, we use k = 1 as a minimal version162

and k = 5 as a maximal one, 5 being chosen be-163

cause it provides a balance between using many164

examples and consistently fitting within the space165

constraints of GPT.166

All one-shot prompts use the sentence in Fig. 1167

as the example, built to demonstrate common AMR168

properties, such as reentrancy, different non-core169

roles, etc., and not be too long. Five-shot examples170

are sampled from the training set.171

Two sampling strategies are applied, random172

sampling and sampling based on semantic sim-173

ilarity. Designing a prompt based on semanti-174

cally similar examples to the query can improve175

LLMs’ performance (Gao et al., 2021; Liu et al., 176

2022). We use Wang et al. (2020)’s model sentence- 177

transformers/all-MiniLM-L6-v23 to calculate the 178

cosine similarities between the target sentence and 179

the training set, and the five most similar sentences 180

and their AMRs are selected as the examples used 181

in the prompt. 182

3.1.2 CoT Prompt Design 183

We use the same example sentence as the one-shot 184

setting (Fig. 1) for all CoT prompts. We introduce 185

two different styles of CoT prompting for deriving 186

AMR, top-down and bottom-up. A CoT toy exam- 187

ple of the sentence Dorothy Gale danced is shown 188

in Fig. 2. 189

Top-down The top-down approach is to find the 190

top node first, which is generally the main verb 191

in the sentence, and then find its child nodes and 192

their respective relationships according to the se- 193

mantics of the sentence. We then recurse through 194

the generated child nodes until LLM derives the 195

final graph. 196

Bottom-up The bottom-up approach first ex- 197

tracts smaller subgraphs that make up the AMR, 198

e.g. the subject and the object, the place and the 199

time. Then it looks for the relationship between 200

subgraphs and links them with nodes and edges 201

until the graph is complete. 202

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2?library=sentence-transformers
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Prompt lengths The length of the CoT prompt-203

ing is a trade-off. Longer reasoning steps for com-204

plex tasks boost LLMs’ inference performance205

(Wei et al., 2022b; Jin et al., 2024), but leave less206

space for generating complete reasoning steps and207

results. Our top-down prompt has five steps and208

800 tokens,4 and the bottom-up has four steps and209

864 tokens. For comparability between the meth-210

ods, CoT and one-shot have the same number of ex-211

amples, and five-shot prompts are of similar length212

to the CoT prompts (∼800, tokens depending on213

the samples).214

3.2 Dataset & Models215

Our experiment took place on the English AMR216

2.0 (Knight et al., 2017) and AMR 3.0 (Knight217

et al., 2021) test set with example selections for218

few-shot prompting on the training set of AMR 2.0219

and AMR 3.0 respectively. AMR 2.0 has 1,371220

(test) and 36,521 (train) AMRs and AMR 3.0 has221

1,898 and 55,635. Used within the terms of the222

license, LDC User Agreement for Non-Members.223

The AMR 2.0 test set is used to test differ-224

ent prompting strategies on the English "text-225

davinci-003" (davinci) model and the "gpt-3.5-226

turbo-instruct" (turbo-instruct) model; both models227

belong to the GPT-3.5 family and have 175B param-228

eters with 4,097 token length limitations (Ouyang229

et al., 2022). These length limitations are shared230

between the input prompt and prediction. The best231

prompting strategy overall (5-shot with similarity232

example sampling) and the best CoT prompting233

strategy (top-down CoT) on AMR 2.0 with GPT-234

3.5 were determined. These two methods were235

then applied to the GPT-4o model with 128,000236

token limitations on the AMR 3.0 test set. Our237

experiments use the official OpenAI API and the238

models’5 temperatures are set to 0 for reproducibil-239

ity.240

4 Results241

Our experiments include three different LLMs242

(turbo-instruct and davinci for the AMR 2.0 dataset243

and GPT-4o for the AMR 3.0 dataset). The full244

results are reported in Appendix B; in this section245

4Reported token lengths are calculated based on the Ope-
nAI official tokenizer for GPT-3.5 and GPT-4, https://
platform.openai.com/tokenizer. GPT-4o uses a new tok-
enizer which has not officially been released at the moment.

5The turbo-instruct and GPT-4o model point to "gpt-
3.5-turbo-0613" and "gpt-4o-2024-05-13" respectively at
the time of our experiments. Used within term of use:
https://openai.com/policies/eu-terms-of-use/

we report only the best results of each method. All 246

GPT-3.5 results are therefore for the davinci model. 247

The best five-shot method used similarity sampling, 248

and for CoT, the top-down method. 249

We begin our analysis with a look at the parsabil- 250

ity of output strings into AMRs (§4.1). No 251

method produces more than 85% parsable out- 252

puts, but a post-processing script significantly im- 253

proves parsability. Next, we evaluate with stan- 254

dard Smatch scores (§4.2). We find that the 5-shot 255

method with GPT-4o is the best, followed by one- 256

shot, Chain-of-Thought (CoT), and zero-shot. We 257

then apply the fine-grained analysis provided by 258

Damonte et al. (2017) and GrAPES (Groschwitz 259

et al., 2023), finding that the more complex and 260

AMR-specific the subtask, the harder it is for GPT 261

(§4.2.1). Finally, we sample from the CoT outputs 262

and do an error analysis, finding that the steps the 263

model outputs generally make some sense, but are 264

riddled with errors, and the reasoning text does not 265

always match the subgraph generated (§4.3). 266

4.1 Parseability and post-processing 267

Some of the LLM output texts are not parsable as 268

AMRs, and some produce multiple AMRs. While 269

the ability of the model to produce a single, le- 270

gal, AMR is the main question of interest, also 271

of interest is whether a pipeline that includes mi- 272

nor post-processing works as an AMR parser. For 273

this reason, we apply a post-processing script6 274

that fixes mismatched parentheses, splits multiply- 275

labeled nodes into separate nodes, and combines 276

multiple AMRs into one with a root node labeled 277

multi-sentence. The proportion of legal and ille- 278

gal AMRs for each method, before and after post- 279

processing, is in Fig. 3. 280

4.2 Smatch 281

The standard evaluation metric for AMR is Smatch 282

(Cai and Knight, 2013). For Smatch evaluation, 283

unparsable graphs are replaced by a dummy graph 284

(d / dummy). We evaluate with and without post- 285

processing. Fig. 4 is the Smatch of the best version 286

of each method. (Full results in Appendix B.1) 287

In each evaluation, the ranking of each method 288

conforms to the following hierarchy: 5-shot > 1- 289

shot > CoT > zero-shot. 290

Out best results are for the 5-shot method with 291

GPT-4o (60), but nothing approaches the state of 292

the art (Lee et al. (2022) with 86.7 on AMR 2.0 and 293

6All code will be made available upon publication.
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with 85.4 on AMR 3.0). GPT-4o is loosely com-294

parable to an early AMR baseline parser, JAMR295

(Flanigan et al., 2014), with a Smatch score of 58296

on the LDC2013E117 dataset (Table 1).297

Dataset AMR 3.0 Smatch
5-shot (GPT-4o) 60
CoT (GPT-4o) 55
Graphene Smatch (SOTA) 85.4
(Lee et al., 2022)
Dataset AMR 2.0
Zero-shot (GPT-3.5) 14
1-shot (GPT-3.5) 41
5-shot (GPT-3.5) 50
CoT (GPT-3.5) 36
Graphene Smatch (SOTA) 86.7
(Lee et al., 2022)
Dataset LDC2013E117
JAMR (Flanigan et al., 2014) 58

Table 1: Smatch for our methods (all post-processed),
Graphene (SOTA)7, and JAMR (an early baseline).

4.2.1 Fine-grained results 298

In addition to Smatch, we evaluated the GPT-4o 299

outputs with the Granular AMR Parsing Evalua- 300

tion Suite, or GrAPES (Groschwitz, 2023), a fine- 301

grained evaluation with 36 categories divided into 302

9 sets. 23 of the categories are extracted from the 303

AMR 3.0 test set; evaluating with these metrics 304

grants insights into the strengths and weaknesses 305

of GPT as an AMR parser. For comparison, we 306

include a high-performing fine-tuned BART model, 307

AMRBart (Bai et al., 2022) (Smatch 84). The full 308

GrAPES results on the AMR 3.0 test set categories 309

are in Appendix B.2. We also ran Damonte et al. 310

(2017)’s fine-grained Smatch on all outputs (see 311

Appendix B.1) and highlight some relevant results. 312

Because the overall quality of GPT as a parser 313

is so poor, AMRBart outperforms GPT on nearly 314

all categories. However, there is substantial, and, 315

we argue, principled, cross-categorical variation. 316

Overall, GPT is much better at simpler and less 317

AMR-specific tasks. 318

Seen vs Unseen Unlike with purpose-trained 319

AMR parsers, there is very little difference in per- 320

formance on subcategories of things seen and un- 321

seen in the AMR 3.0 training set: while AMRBart 322

performs on average 38% worse on unseen items, 323

our best GPT model is only 10% worse, and for rare 324

and unseen node labels the performance is identical 325

for GPT, but 69 vs 45 for AMRBart (Table 2). This 326

is as expected, as GPT is not trained specifically on 327

the AMR training set. 328

Simple vs complex, AMR-specific subtasks 329

GPT is not too bad at simple tasks like node la- 330

beling. Fine-grained Smatch includes the metric 331

Concepts, the F-score over the multiset of node 332

labels. GPT here scores 67, which is not high (AM- 333

RBart scores 90), but is quite a bit higher than its 334

overall Smatch F-score of 60. Similarly, GrAPES 335

shows GPT trailing AMRBart in rare node labels 336

only 61 to 68, and outperforming it in unseen node 337

labels 61 to 45 in Table 2. It is also reasonable 338

at finding and categorizing named entities (Fine- 339

grained Smatch NER score 73). GPT even outper- 340

forms AMRBart on the GrAPES category Hard 341

unseen wiki links, which are wiki links for named 342

entities that are not templatic. Evidently, these un- 343

predictable URLs occur in GPT’s training data, and 344

7The Smatch score on AMR 2.0 and 3.0 reported in the
Graphene paper are actually 86.26 and 84.87 respectively, but
(Hoang et al., 2021) report the higher numbers in our table.
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it is able to make use of them in some cases.345

However, the more complex and AMR-specific346

the subtask, the worse GPT gets. Scores on Prop-347

Bank tasks (sense disambiguation and argument348

numbers) average to 30 (vs 63 for AMRBart). Over-349

all, for tasks we classified as AMR-specific (Prop-350

Bank tasks, multinode word meanings (e.g. teacher351

is annotated (person :ARG0-of teach-01)), im-352

peratives, ellipsis, and special entities), GPT per-353

formed 49% worse than its average GrAPES score,354

while AMRBart performed only 4% worse.355

One GrAPES metric we categorise as AMR-356

specific deserves special mention: Special Entities,357

which are things like dates, URLs, and name. GPT358

does much better here than on other AMR-specific359

subtasks at 64. We suspect GPT succeeds here360

because this task is very templatic.361

We also found an effect of sentence length, with362

longer sentences much more likely to yield un-363

parsable outputs. For instance, GPT-4o five-shot,364

before post-processing, has an error rate of 6% for365

sentences up to 20 words but 33% for sentences366

longer than 40 (see Appendix D).367

Category 5-shot
4o

CoT
4o

AMR
Bart

Seen vs Unseen
Rare node labels 61 57 69
Unseen node labels 61 56 45
Hard unseen wiki links 33 5 9
Seen 71 59 93
Unseen 57 48 58
Seen − Unseen as % of Seen 10% 18% 38%
AMR-specific
PropBank 30 25 63
Multinode word meanings 14 4 84
Imperatives 4 0 66
Ellipsis 12 15 55
Special Entities 64 55 77
Average AMR-spec. 25 20 69
Average all categories 48 42 72
AMR-spec − all as % of all 49% 53% 4%

Table 2: Selection of fine-grained categories from
GrAPES. Italicised categories are averages across mul-
tiple categories. Scores are (averages of) recall.

Negation (Damonte et al., 2017)’s fine-grained368

Smatch reveals that the one-shot and CoT meth-369

ods out-perform the five-shot on exactly one370

thing: negation, which is F-score on the subgraph371

(:polarity -). On AMR 2.0, the best five-shot372

score is 9, while CoT top-down and bottom-up are373

14 and 19 respectively, and even one-shot has an374

11. On AMR 3.0 with GPT-4o, CoT also slightly375

outperforms five-shot (34 vs 32). This is likely376

because the hand-built example used in one-shot 377

and CoT includes negation, and the CoT example 378

even includes a step for the negation. Informal 379

sampling of CoT outputs revealed a lot of output 380

reasoning steps about negation, even occasional 381

over-generalisations to creating a (:polarity +) 382

edge, which doesn’t exist in AMR. In one case (Do 383

they not realise that you don’t get piles of change 384

from the bank), because there are two negations, 385

the CoT text in Step 3 includes the sentence The 386

subordinate clause is also negated, so there is a po- 387

larity change at the top level, and the AMR at that 388

step actually (incorrectly) changes (:polarity -) 389

to (:polarity +). (See Appendix C.1 for details.) 390

4.3 Error analysis: Chain of Thought 391

Chain-of-Thought prompting can be taken to lend 392

some interpretability to LLMs. To that end, from 393

the AMR 2.0 test set, we randomly sampled 6 sen- 394

tences and did an error analysis of the top-down 395

and bottom-up CoT outputs of GPT-3.5. No output 396

was without mistakes; the 96 mistakes noted fall 397

into 10 broad categories (Table 3). To get an idea 398

of what this can look like, consider the bottom-up 399

parse of example (2) in Fig. 5. The gold and pre- 400

dicted AMRs are visualised in Fig. 6a. Steps in 401

bottom-up parses were largely unnumbered, so for 402

ease of exposition, steps are annotated (e.g. [a]). 403

(2) Does she even have a history of mental ill- 404

ness or a diagnosis? 405

Overall, we can see that the subgraphs generated 406

are not unreasonable, usually make it into the final 407

AMR, and relate at least somewhat to the CoT text. 408

This was true of every item sampled. Step [a] is 409

in fact good, with she correctly identified as the 410

subject and a correct AMR generated for it. All 411

samples started with a correct subject. 412

Step [b], however, is very bad. Not only does 413

even have nothing to do with this being a question, 414

but no interrogative marker is added (a Missing 415

Component error). Thus Step [b] has two CoT 416

errors: it doesn’t make sense, and the text does not 417

match the subgraph. Step [c] is good, only making 418

a PropBank sense error (have-01 vs -03). Note as 419

well that the subject is correctly made node s. In 420

Penman notation, only one instance of a node can 421

be labeled as in (s / she); any other mentions of 422

it should just be the node name, here s. No outputs 423

we sampled had double-labeled nodes. 424

In step [d] we see two common errors. First, 425
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[a] 1. This sentence has the following
components: "Does she": indicates that "she"
is the subject of the sentence.
(s / she)

[b] "even": indicates that the sentence is
asking a question.
(e / even)

[c] "have": is the main verb phrase of the
sentence, indicating that "she" has
something.
(h / have-01

:ARG0 s)
[d] "a history of mental illness": indicates

that "mental illness" is the object of the
verb "have".
(h2 / have-history

:ARG0 s
:ARG1 (m / mental-illness))

[e] "or a diagnosis": indicates that "diagnosis"
is an alternative to "mental illness".
(o / or

:op1 h2
:op2 (d / diagnosis))

[f] 2. The AMR is:
(e / even

:mod (h / have-01
:ARG0 s
:ARG1 (o / or

:op1 (h2 / have-history
:ARG0 s
:ARG1
(m / mental-illness))

:op2 (d / diagnosis))))

Figure 5: CoT bottom-up output for (2)

notice the node labeled mental-illness, which426

should be a complex subgraph with ill-01 and427

mental. We found this kind of "simplification"428

error 12 times. Node h2, labelled have-history,429

is another simplification error, and it is also a CoT430

error, because the CoT text refers to the verb have,431

but instead of using the existing node h, it adds a432

new node h2. Adding a new version of an existing433

node happened 4 times in the sample, and never434

was an existing node label updated to reflect the435

new step’s analysis.436

In step [e], diagnosis should be annotated as437

a PropBank predicate diagnose-01. "Predicate"438

errors like this occurred 6 times in the sample. Per-439

haps node h2 should be thought of as a history440

node; if so, the subgraph dominated by or is cor-441

rect; however, the CoT text here doesn’t match: it442

should mean op1 is node m, not node h2, as it refers443

to mental illness.444

In step [f], the subgraphs are put together. Note445

first that the subject (s / she) is missing. Such446

"Missing earlier component" errors occur 3 times447

in the sample. Conversely, the h2 daughter of448

have-03

she

ARG0

even

mod

or

ARG1

amr-unknown

polarity

diagnose-01

op2

history

op1

ARG1

ill-01

ARG1

consist

mental

ARG2

(a) Gold AMR

evenhave-01
mod

s

or

ARG1

diagnosis

op2

have-history

op1

mental-illness

ARG1

(b) Predicted AMR

Figure 6: AMRs for example (2)

(o / or) has correctly subsituted in the full sub- 449

graph dominated by h2. 450

The even node has incorrectly been made the 451

root. Its edge to h is close: the correct graph has a 452

mod edge from even to have-03. 453

5 Discussion 454

GPT performs poorly LLM performance is cor- 455

related with the amount of task-relevant data dur- 456

ing pre-training (Kandpal et al., 2023). Only a tiny 457

portion of pre-training data can be AMR-related, 458

yielding near-zero results in the zero-shot setting. 459

It is not clear why CoT hurts, with slightly worse 460

outcomes than even one-shot with the same exam- 461

ple. AMR reasoning/parsing is much more com- 462

plex and difficult than other CoT tasks such as 463

simple mathematical or commonsense reasoning, 464

and it needs more linguistic domain knowledge; 465

moreover, CoT reasoning for AMR parsing never 466

existed in literature or databases, so GPT cannot 467

have had any training data specific to this. 468

The zero-shot setting without post-processing 469

yields a Smatch F-score of only 6 (14 with post- 470

processing). The purest version of GPT as an out- 471
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Category BU TD Sum
CoT 10 9 19
PropBank sense 4 3 7
Simplification 8 4 12
Predicate 3 3 6
Missing component 8 7 15
Missing earlier component 3 0 3
Named Entity 4 3 7
Duplication 2 2 4
Whole AMR in step 1 0 2 2
Other 2 18 23
Total 46 50 96
Steps 31 21 52

Table 3: CoT Error classification over 6 sentences (GPT-
3.5; BU=bottom up, TD=top down).

of-the-box AMR parser is therefore right out. This472

is in contrast to, for instance, Python programming,473

where Poldrack et al. (2023) found that natural-474

language prompts for Python code were usable on475

the first try in 38% of cases. Parsing into Python476

code is arguably just as difficult a task as AMR477

parsing, so we might expect similar outcomes. A478

major difference is likely the training data. While479

the training data for GPT is not publicly available,480

we suspect it contains a large amount of Python481

code. AMR corpora are proprietary, but even if the482

whole AMR 3.0 dataset slipped into the training483

data, it only has 59,255 sentences. We predict that484

any other task that has little GPT training data and485

is complex and not a priori predicable would have486

similar performance issues.487

Fine-grained analysis reveals a large discrepancy488

between subtasks that are fairly simple and easy489

to predict, such as basic node labelling, and sub-490

tasks that are complex or AMR-specific, such as491

imperatives. Because language phenomena have492

a Zipfian distribution, it is impossible to create a493

single, short enough example that contains every494

phenomenon that can – or even is likely to – arise.495

Notice as well that even though GPT-4o in the CoT496

setting was given an explicit example of negation,497

its fine-grained Smatch Negation score is only 34,498

so a single example may not be enough.499

Better selection of the examples in the five-shot500

may help, since we only need to illustrate phe-501

nomena for one sentence at a time. However, the502

problem of identifying the phenomena to demon-503

strate, and finding the AMRs that exemplify them,504

is in itself a kind of parsing. A proof-of-concept505

experiment could use the gold AMR and measure506

graph similarity, but this would not be usable as an 507

AMR parsing method. 508

Interpretability of CoT AMR parsing Al- 509

though CoT uses a similar setup to one-shot, it 510

is not an extension of the 1-shot method. The out- 511

put graphs are not necessarily the same, and even 512

when they are, there is no way to know whether the 513

chain of thought is in any way related to how the 514

model built the graph in the one-shot case. 515

An advantage of CoT is that it to a certain extent 516

reflect how GPT derives an AMR in the CoT case, 517

since the subgraphs in the chain of reasoning are 518

usually in fact subgraphs of the final output. We can 519

often easily find errors through the CoT reasoning 520

process, which can make it easier to correct errors 521

by hand. 522

Prompt tuning – updating the prompt or its vec- 523

tor representation in response to a learning signal 524

– may improve the CoT outcome. While there is 525

no way to automatically evaluate the validity of 526

the relationship between a reasoning step and the 527

subgraph it describes, the quality of the subgraph 528

itself may work as a proxy for the quality of the 529

reasoning step. The difference between the sub- 530

graph and gold AMR could then be used as the loss 531

signal for prompt tuning. This method opens the 532

possibility to subsequently use LLM as a genera- 533

tive model for data augmentation, especially for 534

complex sentences. 535

6 Conclusion 536

We compared the capabilities of GPT models on 537

AMR parsing under various prompting strategies. 538

We found that GPT-3.5 and GPT-4o make poor 539

AMR parsers, with a maximum Smatch of 60. 540

Two CoT prompting methods for AMR pars- 541

ing (bottom-up and top-down) were introduced. 542

CoT prompting worsens performance over both 543

one-shot and five-shot methods, but arguably adds 544

some interpretability. 545

A detailed analysis revealed GPT’s limited abil- 546

ity to produce AMRs in alignment with structural 547

AMR guidelines. These guidelines specify precise 548

ways to annotate certain things, such as named enti- 549

ties, that can’t be predicted a priori. GPT struggles 550

to express many linguistic phenomena within the 551

AMR paradigm. 552

Limitations 553

CoT Prompt Length To easily adjust different 554

experiment settings and test different prompts and 555

8



model responses. The prompt design, initializa-556

tion, and tuning happened on the OpenAI official557

playground8. However, the playground has a 2048558

token constraint at the time of our experiments, so559

our prompt token lengths do not take advantage560

of the maximum limit for the API, at 4,096. We561

also kept our prompt lengths the same for GPT-4o562

as for GPT-3.5, but GPT-4o has the much longer563

token constraint of 128,000, so future experiments564

do have room to expand to longer prompts.565

CoT Prompt Design The prompting design of566

this paper is based on expert knowledge of AMR567

parsing. Not everything needed to generate an568

AMR is explicitly given in the prompt; for instance,569

most edge labels are never mentioned in the prompt.570

As mentioned in Smatch section, the LLMs are de-571

signed for general purposes, even if the pre-trained572

LLM has some AMR or semantic knowledge, it is573

still unknown whether it should be assumed that574

the LLM is already familiar with certain terms or575

knowledge.576

This affects the design process of the prompt. In577

our experimental design, we assumed that LLM578

could understand and handle those problems. In579

fact, LLM does perform well to a certain extent.580

But if using a CoT prompt that is more simple and581

informative, in other words, crafting CoT more like582

a "rookie" rather than an expert, the results still583

need to be tested.584

But this involves another issue, the limit on the585

number of tokens. A more detailed CoT prompt586

may have less space for generation, which can be587

solved by using a larger model.588

LLM models Due to limitations of data and589

model availability, our initial experiments, that ex-590

plored the largest space of possibilities, were all591

run on the AMR 2.0 test set, using GPT-3.5 models.592

We only had the resources to try out on GPT-4o the593

methods that worked best on GPT-3.5. The results594

across GPT versions are also therefore not com-595

pletely comparable, as there are some differences596

between the APR 2.0 and 3.0 test sets, including597

about 500 additional sentences. Our best GPT-3.5598

methods all used the text-davinci-003 model,599

which has now been deprecated.600

This experiment only focused on decoder-only601

architecture LLMs (GPT-3.5 family models and602

GPT-4o model). As for the performance of other603

LLM structures, such as encoder-only models and604

8https://platform.openai.com/playground/

decoder-encoder models, which still need testing. 605

English only We only experimented with English 606

AMR using GPT, which is trained mostly on En- 607

glish. 608

Ethics Statement 609

We believe this work does not involve any ethical 610

issues. 611
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A Appendix: Prompt Design Detail1002

A.1 Zero-shot Prompt1003

You are a computational linguist. Let's do some
semantic parsing.
Q: Please give me an Abstract Meaning
Representation (AMR) of '[Target Sentence]'.
A:

1004

A.2 Few-shot Prompt1005

A.2.1 1-shot Prompt1006

You are a computational linguist. Let's do some
semantic parsing.
Q: Please give me an Abstract Meaning
Representation (AMR) of "The poor kid didn't
receive the gift and the postcard that Dorothy
Gale sent him on May 25th.".
A:
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)
:ARG1-of (s / send-01

:ARG0 (p3 / person
:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)
Q: Please give me an Abstract Meaning
Representation (AMR) of '[Target Sentence]'.
A:

1007

A.2.2 Example 5-shot Prompt1008

You are a computational linguist. Let's do some
semantic parsing.
Q: Please give me an Abstract Meaning
Representation (AMR) of 'However, when it comes
to the soul and the physical being, in the
Church's eyes, the soul trumps the former.'.
A:
(c2 / contrast-01

:ARG2 (t / trump-01
:ARG0 (s2 / soul)
:ARG1 b
:ARG1-of (v / view-02

:ARG0 (o / organization
:wiki "Catholic_Church"
:name (n / name

:op1 "Church")))
:condition (c3 / come-12

:ARG1 (a / and
:op1 (s / soul)
:op2 (b / be-02

:mod
(p / physical))))))

Q: Please give me an Abstract Meaning
Representation (AMR) of 'Thanks for the article
and the background - I read both.'.1009

A:
(m / multi-sentence

:snt1 (t / thank-01
:ARG2 (a / and

:op1 (a2 / article)
:op2 (b / background)))

:snt2 (r / read-01
:ARG0 (i / i)
:ARG1 (b2 / both)))

Q: Please give me an Abstract Meaning
Representation (AMR) of 'International; weapons;
proliferation; dissent; politics.'.
A:
(a / and

:op1 (i / international)
:op2 (w / weapon)
:op3 (p / proliferation)
:op4 (d / dissent-01)
:op5 (p2 / politics))

Q: Please give me an Abstract Meaning
Representation (AMR) of 'Speakers addressed
opium production and trafficking in Afghanistan.'.
A:
(a / address-01

:ARG0 (p / person
:ARG0-of (s / speak-01))

:ARG1 (a2 / and
:op1 (p2 / produce-01

:ARG1 (o / opium))
:op2 (t / traffic-01)
:location (c / country

:wiki "Afghanistan"
:name (n / name :op1

"Afghanistan"))))

Q: Please give me an Abstract Meaning
Representation (AMR) of 'I'm sorry for the
swearing, i'm not one to usually swear, but the
CIA et al are a joke.'.
A:
(a2 / and

:op1 (s / sorry-01
:ARG1 (i / i)
:ARG2 (s2 / swear-02

:ARG0 i))
:op2 (s3 / swear-02 :polarity -

:ARG0 i
:mod (u / usual)
:concession-of (j / joke

:domain (a / and
:op1 (g /
government-organization
:wiki "Central
_Intelligence
_Agency"

:name (n / name
:op1 "CIA"))
:op2 (o / other)))))

Q: Please give me an Abstract Meaning
Representation (AMR) of 'well, where did it go
in the first place?'.
A:
(g / go-01

:ARG1 (i / it)
:ARG4 (a / amr-unknown)
:prep-in (p / place

:ord (o / ordinal-entity :value 1))) 1010
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Q: Please give me an Abstract Meaning
Representation (AMR) of '[Target Sentence]'.
A:

1011

A.3 Top-down CoT Prompt1012

You are a computational linguist. Let's do some
semantic parsing.
Q: Please give me an Abstract Meaning
Representation (AMR) of "The poor kid didn't
receive the gift and the postcard that Dorothy
Gale sent him on May 25th.".
A:
1. "didn't receive": This is the main verb
phrase of the sentence, indicating that "the
poor kid" did not receive something. "the gift
and the postcard" refers to the direct object
of the verb "receive", specifying what the poor
kid didn't receive.
(r / receive-01

:ARG0 (k / kid)
:ARG1 (a / and)
:polarity -)

2. "the poor kid" indicates that "kid" is poor.
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and)
:polarity -)

3. "the gift and the postcard" are the two
objects that the poor kid didn't receive.
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard))

:polarity -)

4. "that Dorothy Gale sent him on May 25th":
This relative clause modifies "the gift and the
postcard" which are sent by a person ("Dorothy
Gale") to the kid. The kid is the recipient of
"the gift and the postcard". Hence, there is a
reentrancy at node k. "sent him on May 25th":
The action "sent" happened on May 25th, which
is a date-entity. The ":month" is 5 and the
":date" is 25.
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)
:ARG1-of (s / send-01

:ARG0 (p3 / person)
:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)
5. "Dorothy Gale sent" indicates the person
who sent "the gift and the postcard" is named
"Dorothy Gale".
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)1013

:ARG1-of (s / send-01
:ARG0 (p3 / person

:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)

The AMR is:
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)
:ARG1-of (s / send-01

:ARG0 (p3 / person
:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)

Q: Please give me an Abstract Meaning
Representation (AMR) of '[Target Sentence]'.
A:

1014

A.4 Bottom-up CoT Prompt 1015

You are a computational linguist. Let's do some
semantic parsing.
Q: Please give me an Abstract Meaning
Representation (AMR) of "The poor kid didn't
receive the gift and the postcard that Dorothy
Gale sent him on May 25th.".
A:
1. This sentence has the following components:
"The poor kid": indicates that "kid" is poor.
(k / kid

:mod (p / poor))
"the gift and the postcard": "the gift" and
"the postcard" are in an "and" relationship.
(a / and

:op1 (g/ gift)
:op2 (p2 / postcard))

"Dorothy Gale": "Dorothy Gale" is the "name"
of a person.
(p3 / person

:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

"him": refers to the "The poor kid".
k
"on May 25th": is a date-entity. The ":month"
is 5 and the ":date" is 25.
(date-entity

:month 5
:day 25)

2. "didn't receive": This is the main verb
phrase of the sentence, indicating that "the
poor kid" did not receive something. "the gift 1016
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and the postcard" is the direct object of the
verb "receive" specifying what the poor kid
didn't receive.
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard))

:polarity -)
3. "that Dorothy Gale sent him on May 25th":
The action "sent" is performed by a person
named "Dorothy Gale" to the kid, and it
happened on May 25th. The kid is the recipient
of "the gift and the postcard". Hence, there is
a reentrancy at node k.
(s / send-01

:ARG0 (p3 / person
:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25))

4. "the gift and the postcard that Dorothy Gale
sent him on May 25th": "the gift and the
postcard" is the object of "sent". This is a
relative clause, so we make "sent" an "ARG1-of"
belonging to "and".
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)
:ARG1-of (s / send-01

:ARG0 (p3 / person
:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)
The AMR is:
(r / receive-01

:ARG0 (k / kid
:mod (p / poor))

:ARG1 (a / and
:op1 (g/ gift)
:op2 (p2 / postcard)
:ARG1-of (s / send-01

:ARG0 (p3 / person
:wiki "Dorothy_Gale"
:name (n / name

:op1 "Dorothy"
:op2 "Gale"))

:ARG1 k
:time (d / date-entity

:month 5
:date 25)))

:polarity -)
Q: Please give me an Abstract Meaning
Representation (AMR) of '[Target Sentence]'.
A:

1017
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B Appendix: Full Results1018

B.1 Fine-grained Smatch Results1019

Smatch sub-metrics Definition
Unlabeled (Unlab.) Smatch score after pruning the edge labels.
NoWSD Smatch score which ignores Propbank senses.
Concepts (Con.) F-score on the concept identification task.
Named Entity Recognition (NER.) F-score on the named entity recognition.
Negations (Neg.) F-score on the negation detection.
Wikification (Wiki.) F-score on the wikification.
Semantic Role Labeling (SRL.) Smatch score computed on :ARG-i roles only.
Reentrancy (Reen.) Smatch score on reentrant edges only.

Table 4: Fine-grained Smatch definition (Damonte et al., 2017)9

Model Smatch Unlab. NoWSD Con. NER. Neg. Wiki. Reen. SRL.

Baseline

Zero-shot
turbo-instruct 3 4 3 4 3 0 4 2 4
davinci 6 7 6 7 4 1 4 2 8

1-shot
turbo-instruct 28 34 28 33 27 3 19 17 29
davinci 32 39 33 36 34 9 40 21 33

5-shot random
turbo-instruct 34 41 35 43 35 3 38 19 35
davinci 37 44 38 43 40 8 48 21 35

5-shot similarity
turbo-instruct 33 39 34 39 41 7 39 20 32
davinci 37 43 38 42 51 10 48 23 35

CoT approach
CoT top-down

turbo-instruct 14 17 14 15 10 5 7 6 14
davinci 27 32 27 30 12 13 14 16 30

CoT bottom-up
turbo-instruct 12 15 12 13 15 7 11 4 12
davinci 24 29 25 28 19 14 16 14 24

Table 5: Fine-grained Smatch result of baseline and CoT approach (AMR 2.0, raw output)

Model Smatch Unlab. NoWSD Con. NER. Neg. Wiki. Reen. SRL.

Baseline

Zero-shot
turbo-instruct 5 7 6 7 5 0 1 3 7
davinci 14 18 14 16 10 1 8 8 18

1-shot
turbo-instruct 39 48 40 47 39 6 28 27 40
davinci 41 50 42 47 42 11 51 29 42

5-shot random
turbo-instruct 42 50 43 52 42 4 47 25 43
davinci 44 52 45 51 48 9 57 26 42

5-shot similarity
turbo-instruct 44 52 46 53 55 10 54 30 43
davinci 50 58 51 57 69 13 66 34 47

CoT approach
CoT top-down

turbo-instruct 34 44 34 37 23 11 17 22 36
davinci 36 45 37 41 17 14 22 25 40

CoT bottom-up
turbo-instruct 30 37 30 34 30 13 24 15 31
davinci 33 41 34 39 26 19 24 22 34

Table 6: Fine-grained Smatch result of baseline and CoT approach (AMR 2.0, post-processed)

Method Evaluation object Smatch Unlab. NoWSD Con. NER. Neg. Wiki. Reen. SRL.

5-shot similarity
well-formed AMR only 61 68 63 69 75 33 71 42 57

raw output 53 59 54 59 66 28 62 35 49
post-processed 60 67 61 67 73 32 69 41 56

CoT top-down
well-formed AMR only 58 66 59 65 72 37 29 38 55

raw output 43 48 44 47 55 27 19 26 39
post-processed 55 63 56 62 70 34 25 36 52

Table 7: Fine-grained Smatch result on the GPT-4o model (AMR 3.0)

B.2 GrAPES results1020

9https://github.com/mdtux89/amr-evaluation
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Set ID Dataset Metric 5-shot CoT AMRBart #
1 Pragmatic reentrancies

Pragmatic coreference (testset) Edge recall 08 [03, 22] 06 [02, 18] 39 [25, 55] 36
Prerequisites 19 [10, 35] 22 [12, 38] 61 [45, 75] 36

2 Unambiguous reentrancies
Syntactic (gap) reentrancies Edge recall 15 [07, 28] 27 [16, 42] 49 [34, 64] 41

Prerequisites 54 [39, 68] 39 [26, 54] 68 [53, 80] 41
Unambiguous coreference Edge recall 39 [24, 56] 23 [11, 40] 65 [47, 79] 31

Prerequisites 61 [44, 76] 52 [35, 68] 77 [60, 89] 31
4 Rare and unseen words

Rare node labels Label recall 61 [57, 64] 57 [53, 61] 69 [66, 73] 676
Unseen node labels Label recall 61 [52, 69] 56 [47, 65] 45 [37, 54] 117
Rare predicate senses (excl. -01) Label recall 21 [13, 34] 18 [10, 30] 45 [32, 58] 56

Prerequisites 82 [70, 90] 73 [60, 83] 91 [81, 96] 56
Rare edge labels (ARG2+) Edge recall 15 [07, 29] 12 [05, 26] 35 [22, 50] 40

Prerequisites 35 [22, 50] 35 [22, 50] 72 [57, 84] 40
5 Special entities

Seen names Recall 69 [67, 71] 71 [69, 73] 94 [93, 95] 1788
Unseen names Recall 70 [67, 73] 67 [64, 70] 76 [73, 79] 910
Seen dates Recall 68 [62, 73] 66 [59, 71] 94 [90, 96] 233
Unseen dates Recall 51 [45, 58] 56 [49, 63] 86 [81, 90] 204
Other seen entities Recall 88 [83, 91] 79 [73, 84] 97 [94, 99] 237
Other unseen entities Recall 88 [81, 93] 70 [61, 78] 78 [69, 85] 109

6 Entity classification and linking
Types of seen named entities Recall 59 [57, 62] 61 [58, 63] 92 [90, 93] 1628

Prerequisites 67 [64, 69] 69 [67, 71] 94 [93, 95] 1628
Types of unseen named entities Recall 39 [35, 43] 36 [32, 40] 51 [47, 55] 659

Prerequisites 60 [56, 64] 57 [53, 61] 70 [66, 73] 659
Seen and/or easy wiki links Recall 73 [71, 75] 19 [17, 21] 87 [85, 88] 2064
Hard unseen wiki links Recall 33 [28, 39] 05 [03, 08] 09 [06, 13] 277

7 Lexical disambiguation
Frequent predicate senses (incl. -01) Label recall 46 [43, 48] 39 [36, 41] 86 [84, 88] 1654

Prerequisites 78 [76, 80] 73 [70, 75] 94 [93, 95] 1654
Passives Edge recall 47 [37, 58] 28 [19, 38] 76 [66, 84] 83

Prerequisites 57 [46, 67] 39 [29, 49] 80 [70, 87] 83
Unaccusatives Edge recall 21 [12, 34] 27 [17, 41] 71 [57, 82] 48

Prerequisites 52 [38, 66] 48 [34, 62] 79 [66, 88] 48
9 Non-trivial word-to-node relations

Ellipsis Recall 12 [05, 27] 15 [07, 31] 55 [38, 70] 33
Prerequisites 58 [41, 73] 45 [30, 62] 94 [80, 98] 33

Multinode word meanings Recall 14 [07, 26] 04 [01, 13] 84 [71, 92] 50
Imperatives Recall 04 [01, 11] 00 [00, 05] 66 [55, 75] 76

Prerequisite 66 [55, 75] 59 [48, 70] 89 [81, 95] 76

Table 8: Results on all GrAPES categories extracted from the AMR 3.0 test set. Grey numbers in square brackets
are 95%-Wilson confidence intervals. Our 5-shot and CoT results are for GPT-4o with similarity sampling and
top-down methods respectively. AMRBart (Bai et al., 2022) is a competitive fine-tuned BART model.
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C Appendix: CoT Samples1021

C.1 Polarity Change Analysis1022

Figure 7 is the reasoning steps sampled from a1023

top-down CoT generated by turbo-instruct model.1024

The target sentence is in example (3).1025

(3) Do they not realise that you don’t get piles1026

of change from the bank..1027

In the earlier step, GPT added a (:polarity1028

-), because there is a "not" in the text. But in1029

the later step, GPT stated that there was another1030

negation, so it needed to switch the polarity. The1031

explanation seems sort of reasonable. This polarity1032

switching is not something AMR does, and was not1033

in the example CoT; GPT ‘learned’ this by itself.1034

However, here GPT is wrong anytway: the second1035

not negates get, so there should instead be a second1036

(:polarity -) in the AMR.1037

D Appendix: Parsability Analysis1038

Here we provide graphs illustrating the distribution1039

of unparsable raw results by sentence length. The1040

first two figures are the sentence length distribution1041

over the test sets.1042

1. This sentence has the following components:
"they": refers to a group of people.
(p / person

:quant 2)
"not realise": This is the main verb phrase of
the sentence, indicating that the group of
people do not realize something.
(r / realize-01

:ARG0 (p / person
:quant 2)

:polarity -)
"that": introduces a subordinate clause.
2. "you don't get piles of change": This is the
subordinate clause, indicating that "you" do not
receive a large amount of change.
(r2 / receive-01

:ARG0 you
:ARG1 (c / change

:quant (p2 / pile)))
"from the bank": specifies where the change is
not received from.
(f / from

:ARG0 c
:ARG1 (b / bank))

3. "Do they not realise that you don't get
piles of change from the bank.": The main verb
phrase is "realise", and the subordinate clause
is the object of "realise". The subordinate
clause is also negated, so there is a polarity
change at the top level.
(r / realize-01

:ARG0 (p / person
:quant 2)

:ARG1 (r2 / receive-01
:ARG0 you
:ARG1 (c / change

:quant (p2 / pile))
:ARG2 (f / from

:ARG0 c
:ARG1 (b / bank)))

:polarity +)
The AMR is:
(r / realize-01

:ARG0 (p / person
:quant 2)

:ARG1 (r2 / receive-01
:ARG0 you
:ARG1 (c / change

:quant (p2 / pile))
:ARG2 (f / from

:ARG0 c
:ARG1 (b / bank)))

:polarity +)

Golden:
(r / realize-01 :polarity - :mode interrogative

:ARG0 (t / they)
:ARG1 (g / get-01 :polarity -

:ARG0 (y / you)
:ARG1 (p / pile

:mod (c / change))
:ARG2 (b / bank)))

Figure 7: CoT sampling: polarity change in ex. (3)

18



Figure 8:
Distribution of Testset Sentence Length (AMR 2.0)

Figure 9:
Distribution of Testset Sentence Length (AMR 3.0)

Figure 10: Error Distribution of Zero-shot (AMR 2.0) Figure 11: Error Distribution of 1-shot (AMR 2.0)
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Figure 12: Error Distribution of 5-shot random sampling
(AMR 2.0)

Figure 13: Error Distribution of 5-shot similarity sam-
pling (AMR 2.0)

Figure 14: Error Distribution of CoT top-down (AMR
2.0)

Figure 15: Error Distribution of CoT bottom-up (AMR
2.0)
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Figure 16: Error Distribution of 5-shot similarity sam-
pling (AMR 3.0)

Figure 17: Error Distribution of CoT top-down (AMR
3.0)
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