
CREATOR: Tool Creation for Disentangling Abstract and Concrete
Reasoning of Large Language Models

Cheng Qian1, Chi Han2, Yi R. Fung2, Yujia Qin1, Zhiyuan Liu1∗, Heng Ji1∗
1Tsinghua University, 2University of Illinois at Urbana-Champaign

qianc20@mails.tsinghua.edu.cn

Abstract

Large Language Models (LLMs) have made
significant progress in utilizing tools, but their
ability is limited by API availability and the
instability of implicit reasoning, particularly
when both planning and execution are involved.
To overcome these limitations, we propose
CREATOR, a novel framework that enables
LLMs to create their own tools using documen-
tation and code realization. CREATOR disen-
tangles abstract tool creation and concrete de-
cision execution, resulting in improved perfor-
mance. We evaluate CREATOR on MATH and
TabMWP benchmarks, respectively consisting
of challenging math competition problems and
diverse tabular contents. Remarkably, CRE-
ATOR outperforms existing chain-of-thought,
program-of-thought, and tool-using baselines.
Additionally, we introduce the Creation Chal-
lenge dataset, featuring 2K diverse questions, to
emphasize the necessity and benefits of LLMs’
tool creation ability. Further research demon-
strates that leveraging LLMs as tool creators
facilitates knowledge transfer, and LLMs ex-
hibit varying levels of tool creation abilities, en-
abling them to adapt to diverse situations. The
tool creation ability revolutionizes the LLM’s
problem-solving paradigm, driving us closer to
the next frontier of artificial intelligence. All
the codes and data are released1.

1 Introduction

In recent years, notable progress has been made in
large language models (LLMs) like GPT-3 (Brown
et al., 2020), Codex (Chen et al., 2021), PaLM
(Chowdhery et al., 2022), LLaMA (Touvron et al.,
2023), ChatGPT (OpenAI, 2022), and the latest
GPT-4 (OpenAI, 2023). These models exhibit im-
pressive capabilities in in-context learning, code
generation, and various Natural Language Process-
ing (NLP) tasks (Feng et al., 2020; Dong et al.,

∗Corresponding author.
1https://github.com/qiancheng0/CREATOR

2022). However, there are still limitations to ad-
dress, such as the inability to handle up-to-date
information (Yu and Ji, 2023), provide accurate
mathematical results, or reason over long chains
of logic (Trivedi et al., 2022; Komeili et al., 2022;
Patel et al., 2021; Hendrycks et al., 2021; Lu et al.,
2022b).

To overcome these concerns, researchers have
explored equipping LLMs with external tools to
alleviate their memory burden and enhance their
expertise (Qin et al., 2023). For instance, integrat-
ing tools such as question-answering systems or
web search engines enables LLMs to learn how
and when to access external resources for problem-
solving (Nakano et al., 2021; Schick et al., 2023).
Recent studies have also incorporated additional
tools for LLMs, such as GitHub resources, neural
network models (e.g., Huggingface library), and
code interpreters (e.g., Python interpreter), aiming
to enhance their capabilities (Gupta and Kembhavi,
2022; Surís et al., 2023; Shen et al., 2023; Liang
et al., 2023; Lu et al., 2023). These tools require
LLMs to provide detailed plans before utilizing
them to solve complex problems.

However, tool-augmented LLMs still encounter
challenges (Chen et al., 2022; Gupta and Kemb-
havi, 2022; Schick et al., 2023; Surís et al., 2023),
particularly in the following aspects. (1) Limi-
tation in scope: Current approaches focus on a
limited number of tools, making it difficult to find
an appropriate existing tool for new problem types.
(2) Fragility in reasoning: Given that tasks are
often complex, reasoning on the fly case-by-case
can be fragile to random errors, while humans can
benefit from finding robust commonalities among
multiple similar questions. (3) Insufficiency in
error-handling: Current tool utilization pipelines
lack automatic and specific error handling, necessi-
tating improvements in accuracy and robustness to
ensure reliable execution results.

In this paper, we propose a novel approach to ad-

https://github.com/qiancheng0/CREATOR

Abstraction: Quadratic Equation Solving

Creation External API Platform

Search

Engine

Math

Solver

…

Decision

Concretization: Tool Calling 1. Use Math Solver to do query.

2. Apply Info Extractor to get the answer.

Selection:

WolframAlpha, Info Extractor

Execution

WolframAlpha Query:

Solve Eq {-5t^2 + 20t + 40 = 0}
Execute the program after

concatenating tools and their calls

Rectification

CREATOR (Ours) Tool-Use

Answer

-------------------- WolframAlpha Returns: -1.46, 5.46Output from Exec: The time is 5.46

Error → Rectify Creation / Decision

Success → Render Answer

def solve_quadratic(a, b, c):
...

ans = solve_quadratic(-5,20,40)
t = [x for x in ans if x > 0][0]
print("The time is", t)

Throwing a ball upward from a 40m tall building, its height relative to time is represented

by h(t) = -5t^2 + 20t + 40. When will it reach the ground?

Query

Figure 1: The difference between CREATOR and a gen-
eral tool-using framework.

dress these challenges. Rather than treating LLMs
as users of tools, we empower them to be cre-
ators of tools, enabling them to solve problems
with higher accuracy and flexibility. We introduce
our tool creation framework, CREATOR, which
leverages LLMs’ ability to create and modify tools
based on the problem at hand. Figure 1 illustrates
the differences between CREATOR and a general
tool-using framework. While the tool-using frame-
work focuses on reasoning to select and plan API
usage, our framework emphasizes diversifying tool
choices, disentangling abstract and concrete rea-
soning, and improving robustness and accuracy.
Specifically, CREATOR consists of four stages:
• Creation: Create generally applicable tools with

documentation and realization through abstract
reasoning based on the problem.

• Decision: With available tools, decide when and
how to use them to solve the problem.

• Execution: Execute the program, applying the
chosen tools to solve the problem.

• Rectification: Make modifications to tools and
decisions based on the execution result.

By introducing these four stages, we aim to bet-
ter inspire the LLM’s creativity and enhance the
paradigm’s robustness. This design sets CREATOR

apart from traditional tool-using and addresses the
three challenges we discussed respectively by (1)
leveraging LLMs to create tools with higher gen-
erality, reusability, and variety, rather than relying
on a limited number of given APIs; (2) offload-

ing the cognitive burden of LLMs and disentan-
gling their ability to perform abstract reasoning
(creation of generalizable tools) and concrete rea-
soning (decision-making with details); (3) utilizing
code as the medium for tool creation, which is
more sensitive to errors, and enabling automatic
rectification of tools and decisions based on error
tracebacks.

To evaluate our design’s effectiveness, we test
CREATOR on two existing benchmarks: MATH
(Hendrycks et al.) and TabMWP (Lu et al., 2022a),
as well as the Creation Challenge dataset we create.
The MATH dataset contains diverse and challeng-
ing math competition problems, while TabMWP in-
cludes a wide range of tabular contexts for problem-
solving. Notably, ChatGPT built on CREATOR

achieves remarkable average accuracies of 59.7%
and 94.7% on MATH and TabMWP respectively,
surpassing the standard chain-of-thought (CoT)
(Wei et al., 2022), program-of-thought (PoT) (Chen
et al., 2022), and tool-using baselines by significant
margins.

As existing benchmarks do not specifically evalu-
ate tool creation, we further introduce the Creation
Challenge dataset, which consists of novel and chal-
lenging problems that are inadequately solved us-
ing existing tools or code packages. This dataset
highlights the necessity and advantages of LLMs’
tool creation ability. In addition, we show exper-
imental results that provide evidence of how tool
creation plays a crucial role in promoting knowl-
edge transfer across similar queries that possess
common core knowledge but differ in specific sce-
narios. We also present case studies highlighting
the varying levels of tool creation ability observed
in LLMs, allowing them to better adapt to diverse
problem settings.

2 Related Work

Large Language Models. Large Language Mod-
els (LLMs) have gained attention for their im-
pressive performance in handling various NLP
tasks, following demonstrations and generating
high-quality texts and codes (Brown et al., 2020;
Chen et al., 2021; Chowdhery et al., 2022; Touvron
et al., 2023). Prompting methods such as chain-
of-thought (Wei et al., 2022), instruction-following
(Wang et al., 2022b; Longpre et al., 2023; Chung
et al., 2022; Touvron et al., 2023; Liu et al., 2023),
and verification mechanisms (Fung et al., 2023)
have been developed to guide LLMs in problem-

solving and align their behavior with human expec-
tations. Our work builds upon these areas, incorpo-
rating them into our framework and using them as
baselines for complex problem-solving.

Tool Use and Tool Creation. As an emerging
field within NLP, the active interaction of LLMs
with environments is facilitated through tools that
serve as the medium (Li et al., 2023). Recent stud-
ies address constraints of LLMs, such as the lim-
ited real-time responsiveness and inaccurate cal-
culations, by incorporating external tools (Trivedi
et al., 2022; Komeili et al., 2022; Patel et al., 2021;
Lu et al., 2022b). These studies augment LLMs
with tools like scratch pads, search engines, QA
systems, and calculators (Nye et al., 2021; Shuster
et al., 2022; Schick et al., 2023) to improve task
performance. More recent efforts integrate LLMs’
tool-using abilities into a pipeline for task planning,
tool calling, and result synthesis (Wu et al., 2023;
Shen et al., 2023; Liang et al., 2023). In contrast,
our work goes further by enabling LLMs to create
tools instead of relying solely on existing tools. As
our concurrent works, tool creation ability is also
investigated under LATM framework (Cai et al.,
2023) and LLM customization (Yuan et al., 2023).

Reasoning and Execution with Program. Rea-
soning with programs is an emerging field in NLP,
whose goal is to leverage codes to do complicated
computational reasoning instead of using natural
language thoughts. Chen et al. (2022) show that
code generation improves performance on math
datasets, while Gao et al. (2022); Wang et al.
(2022a) further demonstrate the potential of pro-
gram reasoning on symbolic and algorithmic bench-
marks. These efforts present a code-based chain-of-
thought with linear logic but produce no enhanced
tools capable of being reused or tested. As the con-
cept of tool-using emerges, recent studies begin to
incorporate code interpreters as external tools (Lu
et al., 2023; Mialon et al., 2023; Wang et al., 2023).
However, in CREATOR, we use code as the medium
for tool creation rather than an external tool. Our
framework also excels over PoT as we devise the
tool creation stage, code rectification stage, and
disentangle the logic in complex reasonings.

3 Design of CREATOR

Distinct from previous frameworks for tool-using,
CREATOR leverages the tool creation ability of
LLMs by incorporating four special stages: cre-

Method Create
Tools

Utilize
Tools

Apply
Codes

Emphasize
Reusability

Reasoning
Pattern

CoT - - - - Linear

PoT - - ✓ - Linear

Tool Use - ✓ ✓ - Linear

CREATOR ✓ ✓ ✓ ✓ Non-Linear

Table 1: A comprehensive comparison of CREATOR
with other methods.

ation, decision, execution, and rectification, as illus-
trated in Figure 2. The utilization of tool creation
for problem-solving is inherently straightforward
and aligns with LLMs’ innate ability, as illustrated
later in Section 5.2. In CREATOR, the main objec-
tive of design is to instinctively better inspire their
creativity, and facilitate more effective use of it.

Previous CoT and PoT methods mainly apply
linear reasoning to solve target problems, and their
task-solving process lacks reusability. However,
the tools created in CREATOR can be transferred to
solve other queries, and the rectification stage in-
corporated makes the reasoning process non-linear.
We present a comprehensive comparison between
CREATOR and other methods in Table 1.

3.1 Creation Stage

Implementation Details. In the creation stage
of CREATOR, we explicitly instruct LLMs with
demonstrative examples to create tools and doc-
umentation to solve the problem. The gen-
eral prompt text form is “###Instruction
[INSTRUCTION]\n [EXAMPLE 1]\n [EXAMPLE 2]
...”. Here the instruction text “[INSTRUCTION]”
describes the goal and format of the output. Each
demonstration “[EXAMPLE x]” follows format
“### Question [QST]\n ### Tool [TOOL]”. Each
[TOOL] contains documentation text as code com-
ments. A detailed example of prompt text is shown
in Figure 14.

To get these demonstrations, we make a fixed
set of demonstrations in advance and use them sub-
sequently for each task. In specific, we randomly
select a subset from the training set and prompt the
LLM with the text instruction for tool creation for
each query. We then correct the errors in these gen-
erations (if any) and remove verbose explanations
before using them. Although the demonstrations
are from the same task as the test queries, they
are not required to be semantically similar to test
queries, as the main purpose is only to inspire the

Rectification

If Error Occurs:

Execution

Tool: Code Format

Given the equations 3x+y=17, 5y+z=14 and

3x+5z=41, what is the value of the sum x+y+z ?

Query

Creation

Created Tool

solve_equations(equations)

Documentation

Solves a system of linear equations using numpy.linalg.solve;

Takes in a list of equations in the form of 2D arrays;

Returns a list of the solutions to the system.

Decision

Make Decisions about How to Apply the Tool

1. Use the tool to get the solution for equation system

2. Take the sum over the solutions to find the answer

Decision

solution = solve_equations(equations)

target = sum(solution)

EXEC

Traceback:

At line ….

(Error Reasons)

If Success:

Printed:

The result of

x + y + z is 12

-
-
-
-
-
-
-
-

Answer

The Answer for this Query is 12.

coef = []
const = []
for eq in equations:

coef.append(eq[:-1])
const.append(eq[-1])
sol = np.linalg.solve(coef, const)

def solve_equations(equations):
...

equations = [[3,1,0,17], [0,5,1,14],
[3,0,5,41]]
solution = solve_equations(equations)
target = np.sum(solution)
print("The sum of x + y + z is", target)

Realization

Decision: Code Format

Figure 2: Overview of our CREATOR framework with four stages: Creation, Decision, Execution, and Rectification.
With an LLM like ChatGPT, we successfully leverage its tool creation ability with code as the medium. In each
stage we apply instructions and demonstrations in prompts, shown in Figures 14 to 16 in Appendices.

LLM’s creativity and regulate its output format.

Ability of Abstract Reasoning. The core impor-
tance of the tool creation stage is to trigger LLM’s
ability to employ abstract thinking to alleviate the
burden of reasoning during later stages. When
LLMs create tools, they effectively use abstraction
to address a particular problem type, necessitating
a focus on the inherent characteristics of the prob-
lem rather than the specific numerical details. For
example, in Figure 2, the LLM concentrates solely
on recognizing the intrinsic nature of the problem
and creates a tool for solving a three-variable equa-
tion system, disregarding all the numerical details
and the specific expression being queried.

3.2 Decision Stage

Implementation Details. Similar to the creation
stage, we instruct LLMs with demonstrations to
decide how to use tools with the same prompt text
form. Each demonstration “[EXAMPLE x]” fol-
lows “### Question [QST]\n ### Tool [TOOL]\n
Solution [SOL]”, where [SOL] represents
the LLM’s decision tool calls in code format. We
also derive a fixed demonstration set the same way
as in the creation stage, only that the LLM is now
prompted to call the given tools instead of creat-
ing them, and to print out the final answer with
any important information through ”print(...)” in

codes. This [INSTRUCTION] applies both to get
demonstrations and to conduct test-time inference,
which ensures that the LLM’s answer can be eas-
ily extracted from printed outputs in subsequent
stages. A detailed prompt text example is shown in
Figure 15.

Ability of Concrete Reasoning. The decision
stage necessitates the LLM’s meticulous attention
to rules and details for problem-solving, which we
refer to as concrete reasoning. In Figure 2, the so-
lution obtained from the tool needs to be summed
for the final answer. This requires the LLM to un-
derstand the tool’s outputs and relate them to the
specific query to make an informed decision and
derive the correct answer finally. By separating
creation from the decision, CREATOR disentangles
two phases of the LLM’s abilities, which facili-
tates a smoother elicitation of different aspects of
knowledge and improves task performance.

3.3 Execution Stage

The execution stage takes the information from pre-
vious stages to execute the tool leveraging the code
interpreter. We do not apply the LLM in this stage,
and the created tools and the LLM’s decision are
concatenated into a cohesive code block for exe-
cution. The tool is encapsulated within a function
in the code block, and the LLM’s decision calls it

for problem-solving. During execution, we capture
any outputs printed (as we have instructed the LLM
in the decision stage) or errors encountered (by in-
tercepting error messages in a sub-process). These
information serve as inputs for subsequent stages
to determine whether an answer can be obtained or
rectifications are needed.

3.4 Rectification Stage
Implementation Details. During the rectifica-
tion stage, CREATOR has two different options
based on the information passed into it. If an
error occurs, then the LLM is prompted with
demonstrations to rectify the error. Applying a
similar prompt format as before, the format of
demonstrations “[EXAMPLE x]” now changes to
“### Question [QST]\n ### Original [ORI]\n
Error [ERR]\n ### Rectification [REC]”,
where we provide the original tool implementation
and calling decision in [ORI], offer the error trace-
backs [ERR], and concatenate natural language rea-
soning on the error with the rectified code in [REC].
A detailed illustration of the prompt text is shown
in Figure 16.

If the execution is successful, then the answer
will be extracted from the captured model’s output
and compared to the standard answer to measure
accuracy.

Significance. During the rectification process,
we provide the LLM with error tracebacks, which
offer crucial information for it to identify the er-
ror’s location and causes. Armed with this guid-
ance, the LLM can recover from previous mistakes,
adjust its reasoning process, and attempt to solve
the problem once again. Subsequent experiments
will demonstrate how the inclusion of rectification
significantly improves the performance of CRE-
ATOR. The success of the rectification stage also
showcases the LLM’s ability to recognize miscon-
ceptions and self-correct.

4 Experiments

To evaluate the effectiveness of CREATOR, we con-
duct experiments on two established benchmarks:
MATH (Hendrycks et al.) and TabMWP (Lu et al.,
2022a). Additionally, we perform experiments on a
newly introduced dataset, Creation Challenge, com-
prising 2K diverse questions that are inadequate to
solve using existing tools or code packages. This
enables us to further demonstrate the necessity and
advantages of the LLM’s tool creation ability.

4.1 Experimental Setup

Settings. We select ChatGPT as the base model
for all methods due to its exceptional capabilities
in code generation, decision-making, and logical
reasoning. Refer to Appendices A.1 for more
details. We evaluate CREATOR on two existing
datasets: TabMWP, which includes diverse table-
related problems, and MATH, consisting of chal-
lenging math competition problems. We apply
them as they are representative in terms of diversity
in data format and difficulty. We also assess the per-
formance of our framework on Creation Challenge,
comprising 2K data points, to explore the impact
of tool creation hints on the LLM’s performance.
Refer to Appendices A.2 for more details.

Baselines. We compare CREATOR against four
types of baselines to demonstrate its effectiveness:
• Vanilla LLM w/ and w/o CoT: The Vanilla

LLM with CoT employs linear reasoning to
solve problems, while Vanilla LLM without CoT
directly generates the answer.

• PoT: The LLM utilizes a program to reason
through the problem step by step. Besides,
we also incorporate rectification into PoT as a
stronger baseline for a fair comparison.

• Tool Use: The LLM utilizes the WolframAlpha
API as a general-purpose tool specialized in cal-
culations. It’s a fair external tool as all queries
require numerical reasoning to some extent.

• CREATOR-Entangled: The LLM combines the
creation and the decision stage in CREATOR in-
stead of disentangling them, which serves as a
special baseline for ablation study.

4.2 Creation Challenge

Existing benchmarks are not originally designed to
evaluate tool creation, thus unable to fully show-
case the necessity and advantages brought by the
LLM’s tool creation ability. Therefore, we intro-
duce Creation Challenge to test the LLM’s problem-
solving skills under new scenarios, without existing
tools or code packages that can be directly applied.
Refer to Appendices B.1 for details about the data
format and construction process.

Evaluation The components of the standard cre-
ated tool in each data point of Creation Challenge
can serve as valuable hints for the LLM’s tool
creation. Therefore, we extend our experiments
on Creation Challenge to assess the LLM’s tool

Method Setting Algebra Counting &
Probability Geometry Itmd.

Algebra
Number
Theory

Pre-
Algebra

Pre-
Calculus

Average
(weighted)

Vanilla w/o CoT 25.7 25.8 22.4 13.9 18.5 40.9 21.8 25.3
w/ CoT 50.9 36.1 24.5 17.5 23.2 58.6 16.7 37.9

PoT (w/o Rec.) w/o CoT 58.2 48.5 35.4 25.8 53.1 66.8 25.0 49.8
w/ CoT 54.0 47.8 32.5 22.3 48.9 64.5 19.9 46.5

PoT (w/ Rec.) w/o CoT 63.8 51.9 35.9 28.6 59.2 70.0 28.2 53.9
w/ CoT 61.4 48.8 34.6 23.7 54.5 67.6 34.6 51.2

Tool Use w/o CoT 47.3 35.1 27.0 20.5 30.8 56.8 31.4 39.0
w/ CoT 55.3 37.8 28.7 20.5 34.8 61.8 26.9 43.0

CREATOR
-Entangled

w/o Demo. 58.0 53.3 34.2 21.8 55.7 63.4 33.3 49.6
w/o CoT 64.1 55.7 35.9 42.7 61.6 69.0 37.2 57.2
w/ CoT 62.7 50.9 33.8 31.4 61.4 68.7 31.4 54.0

CREATOR
(ours)

w/o Demo. 66.6 53.6 33.8 29.4 59.8 68.7 34.6 54.9
w/o CoT 71.5 55.3 41.4 41.9 60.4 71.7 35.3 59.7
w/ CoT 63.1 58.1 34.6 35.0 61.8 69.7 32.1 55.7

Table 2: The accuracy (%) on the test set of MATH dataset leveraging ChatGPT. Rec. represents Rectification.

creation ability with varying levels of hint utiliza-
tion. We encourage future research to explore the
dataset’s potential through more flexible usage.

4.3 Experimental Results

We present the results on MATH, TabMWP, and
Creation Challenge respectively in Tables 2 to 4.
CREATOR achieves an accuracy of 59.7%, 94.7%,
and 75.5% respectively on three tasks, surpass-
ing all the best performance in baselines by large
margins. To illustrate CREATOR’s advantage, we
present a case study showing how it’s better than
Tool Use in Figure 3A. For all tasks, disentan-
gling the creation and decision stages generally
results in better performance, compared to CRE-
ATOR-Entangled. For Creation Challenge, we also
observe that hints of tool creation can raise the per-
formance up to 18.7%. We will further analyze the
reasons for this improvement in Section 4.4.

4.4 Results Analysis

CoT Incompatible with Codes. Table 2 shows
the LLM’s performance on MATH problems de-
creases consistently when applying CoT under PoT
method and CREATOR, and the opposite trend is
observed for TabMWP. We attribute this difference
to the inherent incompatibility between natural lan-
guage reasoning and program-based reasoning on
challenging problems. MATH problems involve
intricate calculations and diverse reasoning paths,
leading to conflicts between natural language and
programming approaches. When CoT is used, the
LLM tends to generate programs following natural
language reasoning, which compromises the coher-
ence and unique advantages of programming. In

Method Setting Accuracy Successful
Execution

Standard w/o CoT 68.2 99.1
w/ CoT 75.2 99.3

PoT (w/o Rec.) w/o CoT 80.6 98.5
w/ CoT 80.0 91.2

PoT (w/ Rec.) w/o CoT 81.2 99.7
w/ CoT 87.3 100

Tool Use w/o CoT 77.6 100
w/ CoT 79.6 100

CREATOR-Entangled w/o CoT 91.6 100
w/ CoT 93.5 99.9

CREATOR (ours) w/o CoT 90.5 99.7
w/ CoT 94.7 100

Table 3: The accuracy (%) on the test set of TabMWP
dataset leveraging ChatGPT. Successful Execution in-
dicates whether the LLM provides a valid final answer
through words or codes within the rectification limit.

Figure 3B. we show the adoption of brute-force
algorithms and straightforward calculations when
CoT is not applied yields higher accuracy.

In contrast, TabMWP involves simpler calcula-
tions and more straightforward reasoning paths,
promoting consistency between natural language
and programming reasoning. Therefore, the ap-
plication of CoT enhances performance in these
cases. We present more case studies to illustrate it
in Appendices C.1.

CREATOR is Robust to Challenges. Figure 4 il-
lustrates the performance of the LLM in relation to
difficulty. CREATOR outperforms all the baselines
for both tasks and achieves higher accuracy, partic-
ularly for difficult problems. This provides com-
pelling evidence that CREATOR exhibits greater
resilience to challenges.

Problem: In the nth row of Pascal's Triangle where the first row is n=0, the arithmetic mean of the elements is 51.2.

What is the value of n?
A

def pascals_mean(n):
Initialization
row_sum = 0
num_el = n + 1
Take loop and add sum
for k in range(num_el):

el = math.comb(n, k)
row_sum += el

Compute the mean
mean = row_sum / num_el
return mean

Initialization
target = 51.2
n = 0
Take loop until match
while True:

mean = pascals_mean(n)
if mean == target:

break
n += 1

Print the answer
print("The value is", n)

Creation: Decision

Answer: The value is 9

In Pascal‘s Triangle, the nth row has n+1 elements, and their sum is

2^n. The arithmetic mean is then $\frac{2^n}{n+1}$, which is 51.2

Multiplying both sides by $n+1$ and taking the logarithm:

$n\ln(2)+\ln(n+1)=\ln(51.2)+\ln(10)$

WOLFRAM CALL: solve n*log(2)+log(n+1)=log(512)

API Return: [{'@title': 'Result', 'subpod’: {'plaintext': 'n = (W(1024

log(2)) - log(2))/log(2)≈6.16003'}]

Final Answer: the value is approximately 6.16003, but since n

represents an integer, we round up to get n=7.

Problem: How many x between 0 and 100 exclusive satisfy both conditions? 1. x is a multiple of 4. 2. x is a multiple of 6.

w/o CoT: w CoT:

I can use the concept of LCM to solve

this problem. In the tool, I can use the

LCM of 4 and 6 to calculate the

number of integers between 0 and 100

that are multiples of both 4 and 6.

Answer: 8 Answer: 9

def count_multiples(a, b):
count = 0
for i in range(1, 101):

if i % a == 0 and i % b == 0:
count += 1

return count

def count_multiples(start, end, num):
return (end - 1) // num - \

(start - 1) // num
def count_x_values():

lcm = 12 # LCM of 4 and 6
return count_multiples(0, 100, lcm)

B

Figure 3: In subfigure A, we show an example in which Tool Use reasoning (left) fails, while CREATOR (right)
solves successfully as it derives a new tool for the novel question. In subfigure B, we present a case comparing
the answer given by CREATOR with and without CoT. Challenging problems in MATH cause conflicts between
language and program reasoning.

Method Setting Accuracy Successful
Execution

Standard w/o CoT 27.9 94.9
w/ CoT 32.7 99.1

PoT (w/o Rec.) w/o CoT 59.2 93.5
w/ CoT 60.7 95.7

PoT (w/ Rec.) w/o CoT 61.1 98.3
w/ CoT 62.0 98.9

CREATOR-Entangled
(w/o CoT)

no hint 64.5 99.2
utility hint 65.8 99.3

all hint 75.3 99.5

CREATOR (ours)
(w/o CoT)

no hint 63.8 98.7
utility hint 67.2 99.1

all hint 75.7 99.5

Table 4: The accuracy (%) on the Creation Challenge
test set leveraging ChatGPT. No hint represents normal
CREATOR framework. Utility hint provides hints about
the utility of the tool, while all hint offers additional
hints about the possible inputs and outputs of the tool.

Rectification Raises Performance. Figure 5
demonstrates the improvement in the LLM’s per-
formance achieved through the application of the
rectification stage. Results show rectification can
increase the accuracy by approximately 10% of
the original value, which proves the necessity and
rationality of establishing this stage.

Influential Factors of Tool Creation. Tables 2
to 4 highlight two crucial factors affecting the
LLM’s performance. (1) Separation of Creation
and Decision: The separation of these two stages
inherently represents the disentanglement of the
LLM’s abstract and concrete reasoning, which

MATH

TabMWP

CREATOR (best)

Figure 4: Comparison of the accuracy of baselines and
CREATOR w.r.t. problem difficulty.

leads to improved performance. (2) Availability
of Hints: In practical scenarios, guidance is often
necessary to harness the LLM’s behavior when cre-
ating tools. We demonstrate that providing more
detailed hints can significantly improve the LLM’s
performance, as they enable easier implementation
of desired tools and eliminate uncertainty and mis-
directions in CoT or tool documentation.

5 Further Analysis

In this section, we further show the advantages
brought by the LLM’s tool creation ability and use
case studies to demonstrate different aspects of this
ability, which enables them to tackle challenges

49.8
53.2 53.9

80.0

86.7 87.3

60.7 61.7 62.0

57.4 58.7 59.7

83.2

91.1
94.7

74.5 75.2 75.7

Increase

8.2%

Increase

2.1%

Increase

9.1%

Increase

4.0%

Increase

1.6%

Increase

13.8%

CREATOR Improvement

PoT Improvement

Figure 5: The improvement brought by rectification on
both PoT and CREATOR. Rectify-N denotes enabling N
rounds of rectifications.

Set of Queries, Count
Data Pieces, Count

100
300

Tool Create Normal, Acc.
Tool Create with Transfer, Acc.

Increase of Acc.

63.0%
78.3%
15.3%

Sets Worse with Transfer
Sets Better with Transfer

2 / 100
39 / 100

Table 5: Results of tool transfer experiment. Tool trans-
fer improves accuracy by up to 15.3%.

with more flexibility and less reasoning burden.

5.1 Facilitation of Knowledge Transfer

One of the main purposes of tool creation lies in its
reusability. The content of tools represents the ab-
straction of knowledge concepts, so the creation of
one tool may help solve problems of various scenar-
ios that share the same core concept. For instance,
a keyword-extraction tool created for sentiment
analysis can be applied to other tasks like docu-
ment categorization and topic modeling, as they
all require the identification and extraction of rel-
evant keywords for problem-solving. By utilizing
the knowledge and logic embedded in the tool, the
LLM can transfer its understanding to solve similar
problems efficiently with higher performance.

Settings. To validate our hypothesis, we con-
struct a small set of questions with 300 data
points, detailed in Appendices B.2. We divide data
points into 100 sets, where all three queries in one
set share the same core knowledge concept (key
methodology that is universally applicable) but dif-
fer in scenario (problem background and specific
details inquired).

Similar to previous experiments, we use Chat-
GPT as the base LLM with unchanged detailed
settings. We first test all the problems under the
normal CREATOR framework respectively. Then,
we test if the correct tool created under one sce-
nario could be applied to the other two, and again
test the LLM’s performance.

Results Analysis. The statistics are presented in
Table 5. Through the application of transferred
tools, the LLM’s accuracy can be raised by 15.3%.
Further analysis shows that 39 sets of queries are
positively influenced by this transfer, which high-
lights the tool creation ability of the LLM can
facilitate knowledge transfer, leading to better
performance on clusters of problems that share
similar core concepts.

5.2 Different Levels of LLM’s Tool Creation

We discover in experiments that LLM can create
tools in different levels without special guidance,
which affirms creativity is LLM’s intrinsic emerg-
ing ability. By inspecting the created tools, we
find that they can be categorized into three levels,
which provides guidance and reference for future
development.

1. Enhancement of Existing Tool. First, LLMs
demonstrate the capability to enhance existing tools
by encapsulating an existing tool or API and re-
purposing it to serve different needs. The first case
of Figure 9 shows how LLM wraps an existing
weather query API into a new tool that calculates
the average temperature.

2. Concatenation of Multiple Tools. Second,
the LLM can create new tools by organizing multi-
ple APIs into a pipeline, enabling it to fulfill spe-
cific purposes. The second case in Figure 9 shows
how the LLM calls two existing APIs three times
in the new tool for problem-solving.

3. Hierarchical Tool. Third, the LLM can create
tools with a clear hierarchy, which establishes clear
caller-callee relationships among tools and reduces
the burden of repetitive reasoning. The third case
in Figure 9 illustrates a hierarchical structure where
the first tool serves as the callee, while the second
tool primarily solves the problem.

6 Conclusion

We propose the concept of automatic tool creation
through LLMs and empirically devise CREATOR

that harnesses the capabilities of LLMs as tool cre-
ators. By disentangling LLM’s abstract and con-
crete reasoning, CREATOR enables clearer logic
and enhances overall performance. Through com-
prehensive evaluations on established benchmarks
and Creation Challenge, we demonstrate the supe-
riority and indispensability of CREATOR compared
to existing CoT, PoT, and tool-using approaches.
We anticipate our study will inspire the develop-
ment of more sophisticated AI systems leveraging
LLM’s tool creation potential.

Limitations

Our experiment is limited to two established bench-
marks, MATH and TabMWP, along with our newly
introduced dataset, Creation Challenge. However,
it is crucial for future research to expand the appli-
cation of our framework to encompass a broader
array of tasks. This will enable a comprehensive
assessment of the generalizability of our results,
going beyond the scope of our current investiga-
tion.

Furthermore, our demonstration of the LLM’s
potential in tool creation is limited in scope. For
instance, the current LLM is also capable of creat-
ing tools even to build a full project pipeline, but
the execution ability and correctness of its creation
still lack proper evaluations and remain question-
able. It is incumbent upon future research to delve
deeper into the boundaries of LLM’s capabilities
and establish clear limits regarding its tool creation
potential.

Ethics Statement

We consider the following research issues in this
paper:
• Privacy involves safeguarding sensitive informa-

tion and preventing its unauthorized disclosure.
With respect to our framework, privacy becomes
a concern when certain stages require demon-
stration examples and clear instructions, which
may inadvertently contain sensitive information,
or intentionally designed to prompt the LLM to
leak privacy. Thus, it is crucial to ensure that per-
sonal or sensitive information is not disclosed
to the closed-source LLM, and the private infor-
mation or knowledge about tool creation in the
closed-source LLM should be well-protected.

• Fairness in AI aims to ensure the outputs and
decisions made by AI systems do not perpet-
uate existing biases or discriminations. When

creating tools, care must be taken to mitigate
biases in the demonstrations and instructions,
monitor the tool’s performance across stages,
and address any disparities that may arise in the
whole generation or rectification process.

• Transparency involves making AI systems and
their processes understandable and interpretable.
When the language model creates tools un-
der our framework, it’s essential to have trans-
parency regarding how those tools are devel-
oped. Developers should document any biases
or limitations associated with the tools created,
understand the strengths and weaknesses of the
tools and how the decision is reached, and make
informed decisions about their application.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Yi R. Fung, Tuhin Chakraborty, Hao Guo, Owen Ram-
bow, Smaranda Muresan, and Heng Ji. 2023. Norm-
sage: Multi-lingual multi-cultural norm discovery
from conversations on-the-fly. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training. arXiv preprint arXiv:2211.11559.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem
solving with the math dataset. Sort, 2(4):0–6.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8460–8478.

Sha Li, Chi Han, Pengfei Yu, Carl Edwards, Manling Li,
Xingyao Wang, Yi Fung, Charles Yu, Joel Tetreault,
Eduard Hovy, and Heng Ji. 2023. Defining a new
nlp playground. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing Findings.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. arXiv preprint
arXiv:2304.08485.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022a. Dynamic prompt learn-
ing via policy gradient for semi-structured mathemat-
ical reasoning. arXiv preprint arXiv:2209.14610.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022b. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

OpenAI. 2022. Chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.
Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. arXiv
preprint arXiv:2208.03188.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Xingyao Wang, Sha Li, and Heng Ji. 2022a.
Code4structure: Code generation for few-shot struc-
ture prediction from natural language. In arxiv.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and
Heng Ji. 2023. Learning to generate from textual
interactions. In arxiv.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022b. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085–5109.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-
aodong Wang, Zecheng Tang, and Nan Duan.
2023. Visual chatgpt: Talking, drawing and edit-
ing with visual foundation models. arXiv preprint
arXiv:2303.04671.

Pengfei Yu and Heng Ji. 2023. Self information up-
date for large language models through mitigating
exposure bias. In arxiv.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets.

http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428

Appendices

A Details about Experiment

A.1 Model Details.

We employ GPT-turbo-3.5 as the base model for all
our experiments. The maximum generation length
for all experiments is set to 512, and a tempera-
ture of 0.3 is chosen to encourage deterministic
generations while maintaining a certain degree of
diversity, particularly during the creation of tools.

A.2 Dataset Details.

For both the MATH and TabMWP datasets, we
evaluate questions that have numerical value an-
swers (e.g. integers or decimals). This is due to
the complicated format matching problems (e.g.
matching of matrices as answers) that may cause
bias. The tested questions cover approximately
80% of all and maintain high diversity, making
our results still representative. We are planning
to update our results on all MATH questions ap-
plying post-processing soon 2, but some matching
problems are still hard to solve.

The MATH dataset consists of seven math com-
petition problem domains, namely algebra, count-
ing and probability, geometry, intermediate algebra,
number theory, pre-algebra, and pre-calculus. Each
domain is evaluated separately, and the final metric
is computed as the weighted average score. The
TabMWP dataset includes a wide range of table
information and problems of different difficulty
levels, spanning from grade one to grade eight.

B Details about New Datasets

B.1 Creation Challenge Details

We begin by constructing a seed dataset that in-
volves novel settings and unconventional reason-
ing processes. Subsequently, we utilize the Text-
Davinci-003 model to expand the dataset in an iter-
ative manner. By random sampling from the seed
data, we encourage the variety and novelty in the
problems and their reasonings.

Figure 6 illustrates a sample query and its corre-
sponding solution. Each data entry comprises the
problem statement, a standard created tool that can
be utilized (including utility, input, output, and real-
ization), a tool-calling decision, and a final answer.

2https://github.com/openai/prm800k/blob/main/
prm800k/grading/grader.py

1 2 3 4 5 6 7 8 9 10

5 12 23 42 75 122 187 272 379 510

def polynomial5(x, y, predict_day):
coefficients = np.polyfit(x, y, 5)
terms = [coefficients[i] * predict_day ** (5 - i)

for i in range(6)]
predict = sum(terms)
return predict

x = np.array([1,2,3,4,5,6,7,8,9,10])
y = np.array([5,12,23,42,75,122,187,272,379,510])
Fit the data and do prediction
predict = polynomial5(x, y, 11)

Problem

Suppose you are a scientist studying the spread of a virus. You have

collected data on the number of new cases reported each day over a 10-day

period. You suspect that the number of cases might be modeled by a

polynomial function of degree 5. You want to fit a polynomial function to

the data using the method of least squares and predict the number of new

cases on the 11th day.

Solution – Sample Tool

Solution – Sample Decision

Figure 6: An example query and its solution provided
in the Creation Challenge dataset.

B.2 Tool Transfer Dataset Details

We create 300 data points in total and divide them
into sets of three. Each set of three queries contains
three corresponding answers, one standard tool that
could be applied in all three scenarios to solve the
problem, and three decisions about how to use the
tool respectively. Similar to the construction of
Creation Challenge, we manually write the seed
data, which includes five sets of queries used as
examples to show the format of each data point,
sample demonstration examples from these seeds,
and leverage the Text-Davinci-003 to create more
data iteratively.

We present a sample set from the tool transfer
dataset we curate in Figure 7. In the set, three
different scenarios are provided, with each one con-
sisting of a query, a sample decision, and an answer
(not listed). Though the scenarios seem unrelated,
they share the same core knowledge which can be
transferred. In this case, the core knowledge is the
calculation of profit. We also provide an example
tool that can be applied to all these three scenarios
with a corresponding introduction. Note that each
set we define actually represents three data points.

C More about Experimental Findings

C.1 CoT Incompatible with Code

In this section, we will provide more cases to
further illustrate our arguments made in Sec-
tion 4.4 about the conflicts between natural lan-
guage thoughts and program thoughts. We con-

https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py
https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py

Scenario 1: Pricing Strategy

- Query

A company produces a product that has a fixed cost of $20,000, a variable

cost of $10 per unit, and a demand of 10,000 units. The company wants to

maximize profit and is considering two pricing strategies. The first strategy

is to sell the product at $30 per unit, and the second strategy is to sell the

product at $35 per unit. What is the optimal pricing strategy for the

company?

- Sample Decision

def calculate_optimal_units(selling_price, variable_cost,
fixed_cost, demand):
Calculate the profit for each quantity
profits = []
for quantity in range(1, demand+1):

profit = (selling_price * quantity) – (variable_cost *
quantity) - fixed_cost

profits.append(profit)
Find the quantity that maximizes profit
optimal_quantity = profits.index(max(profits)) + 1
Return the optimal quantity
return optimal_quantity

fixed_cost = 20000
variable_cost = 10
demand = 10000
Strategy 1: Selling the product at $30 per unit
selling_price_1 = 30
optimal_quantity_1 = calculate_optimal_units(selling_price_1,
variable_cost, fixed_cost, demand)
profit_1 = (selling_price_1 * optimal_quantity_1) -
(variable_cost * optimal_quantity_1) - fixed_cost
Strategy 2: Selling the product at $35 per unit
selling_price_2 = 35
...
Determine the optimal pricing strategy
if profit_1 > profit_2:

...

Sample Tool (Common For 3 Scenarios)

The tool is used to calculate the optimal number of units to produce to

maximize profit for a manufacturing company. It takes into account the

fixed costs, variable costs, selling price, and demand for the product. The

function uses the formula Profit = (Selling Price * Quantity) - (Variable

Cost * Quantity) - Fixed Cost to calculate the profit and returns the optimal

quantity to produce.

Scenario 2: Production Planning

- Query

A manufacturing company produces a product that has a fixed cost of

$10,000, a variable cost of $5 per unit, and a selling price of $20 per unit.

The company can sell up to 5,000 units of the product at this price. What is

the optimal number of units to produce to maximize profit?

- Sample Decision

…

Scenario 3: Capacity Planning

- Query

A company produces a product that has a fixed cost of $50,000, a variable

cost of $15 per unit, and a selling price of $25 per unit. The company has a

production capacity of 10,000 units. What is the optimal number of units to

produce to maximize profit?

- Sample Decision

…

Figure 7: An example data point in tool transfer dataset.
We provide three scenarios sharing the core knowledge
and a sample tool that all three scenarios can utilize.

trast two additional cases sourced respectively from
MATH and TabMWP in Figure 8.

In the case of MATH, the ambiguity of "string
manipulation" mentioned in natural language
thoughts leads the model to create the tool that
finds the hundredth digit in a hard-coding manner,
while pure code generation in creating tools can
avoid this problem.

Conversely, for TabMWP, CoT helps tool cre-
ation by avoiding unnecessary complexities in sim-

ple problem-solving. In the second case, the natural
language thoughts indicate clearly that only simple
multiplication should be done, while pure code gen-
eration is trapped in a complex and chaotic logic
that is prone to error.

These two cases further validate the conflicts
between natural language thoughts and program
thoughts, especially for challenging problems
which may possess multiple reasoning paths that
differ in suitability for code and natural language.

C.2 Different Levels of Tool Creation

We present in this section more details about the
different levels of tool creation mentioned in Sec-
tion 5.2. We present three cases in Figure 9.

The enhancement of existing tools in tool cre-
ation is presented in the first case. After the query,
the LLM is given an existing API that could be
called for a fixed purpose. This mimics the scenario
in the real world where an API document is given
to let one fulfill a particular purpose. At this level,
the LLM learns how to create tools first by com-
prehensively understanding the existing tool and
then transferring this knowledge to a new problem
scenario. In this case, the LLM learns how temper-
ature should be averaged across several days, and
subsequently creates a tool that solves the problem.

The concatenation of multiple tools in tool cre-
ation is presented in the second case. In this case,
the LLM is given several tools to solve the problem,
but the usage of each tool is rather simple to fol-
low. This level of tool creation requires the LLM to
plan the use of tools in a logical way and organize
them with clear logic. Instead of how to call tools
to serve a different purpose, this level also illus-
trates the LLM’s excellent ability in implementing
a pipeline to solve specific queries through tool
creation.

The hierarchy of tool creation is presented in
the third case. This not only is the most common
phenomenon that we observe in the experiment
but also represents the most advanced aspect of
the LLM’s reasoning potential. By creating tools
with a clear hierarchy, the LLM is successful in
offloading more reasoning burdens and thus solving
the problem with higher accuracy. In this case,
is_prime represents only a "sub-tool", while the
main tool solves the problem with more ease by
calling it to help count the valid numbers.

Overall, the presented case studies provide valu-
able insights into the tool creation abilities of

Problem: What is the digit in the hundredths place of the decimal equivalent of 9/160?

w/o CoT: w CoT:

I can use division to solve this

problem. I should create a tool that

could calculate the decimal

equivalent of a fraction and use

string manipulation to extract the

digit in the hundredths place.Answer: 5 Answer: 6

Problem: Each drawer in the dresser has 10 blouses. How many blouses are in 4 drawers?

Table: Number of drawers | Number of blouses: 1 | 10; 2 | 20; 3 | 30; 4 | ?

w/o CoT: w CoT:

To solve the problem of finding

out how many blouses are in 4

drawers, we need to first

calculate the number of blouses

in one drawer, which is 10. In the

tool, we should multiply that by

the target number of drawers.

Answer: 160

Answer: 40

def decimal_digit(n, d, place):
decimal = n / d
digit = int(decimal*10**place) \

% 10
return digit

def hundredths_place(n, d):
calculate the real value
decimal = n / d
hundredths = str(decimal)[4]
return int(hundredths)

def count_blouses(df, num_drawer):
get the target row
drawer_row = df[df['Number \

of drawers'] == num_drawer]
get the blouses for that row
num_blouse = drawer_row['Number \

of blouses'].values[0]
calculate the total number
total = num_blouse * num_drawer
return total

def calculate_blouses(num_drawer):
given the blouses in one drawer
blouses_per_drawer = 10
multiply with number of drawers
total_blouses = blouses_per_drawer \

* num_drawer
return total_blouses

MATH

TabMWP

Figure 8: We present two more cases to illustrate the conflicts between program thoughts and natural language
thoughts.

Tool Creation:

Enhancement of Existing Tool

def average_temperature(city, N):
calculate average temperature in next N days
total_temperature = 0
for i in range(N):

call the tool for N times
weather_data = ForecastWeather(city, i)
temperature = weather_data['temperature']
total_temperature += temperature

return total_temperature / N

Problem: What’s the average temperature of ShangHai in

the next seven days?

Input: You have access to the following tool

ForecastWeather(city:str, N:int) → dict

The tool will return the “UV index”(float) and “temperature”

(float) in the given city after N days.

Tool Creation:

Concatenation of Multiple Tools

def annulus_with_same_area(R, r):
calculate the area of two circles
area1 = CalculateArea(R)
area2 = CalculateArea(r)
calculate the area of annulus
annulus = abs(area1 - area2)
return CalculateR(annulus)

Problem: What is the radii of a circle with same area as the

annulus formed by two concentric circles with radii R and r?

Input: R = 10 and r = 5. You are given two APIs:

CalculateArea(r: float) → float

CalculateR(area: float) → float

Two APIs calculate the area and radii of a circle respectively.

Tool Creation:

Tool Creation:

Hierarchy of Tool Creation if n % i == 0:
return False

return True

def count_targets(N):
count = 0
for i in range(1, N+1):

for j in range(5, i+1):
if i % j == 0 and is_prime(j):

count += 1
break

return count

Problem: How many positive integers less than or

equal to N have a prime factor that is greater than 4?

Input: N = 100.

Tool Creation:

def is_prime(n):
determines if a number is prime.
if n <= 1:

return False
for i in range(2, int(n**0.5)+1):

Figure 9: We present three cases to illustrate the idea of the LLM’s tool creation from different levels.

LLMs. However, it is important to acknowledge
that these studies offer only a glimpse into the vast
potential of LLMs in this domain. We encourage
future research to explore and harness the full ex-

tent of LLMs’ tool creation capabilities, further
pushing the boundaries of what can be achieved.

D Prompting Details

All the methods we present in our main experi-
ments need prompting to formalize the LLM’s re-
sponse and better inspire its ability.

Prompting of CREATOR. We present in Fig-
ures 14 to 16 the general prompting format and the
formats of demonstrative examples, as detailed in
details in 3. For the creation stage, decision stage,
and rectification stage, we apply demonstration ex-
amples to enhance the LLM’s abstract and concrete
reasoning ability, while the execution stage intrin-
sically is unrelated to the LLM. We present one
demonstrative example about a query in MATH,
but other tasks including TabMWP and Creation
Challenge also follow this prompting format.

Prompting of Baselines. Besides CREATOR, we
also apply demonstrative examples in prompting
the ChatGPT’s CoT, PoT, Tool Use abilities respec-
tively, presented in Figures 10 to 13. Similar to
the prompting of CREATOR, these prompt formats
apply to all tasks in the main experiments, includ-
ing evaluation on MATH, TabMWP, and Creation
Challenge.

Specifically, We separate Tool Use into two parts,
the first one aiming to inspire the LLM’s ability to
call WolframAlpha properly, and the second one
aiming to prompt the LLM to retrieve the final
answer. For CREATOR setting, the prompts are
separated according to different stages. Note that
the execution stage does not need prompting.

Instruction

You are given a math question.

You should think step by step to solve the problem.

Please put your final numerical answer after “Final Answer:”

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Thoughts and Answer

Let the y-coordinate of point P be denoted by y. Since P lies on the

line $x=-3$, we know that the coordinates of P are $(-3,y)$.

Since P is 10 units from the point $(5,2)$, we can use the distance

formula to write an equation:

$\sqrt{(-3-5)^2+(y-2)^2}=10$

Simplifying the equation gives us:

$(y-2)^2+64=100$

$(y-2)^2=36$

$y-2=\pm6$

$y=8$ or $y=-4$

Therefore, the possible y-coordinates that satisfy the given conditions are

8 and -4.

The product of these values is $8 \times (-4) = -32$.

Final Answer: -32

Question

{Demonstration Question}

Thoughts and Answer

{Demonstration Thoughts and Answer}

…

Question

{Target Question}

Thoughts and Answer

…

(Expecting “Final Answer” in the last line)

Figure 10: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the CoT
setting.

Instruction

You are given a math question.

You should generate a piece of python code to solve the problem.

Please show your thoughts in python codes.

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Solution Code

Question

{Demonstration Question}

Solution Code

{Demonstration Code}

…

Question

{Target Question}

Thoughts and Answer

…

import math
initilize the coordinates
x1 = -3
x2 = 5
y = 2
initialize the distance
d = 10
calculate 2 y-coordinates using the Pythagorean Theorem
y_possible1 = y + math.sqrt(d**2 - (x2 - x1)**2)
y_possible2 = y - math.sqrt(d**2 - (x2 - x1)**2)
calculate the product
product = y_possible1 * y_possible2
print("The product of all possible y-coordinates is", product)

Figure 11: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the PoT
setting.

Instruction

You are given a math question.

You could call WolframAlpha API to help you solve the question.

After seeing a question, you should first generate thoughts and think about

how to call the API.

Generate "WOLFRAM:" in the last line of your response with appropriate

inputs you'd like to inquiry.

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Response

Let the y-coordinate of point P be denoted by y.

Since P lies on the line $x=-3$, we know that the coordinates of P are

$(-3,y)$.

Since P is 10 units from the point $(5,2)$, we can use the distance

formula to write an equation:

$\sqrt{(-3-5)^2+(y-2)^2}=10$

We can call wolframalpha to solve this equation

WOLFRAM: solve sqrt((-3-5)^2+(y-2)^2)=10

Question

{Demonstration Question}

Response

{Demonstration Response}

…

Question

{Target Question}

Response

…

(Expecting “WOLFRAM” in the last line)

Figure 12: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the Tool
Use setting. This figure shows the first part about Wol-
framAlpha inquiry.

Instruction

You are given a math question.

You have just called WalframAlpha API to help you solve the question.

Please continue to generate your final numerical answer with the return

from WalframAlpha API as reference.

If There is an error return from the API, you could continue you thought

step by step and give your final answer.

Generate "Final Answer:" in the last line of with your final numerical

answer.

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Response

Let the y-coordinate of point P be denoted by y.

Since P lies on the line $x=-3$, we know that the coordinates of P are

$(-3,y)$.

Since P is 10 units from the point $(5,2)$, we can use the distance

formula to write an equation:

$\sqrt{(-3-5)^2+(y-2)^2}=10$

We can call wolframalpha to solve this equation

WOLFRAM: solve sqrt((-3-5)^2+(y-2)^2)=10

WolframAlpha Return

[{'@title': 'Input interpretation', 'subpod': {'@title': '', 'plaintext': 'solve

sqrt((-3 - 5)^2 + (y - 2)^2) = 10'}}, {'@title': 'Results', '@primary': 'true',

'subpod': [{'@title': '', 'plaintext': 'y = -4'}, {'@title': '', 'plaintext': 'y = 8'}], ...]

Response Continue

From the WolframAlpha return, we see that there are two possible values for

y, namely $y=-4$ and $y=8$. Therefore, the product of all possible y-

coordinates is $-4 \cdot 8 = -32$.

Final Answer: -32

Question

{Demonstration Question}

Response

{Demonstration Response Same with the First Part}

WolframAlpha Return

{Demonstration Return Dictionary from WolframAlpha API}

Response Continue

{Demonstration of Final Answer Extraction}

…

Question

{Target Question}

Response

{LLM Response exactly in the First Part}

WolframAlpha Return

{WolframAlpha Return from the First Part}

Response Continue

…

(Expecting “Final Answer” in the last line)

Figure 13: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the Tool
Use setting. This figure shows the second part about
answer retrieving.

Instruction

You are asked to design python tools to help solve a question.

You can use math, scipy, numpy, sympy,... or other packages if necessary.

You should specify the parameters and returns of your tool and your tool’s

utility in the documentation.

You could create more than one tool if you think they may all help solve the

problem.

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Tools

Question

{Demonstration Question}

Tools

{Demonstration Tools Created}

…

Question

{Target Question}

Tools

…

(Expecting Python Code Block)

def distance_formula(x1, y1, x2, y2):
"""
Calculates the distance between (x1, y1) and (x2, y2).
"""
return ((x2-x1)**2 + (y2-y1)**2)**0.5

def possible_ys(x, dist, center):
"""
Returns a list of all possible y-coordinates of a point that
is a distance of `dist` away from `center` and lies on the
line x = `x`.
"""
y_diff = dist**2 - (center[0]-x)**2
if y_diff < 0:

return []
elif y_diff == 0:

return [center[1]]
else:

return [center[1] + y_diff**0.5, center[1] - y_diff**0.5]

Figure 14: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the CRE-
ATOR setting. This figure shows the prompts applied in
the Creation stage.

Instruction

You are given a math question, and the related tools that may help you solve

the question.

Now you need to write python code to call the tool to solve the problem.

Read carefully about the tool's parameters, returns and how to use the tool.

Please print out your answer and any information you think it’s important.

Question

Point P lies on the line $x= -3$ and is 10 units from the point $(5,2)$.

Find the product of all possible y-coordinates that satisfy the given

conditions.

Tool

Solution

Question

{Demonstration Question}

Tool

{Demonstration of Tools Created in Creation Stage}

Solution

{Demonstration Solution Code to Print the Answer}

…

Question

{Target Question}

Tool

{The Tools Generated in Creation Stage}

Solution

…

(Expecting Python Code Block)

def distance_formula(x1, y1, x2, y2):
"""
Calculates the distance between (x1, y1) and (x2, y2).
"""
return ((x2-x1)**2 + (y2-y1)**2)**0.5

def possible_ys(x, dist, center):
"""
Returns a list of all possible y-coordinates of a point that
is a distance of `dist` away from `center` and lies on the
line x = `x`.
"""
y_diff = dist**2 - (center[0]-x)**2
if y_diff < 0:

return []
elif y_diff == 0:

return [center[1]]
else:

return [center[1] + y_diff**0.5, center[1] - y_diff**0.5]

Given point, distance and center
x = -3
distance = 10
center = (5,2)
Call the function which will return a list of y coordinates
ys = possible_ys(x=x, dist=distance, center=center)

Calculate product of all possible y-coordinates
product = 1
Check for the other possible y-coordinate
for y in ys:

product *= y

Print the answer
print("The product of all possible y-coordinates is", product)

Figure 15: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the CRE-
ATOR setting. This figure shows the prompts applied in
the Decision stage.

Instruction

Your original codes have met some errors when executing, please rectify

your codes.

You should generate the whole new piece of code (including the tools and

the decision call), instead of generating a snippet.

Wrap your code in ```python\n ... \n``` to make it a one whole code block.

Pay attention to the conditions in question before modifying.

Your goal is answer the question correctly instead of just execute the code

successfully.

If necessary, you can also generate a whole new tool, changing your way of

thinking to solve the problem.

Question

Please calculate the square root of a and b to get c, where a = 4 and b = 9.

Original

Error

Traceback (most recent call last):

File "test_code.py", line 9, in <module>

c = calculate_c(a, b)

File "test_code0.py", line 5, in calculate_c

c = math.sqrt(a * b)

NameError: name 'math' is not defined

Rectification

The math is not defined, so I should add the math module before the tool.

In detail, I should add `import math` at the very beginning.

Question

{Demonstration Question}

Original

{Demonstration of Tools and Decisions in Previous Stages}

Error

{Demonstration Error Traceback from Execution Stage}

Rectification

{Demonstration Rectified Tools / Decision with Thoughts}

…

Question

{Target Question}

Original

{Tools and Decisions Made by LLM in Previous Stages}

Error

{Traceback from Execution Stage}

Rectification

…

def calculate_c(a, b):
"""
The function calculate c, which is the square root of a
multiply b
"""
c = math.sqrt(a * b)
return c

a = 4
b = 9
c = calculate_c(a, b)
print("The value of c is", c)

Modify here to import at the beginning
import math
def calculate_c(a, b):

"""
The function calculate c, which is the aquare root of a
multiply b
"""
c = math.sqrt(a * b)

a = 4
b = 9
c = calculate_c(a, b)
print("The value of c is", c)

Figure 16: The instruction and one of the demonstration
examples we use when prompting ChatGPT in the CRE-
ATOR setting. This figure shows the prompts applied in
the Rectification stage.

