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Abstract

We establish a comprehensive finite-sample and asymptotic theory for stochastic
gradient descent (SGD) with constant learning rates. First, we propose a novel
linear approximation technique to provide a quenched central limit theorem (CLT)
for SGD iterates with refined tail properties, showing that regardless of the chosen
initialization, the fluctuations of the algorithm around its target point converge to a
multivariate normal distribution. Our conditions are substantially milder than those
required in the classical CLTs for SGD, yet offering a stronger convergence result.
Furthermore, we derive the first Berry-Esseen bound – the Gaussian approximation
error – for the constant learning-rate SGD, which is sharp compared to the decaying
learning-rate schemes in the literature. Beyond the moment convergence, we also
provide the Nagaev-type inequality for the SGD tail probabilities by adopting
the autoregressive approximation techniques, which entails non-asymptotic large-
deviation guarantees. These results are verified via numerical simulations, paving
the way for theoretically grounded uncertainty quantification, especially with
non-asymptotic validity.

1 Introduction

In large-scale optimization and streaming-data applications, online learning has played a crucial
role, where stochastic approximation serves as a fundamental ingredient to improve computational
efficiency and save memory. However, to facilitate trustworthy AI and reliable decision-making
based on stochastic approximation, it is important to understand its inherent variability, especially in
finite-sample settings.

This paper considers a popular recursive algorithm in online learning – Stochastic Gradient Descent
(SGD), also known as the Robbins-Monro algorithm [Robbins and Monro, 1951], which is widely
used due to its memory efficiency, computational simplicity, and algorithmic stability. The con-
vergence and distributional theory of SGD and its variants have been extensively studied [Fabian,
1968; Woodroofe, 1972; Pflug, 1986; Polyak and Juditsky, 1992; Kushner and Yin, 1997; Shamir and
Zhang, 2013]. Nevertheless, the uncertainty quantification of constant learning-rate SGD remains
partially understood. Though central limit theorems (CLT) have been explored in literature [Pflug,
1986; Dieuleveut et al., 2020], refined theoretical properties such as non-asymptotic Gaussian approx-
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imation rate and sharp concentration inequalities are lacking. To fill in this gap, we provide the first
Berry-Esseen bound and the first Nagaev-type tail probability for constant learning-rate SGD.

Specifically, we are interested in the following optimization problem:

θ∗ = argmin
θ∈Rd

G(θ) ≜ argmin
θ∈Rd

EX∼Πg(θ,X), (1)

where G is the objective function from Rd to R, and g(θ,X) is the noise-perturbed loss function.
With sequentially arriving i.i.d. random data Xi ∼ Π for some unknown distribution Π, SGD updates
the estimated model parameter as

θi = θi−1 − γ∇g(θi−1, Xi), i ≥ 1, (2)

where ∇g is the gradient of g(θ,X) with respect to the first argument θ, and γ > 0 is the fixed
learning rate.

Asymptotic normality of the SGD iterates {θi}i∈N has been investigated in many works. For example,
Pflug [1986] proved the first CLT of SGD with constant learning rate, where the SGD iterates were
viewed as a time-homogeneous Markov chain. This provides a traditional framework to address the
non-stationarity of constant learning-rate SGD. Under certain regularity conditions, such a Markov
chain has been shown to converge to a stationary probability measure πγ geometrically fast as the
iteration n grows to infinity [Dieuleveut et al., 2020; Merad and Gaïffas, 2023]. Building on this
asymptotic stationarity, the more recent works focus on the scaling of this stationary distribution in
regard to the learning rate γ, and establish the CLT as γ → 0 [Chen et al., 2022; Wei et al., 2025].
Since the constant learning-rate SGD will not converge to θ∗ but oscillates around it with stochastic
order of

√
γ [Dieuleveut et al., 2020], we denote by θ∞ ∈ Rd the random vector following the

stationary measure. The diagram below illustrates the key ingredients of classical analysis.

θn − θ∗
√
γ

θ∞ − θ∗
√
γ

N (0,Γ)

n→∞

? γ→0

As we can see from the diagram, all the aforementioned works cannot avoid one critical problem: they
require the iterations n→ ∞ before γ → 0. In other words, their asymptotic normality result only
holds for the stationary SGD sequence, which, however, is unrealistic in practice, since practitioners
usually arbitrarily fix the initialization θ0 that yields a non-stationary sequence θi, while the stationary
sequence is unattainable in finite time. In contrast, the actual procedure of stochastic approximation
is to first determine a small learning rate, then update the algorithm with a large sample size, which
means n→ ∞ and γ → 0 have to perform concurrently and dependently. Under this circumstance,
it remains unclear whether CLT still holds for the SGD iterate itself and, if it does, what constraints
between n and γ are required. To address the issue, we directly approximate the SGD sequence with
iterative linear random functions, skipping the intermediate stationary process. Our methodology
exhibits superiority in the sense that, with weaker assumptions, it reveals the simple yet essential
relationship between the number of iterations and learning rate sufficient for a quenched version of
CLT that holds for any initialization θ0, and also demonstrates how standardized SGD sequences
converge to the normal distribution despite the ordering of limitation on n and γ. Furthermore, with a
slightly stronger condition, linear approximation leads to another powerful finite-sample Gaussian
approximation – the Berry-Esseen inequality [Chen and Shao, 2001; Korolev and Shevtsova, 2010;
Raič, 2019] – which characterizes the explicit order of distance between SGD and the Gaussian
distribution with the number of iterations and learning rate.

Beyond the asymptotic theory, the existing literature on non-asymptotic uncertainty quantification has
primarily focused on the linear model [Durmus et al., 2021; Zhu et al., 2022; Agrawalla et al., 2023;
Samsonov et al., 2024] or the power-law decaying learning rate [Anastasiou et al., 2019; Shao and
Zhang, 2022; Sheshukova et al., 2025], which introduces additional tuning parameters and suffers
from surged sensitivity to hyperparameters and slow convergence [Nemirovski et al., 2009; Chee and
Toulis, 2018]. Nevertheless, fixed learning rate has recently gained popularity for its simpler tuning
requirements and rapid forgetting of the initial value. Moreover, it also enables parallelization of
multiple SGD runs to accelerate convergence and one can employ extrapolation techniques for bias
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correction [Dieuleveut et al., 2020]. However, establishing non-asymptotic theoretical guarantees
for constant learning-rate SGD poses greater challenges due to its persistent oscillations around a
stationary region induced by non-diminishing step sizes [Dieuleveut et al., 2020; Cardot et al., 2013,
2017]. To grasp the recursive nature of SGD and comprehend its nonlinear dependence structure,
we present a systematic and sophisticated framework based on coupling and dependence measure
theory established in Wu [2005]. The high-level idea throughout this paper is to reveal the intrinsic
complexity of time series by slight modifications of input data or the iteration mechanism.

1.1 Contributions

This paper advances the theoretical understanding of constant learning-rate SGD by introducing novel
approximation techniques and deriving sharp finite-sample guarantees. Our main contributions are:

• A linear-approximation CLT for constant-step SGD. We develop a new linearization
framework that captures the drift and noise dynamics of SGD iterates. Under substantially
weaker smoothness and moment conditions than those in Pflug [1986] and Dieuleveut et al.
[2020], we prove a central limit theorem showing that, as the step size γ → 0, the properly
scaled SGD iterate converges in distribution to a Gaussian law.

• Non-asymptotic p-th moment bounds for p ≥ 2. Going beyond weak convergence, we
derive explicit finite-sample upper bounds on E[|θn − θ∗|p] for any integer p ≥ 2. The
moment convergence rate quantifies how quickly all higher moments of the error decay in n,
which provides a more refined theoretical guarantee compared to the weak convergence in
the probability measure.

• First Berry–Esseen bound in the Gaussian approximation. We first provide a quenched
version CLT of the last-iterate SGD. Under mild regularity conditions, if n→ ∞ and γ → 0
with nγ ≥ ν log n for some ν ≥ 1/(2γ), then for any initialization θ0 ∈ Rd the scaled
iterate satisfies

θn − θ∗
√
γ

D→ N (0,Γ),

where the matrix Γ is later defined in (6). Furthermore, we also obtain the Berry–Esseen
type rate (up to logarithmic factors) for the distributional distance between the scaled SGD
iterate and its Gaussian limit. We quantify how rapidly the convergence to normality occurs
in finite samples and fixed γ by providing the rate for

sup
D∈V

|P(θn − θ∗
√
γ

∈ D)− P(N (0,Γ) ∈ D)|

where V is the collection of all convex sets in Rd. This is the first Gaussian approximation
bound for constant-learning-rate SGD in general settings, which allows one to assess the
accuracy of statistical inference with finite samples.

• Nagaev-type large-deviation inequalities. By approximating the SGD recursion with an
autoregressive process, we derive sharp Nagaev-style tail bounds that control the probability
of large deviations beyond the CLT regime. These results yield explicit sub-Gaussian and
polynomial terms in the convergence rate for P(|θn − θ∗| > ϵ) for any ϵ > 0, which relates
to tight sample complexity bounds significant for statistical learning theory and applications
[Valiant, 1984].

1.2 Other related works

Stochastic Gradient Descent. The large-sample behavior of SGD and its extensions dates back
to the foundational analyses by Blum [1954]; Sacks [1958], who first investigated its asymptotics
and has since been elaborated upon by a succession of studies [Ljung, 1977; Lai, 2003; Wang and
Gao, 2010; Gandikota et al., 2022; Zhong et al., 2024; Li et al., 2024]. In particular, Fabian [1968]
characterized the limiting law of the final iterate. Robbins and Siegmund [1971] then leveraged
martingale arguments to establish almost-sure convergence of the procedure. Subsequent research
has quantified the algorithm’s convergence rates under a variety of assumptions [Toulis and Airoldi,
2017; Pillaud-Vivien et al., 2018; Muecke et al., 2019; Duchi and Ruan, 2021]. See more recent
works by Zhu et al. [2022]; Hu and Fu [2024]; Lauand and Meyn [2024] among the others.
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Convergence with different learning rates. The learning-rate choice in SGD, either fixed or
decaying, critically shapes convergence. Pflug [1986] first studied the stationary behavior under a
constant step size via a Markov-chain framework; Dieuleveut et al. [2020]; Huo et al. [2023]; Merad
and Gaïffas [2023] later refined this with Wasserstein-distance analyses and high-confidence bounds.
For diminishing steps, Rakhlin et al. [2012] showed the linear decaying case attains the optimal rate,
and Ge et al. [2019] extended the results to polynomial decays. Burn-in strategies were proposed
by Gower et al. [2019] and Nguyen et al. [2019]. Adaptive schemes include Polyak’s method for
over-parameterized models [Loizou et al., 2021] and a bandwidth-based family studied by Wang
and Yuan [2023]. See Jiang and Stich [2024] for a comprehensive overview. However, in practice,
constant learning rates are favored due to the simplicity of training, which is also the focus of this
study.

(Non)-asymptotic normality. In addition to convergence guarantees, performing real-time inference
with SGD-style estimators is vital for uncertainty quantification. Classical bootstrap-based M-
estimation methods [Fang et al., 2018; Fang, 2019; Zhong et al., 2024] are computationally prohibitive
in streaming contexts. Instead, Polyak–Ruppert averaging [Ruppert, 1988; Polyak and Juditsky,
1992] offers statistical efficiency and enables inference: the averaged SGD (ASGD) sequence [Györfi
and Walk, 1996; Defossez and Bach, 2015] admits an asymptotic normality result at the optimal rate
[Moulines and Bach, 2011; Dieuleveut and Bach, 2016; Dieuleveut et al., 2017; Jain et al., 2018]. By
contrast, inference on the final iterate under a constant step size has seen little treatment. We close this
gap by proving a quenched central limit theorem for the SGD estimator as the learning rate γ → 0,
valid from any initialization [Dahlhaus and Rao, 2006; Dahlhaus et al., 2019]. Additionally, blocking-
based variance estimators [Chen et al., 2020; Zhu et al., 2023] and recursive kernel approaches
[Huang et al., 2014] achieve optimal mean-squared-error rates under dependence, yielding practical,
theoretically sound online inference for SGD.

1.3 Notation

For a vector v = (v1, . . . , vd)
⊤ ∈ Rd and q > 0, we denote |v|q = (

∑d
i=1 |vi|q)1/q and |v| = |v|2.

For any s > 0 and a random vector X , we say X ∈ Ls if ∥X∥s = (E|X|s2)1/s < ∞. For two
positive number sequences (an) and (bn), we say an = O(bn) or an ≲ bn (resp. an ≍ bn) if
there exists C > 0 such that an/bn ≤ C (resp. 1/C ≤ an/bn ≤ C) for all large n, and write
an = o(bn) if an/bn → 0 as n → ∞. Let (Xn) and (Yn) be two sequences of random variables.
Write Xn = oP(Yn) if Xn/Yn → 0 in probability as n → ∞. Let ⟨·, ·⟩ denote the canonical inner
product in the finite dimensional Euclidean space Rd.

2 Moment convergence

We first introduce the following assumptions on the objective function G(θ) and the stochastic
gradients ∇g(θ,X).
Assumption 2.1 (µ-strong convexity). The function G is twice differentiable and µ-strongly convex,
i.e. for a µ > 0 and for all θ, θ′ ∈ Rd, it holds that

⟨∇G(θ)−∇G(θ′), θ − θ′⟩ ≥ µ|θ − θ′|2.

Since Assumption 2.1 requires thatG is twice differentiable, the Hessian matrix ∇2G(θ∗) exists. Note
that for the Lp convergence in Theorem 2.3, we only need G to be continuously differentiable. The
existence of Hessian is only necessary to derive the CLT and Gaussian approximation in Theorem 3.4
and 3.5.
Assumption 2.2 (Stochastic Lipschitz continuity). The function g(θ, x) is continuously differentiable
w.r.t. θ for any x. Moreover, for some p ≥ 2, assume ∥∇g(θ∗, X)∥p =: Mp < ∞, ∥θ0 − θ∗∥p =:
ρp <∞, and the stochastic Lipschitz continuity,

∥∇g(θ1, X)−∇g(θ2, X)∥p ≤ Lp|θ1 − θ2|, for all θ1, θ2 ∈ Rd.

Here, the condition ∥θ0 − θ∗∥p < ∞ trivially holds in the fixed-initialization setting. Both strong
convexity and Lipschitz continuity conditions are commonly adopted in the literature; see for example,
Dieuleveut et al. [2020]; Zhu et al. [2022]; Merad and Gaïffas [2023]. Notably, Assumption 2.2 also
implies the L-smoothness of the gradient of objective function G, that is

|∇G(θ1)−∇G(θ2)| ≤ Lp|θ1 − θ2|, for all θ1, θ2 ∈ Rd.
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We refer to Li et al. [2024] for a detailed discussion. Now we are ready to present the Lp moment
convergence of constant learning-rate SGD.
Theorem 2.3 (Lp Convergence). Suppose that Assumptions 2.1 and 2.2 hold. Let α0 be some
constant satisfying

0 < α0 ≤ min
{ 1

γ
, 2µ− (6p− 5)L2

pγ
}
. (3)

Then, for any n ≥ 1 and γ satisfying

0 < γ <
2µ

(6p− 5)L2
p

, (4)

we have,

∥θn − θ∗∥2p ≤ (1− α0γ)
nρ2p + 3(p− 1)M2

pα
−1
0 γ. (5)

Remark (Rate of moment convergence). The right-hand side of (5) demonstrates that SGD with a
constant learning rate forgets its initial condition with an exponential pace. Besides, if we determine
the learning rate γ based on the knowledge of the total sample size or number of iterations n, a
constraint nγ → ∞ should be satisfied to ensure convergence, i.e., the total length of steps needs to
be sufficiently large such that SGD can move on. This relationship is quite natural and required by
most of the literature on SGD [Polyak and Juditsky, 1992; Kushner and Yin, 1997; Sheshukova et al.,
2025]. For example, consider the decaying learning rate schedule ηn ≍ n−α, it is well-known that α
can not exceed 1 for the sake of

∑n
i=1 ηi → ∞.

3 CLT and Berry-Esseen theorem

In this section, we introduce how to approximate SGD sequences with recursive linear random func-
tions. Consequently, we establish asymptotic normality and finite-sample Gaussian approximation
directly on the SGD iterations.

3.1 Dependency of SGD iterates

In recursive algorithms, each new updated estimator depends on the last update and the new-coming
random sample, which involves an intricate dependency structure that poses a challenge to nor-
mality analysis. To address this issue, we leverage the theory of functional dependence mea-
sure introduced in Wu [2005] to quantify the dependence structure of the SGD algorithm. De-
fine θn = τn(X1, X2, ..., Xn) for some measurable function τn that can vary for different n and
θ
(t)
n = τn(X1, X2, ..., Xt−1, X

′
t, Xt+1, ..., Xn), where X ′

t is an i.i.d. copy of Xt. The functional
dependence measure is defined as

ψ(n, t, p) = ∥θn − θ(t)n ∥p.
We denote ψ(n, t) = ψ(n, t, 2) for simplicity. In particular, ψ(n, t, p) quantifies the effect of the
random sample Xt on the n-th SGD iterate θn. By utilizing this tool, we can derive exact Gaussian
approximation and tail probability rates. We first provide an essential bound of this dependence
measure, which will be heavily used in the proofs.
Theorem 3.1 (Functional dependence measure). Suppose the same conditions of Theorem 2.3 hold.
The functional dependence measure satisfies

ψ(n, t, p) ≤ 2
√
2γ(1− α0γ)

(n−t)/2
√
M2

p + L2
p[(1− α0γ)t−1ρ2p + 3(p− 1)M2

pα
−1
0 γ].

Remark (Rate of dependence measure). Theorem 3.1 encapsulates the temporal dependence of
constant learning rate SGD, which decays at an exponential rate as the time lag increases.

3.2 Refined linear approximation and asymptotic normality

We first introduce another assumption only required for the rest of this section.
Assumption 3.2 (Local Smoothness). There exists some constants L ≥ 0 and κ > 0 such that for all
|θ − θ∗| ≤ κ,

|∇2G(θ)−∇2G(θ∗)| ≤ L|θ − θ∗|.
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The local smoothness of the Hessian is standard in the literature on statistical inference and normal
approximation of online learning algorithms [Anastasiou et al., 2019; Shao and Zhang, 2022; Li et al.,
2022; Sheshukova et al., 2025]. Assumption 1 in [Anastasiou et al., 2019] requires a stronger global
Lipschitz smoothness. We only need this condition to ensure the validity of Taylor’s expansion of the
gradient, i.e.,

|∇G(θ)−∇2G(θ∗)(θ − θ∗)| ≲ |θ − θ∗|2,
which is also commonly imposed [Ruppert, 1988; Polyak and Juditsky, 1992] and necessary for
Assumption H6 in [Moulines and Bach, 2011].

Define A := ∇2G(θ∗) as the Hessian matrix of the objective function G(θ) at θ = θ∗, and S =
E[∇g(θ∗, Xn)∇g(θ∗, Xn)

⊤] as the covariance of the stochastic gradients, also at the true parameter
θ∗. Denote the estimation error by ∆n = θn − θ∗. We have

∆n = ∆n−1 − γA∆n−1 + γRn + γDn − γ∇g(θ∗, Xn),

where we define the Taylor expansion remainder and the martingale difference noise term respectively
by

Rn = A∆n−1 −∇G(θn−1),

Dn = ∇G(θn−1)−∇g(θn−1, Xn) +∇g(θ∗, Xn).

Recursively updating the formula, we get

∆n = (Id − γA)n∆0 − Ln + I1,n + I2,n,

where

Ln = γ

n∑
k=1

(Id − γA)n−k∇g(θ∗, Xk),

I1,n = γ
∑n

k=1(Id − γA)n−kRk and I2,n = γ
∑n

k=1(Id − γA)n−kDk. Due to stochastic Lipschitz
continuity and Theorem 5, the terms I1,n and I2,n are infinitesimal of higher order, and the estimation
error of SGD can be well approximated by the linear sequence Ln. Let λ∗ > λ∗ > 0 denote the
largest and smallest eigenvalue of A, and λ = min{λ∗, α0}. We have the following result,

Lemma 3.3 (Linear approximation). Under Assumption 3.2 and same conditions of Theorem 2.3, for

γ < min{ 1

λ∗
,

µ

(6p− 5)L2
p

},

we have

∥∆n − Ln∥1 ≤
(3C0M

2
2

λα0
+

2
√
3L2M2√
λα0

)
γ +

2L2ρ2√
λ

√
γ(1− λγ)

n−1
2 + C0ρ

2
2nγ(1− λγ)n−1,

where C0 = max{L, 2L2κ
−1}.

We will show in the appendix that the scaled limiting covariance of the linear sequence Ln can be
obtained from the Lyapunov equation. Specifically, let Γ be the unique solution of

AΓ + ΓA = S,

which can also be written as

Γ =

∫
R+

e−AtSe−Atdt. (6)

Then the following limitation holds

Γ = lim
nγ→∞
γ→0

Cov(Ln)

γ
.

This asymptotic covariance is in accordance with results in [Pflug, 1986; Chen et al., 2022; Wei et al.,
2025]. In the theorem below, we present a refined CLT result via the linear approximation technique.
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Theorem 3.4 (Quenched Central Limit Theorem). Under same conditions of Lemma 3.3, let n→ ∞
and γ → 0 such that nγ ≥ ν log n for some constant ν > 1/2λ. Then, for an SGD sequence
{θn}n∈N with arbitrarily initialization θ0 ∈ Rd, we have

θn − θ∗
√
γ

D→ N (0,Γ).

Remark (Quenched version of asymptotic normality). In most classical CLT-type results for SGD,
one assumes that the iterate sequence {θn}n∈N is stationary, which means choosing the initialization
θ0 exactly following the limiting stationary distribution of θn [Pflug, 1986; Dieuleveut et al., 2020;
Chen et al., 2022]. Instead, our quenched CLT yields a stronger result which guarantees the
asymptotic normality of SGD sequences with any arbitrarily initial point θ0 ∈ Rd.

Notably, the relationship nγ ≳ log n is a minimal condition for SGD in most settings as discussed
before. Consider the decaying learning rate schedule ηn ≍ n−α, taking α = 1, the minimal rate of
the total step size

∑n
i=1 ηi is also O(log n).

3.3 Non-asymptotic Gaussian approximation

The central limit theorem 3.4 establishes a weak convergence of SGD to the Gaussian distribution.
However, it does not tell how close the SGD iterates are to Gaussian, and how fast it converges when
the number of iterations grows or the learning rate is turned down. For example, it is natural to ask
how small the following distance could be

|P((θn − θ∗)/
√
γ ∈ Ĉ)− P(N (0,Γ) ∈ Ĉ)|

for some confidence interval Ĉ of concern, but the CLT can not help due to its asymptotic essence.
Consequently, the effectiveness of statistical inference is still questionable with a finite sample and
fixed learning rate.

This restriction motivates us to investigate the non-asymptotic convergence rate to normality. The
Berry-Esseen theorem is a powerful tool to quantify the maximum approximation error. In the original
groundbreaking work [Berry, 1941; Esseen, 1942], the Kolmogorov–Smirnov distance between the
empirical distribution and the Gaussian is specified as

sup
x∈R

|Fn(x)− Φ(x)| ≤ 0.33554E|X3
1 |+ 0.4748(EX2

1 )
2/3

(EX2
1 )

2/3
√
n

,

where Fn is the cumulative distribution function (cdf) of i.i.d. average of X1, ..., Xn with a finite
third moment, and Φ is the standard normal cdf.

Taking advantage of the linear recursion and functional dependence measure, we develop the following
optimal Gaussian approximation result for constant learning rate SGD.

Theorem 3.5 (Berry-Esseen bound). Suppose that Assumptions 2.1 and 2.2 hold with p ≥ 4, and
the same conditions of Lemma 3.3 hold. Let V = {D ∈ Rd : D is convex.} and YΓ be a mean zero
normal vector in Rd with covariance Γ. Then, we have the following Berry-Esseen inequality:

sup
D∈V

|P(∆n√
γ
∈ D)− P(YΓ ∈ D)|

≤C
[√
γ + (1− λγ)

n−1
2 +

√
γn(1− λγ)n−1 + γ + (1− λγ)2n

]
,

where C is a constant independent of n, γ and θ0.

Remark (Rate of Gaussian approximation). The first term comes from the third moment of linear
approximation sequence. The second and third terms come from the dependence structure of SGD
and the error of linear approximation. The last two terms are due to the difference between finite-
sample and asymptotic covariance. To the best of our knowledge, Theorem 3.5 is the first Gaussian
approximation result for constant learning-rate SGD that explicitly bounds the distance between
distributions with a specific order of γ and n. The dominant term

√
γ can not be improved, since the

bias of SGD is O(γ) which can not be eliminated [Dieuleveut et al., 2020]. As a result, ∆n/
√
γ is at

least O(
√
γ) away from the centered Gaussian vector.
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Suppose we know the number of iterations n a priori. To choose an appropriate γ scaling with n, the
right-hand side can be nearly optimized by setting γ ∝ ν log n/n for some ν > 1/λ. Then the order
of Gaussian approximation becomes

sup
D∈V

|P(∆n√
γ
∈ D)− P(YΓ ∈ D)| ≲

√
log n√
n

.

A similar result of ASGD with decaying learning rate schedule ηn ≍ n−α is developed by [Shao
and Zhang, 2022; Samsonov et al., 2024], where the optimal approximation rate is O(n−1/4). In
comparison, the normal approximation rate is sharper with a constant learning rate SGD.

4 Sharp concentration of tail probability

In addition to Lp convergence, CLT, and Gaussian approximation, another vital concern is the
tail behavior of the estimation error, as the expected error rate can not be achieved by a one-time
implementation. Practitioners want to ensure an ideal performance of the algorithm in a single trial,
especially under non-linear and heavy-tailed noisy settings. To this end, we generalize the method
developed in Nagaev [1979] to provide a high probability guarantee of the estimation accuracy
without the requirement of bounded or sub-Gaussian gradient noise.

4.1 Non-linear autoregressive approximation

We use the following non-linear autoregressive sequence to approximate the SGD sequence. Let
β0 = θ∗ and

βn = βn−1 − γ∇G(βn−1)− γ∇g(θ∗, Xn).

The sequence βn can be viewed as the gradient descent iteration with i.i.d. noise. The following
lemma characterizes the convergence of βn and the approximation error rate.
Lemma 4.1. Under same conditions of Theorem 2.3,

∥βn − θ∗∥2p ≤
3(p− 1)M2

p

α0
γ,

and for some constant α1 such that

α1 ≤ min{2µ− γL2
p,

1

γ
},

we have

∥θn − βn∥2p ≤ [(1− α1γ)
n + 4(p− 1)L2

pnγ
2(1− α0γ)

n]ρ2p +
3(p− 1)M2

p

α0α1
γ2.

Remark. Compared to Lemma 3.3, the non-linear autoregression sequence can approximate the
SGD in Lp-space for p ≥ 2, which is more useful for a precise derivation of tail probability.

4.2 Nagaev-type inequality of tail probability

To analyze the concentration property of SGD with fixed learning rates, we first focus on the linear
functional of the estimation error, i.e., v⊤(θn − θ∗) for all v ∈ Sd, the unit sphere in Rd. The
tail probability bounds directly from the Lp convergence or Gaussian approximation rate are too
conservative. Simply applying the Berry-Esseen inequality 3.5, for instance, will result in a sub-
Gaussian tail plus an inevitable

√
γ term. Another naive way is to use the Markov inequality on

Theorem 2.3. If we set the degree of tolerance as ϵ, it yields

P(|v⊤(θn − θ∗)| > ϵ) ≲
1

ϵp
[
(1− α0γ)

np/2ρpp +Mp
pα

−p/2
0 γp/2

]
, (7)

where the polynomial term γp/2 is far from optimal. As a result, for some credible level 0 < δ < 1,
with probability 1− δ, one can only have

|v⊤(θn − θ∗)| = O(δ−1/p√γ).
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According to n ≳ γ−1, the resulting estimate of sample complexity N(ϵ, δ) (i.e., the minimum
number of iterations such that the MSE satisfies the given credible level δ and degree of tolerance ϵ),

N(ϵ, δ) = O(
δ−2/p

ϵ
),

grows rapidly for any tolerance level δ ∈ (0, 1).

The next theorem provides a Nagaev-type high-confidence bound that is substantially tighter than
existing results by incorporating functional dependence measures, non-linear autoregressive approxi-
mation and the moment-generating function.
Theorem 4.2 (Nagaev inequality). Under same conditions of Theorem 2.3, for any ϵ > 0, we have

sup
v∈Sd

P(|⟨v,∆n⟩| > ϵ) ≤ C1γ
p−1

ϵp
+2 exp{−C2ϵ

2

γ
}+

2p−1ρpp(1− α0γ)
np/2

ϵp

(
1+4(p−1)L2

pnγ
2
)p/2

,

where C1 and C2 are some positive constants independent of ϵ, n, γ and θ0.

Remark (Rate of tail probability). The polynomial term in Theorem 4.2 is γp−1, much sharper than
those obtained from Gaussian approximation or Markov inequality when p > 2. The sub-Gaussian
term exp{−C2ϵ

2/γ} is optimal in the sense that ∆n/
√
γ is asymptotically normal. With a high

degree of tolerance ϵ, the polynomial term dominates, and the estimate of sample complexity can
be greatly improved to O(δ−1/(p−1)ϵ−p/2(p−1)) in this case. With a low degree of tolerance, the
sub-Gaussian term dominates.

We can directly obtain the same result of the uniform distance between θn and θ∗ by the union bound.
Taking v over the standard basis (0, ..., 0, 1, 0, ..., 0)⊤ yields

P(|∥∆n∥∞ > ϵ) ≤ C1dγ
p−1

ϵp
+ 2d exp{−C2ϵ

2

γ
}

+
2p−1dρpp(1− α0γ)

np/2

ϵp
[1 + 4(p− 1)L2

pnγ
2]p/2.

5 Numerical studies

5.1 Simulation setting

We conduct a simulation to demonstrate that our Nagaev-type inequality in Theorem 4.2 is indeed
valid and tight. Consider the following data generating mechanism for the logistic regression model:
Xi = (ai, bi), i = 1, 2, ... are i.i.d. random vectors where ai are generated from a 5-dimensional
independent t distribution with degrees of freedom df = 3. bi ∈ {1,−1} follows a Bernoulli
distribution with the probability given by P(bi|ai) = 1/(1 + exp(−bia⊤i θ∗)). The loss function is
defined as the negative log-likelihood,

g(θ,Xi) = log(1 + exp(−bia⊤i θ)).

We investigate logistic regression for its non-linearity. The t distribution with df = ν only has
finite p-th moments with p < ν. This property enables us to study the performance of different tail
probability bounds with specific values of p. Elementary calculation shows that

∇g(θ,X) = ∇g(θ, a, b) = −ba
1 + exp(ba⊤θ)

,

and therefore ∇g(θ∗, X) only has finite p-th moment with p < 3 in our setting. Theoretically, we
can choose p arbitrarily close to 3 and apply the inequalities discussed in Section 4.2. For simplicity,
we take p = 3 since the results we report in the simulation are continuous with respect to p.

We run 1000 independent trials with n = 500000 and γ = 0.005, 0.001, 0.0002. Since the number
of iterations is large enough, the main contribution in the tail probability bounds are the polynomial
terms and the sub-Gaussian term, i.e.,

II1 =
γp/2

ϵp

9



Markov Nagaev Empirical Probability
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Figure 1: Comparison of different tail probability bounds against the empirical probability. The
learning rate γ = 0.005, 0.001, 0.0002 from left to right.

in the Markov-type bound, and

II2 =
γp−1

ϵp
+ 2 exp{−C2ϵ

2

γ
}

in the Nagaev-type bound. In our simulation, we set C2 = 2, because Theorem 3.4 provides the
equation that the asymptotic covariance Γ satisfies. Elementary calculation Chen et al. [2020] shows
that for the logistic model, A = S, and the unique solution to AΓ + ΓA = S becomes Γ = Id/2, so
we accordingly scale the sub-Gaussian term.

5.2 Numerical results

We compare the concentration inequality (7) and our Nagaev-type bound, Theorem 4.2, both with the
empirical probability: II3 = Avgv(P(|v⊤(θn − θ∗)| > ϵ)), where v ranges over the standard basis
vectors (0, . . . , 0, 1, 0, . . . , 0)⊤. For more transparent visualization, we multiply these quantities
by ϵp and plot the results against the degree of tolerance ϵ. In Figure 1, the x-axis is the degree of
tolerance. The green, red, and black curves are ϵpII1, ϵpII2, and ϵpII3, respectively. They represent
the ϵp-scaled Markov bound, Nagaev bound, and empirical probability.

Figure 1 clearly indicates that the tail probability bound from Markov inequality is excessively
conservative. In contrast, our Nagaev-type inequality from Theorem 4.2 yields a much sharper upper
bound for SGD across different learning-rate scales. The shape of empirical probability closely
matches the dichotomous phenomenon in theory: the dominance transits from the polynomial term to
the sub-Gaussian term as ϵ decreases. The experiment results confirm that our Nagaev-type bound is
both valid and tight, precisely describing the tail behavior of constant learning rate SGD.
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A Technical Appendices and Supplementary Material

All theoretical results are proved in the appendix. We first introduce some technical lemma.

Lemma A.1 (Rio’s inequality [Rio, 2009]). Let X ∈ Rd and Y ∈ Rd be two random vectors such
that E|X|p <∞ and E|Y |p <∞ for some p ≥ 2. Then we have

∥X + Y ∥2p ≤ ∥X∥2p + (p− 1)∥Y ∥2p. (8)

Lemma A.2. Under Assumption 2.1 and 2.2, we have

|∇G(θ1)−∇G(θ2)| ≤ Lp|θ1 − θ2|.

Proof. By Assumption 2.2,

∥∇g(θ1, X)−∇g(θ2, X)∥22 ≤ L2
p|θ1 − θ2|2, for all θ1, θ2 ∈ Rd.

By the convexity of | · |2 and Jensen’s inequality,

|∇G(θ1)−∇G(θ2)|2 = |EX(∇g(θ1, X)−∇g(θ2, X))|2

≤ EX |∇g(θ1, X)−∇g(θ2, X)|2

≤ L2
p|θ1 − θ2|2.

A.1 Proof of Moments Convergence of SGD

Lemma A.3. Consider the SGD iterates {θt}t≥1 in (2). Under the same conditions of Theorem 2.3,
for some universal constant α0 such that

0 < α0 ≤ min
{ 1

γ
, 2µ− (6p− 5)L2

pγ
}
, (9)

we have, for all n ≥ 1,

∥∆n∥2p ≤ (1− α0γ)∥∆n−1∥2p + 3(p− 1)γ2M2
p . (10)

Proof of Lemma A.3. Since ξt, for t ≥ 1, are i.i.d. random samples, it follows from the tower rule
that

E[∇g(θn−1, ξn)−∇G(θn−1) | θn−1] = 0. (11)

Therefore, by applying Rio’s inequality in Lemma A.1, for p ≥ 2, we have

∥∆n∥2p ≤ ∥θn−1 − θ∗ − γ∇G(θn−1)∥2p + (p− 1)γ2∥∇g(θn−1, ξn)−∇G(θn−1)∥2p
=: I1 + I2. (12)

We shall bound the two parts I1 and I2 separately. For the first part I1, note that ∇G(θ∗) = 0 and by
the triangle inequality, we have

I1 = ∥θn−1 − θ∗ − γ∇G(θn−1)∥2p
=
∥∥∥〈θn−1 − θ∗, θn−1 − θ∗

〉
− 2γ

〈
θn−1 − θ∗,∇G(θn−1)−∇G(θ∗)

〉
+ γ2

〈
∇G(θn−1)−∇G(θ∗),∇G(θn−1)−∇G(θ∗)

〉∥∥∥
p/2

≤
∥∥∥〈θn−1 − θ∗, θn−1 − θ∗

〉
− 2γ

〈
θn−1 − θ∗,∇G(θn−1)−∇G(θ∗)

〉∥∥∥
p/2

+ γ2
∥∥∇G(θn−1)−∇G(θ∗)

∥∥2
p
. (13)

By applying Assumption 2.1 to the first term and Assumption 2.2 to the second term, we can obtain

I1 ≤ (1− 2γµ+ γ2L2
p)∥θn−1 − θ∗∥2p. (14)

15



Regarding the second part I2, since ∇G(θ∗) = 0, we have

∥∇g(θn−1, ξn)−∇G(θn−1)∥p
≤ ∥∇g(θn−1, ξn)−∇g(θ∗, ξn)∥p + ∥∇G(θn−1)−∇G(θ∗)∥p + ∥∇g(θ∗, ξn)∥p. (15)

Hence, by Assumption 2.2, we can achieve

∥∇g(θn−1, ξn)−∇G(θn−1)∥2p ≤ 6L2
p∥θn−1 − θ∗∥2p + 3∥∇g(θ∗, ξn)∥2p. (16)

Combining results from I1 and I2, we can obtain

∥∆n∥2p ≤ (1− 2γµ+ (6p− 5)γ2L2
p)∥θn−1 − θ∗∥2p + 3(p− 1)γ2∥∇g(θ∗, ξn)∥2p.

This can directly lead to the desired inequality.

Proof of Theorem 2.3. By recursively applying Lemma A.3, we have

∥∆n∥2p ≤
n∏

k=1

(1− α0γ)∥∆0∥2p + 3(p− 1)M2
p

n∑
j=1

γ2
n∏

k=j+1

(1− α0γ). (17)

By elementary calculations,

∥∆n∥2p ≤ (1− α0γ)
nρ2p + 3(p− 1)M2

pγα
−1
0 . (18)

A.2 Proof of the Bound for Functional Dependence Measure

Recall that the SGD sequence θn can be represented by θn = τn(X1, ..., Xn) and θ
(t)
n =

τn(X1, ..., Xt−1, X
′
t, Xt+1, ..., Xn) for some measurable function τn that can vary for differ-

ent n, where X ′
t is an i.i.d. copy of Xt. The functional dependence measure was defined as

ψ(n, t, p) = ∥θn − θ
(t)
n ∥p. We prove the bound for ψ(n, t, p) as stated in Theorem 3.1, which is

fundamental to the proofs of CLT, Berry-Esseen inequality and Nagaev-type inequality.

Proof. By applying Rio’s inequality, for each t ≤ n− 1, we have

∥θn − θ(t)n ∥2p ≤ (1− 2γµ+ (6p− 5)γ2L2
p)

n−t∥θt − θ
(t)
t ∥2p

≤ (1− α0γ)
n−t∥θt − θ

(t)
t ∥2p. (19)

It follows from Assumption 2.2 that for all t ≥ 1,

∥∇g(θt−1, Xt)∥2p ≤ 2∥∇g(θt−1, Xt)−∇g(θ∗, Xt)∥2p + 2∥∇g(θ∗, Xt)∥2p
≤ 2L2

p∥θt−1 − θ∗∥2p + 2M2
p . (20)

As a direct consequence, we can achieve

∥θt − θ
(t)
t ∥2p = γ2∥∇g(θt−1, Xt)−∇g(θt−1, X

′
t)∥2p

≤ γ2
(
2∥∇g(θt−1, Xt)∥2p + 2∥∇g(θt−1, X

′
t)∥2p

)
≤ 4γ2

(
L2
p∥θt−1 − θ∗∥2p +M2

p

)
. (21)

This along with expression (19) and Theorem 2.3 provides the desired result.

A.3 Proof of Quenched CLT

Here and in the sequel, we will repeatedly use a basic property that |Id − γA| ≤ 1− γλ∗ ≤ 1− γλ.
We denote Zi = ∇g(θ∗, Xi) as the gradient noise.
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Proof of Lemma 3.3. We first show that I1,n and I2,n vanish. Define F0 = ∅ and Ft = σ(X1, ..., Xt)
as the filtration generated by the data. It is clear that {Dn} is a martingale difference sequence w.r.t.
the filtration {Ft}, and we have

∥I2,n∥2 ≤ γ2
n∑

k=1

∥(Id − γA)∥2n−2k∥Dk∥2

≤ 4γ2L2
2

n∑
k=1

∥(Id − γA)∥2n−2k∥θk−1 − θ∗∥2

≤ 4γ2L2
2

n∑
k=1

∥(Id − γA)∥2n−2k(1− α0γ)
k−1ρ22 + 12L2

2γ
3M2

2α
−1
0

n∑
k=1

∥(Id − γA)∥2n−2k

≤ 4γ2L2
2ρ

2
2

(1− γλ)n−1 − (1− γλ)2n−1

γλ
+ 12L2

2γ
3M2

2α
−1
0

1− (1− γλ)2n

2γλ− γ2λ2

≤ 4L2
2ρ

2
2γ

(1− λγ)n−1

λ
+

12L2
2γ

2M2
2

α0(2λ− γλ2)

≤ 4L2
2ρ

2
2γ

(1− λγ)n−1

λ
+

12L2
2γ

2M2
2

α0λ
.

Here we use the fact that |Dn| ≤ 2L2|∆n−1| due to Assumption 2.2, Lemma A.2, and the triangular
inequality. The last inequality comes from γ ≤ 1/α0 and γ ≤ 1/λ∗. By Taylor expansion around θ∗,
since ∇G(θ∗) = 0, we have

Rn = A∆n−1 − (∇G(θn−1)−∇G(θ∗))

= −
∫ 1

0

[∇2G(θ∗ + t(θn−1 − θ∗))−∇2G(θ∗)](θn−1 − θ∗)dt.

By Assumption 3.2, when |θn−1 − θ∗| ≤ κ, we have |Rn| ≤ L|θn−1 − θ∗|2. For |θn−1 − θ∗| > κ,
the Lipschitz continuity of the gradient implies |Rn| ≤ 2L2|θn−1 − θ∗| ≤ 2L2κ

−1|θn−1 − θ∗|2. So
we finally have |Rn| ≤ C0|∆n−1|2 where C0 = max{L, 2L2κ

−1}. As a result,

E|I1,n| ≤ C0γ

n∑
k=1

∥Id − γA∥n−k∥θk−1 − θ∗∥2

≤ nγC0ρ
2
2(1− γλ)n−1 + 3C0M

2
2α

−1
0 γ2

1− (1− γλ)n

γλ

≤ nγC0ρ
2
2(1− γλ)n−1 +

3C0M
2
2

λα0
γ. (22)

We also have ∥Id − γA)n∆0∥ ≤ (1− γ∗λ)
nρ1. Combining these inequalities will lead to the bound

in Lemma 3.3.

Proof of Theorem 3.4. As γ → 0 and nγ ≥ ν log n for some constant ν > 1/2λ, elementary
calculation shows that the difference between ∆n/

√
γ and Ln/

√
γ goes to 0, i.e., by Lemma 3.3 we

have ∥∆n/
√
γ − Ln/

√
γ∥1 → 0. Then it suffices to prove that

Ln√
γ

D→ N (0,Γ). (23)

Notice that Ln/
√
γ is a linear combination of i.i.d. random vectors, the covariance matrix of which is

Γn(γ) = γ

n∑
k=1

(Id − γA)n−kS(Id − γA)n−k.

We introduce the following auxiliary lemma.

Lemma A.4. The minimum eigenvalue of Γn(γ), denoted as λn(γ), satisfies

λn(γ) ≥
λS(1− (1− γλ∗)2n)

2λ∗
,

where λS is the smallest eigenvalue of S.
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This lemma is easy to prove since (Id−γA) is positive definite with the minimum eigenvalue 1−γλ∗.
So we have

λn(γ) ≥ λ

n∑
k=1

(1− γλ∗)2n−2kλS

and elementary calculation leads to the conclusion. The lemma implies that |Γn(γ)
−1| is bounded by

some constant. As γ → 0 and nγ → ∞, we have

max
1≤k≤n

|Γn(γ)
−1γ(Id − γA)n−kS(Id − γA)n−k| ≲ γ → 0.

By the multivariate Lindeberg-Feller CLT, it is clear that

Γn(γ)
−1/2 Ln√

γ

D→ N (0, Id). (24)

To determine the closeness between Γn(γ) and Γ, notice that

Γn+1(γ) = (Id − γA)Γn(γ)(Id − γA) + γS.

Minus Γ on both sides and plug AΓ + ΓA = S into the formula above, we get

Γn+1(γ)− Γ = (Id − γA)(Γn(γ)− Γ)(Id − γA) + γ2AΓA.

Hence, there exists a universal constant C such that

|Γn+1(γ)− Γ| ≤ (1− γλ)2|Γn(γ)− Γ|+ Cγ2.

Let Γ0(γ) = 0d×d. Recursively updating the inequality we get

|Γn(γ)− Γ| ≤
n∑

i=1

Cγ2(1− γλ)2(n−i) + (1− γλ)2n|Γ0(γ)− Γ| (25)

≤ Cγ

2λ− γλ2
+ (1− γλ)2n|Γ| → 0. (26)

Since the eigenvalues of Γn(γ) are bounded and bounded away from 0, and Γ is a fixed positive
definite matrix, we have Γ−1/2Γn(γ)

1/2 → Id. By Slustky’s theorem,

Γ−1/2 Ln√
γ
= Γ−1/2Γn(γ)

1/2Γn(γ)
−1/2 Ln√

γ

D→ N (0, Id),

and we proved (23).

Remark on the multivariate Lindeberg–Feller CLT

Suppose a triangular sequence yn,k ∈ Rd are independent with means Eyn,k = 0 and covariance
matrices Vn,k = E(yn,ky⊤n,k). Set

Un =

n∑
k=1

Vn,k, ν2n = λmin(Un).

If ν2n > 0 and for all ε > 0

lim
n→∞

1

ν2n

n∑
k=1

E
(
|yn,k|2 · 1(|yn,k|2 > εν2n)

)
= 0,

then as n→ ∞

U−1/2
n

(
n∑

k=1

yn,k

)
⇒ N (0, Id).

Above is the statement of the multivariate Lindeberg–Feller CLT. We apply the theorem to the
standardized sum

Γn(γ)
−1/2√γ

n∑
k=1

(Id − γA)n−kZk.
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Denote
Bn,k(γ) = Γn(γ)

−1/2√γ(Id − γA)n−k.

Then
yn,k = Bn,k(γ)Zk, Un = Id, ν2n = 1.

Let Mn(γ) be the maximum norm of the matrix prefactor of yn,k, i.e.

Mn(γ) = max
1≤k≤n

|Bn,k(γ)| = max
1≤k≤n

|Γn(γ)
−1γ(Id − γA)2n−2k|.

We have shown that |Γn(γ)
−1| is bounded by some constant. As a result, Mn(γ) ≲ γ → 0. This is

sufficient for the Lindeberg condition and CLT. To this end, notice that

n∑
k=1

E
(
|yn,k|21(|yn,k|2 ≥ ε)

)
≤

n∑
k=1

|Bn,k(γ)|2E
(
|Zk|21(Mn(γ)|Zk|2 ≥ ε)

)
.

By the dominated convergence theorem, we have

E
(
|Zk|21(Mn(γ)|Zk|2 ≥ ε)

)
→ 0

due to 1(Mn(γ)|Zk|2 ≥ ε) → 0. By elementary calculation,
∑n

k=1 |Bn,k(γ)|2 is bounded. As a
result, the Lindeberg condition is justified.

A.4 Proof of the Berry-Esseen Inequality

We begin with a refined analysis of the linear approximation.

∆n = (Id − γA)n∆0 − Ln + I1,n + I2,n,

where I1,n = γ
∑n

k=1(Id − γA)n−kRk, I2,n = γ
∑n

k=1(Id − γA)n−kDk, Rn = A∆n−1 −
∇G(θn−1), and Dn = ∇G(θn−1) − ∇g(θn−1, Xn) + ∇g(θ∗, Xn). By Lemma A.4, the matrix
Γn(γ) is invertible, and

√
γΓn(γ)

−1/2 ≲
√
γ.

We further have the following decomposition:

Γ−1/2∆n√
γ
= (Γ−1/2 − Γn(γ)

−1/2)
∆n√
γ
+ Γn(γ)

−1/2 (Id − γA)n∆0 − Ln + I1,n + I2,n√
γ

.

The Gaussian approximation error will be assessed via those terms. Define

In =
√
γ

n∑
k=1

(1− γλ)n−k|∆k−1|2,

as an auxiliary sequence. Define I(t)
n , D(t)

k , and I(t)2,n in the same way as θ(t)n , and

ψD(n, t) = ∥I2,n − I
(t)
2,n∥2

as the functional dependence measure of I2,n. The next Lemma investigates the behavior of ψD.

Lemma A.5. For 1 ≤ t ≤ n,

ψD(n, t)2 ≲ γ2(1− γλ)2n−t−1 + γ3(1− γλ)n−t−1

Proof. Notice that

Dk −D
(t)
k =


0 k < t;

−∇g(θt−1, Xt) +∇g(θ∗, Xt) +−∇g(θt−1, X
′
t)−∇g(θ∗, X ′

t) k = t;

∇G(θk−1)−∇g(θk−1, Xk)− [∇G(θ(t)k−1)−∇g(θ(t)k−1, Xk)] k > t,
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it is clear that that Dk −D
(t)
k is also a martingale difference sequence. Due to stochastic Lipschitz

continuity,

ψD(n, t)2 = γ2E|
n∑

k=1

(Id − γA)n−k(Dk −D
(t)
k )|2

= γ2
n∑

k=1

(Id − γA)2n−2kE|Dk −D
(t)
k |2

≤ γ2(1− γλ)2n−2tE|Dt −D
(t)
t |2 + 4L2

2γ
2

n∑
k=t+1

(1− γλ)2n−2kE|θk−1 − θ
(t)
k−1|

2

By Theorem 2.3 and 3.1, we have

E|Dt −D
(t)
t |2 ≤ 4∥∇g(θt−1, Xt)−∇g(θ∗, Xt)∥2 ≤ 4L2

2∥∆t−1∥2 ≲ γ + (1− α0γ)
t−1,

and
E|θk−1 − θ

(t)
k−1|

2 = ψ(k − 1, t)2 ≲ γ2(1− α0γ)
k−1−t.

By elementary calculation,

ψD(n, t)2 ≲ γ3(1− γλ)2n−2t + γ2(1− γλ)2n−t−1 + γ3(1− γλ)n−t−1

≍ γ2(1− γλ)2n−t−1 + γ3(1− γλ)n−t−1.

Now we are ready to prove the Berry-Esseen inequality.

Proof of Theorem 3.5. We apply Theorem 2.1 in Shao and Zhang [2022]. Since we use Ln/
√
γ =√

γ
∑n

k=1(Id − γA)n−kZk to approximate ∆n/
√
γ, with

∥Ln∥33 ≤
n∑

k=1

∥√γ(Id − γA)n−kZk∥33 ≲
n∑

k=1

γ3/2(1− λγ)n−k ≲
√
γ,

Theorem 2.1 in Shao and Zhang [2022] states that

sup
D∈V

|P(Γn(γ)
−1/2∆n√

γ
∈ D)− P(N (0, Id) ∈ D)|

≤C
(√

γ + E{|Γn(γ)
−1/2Ln/

√
γ|J }+

n∑
t=1

E{|J − J (t)||Γn(γ)
−1/2√γ(Id − γA)n−tZt|}

)
,

(27)

where J and J (t) are some quantities such that

J ≥ |Γn(γ)
−1/2∆n − Ln√

γ
| (28)

and J (t) is independent of Xt or Zt. We define

J = |Γn(γ)
−1/2√γ(Id − γA)n∆0|+ |γ−1/2Γn(γ)

−1/2I2,n|+ C̃In,

with some universal constant C̃ such that C̃In ≥ |γ−1/2Γn(γ)
−1/2I1,n|. Such C̃ exists because of

the construction of In and Taylor’s expansion. Then (28) holds by the triangle inequality. We further
define

J (t) = |Γn(γ)
−1/2√γ(Id − γA)n∆0|+ |γ−1/2Γn(γ)

−1/2I
(t)
2,n|+ C̃I(t)

n

such that J (t) is independent of Xt and Zt, and decompose the difference between J and its copula
perturbation J (t) as

|J − J (t)| ≤ C̃|In − I(t)
n |+

∣∣∣|γ−1/2Γn(γ)
−1/2I2,n| − |γ−1/2Γn(γ)

−1/2I
(t)
2,n|
∣∣∣

≤ C̃|In − I(t)
n |+ |γ−1/2Γn(γ)

−1/2(I2,n − I
(t)
2,n)|. (29)
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We will control each error term decomposed above. We first investigate the following quantity:

E|In − I(t)
n ||Γn(γ)

−1/2√γ(Id − γA)n−tZt|

≲ γ(1− γλ)n−tE{|Zt|
n∑

k=1

|(1− γλ)n−k(|∆k−1|2 − |∆(t)
k−1|

2)|} := Tn,t,

which can be further controlled by

Tn,t ≤ γ(1− γλ)n−tE{|Zt|
n∑

k=1

|(1− γλ)n−k|(∆k−1 −∆
(t)
k−1)(∆k−1 +∆

(t)
k−1)|}

≤ γ(1− γλ)n−t
n∑

k=1

(1− γλ)n−kE
{
|Zt||θk−1 − θ

(t)
k−1|

(
|θk−1 − θ∗|+ |θ(t)k−1 − θ∗|

)}

We apply the Hölder inequality, for k ≥ t+ 1,

E
{
|Zt||θk−1 − θ

(t)
k−1|

(
|θk−1 − θ∗|+ |θ(t)k−1 − θ∗|

)}
≤ 2∥Zt∥4∥∆k−1∥4ψ(k − 1, t)

≲ (
√
γ + (1− α0γ)

(k−1)/2)γ(1− α0γ)
(k−1−t)/2

where the last inequality if from Theorem 2.3 and 3.1. For k ≤ t, the expectation above is 0. Hence
we have

Tn,t ≲ γ(1− γλ)n−t
n∑

k=t+1

(1− γλ)n−k(
√
γ + (1− α0γ)

(k−1)/2)γ(1− α0γ)
(k−1−t)/2,

= γ2(1− λγ)n−t
n∑

k=t+1

[
(1− λγ)n−t/2−1 +

√
γ(1− γλ)n−(k+t+1)/2

]
≤ γ2(n− t)(1− λγ)2n−3t/2−1 + γ5/2

(1− λγ)(n−t−1)/2

1−
√
1− γλ

≲ γ2(n− t)(1− λγ)2n−3t/2−1 + γ3/2(1− λγ)(n−t−1)/2.

Here we use the fact that
√
1− λγ ≤ 1− λγ/2. By elementary calculations,

n∑
t=1

E
{
|In − I(t)

n ||Γn(γ)
−1/2√γ(Id − γA)n−tZt|

}
≲

n∑
t=1

Tn,t ≲ (1− λγ)(n+1)/2 +
√
γ. (30)

Similarly, by Cauchy inequality,

E|γ−1/2Γn(γ)
−1/2(I2,n − I

(t)
2,n)||Γn(γ)

−1/2√γ(Id − γA)n−tZt|

≲ (1− γλ)n−tE{|Zt||I2,n − I
(t)
2,n|}

≤ (1− γλ)n−t∥Zt∥2ψD(n, t)

≲ γ(1− λγ)(4n−3t−1)/2 + γ3/2(1− λγ)(3n−3t−1)/2.

Summing the quantity above from t = 1 to t = n yields an upper bound
n∑

t=1

E|γ−1/2Γn(γ)
−1/2(I2,n − I

(t)
2,n)||Γn(γ)

−1/2√γ(Id − γA)n−tZt| ≲ (1− λγ)(n−1)/2 +
√
γ.

(31)

Then we consider the following error terms due to linear approximation:

E{|Γn(γ)
−1/2√γ(Id − γA)n∆0||Γn(γ)

−1/2Ln/
√
γ|},
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E{|Γn(γ)
−1/2√γI2,n||Γn(γ)

−1/2Ln/
√
γ|},

and
E{|In||Γn(γ)

−1/2Ln/
√
γ|}.

We use the Cauchy inequality to bound them. Notice that by definition of Γn(γ), the sequence
Γn(γ)

−1/2Ln/
√
γ is standardized with fixed covariance matrix Id. For the first term,

E{|Γn(γ)
−1/2√γ(Id − γA)n∆0||Γn(γ)

−1/2Ln/
√
γ|}

≲
√
γ(1− λγ)n∥∆0∥2∥Γn(γ)

−1/2Ln/
√
γ∥2 ≲

√
γ(1− λγ)n. (32)

For the second term,

E{|Γn(γ)
−1/2√γI2,n||Γn(γ)

−1/2Ln/
√
γ|}

≲
√
γ∥I2,n∥2∥Γn(γ)

−1/2Ln/
√
γ∥2 ≲ γ +

√
γ(1− λγ)(n−1)/2. (33)

For the third term,

E{|In||Γn(γ)
−1/2Ln/

√
γ|}

≲
√
γ

n∑
k=1

(1− γλ)n−kE{|∆k−1|2|Γn(γ)
−1/2Ln/

√
γ|}

≤ √
γ

n∑
k=1

(1− γλ)n−k∥∆k−1∥24

≲
√
γ

n∑
k=1

(1− γλ)n−k[(1− α0γ)
k−1 + γ]

≲
√
γ +

√
γn(1− γλ)n−1. (34)

Combining all upper bounds of (29)-(34) and plugging them into the inequality (27) yields

sup
D∈V

|P(Γn(γ)
−1/2∆n√

γ
∈ D)− P(N (0, Id) ∈ D)|

≤ C(
√
γ + (1− λγ)

n−1
2 +

√
γn(1− λγ)n−1)

for some constant C independent of n, γ and θ0. By the discussion of Remark 1 in Samsonov et al.
[2024], since Γn(γ)

−1/2 is non-degenerate, and an image of a convex set under a non-degenerate
linear mapping is a convex set, we have

sup
D∈V

|P(Γn(γ)
−1/2∆n√

γ
∈ D)− P(N (0, Id) ∈ D)| = sup

D∈V
|P(∆n√

γ
∈ D)− P(N (0,Γn(γ)) ∈ D)|.

To complete the proof, we use Theorem 1.1 in Devroye et al. [2018] (or Lemma 13 in Samsonov et al.
[2024]), which bounds the total variation distance of two Gaussian measures by the distance between
their covariance matrix. Here we only need to bound the convex distance, i.e.,

sup
D∈V

|P(N (0,Γn(γ)) ∈ D)− P(N (0,Γ) ∈ D)| ≤ 3

2
∥Γ−1/2Γn(γ)Γ

−1/2 − Id∥F ,

which trivially holds by Theorem 1.1 in Devroye et al. [2018]. Since matrix norms are equivalent, by
(25) we have |∥Γ−1/2Γn(γ)Γ

−1/2 − Id∥F ≲ γ + (1− γλ)2n. The last step is to use the triangular
inequality of the convex distance, and the proof is completed.

A.5 Proof of Nagaev-type Inequality

We first prove the results of non-linear auto-regressive approximation.

Proof of Lemma 4.1. Similar to the argument of the proof of Theorem 2.3,

∥βn − θ∗∥2p ≤ ∥βn−1 − θ∗ − γ∇G(βn−1)∥2p + (p− 1)γ2∥Zn∥2p
≤ (1− 2γµ+ (6p− 5)γ2L2

p)∥βn−1 − θ∗∥2p + 3(p− 1)γ2∥Zn∥2p. (35)
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Recursively updating it, we get

∥βn − θ∗∥2p ≤
3(p− 1)M2

p

α0
γ.

For the second result,
∥θn − βn∥2p

≤ ∥θn−1 − βn−1 − γ[∇G(θn−1)−∇G(βn−1)]∥2p (36)

+ (p− 1)γ2∥∇G(θn−1)−∇g(θn−1, Xn) + Zn∥2p
≤
∥∥∥〈θn−1 − βn−1, θn−1 − βn−1

〉
− 2γ

〈
θn−1 − βn−1,∇G(θn−1)−∇G(βn−1)

〉∥∥∥
p/2

+ γ2
∥∥∇G(θn−1)−∇G(βn−1)

∥∥2
p
+ 4(p− 1)γ2L2

p∥θn−1 − θ∗∥2p (37)

≤ (1− 2γµ+ γ2L2
p)∥θn−1 − βn−1∥2p + 4(p− 1)γ2L2

p[(1− α0γ)
n∥θ0 − θ∗∥2p

+ 3(p− 1)M2
pα

−1
0 γ3] (38)

≤ (1− α1γ)∥θn−1 − βn−1∥2p + 4(p− 1)γ2L2
p[(1− α0γ)

n∥θ0 − θ∗∥2p
+ 3(p− 1)M2

pα
−1
0 γ3], (39)

(40)
where α1 ≤ 2µ− γL2

p and α1 ≤ γ−1. Without loss of generality, we can choose α0 ≤ α1 since the
upper constraint of α0 is more stringent. Recursively updating the inequality, we get

∥θn − βn∥2p ≤ [(1− α1γ)
n + 4(p− 1)L2

pnγ
2(1− α0γ)

n]∥∆0∥2p +
3(p− 1)M2

p

α0α1
γ2.

Now we are ready to prove the sharp concentration inequality.

Proof of Theorem 4.2. Denote E0X = X − EX as the centralized random variable X . Without loss
of generality, we let α0 ≤ α1 in the following proof. Applying Markov inequality on Lemma 4.1, we
have

P(|∆n − (βn − θ∗)| > ϵ) (41)
= P(|θn − βn| > ϵ) (42)

≤
∥θn − βn∥pp

ϵp
(43)

≤
2p−1ρpp(1− α0γ)

np/2

ϵp
[1 + 4(p− 1)L2

pnγ
2]p/2 +

2p−1γp(3p− 3)p/2Mp
p

ϵp(α0α1)p/2
. (44)

Then we consider the tail probability of E0{v⊤(βn − θ∗)}. Define Pk(ξ) = E(ξ|Fk)− E(ξ|Fk−1)
as the projection operator. Let Z ′

i = ∇g(θ∗, X ′
i) be the i.i.d. copy of Zi. Similar to the proof of

Theorem 3.1, we can show that for 1 ≤ k ≤ n,
|Pk(v

⊤(βn − θ∗))| ≤ (1− α0γ)
n−kγE(|Zk − Z ′

k||Fk). (45)

Let y = pϵ/(p+ 2). Define the following sequence

ηi = ηi−1 − γ∇G(ηi−1)− γZi ×min
{
1,

y

2γ(1− α0γ)n−i|Zi|

}
, η0 = θ∗. (46)

Then we have
P(|E0{v⊤(βn − θ∗)}| > ϵ) (47)

≤
n∑

i=1

P
(
|Zi| >

y

2γ(1− α0γ)n−i

)
+ P(|E0{v⊤(ηn − θ∗)}| > ϵ), (48)

≤
2pMp

p

yp
γp

n∑
i=1

(1− α0γ)
p(n−i) + P(|E0{v⊤(ηn − θ∗)}| > ϵ) (49)

≤ Cγp−1

ϵp
+ P(|E0{v⊤(ηn − θ∗)}| > ϵ), (50)
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for some constant C independent of ϵ, n and γ. The next step is to investigate the tail behavior of
E0{v⊤(ηn − θ∗)}. We consider its moment generating function: for x > 0,

Mn(x) := E exp(xE0{v⊤(ηn − θ∗)}) = E exp
{
x

n∑
k=1

Pk(v
⊤(ηn − θ∗)

}
.

Due to definition (46) and a similar argument to (45), we have supv∈Sd |Pk(v
⊤(ηn − θ∗)| ≤ y. As a

result, we can leverage Lemma 1.4 in [Nagaev, 1979] to obtain

E
{
exp

(
xPk(v

⊤(ηn − θ∗))
)∣∣Fk−1

}
≤ 1 +

exp(p)x2

2
E
{
|Pk(v

⊤(ηn − θ∗))|2
∣∣Fk−1

}
+

exp(xy)− 1− xy

yp
E
{
|Pk(v

⊤(ηn − θ∗))|p
∣∣Fk−1

}
× I
{
x >

p

y

}
≤ 1 + exp(p)x2(1− α0γ)

2(n−k)γ2M2
2 +

exp(xy)− 1− xy

yp
(1− α0γ)

p(n−k)γpMp
p

2p
× I
{
x >

p

y

}
.

Since the final upper bound does not depend on Fk−1, we have

Mn(x) ≤
n−1∏
t=0

(
1 + epx2(1− α0γ)

2tγ2M2
2 +

exy − 1− xy

yp
2p(1− α0γ)

ptγpMp
p × I{x > p/y}

)
≤ exp

(
Cpx

2M2
2 γ + Cpγ

(p−1) e
xy − 1− xy

yp
Mp

p × I{x > p/y}
)
,

for some constant Cp independent of ϵ, n and γ. We use the Chernoff-type bound:

P(|E0{v⊤(ηn − θ∗)}| > ϵ) ≤ e−xϵMn(x),

and find an x > 0 such that

Cpx
2M2

2 γ − 2y

q
+ Cpγ

(p−1) e
xy − 1− xy

yp
Mp

p × I{x > p/y} − xy

is small. The calculation is identical to the proof of Theorem 1.3 in Nagaev [1979], which leads to

P(|E0{v⊤(ηn − θ∗)}| > ϵ) ≤ 2

CpϵpM
p
p γ1−p + 1

+ 2 exp(−Cpϵ
2

γM2
2

) ≤ C1γ
p−1

ϵp
+ 2 exp(−C2ϵ

2

γ
)

(51)
for some constant C1 and C2 independent of ϵ, n and γ.

Finally, we use union bound on (44), (50), and (51) to finish the proof of the tail probability inequality
in Theorem 4.2. Notice that from Lemma 4.1 we have

|E(βn − θ∗)| ≤ ∥βn − θ∗∥p ≤Mp

√
3(p− 1)

α0

√
γ.

As long as Mp

√
3(p−1)

α0

√
γ < ϵ, this expectation term can be ignored in the tail probability bound. If

not, i.e., ϵ2/γ ≤ 3M2
p (p−1)/α0, we can choose C2 ≤ log 2α0/3M

2
p (p−1) such that the probability

bound trivially holds in this case. As a result, the expectation term does not affect the validity of our
result, and the proof is completed.

A.6 Additional Experiment Details

We conducted the experiments in R version 4.3.1 (2023-06-16) on a MacBook Air with a GPU Apple
M1, 4 performance and 4 efficiency cores, and 8 GB LPDDR4 memory, equipped with macOS Big
Sur version 11.5.1.

24



NeurIPS Paper Checklist

1. Claims
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much the results can be expected to generalize to other settings.
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2. Limitations
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Answer: [Yes]
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the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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Justification: We provide rigorous proofs for all the theoretical results in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information in the paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide them in our supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all details in the final section of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: They are reported in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in the supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics as instructed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper discusses potential positive societal impacts, particularly through
advancing the theoretical understanding of modern statistical learning, which can inform the
development of uncertainty quantification and trustworthy AI. As the work mostly focuses
on theoretical aspects and does not propose or evaluate any deployable systems, we do not
anticipate any direct negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

4

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use such assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

7

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Contributions
	Other related works
	Notation

	Moment convergence
	CLT and Berry-Esseen theorem
	Dependency of SGD iterates
	Refined linear approximation and asymptotic normality
	Non-asymptotic Gaussian approximation

	Sharp concentration of tail probability
	Non-linear autoregressive approximation
	Nagaev-type inequality of tail probability

	Numerical studies
	Simulation setting
	Numerical results

	Technical Appendices and Supplementary Material
	Proof of Moments Convergence of SGD
	Proof of the Bound for Functional Dependence Measure
	Proof of Quenched CLT
	Proof of the Berry-Esseen Inequality
	Proof of Nagaev-type Inequality
	Additional Experiment Details


