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Multi-modal keyphrase prediction (MMKP)001

aims to advance beyond text-only methods by incor-002

porating multiple modalities of input information003

to produce a set of conclusive phrases. Traditional004

multi-modal approaches have been proven to have005

significant limitations in handling the challenging006

absence and unseen scenarios. Additionally, we007

identify shortcomings in existing benchmarks that008

overestimate model capability due to significant009

overlap in training tests. In this work, we propose010

leveraging vision-language models (VLMs) for the011

MMKP task. Firstly, we use two widely-used strate-012

gies, e.g., zero-shot and supervised fine-tuning013

(SFT) to assess the lower bound performance of014

VLMs. Next, to improve the complex reasoning015

capabilities of VLMs, we adopt Fine-tune-CoT,016

which leverages high-quality CoT reasoning data017

generated by a teacher model to finetune smaller018

models. Finally, to address the “overthinking” phe-019

nomenon, we propose a dynamic CoT strategy020

which adaptively injects CoT data during training,021

allowing the model to flexibly leverage its reason-022

ing capabilities during the inference stage. We023

evaluate the proposed strategies on various datasets024

and the experimental results demonstrate the ef-025

fectiveness of the proposed approaches. The code026

and datasets will be made publicly available upon027

acceptance of the paper.028

1 Introduction029

Multi-modal keyphrase prediction (MMKP) aims030

to generate concise, informative phrases that cap-031

ture the essence of cross-modal inputs (e.g., text032

and image inputs in Fig. 1(a)). Unlike traditional033

text-only keyphrase prediction (Zhang et al., 2018;034

Wang et al., 2019b; Zhang et al., 2024a), MMKP035

leverages the complementary nature of visual and036

textual signals to improve the cross-modal seman-037

tic understanding (Chang et al., 2013; Bansal et al.,038

2015; Wang et al., 2019a; Zhang et al., 2024a) and039

summarization (Davidov et al., 2010; Wang et al., 040

2011; Zhang et al., 2024b). 041

Traditional multi-modal approaches (Wang et al., 042

2020; Dong et al., 2023) primarily focus on design- 043

ing cross-modal fusion architectures to integrate 044

visual features (e.g., OCR and visual entities) and 045

textual semantics, by using attention mechanisms 046

or hybrid neural networks to model modality in- 047

teractions. These methods have achieved great 048

progress in the MMKP task. 049

However, as illustrated in Fig. 1(b), significant 050

limitations have emerged in more complex sce- 051

narios, particularly in handling the following two 052

challenges: 053

• absence scenario. The case where the predic- 054

tion keyphrases are lacking in the correspond- 055

ing input text, requiring the model to exhibit 056

strong cross-modal interaction capabilities and 057

infer keyphrases from cross-modal context. 058

• unseen scenario: The case where the predicted 059

keyphrases do not appear in the training set, de- 060

mands that the model possess robust generaliza- 061

tion capability. The unseen keyphrases pose a 062

significant challenge to MMKP systems in pro- 063

duction environments, where a diverse range of 064

keyphrases emerges daily. 065

In addition, our analysis of the public 066

MMKP (Wang et al., 2020) dataset and our 067

collected larger-scale (MMKP-360k) production 068

dataset reveal that the two datasets exhibit substan- 069

tial distribution discrepancies in unseen keyphrase 070

scenarios. The proportion of training samples with 071

unseen keyphrases is only 2.68% in the public 072

dataset and 54.72% in the real-word production 073

dataset. The discrepancy in Fig. 1(b) and Fig. 1(c), 074

indicates that traditional multi-modal approaches 075

exhibit poor generalization capability in absent and 076

unseen scenarios. 077
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Figure 1: (a) An example of multi-model keyphrase prediction. (b) The performance of different models on the
MMKP dataset (Wang et al., 2020). “Absent” refers to keyphrases that absent in the input text. “Unseen” refers to
keyphrases that not appear in the training set’s ground truth. (c) The number of seen and unseen keyphrases in the
test set of the MMKP dataset and our MMKP-360k dataset.

Although VLMs have been widely applied to078

multi-modal tasks, e.g., visual question answer-079

ing (Antol et al., 2015), image captioning (Li080

et al., 2022), video understanding (Sigurdsson et al.,081

2016), their effectiveness in the MMKP remains082

underexplored. To this end, we propose adopting083

VLMs for MMKP in an autoregressive manner.084

Firstly, we use two widely-used strategies: zero-085

shot and supervised fine-tuning (SFT). As illus-086

trated in Fig. 1(b), the SFT approach outperforms087

the zero-shot approach in the absent scenario but088

underperforms in the unseen scenario, which indi-089

cates that SFT enables the VLMs to leverage its090

robust vision-language comprehension for similar091

content, but severely restricts its generalization ca-092

pability. To solve this, we follow Ho et al. (2023)093

to utilize Fine-tune-CoT to improve the complex094

reasoning capabilities of VLMs. Fine-tune-CoT095

leverages high-quality CoT reasoning data gener-096

ated by a teacher model to finetune smaller models.097

Furthermore, considering the “overthinking” phe-098

nomenon (Chen et al., 2024a) for the seen scenario,099

we propose a dynamic CoT strategy to enable ef-100

ficient reasoning (Qu et al., 2025) for the VLMs.101

The dynamic CoT strategy enables the VLMs to102

prefer to choose the non-CoT reasoning for the103

easy samples (e.g., seen samples).104

To ensure the reproducibility of our research, we105

resampled the public MMKP dataset (MMKP-V2)106

to match the proportion of seen and unseen parts107

with that of the MMKP-360k dataset. Furthermore,108

comprehensive analysis on three datasets confirm109

that our method significantly improves the general-110

ization capability of VLMs on unseen samples.111

The contributions are summarized as follows:112

• To the best of our knowledge, this work is 113

the first to comprehensively investigate the 114

potential of VLMs for multi-modal keyphrase 115

prediction. 116

• We propose a Dynamic CoT strategy that en- 117

bales VLMs adaptively choosing CoT reason- 118

ing ability for the hard unseen samples, which 119

is more suitable in production environments 120

with efficient decoding. 121

• Experimental results and rigorous analysis 122

across multiple datasets validate the efficacy 123

and robustness of our proposed methodology. 124

2 Related Work 125

2.1 Social Media Keyphrase Prediction 126

Social media keyphrases, including hashtags and 127

categories, serve as concise summaries of user- 128

generated content. Prior to the emergence of 129

LLMs, approaches in this domain mainly fell into 130

extractive (Zhang et al., 2016, 2018), classifica- 131

tion (Zhang et al., 2017; Kou et al., 2018; Zeng 132

et al., 2018), and generative methods (Wang et al., 133

2019b,a; Kou et al., 2018). Due to inherent training 134

limitations, the first two types could not produce 135

keyphrases from a truly open set, while generative 136

methods were limited to processing text-only con- 137

tent. With the advent of LLMs, numerous methods 138

(Shao et al., 2024; Zhang et al., 2024a; Kang and 139

Shin, 2025) have attempted to leverage these mod- 140

els for keyphrases prediction, but most still rely ex- 141

clusively on textual inputs. However, social media 142

posts often contain multi-modal information, thus 143

requiring the model to possess strong multi-modal 144
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understanding capabilities. NoteLLM2 (Zhang145

et al., 2024b) uses MLLM and a zero-shot prompt146

to compress multi-modal posts into a single word147

vector for end-to-end recommendation model train-148

ing. However, it does not explore how to generate149

more comprehensive and accurate keyphrases. In150

this paper, we investigate the potential of VLMs for151

keyphrase prediction, fully leveraging multi-modal152

information to achieve more precise and accurate153

keyphrase prediction.154

2.2 Vision-Language Models155

Vision-Language Models (VLMs) have emerged156

as a transformative paradigm in multi-modal learn-157

ing, bridging visual and textual representations to158

enable cross-modal understanding and generation159

(Alayrac et al., 2022; Li et al., 2023; OpenAI, 2023;160

Bai et al., 2023). Early efforts in this domain fo-161

cused on joint embedding spaces (Radford et al.,162

2021; Jia et al., 2021), achieving strong zero-shot163

transfer capabilities. Subsequent work expanded164

VLMs to generative tasks, such as image caption-165

ing (Li et al., 2022) and visual question answer-166

ing (VQA) (Antol et al., 2015), leveraging archi-167

tectures like transformer-based encoders-decoders168

(Vaswani et al., 2017). Models such as Flamingo169

(Alayrac et al., 2022) and BLIP-2 (Li et al., 2023)170

integrated pretrained vision encoders with LLMs to171

unify perception and reasoning, enabling few-shot172

adaptation to downstream tasks. Later advance-173

ments, including GPT-4V (OpenAI, 2023), Qwen-174

VL (Bai et al., 2023) series, Intern-VL (Chen et al.,175

2024b) series and etc, further scaled training data176

and model size, demonstrating remarkable perfor-177

mance on complex multi-modal benchmarks.178

2.3 Reasoning Capabilities179

Recently, as reasoning models (Jaech et al., 2024;180

Guo et al., 2025) have gained significant attention,181

inference-time computation has been recognized as182

an effective approach to further unlock the poten-183

tial of LLMs. Consequently, an increasing number184

of studies (Xu et al., 2024; Team et al., 2025; Seed185

et al., 2025) have started to incorporate reasoning186

capabilities into VLMs. In this paper, we examine187

multiple VLM training paradigms for multi-modal188

keyphrasse prediction. By integrating world knowl-189

edge and reasoning abilities through Dynamic CoT190

training, our approach enhances model general-191

ization while mitigate the problem of “overthink-192

ing” (Chen et al., 2024a).193

3 Methodology 194

In this section, we first discuss paradigms of tradi- 195

tional multi-modal models for MMKP and briefly 196

analyze their limitations (Sec 3.1). Next, we fo- 197

cus on how to incorporate reasoning capabilities 198

into VLMs (Sec 3.2), and describe how our pro- 199

posed approach employs Dynamic CoT to solve 200

the “overthinking” phenomenon (Sec 3.3). 201

3.1 Traditional Multi-modal Models 202

Traditional multi-modal models such as M3H-ATT 203

(Wang et al., 2020) and MM-MKP (Dong et al., 204

2023) are inherently constrained by limited model 205

capacity and insufficient multi-task capabilities. 206

Consequently, such models typically depend on 207

external Optical Character Recognition (OCR) sys- 208

tems and visual feature extraction modules to aug- 209

ment textual inputs from social media posts. The 210

extracted visual features are concatenated with 211

post text to enhance keyphrase prediction perfor- 212

mance. To further improve keyphrase prediction 213

accuracy, these approaches frequently incorporate 214

additional keyphrase classification modules based 215

on all keyphrases in the dataset. The final optimiza- 216

tion objective is formulated as a multi-task loss, 217

which is defined as follows: 218

L(θ) = −
N∑
i=1

[logPcls(yn) + γ ·
lny∑
t=1

logPgen(yn
t )], (1) 219

where the first term represents the classification 220

loss, while the second term corresponds to the key- 221

word generation loss. Here, N denotes the size 222

of the training set, y is the predicted keyphrase 223

sequence, and t indicates the t-th token. 224

However, this strategy constrains the models’ 225

open-set generation capabilities and limits their 226

generalizability. Moreover, the scope of world 227

knowledge embedded in such models remains in- 228

adequate. For certain social media posts, such 229

as those involving memes or referencing current 230

events and political topics, a substantial amount 231

of external world knowledge is necessary, which 232

poses significant challenges for traditional multi- 233

modal models. 234

3.2 Endow Reasoning Capabilities 235

Compared to traditional multi-modal models, 236

VLMs offer superior capabilities in image-text un- 237

derstanding and generalization. VLMs can effec- 238

tively comprehend the content of social media posts 239

without relying on external models. For the MMKP 240
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Figure 2: Main framework of our proposed method. (a) CoT data production pipeline. (b) Dynamic CoT training
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Prompt for Generating CoT data

[INST]<SYS>
You are a helpful assistant. Analyze briefly why social
media users would use specific hashtags "Keyphrases" for
a post titled "Post text" with given image "Image".</SYS>
<USER>
"Keyphrases": {keyphrases}
"Post text": {post text}
"Image": {image}
</USER>[INST]

Table 1: The system prompt template for generating
CoT responses. “[INST]” denotes the instruction pro-
vided to the LLM, <SYS> denotes the system prompt
and <USER> denotes the user prompt.

task, a straightforward approach to training VLMs241

involves using the multi-modal content as the input242

prompt and the ground truth (GT) keyphrases as the243

response, where the model is optimized using the244

next-token prediction loss, as shown in Fig. 2(b).245

The loss function is defined as follows:246

Lsft = − 1

T

T∑
t=1

logP
(
ys
t | ys

<t,v; θ
)
, (2)247

here ys = [yp; ysr], where yp and ysr denote the248

input prompt token sequence and the response to-249

ken sequence, respectively. The response token250

sequence ysr corresponds to the GT keyphrases. v251

denotes the image token sequence, and θ denotes252

the model parameters.253

Although straightforward SFT demonstrates254

promising performance on VLMs, it still suffers255

from several limitations. As shown in Fig. 1(b),256

the model’s generalization is constrained, with its257

performance on unseen keyphrases nearly match-258

ing that of zero-shot scenarios (see Section 4.4 for259

detailed analysis). Our analysis reveals that su-260

pervised fine-tuned (SFT) models exhibit a strong261

tendency to overfit training samples, generating262

keyphrases primarily through surface-level pattern 263

matching. Crucially, these models demonstrate lim- 264

ited capability in deciphering the underlying user 265

intent embedded in provided keyphrases, conse- 266

quently lacking the necessary reasoning capacity 267

to infer contextually appropriate keyphrases. 268

To overcome these limitations, we constructed 269

multi-modal CoT data, aiming to activate and sup- 270

plement the model’s world knowledge and thereby 271

strengthen its reasoning ability. Specifically, we 272

leveraged GPT-4o (Hurst et al., 2024) to generate 273

multi-modal CoT data, wherein each thought pro- 274

cess centers on analyzing user intent to enhance 275

the model’s reasoning capacity while maintaining 276

relevance learning between similar posts. Fig. 2(a) 277

illustrates the pipeline for constructing CoT data, 278

and the prompt template is shown in Table 1. 279

After obtaining such analytic data, the fi- 280

nal multi-modal CoT data is organized in the 281

form of “<think>thinking process</think> 282

<answer>keyphrases</answer>”. The Fine-tune- 283

CoT loss function is formulated as follows: 284

Lcot = − 1

T

T∑
t=1

logP
(
yc
t | yc

<t,v; θ
)
, (3) 285

where yc = [yp; ycr] and ycr corresponds to the CoT 286

responses. 287

However, experimental results indicate that the 288

incorporation of CoT data does not yield immediate 289

performance gains. Additionally, CoT reasoning 290

introduces extra computational overhead during 291

inference. 292

3.3 Dynamic CoT 293

Our analysis reveals two key limitations in Fine- 294

tune-CoT models. First, the "overthinking" phe- 295

nomenon occurs when the reasoning model gener- 296
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Datasets # Train # Test # KP Train |KP|
Posts Posts / Post ∩ Test |KP|

MMKP 42,959 5,372 1.33 97.32%
MMKP-V2 34,515 10,564 1.29 44.92%
MMKP-360k 330,614 36,736 4.48 45.28%

Table 2: Statistics of different datasets. KP: keyphrase;
Train |KP|: the size of unique keyphrase in train set. ∩
denotes the intersection of the two sets.

ates overly generic keyphrases that fail to capture297

users’ specific preferences. Second, we observe298

content redundancy in multi-modal CoT generation,299

where posts sharing identical keyphrases receive300

highly similar reasoning paths. This redundancy is-301

sue becomes particularly severe for high-frequency302

keyphrases, significantly diminishing model effec-303

tiveness.304

To more effectively leverage multi-modal CoT305

data, we propose a dynamic CoT training paradigm,306

as illustrated in Fig. 2(b).307

Specifically, during training, we categorize sam-308

ples as easy or hard based on SFT loss Lsft. We309

hypothesize that overfitting to simple samples dur-310

ing SFT may significantly impair model generaliza-311

tion capability. To mitigate this issue, we introduce312

a threshold γ, when the loss of a sample falls be-313

low γ, we switch its supervision to CoT data. The314

mathematical formula is given as follows:315

Ld = − 1

T

T∑
t=1

logP
(

yd
t | yd

<t,v; θ
)
, (4)316

where317

yd =

{
yc Lsft < γ
ys Lsft ≥ γ

. (5)318

This dynamic adjustment of the supervision sig-319

nal enables the model to adapt its output format320

based on input complexity, thereby further enhanc-321

ing generalization while maintaining robust rele-322

vance learning.323

4 Experiments324

4.1 Datasets325

MMKP Dataset. Multi-modal Keyphrase Pre-326

diction (MMKP) Dataset was collected by (Wang327

et al., 2020). This dataset includes 53,701 English328

samples, each of which comprises a distinct text-329

image pair, with user-annotated hashtags serving330

as keyphrases. The dataset has a diverse set of cate-331

gories and only around half of the images (54%) are332

natural photos, which is rather different from other333
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Figure 3: Visualization of multi-modal embedding clus-
tering for post sharing the same keyphrase (The top five
most frequent keyphrases) in the MMKP dataset.

standard image data such as MS-COCO (Lin et al., 334

2014). Furthermore, 52% of the samples contain 335

either semantically uninformative text or irrelevant 336

images, indicating a complex and often discordant 337

multimodal relationship. The authors randomly 338

split the data into 80%, 10%, 10% corresponding 339

to training, validation, and test set. As shown in 340

Table 2, there are 4,261 unique keyphrases in the 341

training set and 2,534 unique keyphrases in the test 342

set, among which 2,466 keyphrases from the test 343

set also appear in the training set, resulting in a 344

high overlap rate of 97.32%. 345

MMKP-360k Dataset. To better evaluate the 346

effectiveness of our proposed method, we con- 347

structed a larger-scale multi-modal keyphrase pre- 348

diction dataset collected based on user-generated 349

contents publicly available on internet platforms. 350

Following the construction methodology of the 351

MMKP dataset, we extracted the users’ hashtag 352

data, which was subsequently cleaned and refined 353

using LLMs. The processed hashtags served as 354

the final ground truth keyphrases. The resulting 355

MMKP-360k Dataset comprises 330,614 training 356

samples and 36,736 test samples, each of which 357

comprises a distinct text-image pair. There are 358

502k unique keyphrases in the training set and 81k 359

unique keyphrases in the test set, of which 37k 360

keyphrases from the test set also occur in the train- 361

ing set, resulting in an overlap rate of 45.28%. 362

Resampled MMKP Dataset (MMKP-V2). Ac- 363

cording to the keyphrase statistics for the MMKP 364

dataset, the vast majority of keyphrases in the test 365

set also appear in the training set. This enables 366

models to significantly improve accuracy on the 367
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Models Training MMKP MMKP-V2 MMKP-360k Avg
All All Absent Unseen All Absent Unseen All

Baseline Models

CO-ATT (Zhang et al., 2017) 42.12 - - - - - - -
M3H-ATT (Wang et al., 2020) 47.06 - - - - - - -
MM-MKP (Dong et al., 2023) 48.19 - - - - - - -

Our Experiments

InternVL3-2B
zero-shot 3.62 4.56 1.39 4.53 19.00 5.64 9.62 9.06

full sft 57.54 28.89 18.10 7.98 38.53 18.47 24.42 41.65
Dynamic CoT 59.63 30.76 18.99 9.90 40.03 19.95 26.04 43.47

InternVL3-8B
zero-shot 6.26 6.89 2.37 6.72 11.43 3.26 7.05 8.19

full sft 57.83 28.58 18.30 7.17 40.48 19.88 25.45 42.30
Dynamic CoT 60.29 31.42 19.13 10.68 50.53 20.04 26.44 47.41

Qwen2.5-VL-3B
zero-shot 4.48 4.50 1.50 4.37 17.08 4.93 11.29 8.49

full sft 60.33 29.89 19.59 8.79 43.04 22.06 24.60 44.42
Dynamic CoT 61.90 33.14 20.19 12.48 47.51 22.62 26.68 47.52

Qwen2.5-VL-7B
zero-shot 6.61 7.75 2.75 8.38 14.34 4.10 9.94 9.57

full sft 60.83 30.49 20.90 7.90 43.70 22.28 24.98 45.01
Dynamic CoT 63.58 33.56 22.32 13.36 50.66 23.41 26.43 49.27

Table 3: Performance comparison for multi-modal keyphrase prediction task. We adopt F1@1 (%) as the evaluation
metric for the MMKP and MMKP-V2 datasets, while F1@M (%) is employed for the MMKP-360k Dataset.

test set by simply fitting the training data and learn-368

ing the similarity among posts containing identical369

keyphrases. However, statistics from our collected370

MMKP-360K data indicate that the overlap rate is371

only 45.28%, and as time progresses, an increasing372

number of new keyphrases are being created by373

users. This suggests that models require stronger374

generalization and reasoning capabilities in order375

to more accurately predict keyphrases for posts that376

express previously unseen main ideas.377

To enhance alignment with real-world data dis-378

tributions, we reconstructed the MMKP dataset379

through two key modifications: 1. Transferring all380

training-exclusive keyphrase samples to the test set.381

2. Removing test samples containing keyphrases382

observed during training. The resulting MMKP-383

V2 dataset contains 34,515 samples in the training384

set and 10,564 samples in the test set, with 2,455385

and 3,297 unique keyphrases respectively. Notably,386

1,481 test keyphrases from the test set also appear387

in the training set, resulting in an overlap rate of388

44.92%.389

4.2 Experimental Setup390

To ensure a fair comparison, all models were391

trained with identical hyperparameter configura-392

tions on both the MMKP and MMKP-V2 datasets.393

Specifically, we employed the AdamW optimizer394

with an initial learning rate of 5 × 10−5, using a 395

cosine annealing schedule for learning rate adjust- 396

ment. During the SFT process, the parameters of 397

the visual module were frozen, and only the multi- 398

modal projector as well as the large language model 399

components were fine-tuned. The batch size was 400

consistently set to 1 across all experiments. Models 401

with 2B or 3B parameters were trained for 5 epochs, 402

while those with larger parameter sizes were uni- 403

formly trained for 3 epochs. Given that the average 404

number of keyphrases per post is approximately 405

1.3, F1@1 is adopted as evaluation metric. We uti- 406

lized the GPT-4o-2024-05-13 (Hurst et al., 2024) 407

to generate CoT reasoning data. The Dynamic CoT 408

loss threshold γ is set to 0.4 for all the models. 409

For the MMKP-360k dataset, we employed the 410

AdamW optimizer with an initial learning rate of 411

3 × 10−5. All models were trained for 3 epochs. 412

We utilized the Doubao-1.5-pro (Seed, 2025) to 413

generate CoT reasoning data. We adopt F1@M as 414

evaluation metrics, where M denotes the number 415

of keyphrases predicted by the model. 416

To validate the universality of our approach, 417

we performed experiments across multiple LLMs 418

and VLMs, including Llama-3.2 (Meta, 2024), 419

Qwen2.5 (Yang et al., 2024), Llama-3.2-Vision 420

(Meta, 2024), InternVL-3 (Zhu et al., 2025) and 421

Qwen2.5-VL (Bai et al., 2025). 422
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Models MMKP MMKP-V2 Avg
All Seen Unseen All Seen Unseen All ∆ (%) Unseen ∆ (%)

Qwen2.5-VL-3B 4.48 5.26 12.16 4.50 4.42 4.37 4.49 - 8.27 -

+ SFT 60.33 61.26 12.16 29.89 55.88 8.79 45.11 - 10.48 -
+ Fine-tune-CoT 56.99 57.94 9.46 31.88 53.79 13.57 44.44 ↓ 1.49 11.52 ↑ 9.92

+ Multi-task 60.87 61.75 9.46 31.53 57.96 10.26 46.20 ↑ 2.42 9.86 ↓ 5.92
+ Dynamic CoT 61.27 61.83 14.87 33.14 57.14 12.48 47.21 ↑ 4.66 13.68 ↑ 30.53

Qwen2.5-VL-7B 6.61 8.70 13.51 7.75 11.22 8.38 7.18 - 10.95 -

+ SFT 60.83 61.60 13.51 30.49 58.45 7.90 45.66 - 10.71 -
+ Fine-tune-CoT 61.97 62.55 12.16 33.53 57.46 13.42 47.75 ↑ 4.58 12.79 ↑ 19.42

+ Multi-task 62.29 63.09 13.51 31.87 59.74 9.48 47.08 ↑ 3.11 11.50 ↑ 7.38
+ Dynamic CoT 63.58 64.22 13.51 33.56 58.56 12.24 48.57 ↑ 6.37 12.89 ↑ 20.35

Table 4: Performance comparison for different training strategy. In the multi-task setting, we treat CoT data as an
additional training objective, while keeping the number of training steps consistent with other methods.

4.3 Comparing with SOTA methods423

Table 3 compares the performance of our approach424

with baseline models. The table is organized verti-425

cally into two categories: baseline traditional multi-426

modal models and VLMs. Horizontally according427

to results on the MMKP, MMKP-V2 and MMKP-428

360k datasets. Detailed experimental results for429

additional text-only models can be found in the430

Appendix.431

As shown in Table 3, the SFT VLMs outper-432

form state-of-the-art multi-modal keyphrase pre-433

diction models (e.g., M3H-ATT(Wang et al., 2020)434

and MM-MKP (Dong et al., 2023)) by over 20%.435

These results suggest that VLMs, which possess436

broader world knowledge, offer a higher upper437

bound for multi-modal keyphrase prediction tasks438

and are a preferable choice for such applications.439

Furthermore, our method achieves consistent im-440

provements over zero-shot and SFT across various441

datasets and baselines, and shows significant gains442

with respect to unseen keyphrases, highlighting the443

robustness and generalizability of our approach.444

4.4 Ablation Study445

In this section, we present extensive ablation stud-446

ies with detailed results summarized in Table 4.447

We provide a thorough analysis of the findings448

and demonstrate that our proposed method effec-449

tively enhances the generalization capability of the450

model.451

Why is simple SFT so effective, while Fine-452

tune-CoT leads to a drop in performance? We453

believe there are two main reasons for this. First, in454

MMKP task, effectively learning inter-posts rele-455

vance plays a critical role. This task to some extent 456

reflects the commonalities of group behavior, users 457

tend to select hashtags that resonate with the group 458

to help the post spread better within the commu- 459

nity. By analyzing training set posts that share the 460

same keyphrase as shown in Fig. 3, we observe 461

that their content often exhibits notable similarity. 462

Furthermore, many of these keyphrases serve as 463

abstractions that encapsulate the essence of such 464

posts, rather than functioning as straightforward, 465

literal summaries. Additionally, Fine-tune-CoT 466

model has “overthinking” phenomenon. Although 467

Fine-tune-CoT model is able to infer keyphrases 468

that semantically correspond to the post content, 469

the generated keyphrases tend not to match those 470

commonly used by social media users, deviating 471

from typical user preferences, for example, gener- 472

ating "indiana weather" instead of the more user- 473

preferred "in wx", as shown in Fig. 4 Post (a). 474

Second, significant training-test overlap over- 475

estimate the model’s capability. According to the 476

previous analysis, keyphrases in the MMKP dataset 477

have a high overlap between the training and test 478

sets. The model can achieve excellent performance 479

on the test set by taking the shortcut of fitting the 480

training samples. As shown in the Table 4, the im- 481

provement in test set performance mainly comes 482

from seen keyphrases, while the performance on 483

unseen keyphrases is basically similar to zero-shot. 484

Additionally, by observing the SFT model’s case 485

performance on the test set, we found that the 486

model generates completely unrelated KP words 487

for some posts, and the content of these posts is 488

similar to those in the training set that contain in- 489
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Post (a) new brexit inspired 5 0 p coin 
being announced on bbc question time 
this evening.

Post (b) maybe my daughter does not 
know how to spell , but she knows me 
well happy mother ' s day , dear lucifam 
moms and mums !

Post (c) " when daisies pied and violets 
blue and lady - smocks all silver - white 
and cuckoo - buds of yellow hue do 
paint the meadows with delight . " love ' 
s labours lost .

Post (d) they be eating fluffy pink n 
white squidgy noms . i will give them my 
bestest puppy dog begging eyes until they 
submit and give me one .

GT: in wx GT: lucifer GT: shakespeare sunday GT: happy friday

Previous SOTA: in wx Previous SOTA: mothers day Previous SOTA: folklore thursday Previous SOTA: begging eyes

VLM sft: in wx VLM sft: mothers day VLM sft: sc rivo arte VLM sft: puppy

VLM CoT: <think>...</think>
<answer>indiana weather</answer>

VLM CoT: <think>...</think>
<answer>lucifer</answer>

VLM CoT: <think>...</think>
<answer>sc rivo arte; poetry</answer>

VLM CoT: <think>...</think>
<answer>sorry not sorry</answer>

Dynamic CoT: in wx Dynamic CoT:<think>...</think>
<answer>lucifer</answer>

Dynamic CoT:<think>...</think>
<answer>shakespeare sunday</answer>

Dynamic CoT:<think>...</think>
<answer>puppy</answer>

Figure 4: Examples of Multi-modal Keyphrase Prediction. Green denotes correct keyphrase predictions, whereas
red denotes incorrect keyphrase predictions.

correctly predicted keyphrases. This means that490

the SFT model is relying more on similar memory491

for keyphrases prediction, rather than reasoning492

ability.493

Balancing commonality and generalization.494

Based on the preceding analysis, we recognize that495

to effectively address MMKP task, a model must496

develop dual capabilities: leveraging commonal-497

ity for prediction with seen keyphrases while em-498

ploying generalization for unseen keyphrases. Our499

proposed method dynamically regulates chain-of-500

thought learning according to the difficulty of the501

samples, leading to a better trade-off between com-502

monality learning and generalization ability. As503

shown in Fig. 4, during inference, the model adap-504

tively selects either direct keyphrase prediction or505

prediction with CoT based on individual samples.506

This approach enhances model accuracy while si-507

multaneously maintaining a balance with inference508

costs. As a result, our approach achieves optimal509

performance, with improvements on unseen sam-510

ples reaching up to 20-30%.511

Ablation study on the dynamic CoT loss512

threshold γ. The γ parameter serves as a critical513

factor in our experiments, as it defines the bound-514

ary between SFT and CoT data. We conducted a515

rigorous ablation study to investigate the impact516

of various thresholds, as detailed in Table 5. The517

initial threshold was selected based on the conver-518

gence behavior of the model’s loss curve during the519

SFT stage, and an adaptive threshold was also eval-520

uated. Experimental results indicate that all tested521

thresholds yield improvements over the baseline,522

with γ = 0.4 achieving the best performance. The523

γ
MMKP-V2

All Absent Unseen

baseline 29.89 19.59 8.79
avg 32.22 19.50 13.26
0.3 33.07 20.51 12.14
0.4 33.14 20.19 12.48
0.5 32.65 19.91 12.26
0.6 32.59 19.65 12.40

Table 5: Ablation study on Dynamic CoT threshold
γ. “baseline” denotes Qwen2.5-VL-3B. “avg” indicates
that the average train loss is used as a dynamic threshold
during training.

adaptive threshold, however, did not reach optimal 524

results in our experiments. 525

5 Conclusion 526

This study provides a comprehensive investigation 527

for employing Vision-Language Models (VLMs) 528

in multi-modal keyphrase prediction. To enhance 529

model generalization, we developed multi-modal 530

CoT data that advance VLMs’ reasoning capabili- 531

ties. Considering the “overthinking” phenomenon, 532

we propose a Dynamic CoT training strategy that 533

adaptively optimizes reasoning processes while 534

preserving model generalizability and computa- 535

tional efficiency. Furthermore, by constructing 536

new datasets with reduced train-test keyphrase 537

overlap, we provide a more realistic evaluation of 538

model generalization. Experimental results con- 539

firm that VLMs equipped with Dynamic CoT sig- 540

nificantly outperform traditional multi-modal ap- 541

proaches, demonstrating superior cross-modal un- 542

derstanding and enhanced generalization. 543
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Limitations544

While our framework demonstrates promising545

results on Multi-modal Keyphrase Prediction546

(MMKP) task through Vision-Language Models547

(VLMs) and Dynamic Chain-of-Thought (Dynamic548

CoT), three primary limitations persist. First,549

the threshold determination in Dynamic CoT re-550

mains empirically driven. Despite testing adaptive551

threshold selection strategies, we observed subop-552

timal performance in dynamic adjustment. Sec-553

ond, VLMs inherently possess substantially larger554

parameter counts (e.g., 2B+) compared to tradi-555

tional multi-modal models, resulting in elevated556

computational overhead during inference. In ad-557

dition, incorporating reasoning capabilities further558

scales the test-time computation. Thrid, the cost559

of generating CoT data is relatively high, which560

poses challenges for the creation of larger-scale561

CoT datasets.562

Ethics Statement563

All the data utilized in our study was sourced from564

publicly available content on internet platforms.565

The seed instructions, which are openly accessible,566

comply with their respective open-source licenses.567

Furthermore, these datasets exclude any instances568

that could give rise to ethical concerns, such as569

unauthorized sensitive information, thereby mini-570

mizing potential societal risks.571
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Models MMKP MMKP-V2 MMKP-360k Avg
All All Absent Unseen All Absent Unseen All

Image-only models

VGG 15.69 - - - - - - -
BUTD (Anderson et al., 2018) 20.02 - - - - - - -

Text-only models

ONE2SEQ (Yuan et al., 2018) 38.05 - - - - - - -
ONE2SET (Ye et al., 2021) 36.36 - - - - - - -
TOPIC (Wang et al., 2019a) 43.17 - - - - - - -

Llama-3.2-2B 43.50 21.92 8.62 6.28 36.49 19.22 25.98 33.97
Qwen2.5-3B 48.53 24.33 12.35 6.58 37.21 19.99 26.04 36.69
Qwen2.5-7B 48.84 22.74 12.40 3.94 37.75 20.62 26.68 36.44

Image-text models

CO-ATT (Zhang et al., 2017) 42.12 - - - - - - -
M3H-ATT (Wang et al., 2020) 47.06 - - - - - - -
MM-MKP (Dong et al., 2023) 48.19 - - - - - - -

Llama-3.2-11B-Vision 59.81 28.30 20.92 5.45 - - - -

InternVL-3-2B 57.54 28.89 18.10 7.98 38.53 18.47 24.42 41.65
+ Dynamic CoT (ours) 59.63 30.76 18.99 9.90 40.03 19.95 26.04 43.47

InternVL-3-8B 57.83 28.58 18.30 7.17 40.48 19.88 25.45 42.30
+Dynamic CoT (ours) 60.29 31.42 19.13 10.68 50.53 20.04 26.44 47.41

Qwen2.5-VL-3B 60.33 29.89 19.59 8.79 43.04 22.06 24.60 44.42
+ Dynamic CoT (ours) 61.90 33.14 20.19 12.48 47.51 22.62 26.68 47.52

Qwen2.5-VL-7B 60.83 30.49 20.90 7.90 43.70 22.28 24.98 45.01
+Dynamic CoT (ours) 63.58 33.56 22.32 13.36 50.66 23.41 26.43 49.27

Table 6: Performance comparison for multi-modal keyphrase prediction task.

A Appendix815

Comprehensive Experimental Results. Table 6816

presents detailed experimental results for additional817

model variants, including the image-only and text-818

only models.819

multi-modal models demonstrate superior per-820

formance over pure visual or pure language models821

on MMKP task involving multi-modal social me-822

dia posts. Extracting key information from such823

posts typically requires integrating both visual and824

textual cues.825

Inference Length. Table 7 presents the in-826

ference sequence lengths across model variants,827

demonstrating that our dynamic Chain-of-Thought828

(CoT) strategy substantially reduces CoT reasoning829

steps while decreasing computational overhead by830

38.48%.831

The Overfitting Phenomenon in SFT Models.832

Figure 5 visualizes prediction of the SFT model833

Models Output Length
Ground Truth 1.33

+SFT 1.89
+Fine-tune-CoT 157.37
+Dynamic CoT 96.82

Table 7: Inference sequence lengths (measured in
words) of different model variants on the MMKP-V2
dataset, all implemented using the Qwen2.5-VL-3B.

on the test set, revealing its over-reliance on 834

similarity-based memorization. The model pre- 835

dominantly predicts identical labels for visually 836

analogous samples, demonstrating limited deploy- 837

ment of reasoning capabilities. 838

Detailed CoT. Figure 6 illustrates the Chain-of- 839

Thought reasoning processes in our model, demon- 840

strating its dual analytical capabilities: multimodal 841

content analysis (textual and visual elements of 842

social media posts) combined with social impact 843
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Train sample

Text

Image

sold every home seat plus 

<number> seats of the away 

end a packed out valley for 

tonight ' s play off second -

leg!

Test sample

Text

Image

the old east stand which was 

rebuilt into the exceutive 

stand in <number> , and 

later renamed the brian 

clough stand .

Ground

Truth cafc
Prediction

Similar！

cafc

nffc Ground

Truth

Figure 5: Visualization of SFT models on test set of MMKP dataset.

Post (a) maybe my daughter does not know how to spell , 
but she knows me well happy mother ' s day , dear lucifam 
moms and mums !

Post (b) " when daisies pied and violets blue and lady - smocks 
all silver - white and cuckoo - buds of yellow hue do paint the 
meadows with delight . " love ' s labours lost .

Post (c) they be eating fluffy pink n white squidgy noms . i will give them 
my bestest puppy dog begging eyes until they submit and give me one .

GT: lucifer GT: shakespeare sunday GT: happy friday

Previous SOTA: mothers day Previous SOTA: folklore thursday Previous SOTA: begging eyes

VLM sft: mothers day VLM sft: sc rivo arte VLM sft: puppy

VLM CoT: <think>The hashtag "lucifam" is used by 
social media users to connect with the fan community of 
the TV show "Lucifer." Fans of the show often use this 
hashtag to share content, express their fandom, and engage 
with each other. In the context of the post, the user is likely 
sharing a heartfelt message to their daughter, possibly 
referencing the show "Lucifer" and its characters. By using 
the hashtag "lucifam," the user is signaling to the fan 
community that this post is related to the show and its 
fandom. This helps in garnering attention from other fans, 
fostering a sense of community, and celebrating Mother's 
Day with a special touch, acknowledging the daughter's 
connection to the show.</think>
<answer>go owls</answer>

VLM CoT: <think>Social media users might use the hashtags "sc
rivo arte, poetry, writing community" for a post titled "when 
daisies pied and violets blue and lady-smocks all silver-white and 
cuckoo-buds of yellow hue do paint the meadows with delight. 
love's labours lost." accompanied by images like the one provided 
to engage with specific communities interested in art, poetry, and 
literary expressions. The image, which is a painting of "Love's 
Labours Lost" by John William Waterhouse, complements the 
poetic description by depicting a scene from the poem. By using 
these hashtags, users can reach and interact with art enthusiasts, 
poets, and writers who appreciate the poetic depiction of nature 
and the themes it encompasses.</think>
<answer>sc rivo arte; poetry</answer>

VLM CoT: <think>Social media users might use the hashtag 
"sorrynotsorry" for a post like this to convey a playful yet unapologetic 
attitude. The phrase "sorrynotsorry" typically indicates a sense of 
humor and a lack of genuine regret for one's actions. In the context of 
the post, the user is engaging in a humorous, puppy-like mannerly 
behavior, offering their best puppy dog eyes to get what they want, and 
using the hashtag to add a light-hearted, nonchalant tone to the request. 
This can make the post more relatable and entertaining, encouraging 
others to share in the playful spirit and perhaps even participate in the 
conversation or interaction.</think>
<answer>sorry not sorry</answer>

Dynamic CoT:<think>The hashtag "lucifam" is used by 
social media users to connect with the community of fans 
of the TV show "Lucifer." In the post, the user is 
addressing "Dear lucifam moms and mums" on Mother's 
Day, indicating that the content is specifically relevant to 
the female fans of the show. The use of "lucifam" helps the 
post reach a targeted audience who share a common 
interest in the show and its characters, fostering a sense of 
community and shared celebration. The accompanying 
image, which features the show's title and characters, 
further reinforces the connection to the "Lucifer" 
fandom.</think>
<answer>go owls</answer>

Dynamic CoT:<think>Social media users might use the hashtag 
"Shakespeare Sunday" for a post featuring the title "When daisies 
pied and violets blue and lady-smocks all silver-white and 
cuckoo-buds of yellow hue do paint the meadows with delight. 
Love's labours lost." along with images to participate in a themed 
event that celebrates the works of William Shakespeare. 
"Shakespeare Sunday" is a popular hashtag used to share content 
related to Shakespeare's poetry, plays, and life on Sundays. The 
post's title and imagery evoke a poetic and nostalgic sentiment, 
aligning well with the themes of love and nature that Shakespeare 
often explored in his works. By using this hashtag, users can 
connect with others who appreciate Shakespeare's literary 
contributions and engage in a community of like-minded 
individuals.
</think>
<answer>shakespeare sunday</answer>

Dynamic CoT:<think>Social media users might use the hashtag "puppy" for a 
post like this for several reasons: 1. Engagement and Visibility: Hashtags like 
"puppy" are popular and widely used, which can increase the visibility of the post. 
People who search for or follow the "puppy" hashtag are more likely to see the 
post, thereby increasing engagement through likes, comments, and shares. 2. 
Relevance to Content: The post features a dog, which is directly related to the 
hashtag "puppy". Using relevant hashtags helps categorize the content correctly, 
making it easier for users interested in puppy-related posts to find it. 3. Target 
Audience: The hashtag "puppy" targets a specific audience that is interested in 
dogs. This can attract followers who are specifically interested in dog content, 
leading to a more engaged and interested audience. 4. Emotional Appeal: The 
caption of the post is written in a way that appeals to the emotions of dog lovers. 
The term "bestest puppy dog begging eyes" is likely to resonate with people who 
have a soft spot for dogs, and the hashtag "puppy" helps to connect with this 
audience. 5. Trend Participation: Hashtags like "puppy" are often trending, and 
participating in trending hashtags can help the post gain traction. It shows that the 
user is up-to-date with popular social media trends. Overall, using the hashtag 
"puppy" helps to increase the post's reach, relevance, and engagement by 
connecting it to a specific and interested audience.</think>
<answer>puppy</answer>

Figure 6: Detailed CoT by our proposed method.
prediction (assessing keyphrase potential for com-844
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eration).846

13


	Introduction
	Related Work
	Social Media Keyphrase Prediction
	Vision-Language Models
	Reasoning Capabilities

	Methodology
	Traditional Multi-modal Models
	Endow Reasoning Capabilities
	Dynamic CoT

	Experiments
	Datasets
	Experimental Setup
	Comparing with SOTA methods
	Ablation Study

	Conclusion
	Appendix

