
Published as a conference paper at ICLR 2023

LEARNING HYPER LABEL MODEL
FOR PROGRAMMATIC WEAK SUPERVISION

Renzhi Wu1, Shen-En Chen1, Jieyu Zhang2, Xu Chu1

1Georgia Tech 2University of Washington
{renzhiwu@,achen353@,xu.chu@cc.}gatech.edu
jieyuz2@cs.washington.edu

ABSTRACT

To reduce the human annotation efforts, the programmatic weak supervision
(PWS) paradigm abstracts weak supervision sources as labeling functions (LFs)
and involves a label model to aggregate the output of multiple LFs to produce
training labels. Most existing label models require a parameter learning step for
each dataset. In this work, we present a hyper label model that (once learned)
infers the ground-truth labels for each dataset in a single forward pass without
dataset-specific parameter learning. The hyper label model approximates an op-
timal analytical (yet computationally intractable) solution of the ground-truth la-
bels. We train the model on synthetic data generated in the way that ensures the
model approximates the analytical optimal solution, and build the model upon
Graph Neural Network (GNN) to ensure the model prediction being invariant (or
equivariant) to the permutation of LFs (or data points). On 14 real-world datasets,
our hyper label model outperforms the best existing methods in both accuracy
(by 1.4 points on average) and efficiency (by six times on average). Our code is
available at https://github.com/wurenzhi/hyper label model

1 INTRODUCTION

The lack of labeled training data is a major challenge impeding the practical application of ma-
chine learning (especially deep learning) techniques. Therefore, practitioners have been increasingly
turned to weak supervision in which large amounts of cheaply generated noisy labels are used. There
are many forms of weak supervision sources, e.g. external knowledge bases (Mintz et al., 2009), ex-
isting pre-trained models (Das et al., 2020; Wu et al., 2022b), and heuristics/rules (Shin et al., 2015).
To unify different sources, the programmatic weak supervision (PWS) paradigm (Ratner et al., 2016;
2017; Zhang et al., 2022) was proposed. In PWS, the user expresses each available weak supervision
signal from different sources with a labeling function (LF), a small program that takes in a data point
and outputs a noisy label. After that, each LF is applied to unlabeled data of arbitrary size to obtain a
noisy label vector; then, a label aggregation model (also referred as label model in literature) is used
to aggregate all noisy label vectors to infer the unknown ground-truth labels. The inferred labels
can then be used to train any downstream end models. The PWS paradigm has been successful in
various tasks (Wu et al., 2018; Fries et al., 2019; Lison et al., 2020; Wu et al., 2021; 2020; Li et al.,
2021) and industry scenarios (Mathew et al., 2021; Bach et al., 2019; Dunnmon et al., 2020).

The core challenge in PWS is how to aggregate all noisy label vectors to infer the ground-truth
labels. Let label matrixX denote the noisy labels where each columnX[:, j] denotes the noisy label
vector from the jth LF and each row X[i, :] denotes the weak labels of the ith data point; Let y
denote the ground-truth label vector. Most existing label models assume an underlying distribution
p(y[i]|X[i, :]; θ) (Zhang et al., 2022) where y[i] is the label for the data point and θ is the parameter
of the distribution. The parameter θ is first learned on the weak labels X = (X[1, :], X[2, :], . . .)
in an unsupervised and typically iterative way, and then inference is made using p(y[i]|X[i, :]; θ).
In this approach, the parameter θ is dataset-specific and has to be learned for every different X
(dataset).

In contrast to existing solutions, we propose a hyper label model with the goal of reducing assump-
tions and parameter learning process. Specifically, we aim to develop a hyper model that enjoys

1

https://github.com/wurenzhi/hyper_label_model

Published as a conference paper at ICLR 2023

two desiderata: (1) it works with ”minimal” assumption, i.e., we only assume the majority of LFs
is better-then-random while does not require the knowledge or assume any particular forms of un-
derlying distribution p(y[i]|X[i, :]; θ); (2) once the hyper model is learned, it can be used to infer y
for any new X without additional dataset-specific parameter learning process. To shed light on this
direction, we first show, in theory, that without assuming underlying distribution, there is an optimal
and analytical (therefore no parameter learning) way to estimate of y based onX , i.e., y∗ = h∗(X).
However, such h∗ is intractable to compute since it involves averaging over a set whose size is
exponentially-increasing w.r.t.the size of X . Therefore, we propose to leverage the power of deep
learning to approximate this solution, i.e., we seek for an alternative function h parametrized by
some neural networks, and once learned, it can estimate the label vector for new dataset without ad
hoc dataset-specific learning process. Thus, we call the learned model hyper label model.

Materializing this idea involves two key questions: (1) How to generate training data? (2) How to
design the model architecture? To generate training data, the straightforward solution is to use the
analytical method to generate many pairs of (X,y∗) where y∗ = h∗(X). However, computing y∗

with h∗(X) is of exponential complexity. We notice that for each X , h∗(X) is an average of the
label vectors from a certain set. Taking advantage of this, we are able to avoid directly generating
y∗ that is of exponential complexity and design a way of generating an equivalent set of training
data such that the trained model approximates h∗(X).

The model architecture has two requirements. First, it should be able to accept input matrix X of
arbitrary size as the size of the matrix X can be different across datasets. Second, the output of the
model (e.g. the predicted label vector) should be invariant to the permutations of columns in X as
the order of the LFs should not impact the final predicted labels; The output of the model should
be equivariant to the permutation of rows in X as when switching the order of the data points in
X the predicted labels should be switched accordingly. We noticed that a Graph Neural Network
(GNN) is able to accept an input graph of arbitrary size and is permutation equivariant to the nodes
on the graph (and can also be made to be permutation invariant by taking the average of the nodes).
Therefore, we propose to represent the input matrix X as a graph and then design a GNN to satisfy
the two requirements.

Contributions. We make the following contributions:

(1) We for the first time present an analytical method for label aggregation which is optimal in the
sense that it minimizes a certain form of the averaged prediction error, though directly using the
analytical method is of exponential complexity.

(2) We train a model to learn the analytical method. The trained model is a hyper label model that
can be used to infer the ground-truth labels for unseen datasets in a single forward pass without
needing any dataset-specific parameter learning.

(3) We design a synthetic training data generation method and show that the hyper label model
trained on the synthetically generated data learns to be the analytical method.

(4) We design an effective model architecture based on GNN so that the hyper label model is appli-
cable to arbitrary number of LF label vectors of arbitrary size and is invariant/equivariant to the
permutation of LF label vectors/data points.

(5) We show that our hyper label model outperforms the best existing methods over 14 real-world
weak supervision datasets in both accuracy (by 1.4 points on average) and efficiency (by a
speedup of six times on average) for both unsupervised and semi-supervised label aggregation.

2 RELATED WORK

All existing methods (except majority vote) first learn some parameter θ ad hoc for each new dataset
and inference is then performed based on the learned parameter θ. The existing methods differen-
tiate from each other in how to formulate the parameter θ and how to learn the parameter (Zhang
et al., 2022). For example, most methods assume an underlying distribution p(y[i]|X[i, :]; θ) (Rat-
ner et al., 2016; 2019; Fu et al., 2020; Wu et al., 2022a; Yu et al., 2022) and focus on how to
represent the distribution and how to learn the parameter θ of the distribution. Another example is
that some approaches treat the accuracy of the LFs as parameters then use iterative methods to learn
the accuracy parameters of the LFs (Arachie & Huang, 2021a;b; Dawid & Skene, 1979) for each

2

Published as a conference paper at ICLR 2023

dataset. Different from all existing methods, our hyper label model directly performs inference on
new datasets without needing an ad hoc dataset-specific parameter learning process.

In principle, X could be any matrix in {+1,−1, 0}n×m and y can be any vector in {+1,−1}n. For
arbitrary X and y, there is no way to infer y from X with a better performance than random guess.
Therefore, all label models implicitly or explicitly make some assumptions about the quality of the
LFs. For example, assuming the accuracy of each LF is in certain range (Ratner et al., 2016) or the
accuracy of LFs are known or can be estimated in a certain way (Arachie & Huang, 2021a;b; Dawid
& Skene, 1979). On top of this, most existing methods also make additional assumptions about
modeling. Specifically, most existing methods assumes a distribution p(y[i]|X[i, :]; θ), then further
assumes the distribution taking a certain form (e.g. probabilistic graphical models (PGM) (Ratner
et al., 2016; Fu et al., 2020; Yu et al., 2022)). Our method only assumes the majority of the LFs is
better than random guess, which is ”minimum” comparing to existing methods.

While our work focuses on PWS, there are other methods to reduce annotation cost. One important
line of work is self-supervised learning where feature representations are learned from self-defined
pseudolabels and can then be used for downstream tasks (Jaiswal et al., 2020; Misra & Maaten,
2020; Liu et al., 2021). Another popular approach is active learning that interactively selects the
most informative data points to annotate (Settles, 2012).

3 PROBLEM SETUP

Given a binary classification task, let n and m denote the number of data points and the number
of LFs respectively. Let X ∈ {+1,−1, 0}n×m denote a label matrix where X[i, j] ∈ {+1,−1, 0}
denotes the weak label of the ith data point provided by the jth LF. The values +1 and −1 denote
the positive and negative classes respectively and 0 denotes abstention, i.e. an LF does not have
enough information to label a data point as either positive or negative (Ratner et al., 2016). The goal
of a label model is to infer the unknown ground-truth label vector y ∈ {+1,−1}n using X , which
typically requires a learning process for each individual dataset, i.e., X .

The Better-than-random Assumption. As discussed in Section 2, in weak supervision literature,
there are often assumptions on the quality of LFs so that one can make a meaningful estimation of y
using X . Different methods make different assumptions (Ratner et al., 2016; Fu et al., 2020; Ratner
et al., 2019; Arachie & Huang, 2021a). In this work, we assume that for each class, the majority of
LFs are better than random. This assumption is realistic since the LFs are typically made by human
and humans might occasionally make mistakes when developing individual LFs, resulting in a small
portion of worse-than-random LFs. Formally, this assumption can be expressed as:

m−1∑
j=0

g(X,y, j,+1) >
m

2
and

m−1∑
j=0

g(X,y, j,−1) >
m

2
, (1)

where g(X,y, j, c) denotes whether the jth LF is better-than-random for class c:

g(X,y, j, c) =

{
1, if

∑n−1
i=0 1X[i,j]=c & y[i]=c >

∑n−1
i=0 1X[i,j]=−c & y[i]=c

0, otherwise;
(2)

We define σ(X,y) = 1 when Equation 1 is satisfied and σ(X,y) = 0 otherwise. We say a pair
(X,y) is valid (or a vector y is valid for a given X) when σ(X,y) = 1. Intuitively, σ constrains the
space of the predicted label vector ŷ and we would only predict one of label vectors with σ(X, ŷ) =
1 for a label matrix X . Note the method we will propose is not tied to our better-than-random
assumption, and it also works with any other assumptions to define σ.

Our Goal. Most existing methods aim to learn an individual label model for each dataset. In con-
trast, our goal is to learn a hyper label model under our better-than-random assumption. The learned
hyper model can be applied to any unseen dataset and produces a prediction of the label vector y
in a single forward pass without any form of dataset-specific parameter learning. Specifically, ex-
isiting methods typically model the distribution p(y[i]|X[i, :]; θ), where X[i, :] is an individual data
point from a dataset, i.e. one row in the label matrix X (that represents all data points) and y[i] is

3

Published as a conference paper at ICLR 2023

the corresponding label; The parameter θ should be learned for every new dataset before perform-
ing inference on each data point using the distribution p(y[i]|X[i, :]; θ). Instead, we aim to learn a
hyper distribution p(y|X,Θ) over all possible datasets with a hyper label model. Once the hyper
label model has learned Θ, for any new dataset Xnew, it could directly produce prediction using the
distribution p(y|Xnew,Θ) without needing to learn a dataset-specific parameter θ.

4 AN ANALYTICAL OPTIMAL SOLUTION

We first show there is an optimal and analytical (therefore no dataset-specific parameter learning)
method to estimate y based on X , i.e., y∗ = h∗(X). This makes a hyper label model possible.

For each label matrix X , let Uy(X) = {y|σ(X,y) = 1} denote the set of valid candidate ys for X .
The expected error of an estimator h(X) of the y on each X is:

ε(X,h) =
∑

y∈Uy(X)

p(y|X)||y − h(X)|| (3)

where p(y|X) is a distribution of y defined on set Uy(X) and || · || denotes L2 loss (i.e. squared
error). p(y|X) is unknown and can be different in different real-world applications (datasets). With-
out additional information apart from X , there is no way to determine the preference of some valid
choices of y over other valid choices of y, so the uniform distribution (i.e. p′(y|X) = 1

|Uy(X)|) is in-
tuitively a good approximation for the unknown p(y|X). In fact, using the uniform distribution has
optimalities in both the worst case and the average case. To maintain the flow of the paper, we defer
the formal definition and proof of the optimalities of using the uniform distribution to Appendix A.
Replacing p(y|X) by the uniform distribution, Equation 3 becomes:

ε′(X,h) =
1

|Uy(X)|
∑

y∈Uy(X)

||y − h(X)|| (4)

ε′(X,h) can be interpreted as the average error of all possible outcomes. An estimator h can be said
to be the optimal if it minimizes the error ε′(X,h), ∀X .

Theorem 1. ∀X , h∗(X) = 1
|Uy(X)|

∑
y∈Uy(X) y is an optimal estimator of the ground-truth in the

sense that it minimizes ε′(X,h).

We omit the proof as it is straightforward (The mean minimizes mean squared error.). Theorem 1
makes sense intuitively: since X is the only information we have, y can be any element in Uy(X)
and there is no information to support preferences of some elements over other elements in Uy(X),
so the best prediction one can make is the average of all elements in Uy(X).

5 LEARNING THE HYPER LABEL MODEL

Although we have the analytical form of the optimal estimator h∗, computing it is of exponential
complexity as Uy(X) is exponentially large for any X . Therefore, we propose to train a neural
network model h to approximate the optimal estimator h∗. The trained model is a hyper label model
that can infer the labels for a new dataset in a single forward pass. To materialize this idea, we need
to answer the following questions: (1) What training data to use? (2) What model architecture to
use? We discuss all these in the following sections.

5.1 TRAINING DATA GENERATION

Given a training set D = {(X1,y1), . . . } and cross-entropy loss `CE(·, ·), our learning objective is:

arg min
h

L(h,D) = arg min
h

|D|∑
i=1

n∑
j=1

`CE(h(Xi)[j],yi[j]), (5)

where we use notation [j] to index the jth item of the preceding vector. The key challenge is how
to obtain the training dataset D. Naively, we could generate a random X and then use the analytical

4

Published as a conference paper at ICLR 2023

method to find y∗, which is however computationally intractable. Therefore, we design an efficient
data generation method that ensures the model trained on our generated data still approximates h∗.
By the following theorem, we show that given a X , uniformly sampling a valid y, i.e., y ∈ Uy(X),
to compose the training dataset D ensures the learned hyper label model is asymptotically close to
the analytical solution.

Theorem 2. ∀X ∈ D, if the corresponding y is uniformly sampled and valid, when |D| → +∞,
then arg minh L(h,D)→ h∗(X) = 1

|Uy(X)|
∑

y∈Uy(X) y.

See proof in Appendix B. Based on the theorem, we derive the following training data generation
method such that for every X , the corresponding y is uniformly sampled and valid. Step 1: We
first randomly generate the shape of X , by randomly draw m (and n) from a uniform distribution
[Lm, Hm] (and [Ln, Hn]). We provide details of how to choose Lm,Hm, Ln andHn in Appendix E
and empirically show the trained model generalizes very well outside of the given regions of shape
(In fact, 13 datasets out from the 14 datasets we evaluate on are outside of the given regions of
shape). Step 2: Given the shape of X , we then generate X and the corresponding y with the values
being sampled uniformly at random. Step 3: If σ(X,y) = 1, we keep it as a training data point. This
process (Step 1, 2, and 3) is repeated untill we obtain enough training data. Apparently, since y is
generated uniformly, for any two different and valid vectors y1 and y2 with σ(X,y1) = σ(X,y2) =
1, the probability of generating y1 equals to the probability of generating y2, i.e. p(y|X) is uniform.
The probability of generating a valid pair in one trial is about 0.2 (see Appendix C).

5.2 MODEL ARCHITECTURE DESIGN

Notably, the input of the model h is a matrix X of size n ×m and the output is a vector ŷ of size
n. Thus, a reasonable instantiation of h should satisfy the following three properties: (1) Ability
to accept arbitrary input size: The number of data points n and LFs m can vary for different
datasets. The model h should be able to accept an input matrix X of arbitrary size. (2) Invariance
to permutation of LFs: Intuitively, randomly shuffling the LFs should not change the prediction of
any data point. Formally, let Pm denote one arbitrary permutation of the m integers in [0,m − 1].
Invariance to permutation of LFs means that h(X[:, Pm]) = h(X), ∀Pm. (3) Equivariance to
permutation of data points: Smilarily, randomly shuffling the data points should not change the
prediction of each data point. Formally, equivariance to permutation of data points means that
h(X[Pn, :]) = h(X)[Pn], ∀Pn where Pn is defined similarly as Pm.

We argue that a graph neural network (GNN) is a good fit here since it can accept input graph of
arbitrary size and is permutation equivariant to the nodes (Sanchez-Lengeling et al., 2021). There-
fore, we attempt to represent the input matrix X as a graph and then use a GNN for h in order
to satisfy the aforementioned properties. Specifically, the left-most matrix and graph in Figure 1
illustrate how we represent an input matrix of size 3× 2 as a graph. Entry X[i, j], the weak label of
the ith data point provided by the jth LF, is represented as a node Vi,j with value X[i, j]. There are
two types of edges: solid yellow edge and dashed blue edge. Nodes from the same LF (i.e. same
column in matrix X) are connected with solid yellow edges and nodes from the same data point (i.e.
same row in matrix X) are connected with dashed blue edges. The graph representation G loses no
information as one can recover X (or its permutation X[Pn, Pm]) from G.

Figure 1: Overall network architecture.

In graph G, if we only look at dashed blue edges, there would be n strongly connected com-
ponents and each corresponds to one data point. Specifically, the strongly connected component
SCCi={Vi,0, Vi,1, . . . } corresponds to the ith data point. The overall model architecture is shown in
Figure 1: first we encode the input graph with a GNN of K layers where each node Vi,j is encoded

5

Published as a conference paper at ICLR 2023

with embedding V ki,j at the kth layer; then after the final layer, we obtain an embedding for each
SCCi (i.e. each data point) by pooling all of its nodes V̄ Ki,: = 1

m

∑
j V

K
i,j ; The embedding of each

SCCi is passed to a Multilayer perceptron (MLP) to obtain the final prediction. This architecture
satisfies all three mentioned properties (see Appendix D.1).

We adopt the standard design of GNN. Since we have two types of edges, we perform message
passing for neighboring nodes connected with each type of edges separately. Specifically, at the kth
layer in the GNN, the embedding V ki,j for the node Vi,j is obtained as:

V ki,j = fk(Ak(W k
1

1

n

∑
q

V k−1q,j ,W k
2

1

m

∑
q

V k−1i,q ,W k
3

1

nm

∑
q,l

V k−1q,l ,W k
4 V

k−1
i,j)) (6)

where W k
1 , ... ,W k

4 are weight matrices; 1
n

∑
q V

k−1
q,j denotes average pooling over neighboring

nodes of Vi,j connected with solid yellow edges and 1
m

∑
q V

k−1
i,q denotes average pooling over

neighboring nodes of Vi,j connected with dashed blue edges; Note we use average pooling because
the graph can be of variable size as recommended by Sanchez-Lengeling et al. (2021) and we also
include the node’s previous embedding V k−1i,j in the average in case the node has no neighbors
(this is equivalent to adding a self-edge to each node.). We also add the global context of the
graph 1

nm

∑
j,j V

k−1
i,j to enable message passing beyond neighboring nodes, following the standard

practice (Gilmer et al., 2017; Battaglia et al., 2018); Ak(·, ·, ·, ·) denotes an aggregation operation
and we use simple concatenation; fk denotes a linear layer with Relu activation.

Handling Abstention. Handling abstention is straightforward in our approach. We can simply
remove the corresponding nodes in our graph. For example, when the jth LF abstains on the ith
data point, we simply remove the node Vi,j from the graph.

5.3 MODEL INFERENCE ON UNSEEN DATASET

The trained hyper label model can be applied to any new dataset with the inference being simply a
single forward pass. During the forward pass, different data points (rows in matrix X) and different
LFs (columns in X) exchange information through message passing in GNN. This information ex-
change step can be regarded as the counterpart of the dataset-specific training step of other methods.

Inference Complexity. The complexity of a forward pass is dominated by the GNN. Although there
are O(mn2) edges in the graph, there is no need to actually materialize the O(mn2) edges and the
complexity of each GNN layer is only O(nm). In each GNN layer, for the three averaged pooling
operations in Equation 6, the first one with complexity O(n) needs to be computed once for each
LF totaling m times so the complexity is O(nm); Similarly, the second one and the third one also
have a complexity of O(mn). Therefore, the time complexity for each GNN layer is O(mn).

5.4 LEVERAGING GROUND TRUTH LABEL IF GIVEN

We pretrain a model h0 on our sythetically generated data. When a small set of ground-truth labels
is provided, our method can incorporate the labels by fine-tuning the model h0 on the provided
labels. Let I denote the set of indices of the elements in y that are provided. For example, when
I = [2, 3], it means y[2] and y[3] are provided. Fine tuning is done by minimizing the cross-entropy
loss

∑
i∈I `CE(h(X)[i],y[i]) and h is initialized as the pretrained model h0. After fine-tuning we

obtain a model h′, and then all labels are obtained by h′(X). We note the fine tuning process is
dataset-specific, i.e. finetuning is done independently and specifically for each dataset X using the
ground-truth labels of that dataset.

5.5 SUPPORTING MULTI-CLASS CLASSIFICATION TASK

We have only considered the binary labels and it turns out that our trained model for binary la-
bels can be easily used to support multi-class classification datasets by decomposing a multi-class
task with C classes to be C one-vs-rest binary classification tasks. For multi-class tasks, we have
X[i, j] ∈ {0, 1, 2, . . . C} where 0 still denotes abstention and other numbers denote all the classes.
We construct the label matrix for the cth class as Xc[i, j] = 1 if X[i, j] = c, Xc[i, j] = 0 if
X[i, j] = 0, and otherwise Xc[i, j] = −1. In this way, we obtain C label matrices {X1, . . . Xc}.

6

Published as a conference paper at ICLR 2023

We apply our pre-trained model h0 on each label matrix of each class and obtain C predicted
probability vectors (p1, . . . ,pc). Then, for the ith data point, its soft label over the C classes is
(p1[i]∑

c pc[i]
, . . . , pc[i])∑

c pc[i]
). We show in experiments this simple method works well on multi-class

datasets (4 datasets out of the 14 datasets we use are multi-class datasets).

6 EXPERIMENTS

We evaluate the performance of all label models under both unsupervised and semi-supervised set-
tings. We provide additional experimental results on the performance of end models trained on the
generated labels by different label models in Appendix F.2. The code and instructions to reproduce
the experiments are in supplementary materials.

Datasets. We use all 14 classification datasets in a recent weak supervision benchmark (Zhang et al.,
2021) that are from diverse domains (e.g. income/sentiment/spam/relation/question/topic classifica-
tion tasks). We highlight these datasets are only used for evaluation after our model is trained on
synthetically generated data, and we never used these datasets during training. Table 1 shows the
statistics of all datasets. We also use the metrics provided by the benchmark (Zhang et al., 2021)
for each dataset (as different datasets need different metrics depending on their application back-
ground). All LFs are from the original authors of each dataset and are hosted in the benchmark
project (Zhang, 2022a).

Table 1: 14 classification datasets from the weak supervision benchmark (Zhang et al., 2021)
Dataset Census IMDB Yelp Youtube SMS Spouse CDR Commercial Tennis Basketball AGNews TREC SemEval ChemProt

#class 2 2 2 2 2 2 2 2 2 2 4 6 9 10

metric F1 acc acc acc F1 F1 F1 F1 F1 F1 acc acc acc acc

#LF 83 5 8 10 73 9 33 4 6 4 9 68 164 26

#Data 31925 25000 38000 1956 5571 27766 14023 81105 8803 20256 120000 5965 2641 16075

We consider baselines for both unsupervised and semi-supervised label aggregation.
Unsupervised Baselines: (1) Majority Vote (MV). The predicted label of each data point is the
most common label given by LFs. (2) Data Programming (DP) (Ratner et al., 2016). DP uses a
probabilistic graph model (PGM) where each LF is a node and the hidden ground truth is a latent
variable. (3) Flyingsquid (FS) (Fu et al., 2020). FS also uses a PGM but gives a closed-form solution
with some assumptions. (4) MeTaL (Ratner et al., 2019). MeTaL infers the ground truth using a
matrix completion model. The latest version of the popular Snorkel system (snorkel team, 2022b)
adopts MeTaL as its default label model. (5) NPLM (Yu et al., 2022). This method is also based on
a PGM and assumes LFs are conditionally independent. It supports partial LFs that predict a subset
of class labels and is designed to be very efficient. (6) Dawid and Skene’s method (DS) (Dawid &
Skene, 1979). DS models the confusion matrix of each LF with respect to the ground truth labels.
The confusion matrix is learned by an Expectation-Maximization algorithm. (7) Enhanced Bayesian
Classifier Combination (EBCC) (Li et al., 2019). This method models the joint distribution of LFs
as a mixture of multiple low dimensional tensors. (8) Constrained Label Learning (CLL) (Arachie &
Huang, 2021a). This method also minimizes the average prediction error where the error is defined
using the unknown expected errors of each LFs. (9) HLM. This is our learned Hyper Label Model .
Semi-supervised Baselines: (1) Semi-supervised DS (Dawid & Skene, 1979). This is the semi-
supervised extension of the Dawid and Skene’s method. (2) AMCL-CC (Mazzetto et al., 2021). This
method uses labeled data to construct feasibility constraints and provides performance guarantees.
(3) Random Forest. This method trains a random forest classifier with X as the features using
the provided labels. (4) Semi-supervised HLM. The semi-supervised version of our method HLM
obtained by finetuning on the provided labels.

Note the baseline methods require a dataset-specific learning step, we use the transductive setting
(data points used in unsupervised learning is also used to evaluate the learned model) following prior
work (Mazzetto et al., 2021; Zhang, 2022b).

Implementation. We provide the implementation details of our method (e.g. setups and all pa-
rameters in data generation/model architecture/model training/validation) in Appendix E and imple-
mentation details of the experiments (e.g. hardware/datasets/baselines/setups) in Appendix G. Since

7

Published as a conference paper at ICLR 2023

model training is important, here we provide a brief overview on training HLM. We generate each
batch of data on-the-fly with a batch size of 50, i.e. each batch consists of 50 pairs of generated
(X,y). We train our model until training loss converges (loss doesn’t decrease in 104 iterations),
which takes about 5×104 iterations. We noticed that in different runs, the performance of the trained
model can vary, so we use a synthetic validation set D′ to select the best run out of ten runs. The
validation set is generated with a different method from a prior work (Zhang et al., 2021).

6.1 UNSUPERVISED LABEL AGGREGATION

The performance of all methods on all 14 datasets averaged over five runs are shown in Table 2. To
maintain the table to be readable, we only show the error bars for the averaged scores. Again, for our
method HLM, we note only synthetically generated data is used for training and the 14 datasets are
only used to evaluate the trained model. We note MV and our method HLM are deterministic while
the other methods can give different results with different seeds. For HLM, the error bar is obtained
by repeating the training process multiple times and then performing inference with different trained
models.

Main results. First, our results align with the benchmark (Zhang et al., 2021) where MeTaL is
slightly better than MV. The difference in numbers from the benchmark (Zhang et al., 2021) is due
to that we use a transducive setting following (Mazzetto et al., 2021; Zhang, 2022b). Second, HLM
outperforms the best baseline CLL by 1.4 points on average. Third, HLM is the best on 8 out of 14
datasets; On the remaining 6 datasets, HLM is the second best or is close to the second best method.

Table 2: Performance (F1 or acc score depending on the dataset) on all datasets
Dataset Census IMDB Yelp Youtube SMS Spouse CDR Commercial Tennis Basketball AGNews TREC SemEval ChemProt AVG.
MV 22.2 75.0 74.4 80.3 84.0 51.6 63.3 85.9 85.0 18.9 81.4 49.9 84.2 53.7 65.0±0.0

DP 11.1 74.4 71.9 84.5 83.8 50.3 33.9 77.5 85.1 17.1 81.7 47.2 73.5 56.2 60.6±0.1

FS 17.1 74.5 74.0 83.7 74.4 49.9 69.6 82.5 84.0 17.1 81.3 50.1 23.8 52.4 59.6±0.0

MeTaL 51.1 75.0 74.4 86.0 57.7 49.9 67.9 83.7 80.9 19.0 82.2 52.1 84.2 52.9 65.5±0.2

NPLM 0.0 55.2 68.3 45.2 0.0 34.3 0.0 76.5 85.0 0.0 81.3 36.5 30.2 48.4 40.1±0.0

DS 0.0 74.4 68.3 45.2 65.0 34.3 0.1 77.8 85.0 17.1 26.6 20.9 73.5 35.1 44.5±0.0

EBCC 0.0 74.4 69.6 45.2 0.0 34.3 8.7 77.5 85.0 17.1 27.8 20.8 30.2 35.0 37.6±0.1

CLL 53.6 72.7 72.0 86.1 84.2 50.0 64.9 84.8 83.5 17.5 80.7 59.0 84.2 53.1 67.6±0.0

HLM 56.1 75.0 74.4 91.4 84.1 51.6 71.0 83.6 84.3 17.1 81.4 59.8 84.2 52.3 69.0±0.2

Efficiency. We report the running time in Table 3. When measuring the running time, we use
GPU for methods that support GPU (MeTaL, NPLM, and HLM). CPU-only running times are in
Appendix F.1. HLM requires less than 1 seconds on every dataset. HLM is on average 6 times (and
can be up to 18 times) faster than the fastest baseline (except Majority Vote) and is on average 50
times faster than the baseline (CLL) with the best accuracy. This is because all prior methods (except
Majority Vote) require an unsupervised learning process while HLM performs prediction in a single
forward pass just like Majority Vote. We note that these 14 benchmark datasets are relatively small
(as creating a large benchmark dataset with ground-truth labels is expensive). In industry scenarios,
LFs can be applied on millions of data points to create labels (Bach et al., 2019). The runtime gain
of HLM will be more significant and HLM will enable the LF development process to be more
interactive.

6.2 SEMI-SUPERVISED LABEL AGGREGATION

For each dataset, we randomly sample Ngt data points as the data points with known ground-truth
labels and we evaluate on the remaining data points. When Ngt > 0.7n, we only select 0.7n data
points to keep 30% of the data for evaluation in order to have a reliable evaluation score. We vary
Ngt from 10 to 10000. When finetuning HLM (with the method in Section 5.4), we use a smaller
learning rate lr = 0.0001 to prevent overfitting (originally lr = 0.001). Intuitively, when Ngt is
small, we trust the pre-trained HLM more than the provided labels; when Ngt is large, we trust
the provided labels more than the pre-trained HLM. Therefore, we relate the number of finetuning
epochs to Ngt by setting the number of epochs as

√
Ngt.

8

Published as a conference paper at ICLR 2023

Table 3: Running time (seconds) of label aggregation on all datasets
Dataset Census IMDB Yelp Youtube SMS Spouse CDR Commercial Tennis Basketball AGNews TREC SemEval ChemProt AVG.
MV <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

DP 147.8 18.8 40.5 2.5 14.4 8.4 29.5 8.5 10.0 14.9 225.0 100.8 190.2 213.0 73.2

FS 21.1 1.7 3.7 0.2 3.2 0.8 3.7 0.6 0.6 14.9 22.1 16.3 69.0 26.4 12.2

MeTaL 0.5 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.5 3.6 4.6 3.6 1.2

NPLM 15.7 4.0 5.7 0.4 2.2 1.8 6.3 11.2 1.5 3.4 27.9 5.4 3.4 12.1 7.2

DS 2.4 79.8 116.1 0.2 3.6 0.9 29.7 267.7 4.6 2.1 16.3 78.3 36.6 255.9 63.9

EBCC 3.9 5.1 52.5 2.2 2.8 2.3 5.8 3.0 2.5 6.0 18.0 9.0 9.8 84.8 14.8

CLL 33.7 2.9 6.6 0.5 3.8 1.4 6.0 7.4 1.1 2.0 28.5 12.4 20.5 21.3 10.6

HLM 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.2 0.3 0.2 0.2

The results are shown in Figure 2. When Ngt > 40, semi-supervised HLM outperforms unsuper-
vised HLM. Semi-supervised HLM outperforms the other three baselines when Ngt < 1000 and
ties with AMCL-CC and Random Forest when Ngt > 1000. We highlight semi-supervised HLM
is also the most efficient, e.g. when Ngt = 10000, the running time averaged over all datasets is
3.1 seconds for semi-supervised HLM, 61.3 seconds for Semi-supervised DS, 261.8 seconds for
AMCL-CC, and 4.8 seconds for random forest.

Figure 2: Semi-supervised performance.

Table 4: Ablation study. ”*” denotes re-
placing the component it precedes with
a naive one.

Avg score

HLM 69.0

*data generation 64.2
*model architecture 61.8
*better-than-random 67.6

6.3 ABLATION STUDY

We perform ablation study (under unsupervised label aggregation setting) in three aspects: (1) We
replace our data generation method with the one proposed in (Zhang et al., 2021) that was originally
used to generate LFs to evaluate label models. (2) We replace our model architecture with a naive
architecture based on MLP and another architecture based on DeepSet (Zaheer et al., 2017) (see
details in Appendix G). We report the best result of the two architectures. (3) We replace our
better-than-random assumption in Equation 1 with a straightforward assumption that each LF is
better than random in each class. The results are shown in Table 4. Replacing each component
reduces performance. In particular, replacing our assumption with the straightforward assumption
decreases performance because the assumption that each LF is better-than-random on each class is
not satisfied in the real-world datasets.

7 CONCLUSION

We present a hyper label model for programmatic weak supervision, which infers the ground-truth
labels for each dataset in a single forward pass and does not require any ad-hoc dataset-specific
parameter learning step. The hyper label model approximates an analytical optimal method (which
is computationally intractable due to its exponential complexity). We generate synthetic training
data that ensures the trained hyper label model to approximate the analytical solution and design
a model architecture based on GNN to ensure the model to be invariant to the permutation of LFs
and equivariant to the permutation of data points. We experimentally verify the superiority of the
hyper label model in both accuracy and efficiency with both unsupervised and semi-supervised label
aggregation settings over 14 benchmark datasets.

9

Published as a conference paper at ICLR 2023

REFERENCES

sklearn.ensemble.RandomForestClassifier, May 2022. URL https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html. [Online; accessed 2. May 2022].

Chidubem Arachie and Bert Huang. Constrained labeling for weakly supervised learning. In Un-
certainty in Artificial Intelligence, pp. 236–246. PMLR, 2021a.

Chidubem Arachie and Bert Huang. A general framework for adversarial label learning. J. Mach.
Learn. Res., 22:118–1, 2021b.

Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik
Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case study in de-
ploying weak supervision at industrial scale. In Proceedings of the 2019 International Conference
on Management of Data, pp. 362–375, 2019.

BatsResearch. yu-aistats22-code, May 2022a. URL https://github.com/
BatsResearch/yu-aistats22-code. [Online; accessed 1. May 2022].

BatsResearch. mazzetto-icml21-code, September 2022b. URL https://github.com/
BatsResearch/mazzetto-icml21-code. [Online; accessed 5. Sep. 2022].

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Nilaksh Das, Sanya Chaba, Renzhi Wu, Sakshi Gandhi, Duen Horng Chau, and Xu Chu. Gog-
gles: Automatic image labeling with affinity coding. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 1717–1732, 2020.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates
using the em algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28
(1):20–28, 1979.

Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Ludolf Erwin Meester.
A Modern Introduction to Probability and Statistics: Understanding why and how. Springer,
2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jared A Dunnmon, Alexander J Ratner, Khaled Saab, Nishith Khandwala, Matthew Markert, Hersh
Sagreiya, Roger Goldman, Christopher Lee-Messer, Matthew P Lungren, Daniel L Rubin, et al.
Cross-modal data programming enables rapid medical machine learning. Patterns, 1(2):100019,
2020.

Jason A Fries, Paroma Varma, Vincent S Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared
Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, et al. Weakly supervised classifi-
cation of aortic valve malformations using unlabeled cardiac mri sequences. Nature communica-
tions, 10(1):1–10, 2019.

Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher Ré. Fast
and three-rious: Speeding up weak supervision with triplet methods. In International Conference
on Machine Learning, pp. 3280–3291. PMLR, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Godfrey Harold Hardy, John Edensor Littlewood, George Pólya, György Pólya, et al. ”hölder’s
inequality and its extensions.”. In Inequalities, 2nd ed., chapter 2.7-2.8, pp. 21–26. Cambridge
university press, 1988.

10

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://github.com/BatsResearch/yu-aistats22-code
https://github.com/BatsResearch/yu-aistats22-code
https://github.com/BatsResearch/mazzetto-icml21-code
https://github.com/BatsResearch/mazzetto-icml21-code

Published as a conference paper at ICLR 2023

HazyResearch. flyingsquid, April 2022. URL https://github.com/HazyResearch/
flyingsquid. [Online; accessed 26. Apr. 2022].

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Yinghao Li, Pranav Shetty, Lucas Liu, Chao Zhang, and Le Song. Bertifying the hidden markov
model for multi-source weakly supervised named entity recognition. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6178–6190, 2021.

Yuan Li, Benjamin Rubinstein, and Trevor Cohn. Exploiting worker correlation for label aggregation
in crowdsourcing. In International Conference on Machine Learning, pp. 3886–3895. PMLR,
2019.

Pierre Lison, Jeremy Barnes, Aliaksandr Hubin, and Samia Touileb. Named entity recognition
without labelled data: A weak supervision approach. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 1518–1533, 2020.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data En-
gineering, 2021.

manzilzaheer. DeepSets, November 2022. URL https://github.com/manzilzaheer/
DeepSets. [Online; accessed 9. Nov. 2022].

Jose Mathew, Meghana Negi, Rutvik Vijjali, and Jairaj Sathyanarayana. Defraudnet: An end-to-end
weak supervision framework to detect fraud in online food delivery. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 85–99. Springer, 2021.

Alessio Mazzetto, Cyrus Cousins, Dylan Sam, Stephen H Bach, and Eli Upfal. Adversarial multi
class learning under weak supervision with performance guarantees. In International Conference
on Machine Learning, pp. 7534–7543. PMLR, 2021.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,
pp. 1003–1011, 2009.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6707–6717, 2020.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

11

https://github.com/HazyResearch/flyingsquid
https://github.com/HazyResearch/flyingsquid
https://github.com/manzilzaheer/DeepSets
https://github.com/manzilzaheer/DeepSets

Published as a conference paper at ICLR 2023

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB En-
dowment. International Conference on Very Large Data Bases, volume 11, pp. 269. NIH Public
Access, 2017.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and Christo-
pher Ré. Training complex models with multi-task weak supervision. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 4763–4771, 2019.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B Wiltschko. A gentle
introduction to graph neural networks. Distill, 6(9):e33, 2021.

Burr Settles. Active learning. Synthesis lectures on artificial intelligence and machine learning, 6
(1):1–114, 2012.

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré. Incremental
knowledge base construction using deepdive. In Proceedings of the VLDB Endowment Interna-
tional Conference on Very Large Data Bases, volume 8, pp. 1310. NIH Public Access, 2015.

snorkel team. snorkel-extraction, April 2022a. URL https://github.com/
snorkel-team/snorkel-extraction/blob/master/snorkel/learning/
gen_learning.py. [Online; accessed 26. Apr. 2022].

snorkel team. snorkel, April 2022b. URL https://github.com/snorkel-team/
snorkel. [Online; accessed 26. Apr. 2022].

sukrutrao. Fast-Dawid-Skene, April 2022. URL https://github.com/sukrutrao/
Fast-Dawid-Skene. [Online; accessed 26. Apr. 2022].

Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan. Zeroer:
Entity resolution using zero labeled examples. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 1149–1164, 2020.

Renzhi Wu, Prem Sakala, Peng Li, Xu Chu, and Yeye He. Demonstration of panda: A weakly su-
pervised entity matching system. Proc. VLDB Endow., 14(12):2735–2738, oct 2021. ISSN 2150-
8097. doi: 10.14778/3476311.3476332. URL https://doi.org/10.14778/3476311.
3476332.

Renzhi Wu, Alexander Bendeck, Xu Chu, and Yeye He. Ground truth inference for weakly super-
vised entity matching, 2022a. URL https://arxiv.org/abs/2211.06975.

Renzhi Wu, Nilaksh Das, Sanya Chaba, Sakshi Gandhi, Duen Horng Chau, and Xu Chu. A cluster-
then-label approach for few-shot learning with application to automatic image data labeling. ACM
Journal of Data and Information Quality (JDIQ), 14(3):1–23, 2022b.

Renzhi Wu, Bolin Ding, Xu Chu, Zhewei Wei, Xiening Dai, Tao Guan, and Jingren Zhou. Learning
to be a statistician: Learned estimator for number of distinct values. Proc. VLDB Endow., 15
(2):272–284, feb 2022c. ISSN 2150-8097. doi: 10.14778/3489496.3489508. URL https:
//doi.org/10.14778/3489496.3489508.

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip Levis, and
Christopher Ré. Fonduer: Knowledge base construction from richly formatted data. In Pro-
ceedings of the 2018 international conference on management of data, pp. 1301–1316, 2018.

Peilin Yu, Tiffany Ding, and Stephen H. Bach. Learning from multiple noisy partial labelers. In
Artificial Intelligence and Statistics (AISTATS), 2022.

12

https://github.com/snorkel-team/snorkel-extraction/blob/master/snorkel/learning/gen_learning.py
https://github.com/snorkel-team/snorkel-extraction/blob/master/snorkel/learning/gen_learning.py
https://github.com/snorkel-team/snorkel-extraction/blob/master/snorkel/learning/gen_learning.py
https://github.com/snorkel-team/snorkel
https://github.com/snorkel-team/snorkel
https://github.com/sukrutrao/Fast-Dawid-Skene
https://github.com/sukrutrao/Fast-Dawid-Skene
https://doi.org/10.14778/3476311.3476332
https://doi.org/10.14778/3476311.3476332
https://arxiv.org/abs/2211.06975
https://doi.org/10.14778/3489496.3489508
https://doi.org/10.14778/3489496.3489508

Published as a conference paper at ICLR 2023

yuan li, May 2022. URL https://github.com/yuan-li/
truth-inference-at-scale. [Online; accessed 1. May 2022].

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Jieyu Zhang. Wrench Project Homepage, 2022a. URL https://github.com/JieyuZ2/
wrench. [Online; accessed 12. May. 2022].

Jieyu Zhang. Wrench Github Issue. ”Question on train/val/test split when evaluating label model.”,
2022b. URL https://github.com/JieyuZ2/wrench/issues/27. [Online; accessed
12. May. 2022].

Jieyu Zhang, Yue Yu, , Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner. Wrench: A
comprehensive benchmark for weak supervision. In J. Vanschoren and S. Yeung (eds.), Proceed-
ings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1,
2021.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on program-
matic weak supervision. arXiv preprint arXiv:2202.05433, 2022.

Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. Truth inference in
crowdsourcing: Is the problem solved? Proceedings of the VLDB Endowment, 10(5):541–552,
2017.

13

https://github.com/yuan-li/truth-inference-at-scale
https://github.com/yuan-li/truth-inference-at-scale
https://github.com/JieyuZ2/wrench
https://github.com/JieyuZ2/wrench
https://github.com/JieyuZ2/wrench/issues/27

Published as a conference paper at ICLR 2023

A OPTIMALITIES OF THE UNIFORM DISTRIBUTION

We aim to approximate an unknown distribution p(y|X) (which can be different in different
applications) with an fixed distribution q(y|X). Since both distributions are defined on a fi-
nite set Uy(X), we can use the probabilities of the elements in Uy(X) to represent each of the
two distributions. Specifically, we represent p(y|X) as p = {p1, . . . , p|Uy(X)|} and q(y|X) as
q = {q1, . . . , q|Uy(X)|}. Similarly, we denote the uniform distribution (i.e. p′(y|X) = 1

|Uy(X)|) as
u = {u1, . . . u|Uy(X)|}. Apparently, ∀i, we have 0 ≤ pi ≤ 1, 0 ≤ qi ≤ 1, ui = 1

|Uy(X)| ,
∑
i pi = 1,∑

i qi = 1, and
∑
i ui = 1. Using the uniform distribution u to approximate p is the optimal in both

the worst case and the average case. The two optimalities are formally defined as the following:

(1) Worst-case Optimal: The uniform distribution u has the minimum maximum distance to the
unknown distribution p:

u = argmin
q

max
p

dist(p, q) (7)

where ”dist” can be the KL divergence or Lα distance ∀α > 1. Note the conventional name is ”Lp”
distance, but to avoid reusing the same notation p for different meanings, we use the name ”Lα”
distance instead.

(2) Average-case Optimal: The uniform distribution u has the minimum expected KL divergence
to the unknown distribution p under a mild assumption. Let P(p) denote the probability of the
unknown distribution being a specific distribution p (e.g. P(u) would be denoting the probability
of the unknown distribution being the uniform distribution i.e. p(p = u)). Formally:

u = argmin
q

Ep[KL(p, q)] = argmin
q

∫
p

KL(p, q)P(p)dp (8)

under the assumption that P(p) is centrally symmetric, formally:∫
p

P(p)pdp = u (9)

We provide a formal proof for the two optimalities in the following:

Proof for Worst-case Optimal.

Proof. We first prove Equation 7 for KL divergence.
max
p

KL(p, q)

= max
p

∑
i

pi log
pi
qi

= max
p

∑
i

pi log pi + pi log
1

qi

(10)

The maximum of the first term is zero, as pi log pi ≤ 0 due to pi ≥ 0 and log pi ≤ 0. The maximum
is obtained when there is a j such that pj = 1 and pi = 0, ∀i 6= j;

j also comes into play in the maximum of the second term. We have
∑
i pi log 1

qi
≤∑

i pi maxk log 1
qk

= maxk log 1
qk

. Therefore, the maximum of of the second term is maxi log 1
qi

which is obtained when j = arg maxi log(1
qi

), pj = 1 and pi = 0, ∀i 6= j.

We can see that the maximum of both terms is achieved at the same time with j = arg maxi log(1
qi

),
pj = 1 and pi = 0, ∀i 6= j. The maximum value is maxi log 1

qi
.

Therefore,

max
p

KL(p, q) = max
i

log
1

qi

= log
1

mini qi
≥ log |Uy(X)|

(11)

14

Published as a conference paper at ICLR 2023

The inequality is because mini qi ≤ 1
|Uy(X)| (otherwise,

∑
i qi >

∑
i

1
|Uy(X)| > 1). The equality

of the inequality is obtained when q is the uniform distribution, i.e. q = u. Therefore, u =
argminq maxp KL(p, q).

Next, we prove Equation 7 for Lα distance ∀α > 1.

The Lα distance is defined as:

Lα(p, q) = (
∑
i

|pi − qi|α)1/α (12)

Take the derivative of Lα(p, q) with respect to a pi:

∂Lα(p, q)

pi
=

{
1
α (
∑
i |pi − qi|α)1/α−1α(pi − qi)α−1 if pi ≥ qi

− 1
α (
∑
i |pi − qi|α)1/α−1α(qi − pi)α−1 otherwise

(13)

This means if pi − qi ≥ pj − qj , ∂Lα(p,q)pi
≥ ∂Lα(p,q)

pj
. Therefore, replacing pi, pj with pi + δ,

pj − δ where δ > 0 increases Lα(p, q) and eventually replacing pi, pj with pi + pj , 0 increases
Lα(p, q). Let k = arg maxi pi − qi. For each pair (pk, pi)i 6= k, we replace pk to be pk + pi and
pi to be 0 and eventually we have pk = 1 and pi = 0, i 6= k:

(
∑
i

|pi − qi|α)1/α ≤ (
∑
i 6=k

|qi|α + |1− qk|α)1/α (14)

Apparently, when k = arg mini qk, the right hand side is further maximized. Without loss of
generality, we can assume q1 ≤ q2 ≤ · · · ≤ q|Uy(X)|. Therefore:

max
p

Lα(p, q) = ((1− q1)α +
∑
i>1

qαi)1/α (15)

By the Hölder’s inequality (Hardy et al., 1988):∑
i>1

qαi ≥ (|Uy(X)| − 1)
1−α

(
∑
i>1

qi)
α = (|Uy(X)| − 1)

1−α
(1− q1)α (16)

where equality in the inequality is obtained when q2 = · · · = q|Uy(X)|. Therefore:

max
p

Lα(p, q) ≥((1− q1)α + (|Uy(X)| − 1)
1−α

(1− q1)α)1/α

≥((1− 1

|Uy(X)|
)α + (|Uy(X)| − 1)

1−α
(1− 1

|Uy(X)|
)α)1/α

=((
|Uy(X)| − 1

|Uy(X)|
)α +

|Uy(X)| − 1

|Uy(X)|α
)1/α

(17)

where the second inequality is because ((1−q1)α+(|Uy(X)| − 1)
1−α

(1−q1)α)1/α monotonically
decreases as q1 increases and we have q1 ≤ 1

|Uy(X)| because q1 is the minimum in q, i.e. q1 ≤ q2 ≤
. . . q|Uy(X)|.

In summary, the minimum of maxp Lα(p, q) is obtained when q2 = q3 = · · · = q|Uy(X)| and
q1 = 1

|Uy(X)| , which means q1 = q2 = q3 = · · · = q|Uy(X)| = 1
|Uy(X)| . In other words, q = u.

Therefore, u = argminq maxp Lα(p, q)

Proof for Average-case Optimal.

Proof.

Ep[KL(p, q)] =

∫
p

KL(p, q)P(p)dp

=

∫
p

P(p)
∑
i

pi log
pi
qi
dp

=

∫
p

P(p)
∑
i

pi log pidp−
∫
p

P(p)
∑
i

pi log qidp

(18)

15

Published as a conference paper at ICLR 2023

Since the first term is irrelevant to q, we have:

Ep[KL(p, q)] =constant−
∫
p

P(p)
∑
i

pi log qidp

=constant−
∑
i

log qi

∫
p

P(p)pidp

=constant−
∑
i

ui log qi

(19)

where the last equation is by the assumption thatP(p) is centrally symmetric, i.e.
∫
p
P(p)pdp = u.

Therefore:

Ep[KL(p, q)] =constant−
∑
i

ui log qi

=constant− 1

|Uy(X)|
∑
i

log qi

=constant− 1

|Uy(X)|
log
∏
i

qi

≥constant− 1

|Uy(X)|
log((

∑
i qi

|Uy(X)|
)|Uy(X)|)

=constant + log(|Uy(X)|)

(20)

where the inequality is the inequality of arithmetic and geometric means. The equality of the in-
equality is obtained when q1 = q2 = · · · = q|Uy(X)| = 1

|Uy(X)| , i.e. q = u. Therefore,
u = argminq Ep[KL(p, q)].

B PROOF FOR THEOREM 2

∀X ∈ D, if the corresponding y is uniformly sampled and valid, when |D| → +∞, then
arg minh L(h,D)→ h∗(X) = 1

|Uy(X)|
∑

y∈Uy(X) y.

Proof. For each X , let D(X) denote the subset {(X,y′
1), (X,y′

2), . . . } of D. The cross entropy
loss on D(X) is:

−
|D(X)|∑
i=1

n∑
j=1

1 + y′
i[j]

2
log(

1 + h(X)[j]

2
) + (1− 1 + y′

i[j]

2
) log(1− 1 + h(X)[j]

2
) (21)

where n denotes the number of rows in X; We use [j] to index the jth item of its preceding vector;
We convert the region of y′

i[j] and h(X)[j] from [−1, 1] to [0, 1] by adding 1 then dividing by 2. By
taking derivative and setting it to zero, the above equation is minimized when:

h(X)[j] =

∑|D(X)|
i=1 y′

i[j]

|D(X)|
, ∀j (22)

When |D| → +∞ (so that |D(X)| → +∞), by the law of large numbers (Dekking et al.,

2005), h(X)[j] =
∑|D(X)|
i=1 y′

i[j]

|D(X)| = E(y[j]|X). Since p(y|X) is uniform, E(y[j]|X) =∑
y∈Uy(X)

1
|Uy(X)|y[j] for ∀j. This means h(X) =

∑
y∈Uy(X)

1
|Uy(X)|y = h∗(X).

C PROBABILITY OF GENERATING A VALID PAIR

To simplify our analysis, in the following, we only consider y that contains both −1 and +1, which
has a probability p0 = 1 − 2

2n . p0 ≈ 1 when n ≥ 100 (When generating data, we sample n from
[Ln, Hn] = [100, 2000] which we explain in Appendix E).

16

Published as a conference paper at ICLR 2023

Let S denote the set of all possible pairs of (X,y) and let U = {(X,y)|σ(X,y) = 1} de-
note the set of all valid pairs. S is made up by three subsets: U = {(X,y)|σ(X,y) =

1}, Se = {(X,y)|
∑m−1
j=0 g(X,y, j,−1) = m

2 or
∑m−1
j=0 g(X,y, j, 1) = m

2 } and Sc =
S − U − Se. Apparently Sc is also made up by three subsets, i.e. Sc = Sc1 ∪ Sc2 ∪
Sc3 where Sc1 = {(X,y)|

∑m−1
j=0 g(X,y, j,−1) < m

2 and
∑m−1
j=0 g(X,y, j, 1) < m

2 },
Sc2 = {(X,y)|

∑m−1
j=0 g(X,y, j,−1) < m

2 and
∑m−1
j=0 g(X,y, j, 1) > m

2 } and Sc3 =

{(X,y)|
∑m−1
j=0 g(X,y, j,−1) > m

2 and
∑m−1
j=0 g(X,y, j, 1) < m

2 }.
Lemma 3. |Sc1 | = |Sc2 | = |Sc3 | = |U|.

Proof. For each element (X,y) in Sc1 ,
∑m−1
j=0 g(X,y, j,−1) < m

2 and
∑m−1
j=0 g(X,y, j, 1) < m

2 .
We can flip X[y = 1, :] to be −X[y = 1, :] and flip X[y = −1, :] to be −X[y = −1, :]. After
flipping, we obtain pair (X ′,y), and apparently (X ′,y) ∈ U . This means for each element in Sc1
there is a corresponding element in U , so we have |Sc1 | ≤ |U|. Similarly, for each element in U ,
we can do flipping to get an element in Sc1 , so we also have |U| ≤ |Sc1 |. Therefore, |U| = |Sc1 |.
Similarly, one can show that |U| = |Sc2 | and |U| = |Sc3 |.

By Lemma 3, |Sc| = |Sc1 |+ |Sc2 |+ |Sc3 | = 3|U|. When m is odd, apparently, |Se| = 0. Therefore,
the probability of a randomly generated pair being valid is:

p((X,y) ∈ U|m) =
|U|
|S|

=
|U|

|U|+ |Se|+ |Sc|
=

1

4
(23)

Next, we consider when m is even. To simplify our analysis, approximately, p(g(X,y, j,−1)) = 1
2

and p(g(X,y, j, 1)) = 1
2 . This is because the probability that the number of correct elements exactly

equal to the number of incorrect elements for each class is extremely small due to n being relatively
large. Therefore, we have:

p((X,y) ∈ Se|m) =

(
m
m/2

)
2m

(24)

Therefore:

p((X,y) ∈ U|m) = (1−

(
m
m/2

)
2m

)
1

4
(25)

Since m is uniformly sampled from [Lm, Hm] = [2, 60] (which we explain in Appendix E), we
have:

p((X,y) ∈ U) =
∑

m,m%2=1,Lm≤m≤Hm

1

Hm − Lm
1

4
+

∑
m,m%2=0,Lm≤m≤Hm

1

Hm − Lm
(1−

(
m
m/2

)
2m

)
1

4

=
1

2
× 1

4
+

∑
m,m%2=0,Lm≤m≤Hm

1

Hm − Lm
(1−

(
m
m/2

)
2m

)
1

4

≈0.232
(26)

This means the probability of generating a valid pair in one trial is about 0.232.

D DISCUSSIONS

D.1 THE PROPOSED ARCHITECTURE SATISFIES THE THREE PROPERTIES

To see how the proposed architecture in Figure 1 satisfies the three properties mentioned in the
begining of Section 5.2. First, GNN accepts arbitrary input size, so X can be of any size; Second,
GNN is permutation equivariant to the nodes, so the output embeddings of GNN are equivariant
to the permutation of data points and LFs. After average pooling for each data point over all LFs
(each SCC with dashed blue edges), the network is invariant to the permutation of LFs and is still
equivariant to the permutation of data points.

17

Published as a conference paper at ICLR 2023

D.2 CROWDSOURCING METHODS FOR WEAK SUPERVISION

The two crowdsourcing methods have the worst performance in Table 2. The reason that crowd-
sourcing methods don’t work well on weak supervision datasets has not been investigated or dis-
cussed in prior work, and we provide our conjecture. First, the label matrix in crowdsourcing tends
to be extremely sparse as there can be many crowd workers while each crowd worker might anno-
tate a few data points then quit (Zheng et al., 2017); In contrast, in weak supervision, each LF is
applied to each data point. Second, since crowd workers are humans, the labels provided by the
crowd workers tend to have higher accuracy; In contrast, a LF when applied on data unseen by the
LF developer can predict very noisy labels. In other words, the existing crowdsourcing methods are
designed to work in the sparse scenario with weak labels of higher accuracy, so that they don’t work
well in the weak supervision setting with a denser and noisier label matrix.

E IMPLEMENTATION DETAILS OF HLM

Data Generation. When generating each pair (X,y), we first randomly generate n andm, the num-
ber of rows/columns of matrix X . Note n is the number of data points and m is the number of LFs.
As we mentioned, we first sample n andm uniformly from [Ln, Hn] and [Lm, Hm] respectively. We
set [Ln, Hn] = [100, 2000] where Ln = 100 is because typically there are at least hundreds of data
points otherwise it is not necessary to write LFs as one can just manually label all data points and
we set Hn = 2000 due to memory limit during model training. We set [Lm, Hm] = [2, 60] where
Lm = 2 is because when there is only one LF there is no need to aggregate and we setHm = 60 due
to memory limit during model training; We highlight our trained model generalizes well to number
of LFs and number of data points (see Table 1) that are not in the region [Lm, Hm] and [Ln, Hn]
as we have shown in experiments. Once we have n and m, we invoke the method mentioned in
Section 5.1 to generate (X,y).

Since our data is synthetically generated, there is no need to generate a fixed training set. Our
training data is generated on the fly, i.e. during training when the data loader fetches the next pair of
(X,y), a new pair is immediately generated and returned.

Model Architecture. We implement our model architecture in Pytorch (Paszke et al., 2019). We
use K = 4 layers of GNN. The embedding dimension of GNN is 32, i.e. each node in the graph is
encoded with a 32 dimensional embedding. The final MLP consists of three linear layers; the first
two linear layers use Relu activation and the last linear layer uses Sigmoid activation.

Model Training. We use the Adam optimizer (Kingma & Ba, 2014). We set amsgrad to be true for
better convergence (Reddi et al., 2019) and keep all other parameters as the default values provided
by Pytorch (e.g. learning rate lr = 0.001). We use a batch size of 50, i.e. each batch consists
of 50 pairs of generated (X,y). We tested different batch sizes of 16 and 250 and observed no
meaningful difference. We train our model until training loss converges (loss doesn’t decrease in
104 iterations), which takes about one day with 5× 104 iterations on a K80 GPU. Note one iteration
means one gradient update/one batch, and we don’t have the notion of epoch as training data is
generated on-the-fly for each batch.

Validation. We also need to prevent our model from overfitting the training set. We highlight
that, different from typical ML settings where one gets access to a validation set that is similar to
the test set, in our setting we have no validation set that is similar to the test set. Again, when
training our model, the real test datasets are unseen and we only have access to synthetic data. Our
intuition is that when the model overfits the sythetically generated training set D, its performance
will be poor on data that is different from the training set, for example, on another sythetic dataset
D′ that is generated in a different way. We synthetically generate the validation set D′ with size
|D′| = 100 according to the generation method proposed in (Zhang et al., 2021); In this method,
LFs are independent from each other conditioned on the ground-truth label.

We note that the way we use the validation set is also different from a typical setting. We train the
model until training loss converges (this typically requires about 5 × 104 iterations), and repeat 10
runs (i.e. train our model 10 times from scratch). We then select the run with the highest averaged
validation accuracy over all iterations (as validation accuracy might fluctuate over iterations); We
use the learned model at the final iteration of the selected run in our experiments. We provide our

18

Published as a conference paper at ICLR 2023

Figure 3: Accuracy on the synthetic validation set D′ vs number of training iterations. The purple
line and yellow line are two different runs. The yellow run is selected as it is more stable with a
higher averaged validation accuracy.

reasoning of doing this: (1) We do not use the validation set to do early stopping (i.e. to select
the best iteration in a run). In a typical ML setting, the validation set is used to select the best
epoch/iteration. This is possible because in a typical ML setting the validation set is similar to the
test set and the validation set provides very strong signal towards which iteration is a good iteration
for the test set. In our case, the validation set D′ can be very different from the test set, thus the
selected iteration based onD′ might not be a good iteration for the test set. (2) We use the validation
set to select the best run. We observed that at different runs, the curve of validation accuracy vs
number of iteration can be different (e.g. the two runs in Figure 3), so the test accuracy of the model
in different runs can be different. We would like to select the best run using the validation set D′.
Intuitively, one run with better validation accuracy on average over all iterations is stably better (e.g.
the yellow run in Figure 3), so we select the run with an best averaged validation accuracy over
iterations. As an example, for the two runs in Figure 3, although the highest validation accuracy of
purple run can be higher than that of the yellow run, the yellow run has a higher averaged validation
accuracy over iterations and is much more stable, so we select the yellow run. We also observed this
run to have a less degree of fluctuation in validation accuracy, as shown in Figure 3. This suggests
the model converges at a flat minima, which is known to generalize better (Li et al., 2018; Keskar
et al., 2016; Izmailov et al., 2018).

One natural question is that why it is possible to select the best run but it is not possible to select
the best iteration. The reason is that selecting the best run out from 10 runs require much less
information than selecting the best iteration out from 5× 104 iterations. Since the validation set D′
can be very different from the test set, the information provided by D′ is very limited.

An interesting phenomenon in the validation accuracy curve in Figure 3 for the yellow run is that
validation accuracy first increases then decreases and finally increases. A similar trend was observed
in prior work (of a different task) that also trains a model on synthetic data and validate on a different
data distribution (Wu et al., 2022c). We believe this is a double descent phenomenon (Nakkiran et al.,
2021) induced by the distributional difference between the training and validation sets.

F ADDITIONAL EXPERIMENT RESULTS

F.1 RUNNING TIME

We report the running time for all methods in Table 5. For MV, DP, FS, DS, EBCC, and CLL, the
running is on CPU as these methods do not support GPU. For MeTaL, NPLM and HLM, we report
the running time on CPU and GPU.

F.2 END MODEL PERFORMANCE

We use the generated labels of each method to train an end model for each dataset. We consider
the three best performing baselines MV, MeTaL and CLL . We use the test split provided by the
benchmark (Zhang et al., 2021) for each dataset because some datasets only have ground-truth labels
for data points in the provided test split. We then randomly split the remaining data points to be a
training set and a validation set with a 3:1 ratio. The labels in the training set and validation set
are generated labels by each label model, while the labels in the test set are ground-truth labels for
evaluation. Following prior work (Ratner et al., 2016; Zhang et al., 2021), the probabilistic labels

19

Published as a conference paper at ICLR 2023

Table 5: Running time (seconds) of label aggregation on all datasets with CPU and GPU.
Dataset Census IMDB Yelp Youtube SMS Spouse CDR Commercial Tennis Basketball AGNews TREC SemEval ChemProt AVG.
MV <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

DP 147.8 18.8 40.5 2.5 14.4 8.4 29.5 8.5 10.0 14.9 225.0 100.8 190.2 213.0 73.2

FS 21.1 1.7 3.7 0.2 3.2 0.8 3.7 0.6 0.6 14.9 22.1 16.3 69.0 26.4 12.2

MeTaL-GPU 0.5 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.5 3.6 4.6 3.6 1.2

MeTaL-CPU 1.1 0.3 0.4 0.4 0.9 0.3 0.9 0.4 0.4 0.4 0.5 16.7 18.1 16.5 4.1

NPLM-GPU 15.7 4.0 5.7 0.4 2.2 1.8 6.3 11.2 1.5 3.4 27.9 5.4 3.4 12.1 7.2

NPLM-CPU 156.7 56.0 5.7 0.4 19.8 1.8 6.3 11.2 1.5 3.4 29.9 49.9 25.9 132.6 35.8

DS 2.4 79.8 116.1 0.2 3.6 0.9 29.7 267.7 4.6 2.1 16.3 78.3 36.6 255.9 63.9

EBCC 3.9 5.1 52.5 2.2 2.8 2.3 5.8 3.0 2.5 6.0 18.0 9.0 9.8 84.8 14.8

CLL 33.7 2.9 6.6 0.5 3.8 1.4 6.0 7.4 1.1 2.0 28.5 12.4 20.5 21.3 10.6

HLM-GPU 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.2 0.3 0.2 0.2

HLM-CPU 0.9 0.2 0.3 0.2 0.2 0.7 0.7 1.1 0.3 0.9 4.6 4.4 1.9 7.3 1.7

instead of the hard labels are used to train the end model when possible. We adopt the end models
used in (and their implementations provided by) the benchmark (Zhang et al., 2021; Zhang, 2022a),
i.e. a pretrained BERT model (Devlin et al., 2018) for textual datasets and a multi-layer perception
(MLP) for datasets with numeric features. We report the results on test set in Table 6. Again, to
maintain the table to be readable, we only show the error bars for the averaged scores.

Table 6: Performance of end model trained with labels generated by each method.
Dataset Census IMDB Yelp Youtube SMS Spouse CDR Commercial Tennis Basketball AGNews TREC SemEval ChemProt AVG.
End model MLP BERT BERT BERT BERT BERT BERT MLP MLP MLP BERT BERT BERT BERT

MV 31.7 74.7 74.2 90.9 83.5 51.6 62.9 90.1 83.5 13.4 81.9 63.9 76.8 54.6 66.7±0.8

MeTaL 11.6 74.4 70.5 87.1 87.3 51.0 63.5 88.2 83.5 14.5 82.0 63.7 83.1 52.5 65.2±0.2

CLL 51.5 73.6 72.8 81.8 83.6 52.0 59.8 89.6 83.5 19.3 81.7 68.4 82.8 53.0 68.1±0.3

HLM 56.3 74.7 75.7 93.0 82.4 52.3 64.1 87.1 83.5 17.0 80.8 68.4 82.8 53.1 69.4±0.3

Our results align with those in the benchmark (Zhang et al., 2021) where the end model trained on
labels generated by MeTaL is slightly worse than that by MV. Overall, HLM outperforms the other
three methods. On Yelp, Spouse, and SemEval, HLM tied with MV in label quality (see Table 2)
but has better end model performance as HLM’s probabilistic labels can be more informative. Note
the scores of the end model can be higher than that of the generated labels (as also observed in
the benchmark (Zhang et al., 2021) and prior work (Ratner et al., 2017)) because the end model
incorporates additional information from the raw data.

G IMPLEMENTATION DETAILS OF EXPERIMENTS

Hardware. All of our experiments were performed on a machine with a 2.20GHz Intel Xeon(R)
Gold 5120 CPU, a K80 GPU and with 96GB 2666MHz RAM.

Datasets. We use the datasets prepared by the wrench benchmark on Github (Zhang, 2022a; Zhang
et al., 2021). All the datasets and LFs are publicly released by previous work (Zhang et al., 2021).
All datasets do not contain any personally identifiable information (Zhang et al., 2021).

Originally, each dataset include three files ”train.json”, ”valid.json” and ”test.json”. Following the
suggestion in a reported issue of the wrench benchmark (Zhang, 2022b), we combine all three files to
get a single matrixX and single ground-truth label vector y for the experiments on label aggregation.
We then split the datasets using the original split for the experiment on end model (Appendix F.2).
The information of the LFs as well as the raw data for each dataset can be found in the wrench
benchmark project on Github (Zhang, 2022a).

Baselines. For each baseline, we use existing open-source implementations. The implementations
of DS, DP, FS, MeTaL, EBCC, NPLM, and ACML-CC are from (sukrutrao, 2022), (snorkel team,
2022a), (HazyResearch, 2022), (snorkel team, 2022b), (yuan li, 2022), (BatsResearch, 2022a),

20

Published as a conference paper at ICLR 2023

and (BatsResearch, 2022b) respectively. For baselines that require class weights as priors, we report
the best results from using uniform weights and using the weights estimated by majority vote.

Setup in Semi-supervised Label Aggregation. When sampling Ngt data points as the data points
with known labels, we make sure that each class has at least two data points. For random forest,
we use the scikit-learn implementation (rfs, 2022). When training the random forest classifier, we
use five fold cross validation to perform grid search for the ”max depth” parameter in range [2, 4, 8,
16, 32, None] and the ”min samples split” parameter in range [2, 5]. The AMCL-CC method does
not support abstention, to make it work we fill in the abstentions with labels provided by majority
vote; AMCL-CC requires a lot of memory on some datasets and involves solving a constrained
linear programming problem which may not have a solution. When AMCL-CC fails due to out-of-
memory error or no-solution-found error, we use the results from random forest. We repeat five runs
and report results with error bars in Figure 2.

Setup in Ablation Study. For model architecture, we test two baselines. The first one is based
on MLP. The input is a flattened vector of a fixed size matrix 2000 × 50 (padded with zero if
the input matrix is smaller) and the network has 10 linear layers. The second one is based on
DeepSet (Zaheer et al., 2017) where each row of X is treated as a set. We use an open source
implementation (manzilzaheer, 2022). We replace each of our GNN layer with a DeepSet layer.

Setup in End Model Experiment. When training the end model, the training set and validation
set both use generated labels by each method and the test set uses ground-truth labels. For the two
end model MLP and BERT, we use the implementation provided by the benchmark (Zhang, 2022a;
Zhang et al., 2021). We use grid search to tune hyper-parameters for each end model based on
validation set performance. We use the same search space as the benchmark (Zhang et al., 2021), as
summarized in Table 7. We repeat five runs and report the scores averaged over runs in Table 6.

Table 7: Hyper-parameters and search space for the end models.
End Model Hyper-parameter Description Range

MLP

batch size batch size 32,128,512
lr learning rate 1e-5,1e-4,1e-3,1e-2,1e-1
weight decay weight decay 1e-5,1e-4,1e-3,1e-2,1e-1
ffn num layer number of MLP layers 2
ffn hidden size hidden size of MLP layers 100

BERT batch size batch size 16,32
lr learning rate 2e-5,3e-5,5e-5

21

	Introduction
	Related Work
	Problem Setup
	An Analytical Optimal Solution
	Learning the Hyper Label Model
	Training Data Generation
	Model Architecture Design
	Model Inference on Unseen Dataset
	Leveraging Ground Truth Label if Given
	Supporting Multi-class Classification Task

	Experiments
	Unsupervised Label Aggregation
	Semi-supervised Label Aggregation
	Ablation Study

	Conclusion
	Optimalities of the Uniform Distribution
	Proof for Theorem 2
	Probability of Generating a Valid Pair
	Discussions
	The Proposed Architecture Satisfies the Three Properties
	Crowdsourcing Methods for Weak Supervision

	Implementation Details of HLM
	Additional Experiment Results
	Running time
	End Model Performance

	Implementation Details of Experiments

