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Abstract

Large Language Models (LLMs) often exhibit systematic errors on specific sub-
sets of data, known as error slices. For instance, a slice can correspond to a
certain demographic, where a model does poorly in identifying toxic comments
regarding that demographic. Identifying error slices is crucial to understanding
and improving models, but it is also challenging. An appealing approach to re-
duce the amount of manual annotation required is to actively group errors that are
likely to belong to the same slice, while using limited access to an annotator to ver-
ify whether the chosen samples share the same pattern of model mistake. In this
paper, we formalize this approach as Active Slice Discovery and explore it empir-
ically on a problem of discovering human-defined slices in toxicity classification.
We examine the efficacy of active slice discovery under different choices of fea-
ture representations and active learning algorithms. On several slices, we find that
uncertainty-based active learning algorithms are most effective, achieving compet-
itive accuracy using 2-10% of the available slice membership information, while
significantly outperforming baselines.

1 Introduction

Single errors in machine learning models, and Large Language Models (LLMs) in particular, are
often representative of a wider pattern. For example, when asking GPT-5 “Which city is further
north? London or Montreal? Answer in one word.” we observe the response “Montreal.”2 The
correct answer is in fact London, and we may wonder whether the model’s responses generally
tend to associate locations with cold climates, such as Montreal, to being northern than those that
are relatively warmer. More generally, discovering patterns or groups of examples where models
underperform, also called error slices, is useful in many aspects, e.g. guiding future data collection
and model development.

The problem of discovering coherent groups of examples that a model tends to get wrong is known
as slice discovery [1, 2, 3]. Most algorithms for this problem work in a completely unsupervised
setting: namely, slice discovery algorithms are provided with a set of error cases and are tasked with
identifying underlying semantic groups. This is well motivated by real-world applications. Error
cases may be reported and collected in a dispersed manner, and grouping them into semantically
coherent subsets is laborious. However, the unsupervised setting is challenging and solutions that
involve some mechanism of supervision can be attractive. In this paper, we initiate the study of an
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Figure 1: Active Slice Discovery Given a dataset containing target labels for each data point, but
slice labels for a limited set of data points, we pose the active learning problem of uncovering latent
error slices within the data. The active learner has limited access to an oracle (e.g. human labeler)
who can confirm whether or not a specific data point belongs to the error slice.

active learning [4] approach to this problem, which we call active slice discovery. For example, an
active slice discovery algorithm might suggest asking for a one-word answer to the query “If I move
from Ulaanbaatar to Paris, should I go north or south?”, to which GPT-5 also gives the incorrect
answer “South”. This (x, y) pair of prompt and response will be moved to a human annotator who
will confirm that this is indeed an error and it is semantically similar to the first one. The procedure
proceeds iteratively to leverage the enlarged labeled set and improve the characterization of an error
slice. Although the slice in this example is relatively straightforward to characterize and discover,
the problem can become more complicated as we deal with larger datasets, multiple slices, and
more subtle error patterns. We wish to assess the potential of active slice discovery as a practical
methodology and form best practices in applying it. To this end, our contributions are:

• We state and initiate the study of the active slice discovery problem, laying the foundation
for further work on this attractive approach.

• We implement a flexible active slice discovery pipeline, where combinations of different
base models (LLMs), representations, classifiers and active learning strategies can be used.
The source code will be made available upon publication to support future research on the
problem.

• Our experiments study active slice discovery on the problem of toxicity classification, using
the Jigsaw toxicity dataset and Llama 3.1. Comparing several active learning techniques,
representations, and classification methods, our results show that uncertainty based active
learning methods can reach comparable accuracy to that obtained with the full training
dataset using as few as 2% of the labels, and present a significant improvement w.r.t a
random subsampling baseline.

2 Related Work

Slice Discovery. Motivated by known sensitivity to distribution shift [5], slice discovery seeks to
group systematic model errors to explain why, for instance, image classifiers overly rely on back-
ground features. Prior work explored slice discovery in a variety of use cases, from structured and
tabular data [6, 7, 8] to larger computer vision or text models [2, 1, 9, 3], even summarizing inferred
slices with textual descriptions [1, 10]. Work with neural network representations obtained from
hidden layers of neural networks is a prominent paradigm in slice discovery, and more generally, the
interpretability literature.
Interpretability of LLMs. In the context of Large Language Models, analyzing internal represen-
tations to uncover features is a key goal of mechanistic interpretability [11], which relates to slice
discovery, as both tasks involve recovering features and slice discovery can be considered as a spe-
cific type of interpretability task. A popular method in this context is to use Sparse Auto-Encoders
(SAEs) [12, 13]. Drawing inspiration from the mechanistic interpretability literature, our experi-
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ments examine whether representations obtained from SAEs are beneficial for slice discovery.
Active Learning and Uses in Slice Discovery In all slice discovery settings mentioned above, the
learner is not given annotations of any slices. We study the case where it is possible to elicit a small
amount of human judgments on membership of examples in a common slice, a type of auditing that
is most closely related to active learning [4]. The vast literature on active learning techniques, such
as those based on uncertainty of the model f(x); diversity of the labeled set [14]; coresets [15], and
others, deals with eliciting labels y that are most useful in training an accurate prediction model. In
the context of slice-discovery, perhaps the closest work to ours, is [16] that uses slice discovery to
detect error-prone examples that guide active learning to train a more accurate classifier. While their
framework uses common slice discovery methods without slice annotations and elicits labels y, the
active slice discovery we explore here elicits slice identities s. That is, we seek more accurate slice
discovery with the fewest annotations possible, while they seek accurate classification with fewest
labels possible as in common active learning settings.

3 Problem Definition

Formally, we consider a joint distribution P (X,Y,S) over the space X×Y×{0, 1}k for some integer
k, where all data is drawn i.i.d from P . Here X is the input text, Y is a label (e.g. toxic/non-toxic)
and S = {S(i)}ki=1 is a vector of slice memberships for k slices of interest.

• Input: a trained classifier fθ : X → Y , small annotated dataset Ds = {(xi, yi, si)}ns
i=1, and

labeled dataset D = {xi, yi}ni=1 drawn i.i.d from P (X,Y,S) and the marginal P (X,Y )
respectively. We also have a budget K of active slice queries.

• Output: A slice membership function ϕ : X × Y → {0, 1}k.

An active slice discovery method has a query strategy A :
{
X × Y × {0, 1}k

}ns × {X × Y}n →
[n] that takes the currently annotated dataset Ds, and labelled dataset D, and chooses a specific
unlabeled example,or “query”, (x, y) ∈ D to be annotated. The accuracy of ϕj , the component that
detects the j-th slice, is Ex,y,s [1 [ϕj(x, y) = sj ]].

4 Experiments

We evaluate the proposed active slice discovery approach on the Jigsaw Toxicity dataset, [17], and
consider the use of two possible internal state representations: (1) raw layer embeddings from the
penultimate layer of Lamma-3.1-8B, and (2) sparse activations obtained from the Llama Scope
sparse autoencoder trained on the final layer of Llama-3.1-8B. For slice classification, we compare
a feed-forward multi-layer perceptron (MLP) against a linear support vector machine (SVM). We
leverage the Small-Text library [18] to explore established Active Learning query strategies.

4.1 Sample Efficiency of Active Learning

We start the evaluation by examining how sample efficiency depends on the type of slice. Holding
the representation (SAE), OVR classifier (SVM), and query strategy (Least Confidence) fixed, we
vary the slice definition (e.g., disagree, likes). The results from Figures 2a and 2b indicate that
identity based slices like female, christian can be detected with high accuracy using only a few
hundred annotations, whereas some reaction based slices like disagree and sad fail to significantly
improve with under 1000 labeled samples. This indicates that slices with similar lexical cues can be
easier to identify compared to heterogeneous and sentiment based slices. However, we note that the
detection rate for the disagree slice improves significantly from 0.8 with layer embeddings to 0.83
with SAE representations.

4.2 Effect of Query Strategy

Next, we compare different query strategies for active learning by fixing the slice to the disagree
slice. The query strategies studied included uncertainty-based strategies (Least Confidence, Predic-
tion Entropy, Breaking Ties), diversity-based strategies (Embedding K-Means, Discriminative Active
Learning, Lightweight Coreset), and a baseline Random Sampling strategy. The queries are tested

3



(a) Active learning with SVM (Least Confidence)
using raw LLM embeddings.

(b) Active learning with SVM (Least Confidence)
using SAE representations.

Figure 2: Active learning with SVM (Least Confidence) on multiple slices. Test accuracy vs.
number of labeled examples is shown for two setups: (a) raw LLM embeddings and (b) SAE repre-
sentations. Note that each of the four slides is a different size, leading of a different max number of
labeled samples.

across the raw layer embeddings and SAE based representations as represented in Figure 3a, 3b. The
results show that uncertainty based query strategies yield higher accuracy with fewer labels across
both embeddings and SAE based inputs. This finding aligns with prior work in text classification
active learning [19]. The use of SAE features further improves the stability of the active learning
training process, yielding smoother training curves and being less sensitive to the uncertainty query
strategy.

(a) Active slice discovery from LLM embeddings (b) Active slice discovery from SAE features

Figure 3: Query strategy comparison for the “disagree” slice. Test accuracy vs. number of
labeled examples is shown for various query strategies acting on (a) raw LLM embeddings; and
(b) SAE representations. Confidence-based query strategies (Least Confidence, Prediction Entropy,
Breaking Ties) consistently yield better performance.

Setup Slice Classifier Best Accuracy Labeled Examples

Setup 1 (Embedding) Neural Network (AL) 85.8% 250 (out of 12,504)
Setup 1 (Embedding) SVM (AL, LC query) 81.0% 3,500
Setup 2 (SAE) Neural Network (AL) 82.2% 1,460 (out of 12,416)
Setup 2 (SAE) SVM (AL, LC query) 83.0% 1,000

Table 1: Active slice discovery performance on the “disagree” slice. We report the highest test
accuracy achieved by each method and the number of labeled training examples required. (LC =
Least Confidence query strategy.)
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4.3 Combined Results

Table 1 summarized the strongest results observed across all configurations. Overall, the MLP
achieves the highest observed accuracy (85.8% detection accuracy using raw layer embeddings with
active learning. However, this approach requires careful hyperparameter tuning. Alternatively, using
an SVM with SAE input features is simpler to train, requiring little to no hyperparameter tuning,
and achieves a competitive accuracy (83.0% while using more labelled examples. These findings
highlight two practical observations: first, active learning can reduce labeling requirements by up
to 98% relative to full supervision; second, high-quality representations such as SAEs allow even
simple models to remain competitive.
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