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Abstract

Multimodal Large Language Models (MLLMs)001
are known to hallucinate, which limits their002
practical applications. Recent works have at-003
tempted to apply Direct Preference Optimiza-004
tion (DPO) to enhance the performance of005
MLLMs, but have shown inconsistent improve-006
ments in mitigating hallucinations. To ad-007
dress this issue more effectively, we introduce008
Hallucination-targeted Direct Preference Op-009
timization (HDPO) to reduce hallucinations010
in MLLMs. Unlike previous approaches, our011
method tackles hallucinations from their di-012
verse forms and causes. Specifically, we de-013
velop three types of preference pair data tar-014
geting the following causes of MLLM hallu-015
cinations: (1) insufficient visual capabilities,016
(2) long context generation, and (3) multi-017
modal conflicts. Experimental results demon-018
strate that our method achieves superior per-019
formance across multiple hallucination evalua-020
tion datasets, surpassing most state-of-the-art021
(SOTA) methods and highlighting the potential022
of our approach. Ablation studies and in-depth023
analyses further confirm the effectiveness of024
our method and suggest the potential for fur-025
ther improvements through scaling up.026

1 Introduction027

Large Language Models (LLMs) have been veri-028

fied in various fields, demonstrating their poten-029

tial (OpenAI, 2024; Dubey et al., 2024; Sun et al.,030

2024), while they encounter challenges such as031

hallucination. Multimodal Large Language Mod-032

els (MLLMs) are also known to hallucinate (Bai033

et al., 2024). Specifically, they often produce un-034

faithful content that does not align with the visual035

input, which undermines their reliability and prac-036

ticality, particularly in critical applications such as037

autonomous driving (Cui et al., 2024) or medical038

tasks (Liu et al., 2023a). Hence, addressing MLLM039

hallucination (M-hallu) is essential.040

Recently, some pioneer preference optimiza- 041

tion methods like Direct Preference Optimization 042

(DPO) (Rafailov et al., 2024) have been introduced, 043

which encourages the model to learn from compar- 044

isons between positive and negative samples, alle- 045

viating hallucinations (Zhao et al., 2023; Pi et al., 046

2025). However, most current methods cannot de- 047

liver consistent improvements across all types of 048

M-hallu tasks (e.g., VQA and captioning tasks, as 049

shown in our experiments of Table 1). Additionally, 050

it appears that the model’s improvement on specific 051

tasks is closely related to the format of the training 052

data. For instance, the data of SeVa (Zhu et al., 053

2024) primarily consists of VQA, which explains 054

its strong performance on VQA-related hallucina- 055

tion evaluation. However, its results on captioning 056

tasks are relatively unsatisfactory. Moreover, these 057

methods do not explicitly consider diverse sources 058

of M-hallu. Hence, we argue that if we focus on 059

mitigating multimodal hallucinations, we should 060

be able to address diverse types of hallucination 061

causes and tasks, and design hallucination-targeted 062

preference pairs for DPO accordingly. Our goal is 063

to comprehensively alleviate all multimodal hallu- 064

cination problems, including both discriminative 065

tasks (e.g., VQA) and generative tasks (e.g., image 066

captioning). 067

Different from the hallucinations in LLMs, M- 068

hallu primarily arises from the following three as- 069

pects: (1) Insufficient visual capability: This oc- 070

curs when the MLLM’s visual encoder lacks the 071

necessary strength, being distracted by relatively 072

unimportant visual information, leading to hallu- 073

cinations; (2) Incapable long-context generation: 074

We observe that hallucinations become more pro- 075

nounced as the generated content grows longer, 076

similar to long-range forgetting, which needs to be 077

addressed in practical applications; (3) Multimodal 078

conflicts: Multimodal conflicts frequently arise in 079

real-world scenarios due to the inevitable noises 080

in texts and images. MLLMs are more prone to 081
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hallucinations with conflicting information existing082

between text and image (Liu et al., 2024c).083

To address the aforementioned challenges, we084

propose Hallucination-targeted Direct Prefer-085

ence Optimization (HDPO) to mitigate M-hallu.086

Our approach constructs hallucination-targeted087

preference pairs, specifically designed to address088

various forms and causes of hallucinations. Specif-089

ically, we design three types of DPO data reflect-090

ing the corresponding hallucination causes as fol-091

lows: (1) For insufficient visual capability, during092

the model’s autoregressive decoding, we preserve093

only some visual tokens with the lowest attention094

scores to produce targeted negative responses that095

reflect incorrect visual information distraction, urg-096

ing MLLMs to pay attention to more effective vi-097

sual information. (2) For incapable long context098

generation, we specifically select positive exam-099

ples from high-quality long-form captions, while100

creating negative examples where the latter part101

of the response deviates from the image content,102

simulating long-form hallucinations. (3) For mul-103

timodal conflicts, we add conflicting information104

with images into prompts to generate negative ex-105

amples. We provide positive and negative pairs106

with questions featuring conflicting prefixes to train107

the model to correctly respond to the question even108

containing conflicting information.109

We conduct extensive experiments to evaluate110

our approach across various types of M-hallu tasks.111

The results demonstrate that our HDPO framework112

achieves the overall best performance in effectively113

mitigating MLLM hallucinations on various tasks.114

Our contributions are summarized as follows:115

• We analyze three key causes behind MLLM116

hallucinations from visual capability, long-117

context generation, and multimodal conflicts118

aspects, offering valuable insights to guide119

future advancements.120

• Based on these analyses, we propose a novel121

HDPO, aiming to jointly address all types of122

M-hallu tasks. To the best of our knowledge,123

we are the first to adopt hallucination-targeted124

DPO from diverse aspects with our novel DPO125

data construction strategies.126

• Through extensive experiments on different127

datasets, HDPO demonstrates consistent im-128

provements in all types of M-hallu tasks.129

2 Related Work 130

Hallucinations in MLLMs. Recently, the rapid 131

progress of LLMs has accelerated the MLLMs, 132

demonstrating impressive visual understanding 133

ability. However, they still encounter hallucina- 134

tions. Lots of works have explored various ap- 135

proaches to mitigate M-hallu. Some training-free 136

methods are proposed including enhancing mod- 137

els’ decoding process (Leng et al., 2024; Huang 138

et al., 2024; Chen et al., 2024) and utilizing exter- 139

nal feedbacks to reduce hallucinations (Yin et al., 140

2023; Wu et al., 2024), while other training meth- 141

ods enhance datasets’ quality (Liu et al., 2023b). 142

Our work belongs training category. And we will 143

elaborate more on related preference optimizaiton 144

methods for improving MLLMs below. 145

Preference Optimization on MLLMs. Recently, 146

preference optimization like DPO has been used 147

to enhance models. HA-DPO (Zhao et al., 2023) 148

views hallucinations as models’ preferences. By 149

leveraging ChatGPT (Achiam et al., 2023) along- 150

side ground truth annotations from existing im- 151

age datasets, it generates positive examples aligned 152

with image content, while the model’s original out- 153

puts serve as negative examples for direct prefer- 154

ences optimization. Although effective, the con- 155

struction of negative examples is suboptimal, as 156

it may not fully capture the diverse forms of M- 157

hallu. SeVa (Zhu et al., 2024) generates negative 158

examples by introducing noise into images and 159

treats the model’s original outputs as positive ex- 160

amples, constructing pairs for DPO. In addition to 161

adding noise, BPO (Pi et al., 2025) injects errors 162

into positive examples via the LLM backbone of 163

MLLMs to construct negative examples. However, 164

our experiments indicate that while these methods 165

demonstrate strong capabilities, their performance 166

in hallucination-related evaluations is not particu- 167

larly impressive. Nonetheless, these works demon- 168

strate the superiority of DPO in enhancing models’ 169

capabilities. Inspired by these findings, we aim to 170

develop methods to further mitigate M-hallu from 171

its diverse forms with hallucination-targeted direct 172

preference optimization. 173

HDPO differs from existing methods. Unlike 174

other existing preference optimization approaches, 175

we primarily focus on hallucination-targeted prefer- 176

ence optimization. We analyze and address halluci- 177

nations in MLLMs from diverse causes and forms. 178

During the preference optimization process, the 179

model learns to distinguish between positive and 180
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negative examples. HA-DPO enables the model to181

be aware of hallucinated content in its original out-182

puts, though its effectiveness is limited to capturing183

the diverse range of hallucinations as the data is184

insufficient. In contrast, other works use general185

preference data, which improves overall model ca-186

pability but shows inconsistency across different187

hallucination benchmarks. Therefore, we aim to188

enhance the effectiveness of DPO by constructing189

examples that reflect a wider range of hallucination190

forms and characteristics, allowing the model to191

align better to make less hallucination.192

Causes of hallucinations in MLLMs. There are193

substantial works exploring M-hallu, offering in-194

sightful perspectives. VCD suggests that language195

prior within MLLM is a key factor in inducing hal-196

lucinations. The Less is More (Yue et al., 2024)197

highlights that hallucinations are more prevalent198

in longer texts. In contrast, Eyes Wide Shut (Tong199

et al., 2024) identifies limitations in the current200

CLIP-based visual encoders used in MLLMs, show-201

ing that they fail to capture fine-grained details.202

Furthermore, SID (Huo et al., 2024) points out that203

tokens with lower weights in the early layers can204

trigger subsequent hallucinations. Meanwhile, PhD205

(Liu et al., 2024c) demonstrates that M-hallu stems206

from conflicts between multimodal information,207

and counterintuitive images particularly prone to208

causing hallucinations. Collectively, these studies209

provide valuable insights into understanding and210

addressing M-hallu.211

3 Method212

In this section, we provide a brief preliminaries of213

MLLM and DPO, followed by a detailed explana-214

tion of our proposed HDPO for constructing three215

types of hallucination-targeted preference data.216

3.1 Preliminaries217

Multimodal Large Language Models. MLLMs218

utilize LLMs to predict the probability distribution219

of the next token for each textual input. Given a220

prompt x that includes both an image and a text221

query, MLLMs generate a corresponding text re-222

sponse y. By incorporating visual information,223

MLLMs enhance the capabilities of LLMs, en-224

abling multimodal understanding.225

Direct Preference Optimization. To better align226

LLMs with human preferences, preference opti-227

mization methods have been developed. Among228

these, Reinforcement Learning from Human Feed-229

back (RLHF) is a widely recognized method, 230

though it involves training a reward model, which 231

can be quite challenging. In contrast, Direct Prefer- 232

ence Optimization (DPO) (Rafailov et al., 2024) uti- 233

lizes preferences data directly, without the need for 234

a reward model. This makes DPO the approach we 235

employ. Given a pre-processed preference dataset 236

D containing x, yc, and yr, where x represents the 237

input prompt, yc is the preferred response, and yr is 238

the rejected response, DPO optimizes the language 239

model through the following loss function: 240

Ld = −ED

[
log σ

(
β log πθ(yc|x)

πref(yc|x) − β log πθ(yr|x)
πref(yr|x)

)]
, 241

where πref(y|x) denotes the reference policy, i.e., 242

the language model after supervised fine-tuning, 243

with θ as the trainable parameter. 244

Motivation of our HDPO. We propose HDPO, 245

which constructs high-quality preference pairs re- 246

lated to the major causes of MLLM hallucinations 247

with DPO to alleviate M-hallu. Note that the main 248

contributions of HDPO lie in the discovery, analy- 249

sis, and appropriate sample constructions of three 250

representative types of M-hallu. Enhanced DPO 251

algorithm is promising but not our focus. 252

3.2 Overview of HDPO 253

The primary goal of HDPO is to broadly tackle var- 254

ious M-hallu issues by constructing hallucination- 255

targeted preference pairs, rather than relying on 256

DPO data of specific tasks. Without loss of gener- 257

ality, we adopt a generalized data format: image- 258

descriptive text data, which we believe more effec- 259

tively captures various forms of hallucination. 260

For DPO in MLLMs, we require a preference 261

dataset D, denoted as (I, q, yc, yr), where I is the 262

image, q is the question, yc is the preferred (pos- 263

itive) response, and yr is the rejected (negative) 264

response. Currently, there are already many high- 265

quality positive examples available, such as the 266

refined positive examples in HA-DPO for the VG 267

dataset, which leverage ChatGPT to enhance image 268

annotations, and a vast number of positive exam- 269

ples labeled by GPT-4V in ShareGPT4V (Chen 270

et al., 2023). These high-quality datasets have a 271

strong alignment with the image content, making 272

them suitable for use as positive examples in DPO. 273

Therefore, our focus going forward is on how to 274

construct more valuable and informative negative 275

examples, particularly those that target hallucina- 276

tion, which will help the model learn preferences 277

and reduce hallucination occurrences. 278
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prompt-induced 
continuation

In addition…
Beyond that…

Long Context Hallucination(LCH)

This a well-organized kitchen with a clean, modern 
aesthetic. The kitchen features a white countertop 
against a white wall, creating a bright and airy 
atmosphere. On the countertop, you can see a variety 
of appliances and items. There's a sleek coffee machine, 
ready to brew a fresh cup…… The arrangement is neat 
and everything appears to have its ……(Deprecated)

This is a well-organized kitchen with a clean, modern 
aesthetic. The kitchen features a white countertop 
against a white wall, creating a bright and airy 
atmosphere. On the countertop, you can see a variety 
of appliances and items. There's a sleek coffee machine, 
ready to brew a fresh cup…… The table is surrounded 
by a few more chairs, creating a cozy dining area …… 

Ground Truth(long context): 

MLLM

Output with Hallucinations: 

Multimodal  Conflicts Hallucination(MCH)

A young man is the main focus. 
He is dressed in a sharp black suit 
paired with a vibrant red tie ……

A young woman takes center stage. She 
is wearing a stylish navy blue dress 
adorned with silver sequins ……
Describe this image in detail.

A young woman wearing a stylish navy 
blue dress adorned with silver sequins, 
standing on a lush green lawn ……modify

Ground Truth: 

MLLM

Output with Hallucinations: 

MLLM

lower score

visual tokens 
selection

Visual Distracted Hallucination(VDH)

The photograph depicts a scene from 
a baseball game ……  A baseball 
glove is also visible, suggesting it 
belongs to one of the players.

The image depicts an exciting moment 
in a baseball game …… A baseball 
glove lies on the ground, presumably 
belonging to one of the players. 

Ground Truth: Output with Hallucinations: Original Image Corrupted Image

prune brighter 
tokens

Questions with Conflicts

Figure 1: Overview of our three kinds of Hallucinated-targeted Preference data. Better view on the digital screen.

To this end, we develop three types of pairwise279

samples specifically targeting hallucination issues:280

Visual Distracted Hallucination (VDH), Long Con-281

text Hallucination (LCH), and Multimodal Con-282

flict Hallucination (MCH). An overview of each283

data type is provided in fig. 1, and further details284

are outlined in the sections below.285

3.3 Visual Distracted Hallucination286

Previous works generate negative samples by287

adding noise to create blurred images, while it288

may not always produce sufficiently effective nega-289

tive samples, as indicated in appendix B. A more290

straightforward way is to construct negative sam-291

ples using prompts, but the negative samples gen-292

erated under prompt interference may fail to accu-293

rately reflect the issues related to the visual capa-294

bilities of MLLMs.295

Therefore, to more precisely capture the insuf-296

ficient visual capabilities of MLLMs, we propose297

more carefully designed novel approaches from at-298

tention perspective. Inspired by SID, we induce299

vision-and-text association hallucinations by lever-300

aging vision tokens with low attention scores in301

the self-attention module. Formally, for the trans-302

former block in the auto-regressive decoder, text303

instructions, vision inputs, and generated tokens304

are concatenated and projected into three vectors:305

Q, K and V. The self-attention computes the rele-306

vance of each element to the others as follows to307

get the attention matrix:308

A = softmax((Q ·KT )/
√
d+M) (1)309

where d represents the dimension of Q, K, V, M 310

represents the casual mask. A ∈ R(b,h,n,n), where 311

b, h, and n denote batch size, number of key-value 312

heads, and total token number, respectively. We 313

denote the Ai as the attention matrix after Layer i 314

of MLLMs. Then we calculate vision token impor- 315

tance scores (Scorei(v)) based on Ai: 316

Scorei(v) =
1

h

h∑
j=1

A
(·,j,·,·)
i [−1] (2) 317

During the model’s auto-regressive decoding pro- 318

cess, we retain the K vision tokens with the lowest 319

importance scores, and the resulting decoded re- 320

sponse serves as negative samples. By removing 321

the most important visual token from the model 322

in this way, amplifies the influence of relatively 323

irrelevant visual tokens, thus constructing visual 324

information distracted hallucinations as negative 325

samples, urging MLLMs to pay attention to more 326

important visual information. 327

3.4 Long Context Hallucination 328

As previously mentioned, the occurrence of hal- 329

lucinations tends to increase as models generate 330

longer responses. To illustrate this more clearly, 331

we present CHAIR scores by varying the ’max new 332

tokens’ parameter. As shown in fig. 2, the CHAIR 333

score of LLaVA-v1.5-7B exhibits a clear positive 334

correlation with the ’max new tokens’, indicating 335

that more hallucinations are produced as the gen- 336

erated content increases. This issue has also been 337

highlighted in recent studies (Yue et al., 2024). 338
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Figure 2: CHAIR scores under different max new tokens

This phenomenon is both logical and explainable.339

As the model generates longer texts, the proportion340

of text tokens gradually increases while the propor-341

tion of image tokens decreases. This shift causes342

the model to increasingly neglect visual tokens, re-343

sulting in descriptions that appear reasonable but344

fail to accurately align with the visual content. Our345

aim is to construct preference data that guides the346

model to better align its generated content with the347

visual input and the given question, even when gen-348

erating long responses. However, existing datasets349

lack sufficient positive and negative pairs for long-350

form content and often contain noise with other351

factors, making them difficult to directly apply for352

training. To address this, we firstly propose ap-353

proach for constructing positive and negative pref-354

erence pairs for long-form content, ensuring the355

long text hallucinations while maintaining minimal356

semantic divergence.357

Given our focus on relatively long-form content,358

the responses need to be sufficiently lengthy (high-359

quality long responses). For negative examples,360

we truncate the last two sentences from a positive361

example and use the preceding portion as a prefix.362

The MLLM then continues generating text from363

this prefix, which compels the model to produce364

common errors associated with extended text gen-365

eration. This process is repeated by concatenating366

the newly generated content to the prefix for three367

iterations in a loop.368

Hint Phrase. Simply providing the prefix and369

instructing the model to continue often results in un-370

expected behavior, as the model tends to conclude371

the response quickly, generating low-information372

descriptions. To address this issue, we append a373

’hint phrase’ to the prefix, guiding the model toward374

producing more informative and detailed responses.375

Besides that, we also modify the system prompt.376

Details can be seen in appendix D.2. It helps pro-377

duce responses prone to more likely errors when378

generating long texts. By creating positive and neg- 379

ative pairs in this manner, we aim to use DPO to 380

teach the model how to minimize hallucinations in 381

long-form responses and improve alignment. 382

3.5 Multimodal Conflicts Hallucination 383

One of the more challenging yet often overlooked 384

scenarios in mainstream evaluation tasks involves 385

conflicts between modalities. In such cases, mod- 386

els may naturally favor textual content due to their 387

autoregressive generating manner and the larger 388

proportion of the language model component, lead- 389

ing to incorrect outputs. In this paper, we bring 390

this issue to the forefront to address and firstly use 391

preference optimization to mitigate it. 392

To be specific, we construct positive and nega- 393

tive pairs with conflicting prefixes and apply DPO 394

to optimize the model. Specifically, we utilize GPT- 395

4o-mini to rewrite details of the positive examples 396

through prompting, generating information con- 397

flicting with the image contents. These conflicting 398

informations are then placed at the beginning of 399

normal questions, prompting the model to produce 400

incorrect responses. As shown in fig. 3, the model 401

is indeed prone to being hallucinated by the con- 402

flicting prefixes. We take the model’s incorrect 403

outputs as negative examples. Further details on 404

the prompts can be found in fig. 9. Unlike pre- 405

vious types of data, the questions for training of 406

MCH contain conflicting prefixes, as we aim for 407

the model to generate correct responses in the query 408

even when presented with conflicting information. 409

3.6 Implement details 410

For LCH, which requires longer responses, we 411

sampled 6k examples with over 300 tokens from 412

ShareGPT4V. For MCH, we randomly sampled 6k 413

examples from ShareGPT4V. For VDH, we obtain 414

6k examples from ShareGPT4V and 4k examples 415

from VG with positive examples from HA-DPO 416

to enhance data diversity; the preserved K is 500, 417

with other settings aligned with SID (e.g., i = 2). 418

Details of data can be found in appendix D. 419

4 Experiments 420

In this section, we empirically investigate the evalu- 421

ation of HDPO. We begin by describing the exper- 422

imental settings, including the evaluation datasets 423

and training details. Next, we present the results on 424

various hallucination evaluation datasets, demon- 425

strating the promising performance of HDPO. Ad- 426

ditionally, we validate the expected functions of 427
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POPE CHAIR AMBER

F1 Score ↑ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ HalRate ↓ Cog. ↓ F1 Score ↑ AMBER-S ↑

LLaVA-v1.5-7B 86.1 51.2 14.2 7.6 35.1 4.3 74.5 83.5
Vlfeedback † 83.7 40.3 13.2 – – – – –
POVID † 86.9 35.2 8.3 – – – – –
HA-DPO 86.9 37.2 10.0 6.4 29.9 3.2 78.2 85.9
SeVa 86.8 54.6 15.9 7.4 35.6 3.2 84.1 88.3
BPO 83.1 42.2 10.1 5.0 33.5 2.0 84.5 89.7
CSR 87.0 19.6 5.4 3.8 16.9 1.4 76.0 86.1

HDPO (ours) 86.8 16.6 5.1 3.3 15.8 0.8 84.1 90.4

Table 1: Experimental results of HDPO on LLaVA-v1.5-7B compared with baselines applied on LLaVA-v1.5-7B.
The best result for each metric is in bold. Some results† are referenced from Zhou et al. (2024b). The F1 of POPE
and AMBER are discriminative metrics, AMBER-s is a comprehensive metric, and the others are generative metrics.

CH Co Hal Cog
0

10

20

30

40

50

60

70

80

w/o conflicts
w/ conflicts

Figure 3: Performance of LLaVA-v1.5-7B w/ and w/o
conflicts on AMBER, details in section 4.4.2.

LCH and MCH. Finally, we provide ablation stud-428

ies and conduct in-depth analyses in more detail.429

4.1 Experimental Settings430

Evaluation Datasets. We evaluate the effective-431

ness of HDPO in mitigating hallucinations across432

both captioning tasks and simplified visual ques-433

tion answering (VQA) tasks using three evaluation434

datasets as follows: (1) CHAIR is an evaluation435

method used in image captioning tasks to assess436

object hallucinations in model responses. There437

are two metrics: CHAIRs and CHAIRi. CHAIRs438

measures hallucinations at the sentence level, while439

CHAIRi measures them at the image level respec-440

tively. (2) POPE is a popular dataset for evaluating441

object hallucinations in MLLMs. We calculate and442

report the average F1 score on different splits. (3)443

AMBER is an LLM-free multi-dimensional bench-444

mark, offering a cost-effective and efficient evalu-445

ation pipeline. It supports the evaluation of both446

generative and discriminative tasks including hallu-447

cinations related to existence, attributes, and rela-448

tions. For all details of datasets and metrics used449

can be seen in appendix A.450

Training Details. As most related works (Chen451

et al., 2023; Zhu et al., 2024; Pi et al., 2025) are 452

carried on LLaVA-v1.5 (Liu et al., 2024a), we se- 453

lect it as our base model for experiments, which al- 454

lows for easy comparison with other existing works. 455

Models’ weights are pretrained and further fine- 456

tuned using supervised fine-tuning (SFT) before 457

applying HDPO. During the training phase, we 458

employ Zero stage-3 optimization and use Vicuna- 459

7B/13B and CLIP-VIT-L-336px as our LLM and 460

vision encoder, respectively. The training is con- 461

ducted with 2 epochs with a batch size of 64, a 462

learning rate of 2e-6, weight decay as 0, LoRA 463

rank as 64, and a beta value of 0.1. All experi- 464

ments are run on one single machine with 8 A800 465

GPUs. The total training time is 3 hours for LLaVA- 466

v1.5-7B and 4 hours for LLaVA-v1.5-13B. Besides, 467

we also validate HDPO on InstructBLIP, further 468

demonstrating effectiveness in section 4.3. 469

Competitor. We first compare HDPO with its 470

base model. We also select several preference 471

learning methods, including Vlfeedback (Li et al., 472

2024), POVID (Zhou et al., 2024a), CLIP-DPO 473

(Ouali et al., 2025), HA-DPO (Zhao et al., 2023), 474

SeVa (Zhu et al., 2024), BPO (Pi et al., 2025), and 475

CSR (Zhou et al., 2024b). Furthermore, we com- 476

pare HDPO on AMBER with other MLLMs in 477

appendix D.5. 478

4.2 Results on Diverse Hallucination Tasks 479

HDPO achieves SOTA level on both generative 480

and discriminative hallucination tasks. The re- 481

sults indicate that HDPO performs well in mitigat- 482

ing hallucinations, achieving almost SOTA level, 483

especially on generative tasks. This outcome is nat- 484

ural, as our data contains only descriptive content, 485

leading to relatively strong performance on gener- 486

ative tasks. Since we don’t specifically construct 487

data tailored for discriminative tasks, the improve- 488

ment in these tasks is not substantial. However, 489
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POPE CHAIR AMBER

F1 Score ↑ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ HalRate ↓ Cog. ↓ F1 Score ↑ AMBER-S ↑

LLaVA-v1.5-13B 85.8 48.0 13.6 6.6 31.0 3.3 73.0 83.2
HA-DPO 87.3 46.0 12.1 6.0 30.7 3.0 79.1 86.6
SeVa 86.9 59.8 17.4 9.0 43.3 3.7 84.8 87.9
CSR 87.3 24.0 5.6 3.6 19.0 1.8 73.1 84.8

HDPO (ours) 87.6 15.4 5.3 3.8 16.5 0.8 81.2 88.7

Table 2: Experimental results of HDPO on LLaVA-v1.5-13B compared with baselines applied on LLaVA-v1.5-13B.
More details of baselines can be seen in appendix C.

the overall performance remains strong, indicat-490

ing that our approach, which targets the sources of491

hallucinations rather than specific tasks, is more492

effective for mitigating hallucinations. Notably,493

HDPO achieves 67.6% improvement on CHAIRs,494

64.1% improvement on CHAIRi, 55% enhance-495

ment on HalRate, best performance on AMBER-S.496

Besides, we also evaluate HDPO on a comprehen-497

sive benchmark, MM-Vet (Yu et al., 2024), where498

we observe a slight improvement. This aligns with499

our expectations, as the model is not fine-tuned on500

a wide range of tasks and data types, but focused501

on reducing hallucinations.502

Brief analyses on other baselines. Some base-503

lines lack comprehensive performance on halluci-504

nation evaluation. SeVa, though effective on AM-505

BER’s discriminative tasks, shows no improvement506

on generative tasks, likely due to its reliance on507

VQA-type data. Similarly, BPO underperforms508

on CHAIR. In contrast, CSR excels in generative509

tasks but struggles with AMBER’s discriminative510

tasks. This indicates that while these methods en-511

hance model performance, they do not fully op-512

timize for hallucination, and their ability to mit-513

igate hallucinations remains inconsistent and in-514

complete, while HDPO demonstrates strong per-515

formance in hallucination evaluation, as evidence516

of its ’hallucination-targeted’ design.517

Advantages of our HDPO Data. The size of our518

dataset also provides a relative advantage. For in-519

stance, with nearly 12% data amount compared520

with BPO, HDPO significantly improves model’s521

performance on hallucination, achieving better per-522

formance than BPO on generative tasks by a large523

margin. Moreover, we did not construct VQA524

data for discriminative tasks. Nevertheless, the525

results are already impressive, demonstrating that526

our HDPO is universally effective.527

4.3 Universality on Different Base Models528

We also conduct experiments across different base529

models to verify our HDPO’s universality. Specifi-530

cally, we apply HDPO to the widely-used LLaVA- 531

v1.5-13B for MLLM hallucination evaluation. The 532

results are shown in table 2, demonstrating that 533

the model’s performance remains consistent with 534

expectations, with improvements in hallucination 535

mitigation. It also implies that our generated 536

hallucination-targeted DPO data is effective for 537

different LLM sizes. To further validate the gen- 538

eralization capabilities of other MLLMs, we also 539

conduct experiments on InstructBLIP (Liu et al., 540

2024b). The results in table 5 also show consistent 541

improvement on the overall performance. 542

4.4 Analyses on Different Hallucinations 543

The results from above experiments demonstrate 544

our method’s superior performance in mitigating 545

hallucinations. However, do they truly work effec- 546

tively in the scenarios we claim? Below, we briefly 547

design two more challenging sub-tasks of halluci- 548

nation that align with our claims, aiming to further 549

showcase the effectiveness of our data construction 550

of LCH and MCH. We also conduct experiments 551

to compare VDH with adding noise in appendix B, 552

further demonstrating effectiveness of VDH. 553

4.4.1 Long Context Hallucination 554

To evaluate the effectiveness of LCH on longer 555

responses, we conduct an extended experiment on 556

the AMBER generative task. Specifically, when 557

the model is asked the question "Describe this im- 558

age in detail", we append the instruction "answer 559

in 800 words" to encourage longer responses. As 560

indicated in table 3, HDPO shows good and sta- 561

ble performance in handling longer responses, with 562

the lowest HalRate, CHAIRs, and Cog. It demon- 563

strates that our construction for LCH works as 564

expected in longer responses. 565

4.4.2 Multimodal Conflicts Hallucination 566

In real-world scenarios, multimodal conflicts are 567

common when using MLLMs. To better evaluate 568

the model’s performance under such conditions, we 569
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CHAIR ↓ HalRate ↓ Cog. ↓

LLaVA-v1.5-7B 9.0 45.1 5.7
HA-DPO 7.5 37.6 4.4
SeVa 7.5 43.4 4.3
BPO 6.4 55.3 4.8
HDPO 3.4 21.4 1.3
w/o LCH 4.6 26.4 1.8

Table 3: Results of long context hallucination.

CHAIR ↓ HalRate ↓ Cog. ↓

LLaVA-v1.5-7B 39.1 85.1 7.8
HA-DPO 40.3 86.1 8.1
SeVa 39.1 86.1 7.8
BPO 22.3 81.2 7.7
HDPO 14.3 52.0 5.2
w/o MCH 39.8 84.7 6.7

Table 4: Results of multimodal conflict hallucination.

design a more challenging task. Specifically, we570

randomly select 200 questions from the generative571

task in the AMBER dataset. First, LLaVA-1.5-7B572

is used to generate answers for these questions to573

get coarse-grained image descriptions. Next, GPT-574

4o-mini rewrites the details in the descriptions, fol-575

lowing the construction method of MCH. We then576

introduce the incorrect information as a prefix to577

the question and ask the model to describe the im-578

age while influenced by the conflicting context.579

The experimental results are shown in table 4,580

demonstrating that despite encountering conflict-581

ing prefixes, our HDPO maintains promising per-582

formance. Compared to other baselines, HDPO583

achieves the best scores in CHAIRs, HalRate, and584

Cog. It reveals that our HDPO shows significant585

improvement in the model’s performance under586

this more difficult setting, highlighting the effec-587

tiveness of MCH. Additionally, we also make a588

comparison between the effects of adding noise and589

preserved visual tokens with lower scores. Further590

details can be seen in the appendix B.591

4.5 Ablation Study592

To demonstrate the contributions of VDH, LCH,593

and MCH to overall performance, we progressively594

remove each component and report the results. (1)595

As shown in table 6, the performance declines as596

we remove each data type. The model achieves597

the best performance when all three data types are598

included. These experimental results confirm the599

individual contributions of each component. (2)600

It can also be observed that after incorporating601

MCH, there is no improvement in CHAIRs and602

CHAIRi. However, the inclusion of both posi-603

POPE ↑ CHAIRs ↓ CHAIRi ↓ AMBER-S ↑

InstructBLIP 83.7 57.0 16.1 82.5
HA-DPO 85.6 56.6 15.5 84.3
HDPO (ours) 84.8 34.8 10.9 85.9

Table 5: Results of HDPO on InstructBLIP-13B.

CHAIR AMBER

CHAIRs↓ CHAIRi↓ CHAIR↓ F1↑

LLaVA-v1.5-7B 51.4 14.2 7.6 74.5
+VDH +LCH +MCH 16.6 5.1 3.3 84.1
+LCH +MCH 28.4 7.5 4.8 78.9
+MCH 51.2 15.1 7.6 78.1

Table 6: Results of ablation study.

tive and negative examples for training leads to 604

improvement in F1 of discriminative task (4.8%↑). 605

(3) With the addition of LCH, F1 of the discrimina- 606

tive task shows minimal change, whereas the gener- 607

ative task demonstrates a substantial improvement, 608

with CHAIRs (44.5%↓) and CHAIRi (50.3%↓) 609

showing marked gains. This indicates that LCH 610

is particularly effective for generative tasks. (4) 611

Finally, incorporating VDH enhances model’s per- 612

formance across all tasks, and the combination of 613

all three categories achieves the best results. The 614

significance of LCH and MCH is also verified in 615

section 4.4 with the corresponding tasks. 616

4.6 Scalability of HDPO 617

We analyze the impact of data size on our method. 618

The performance of LLaVA-v1.5-7B fine-tuned on 619

datasets of varying sizes with the same proportions 620

are shown in fig. 4. As the data size increases, the 621

effectiveness of our approach also improves, high- 622

lighting the potential for scaling up. This demon- 623

strates the superior performance of HDPO. 624
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Figure 4: Scalability of HDPO with different data sizes.

5 Conclusion 625

In this paper, we present HDPO, a novel approach 626

designed to effectively mitigate hallucinations in 627

MLLMs. We analyze three types of hallucinations 628

observed in MLLMs and create hallucination pref- 629

erence data based on the identified causes. Ex- 630

tensive experiments across different benchmarks 631

demonstrate the ability of HDPO to reduce hallu- 632

cinations in MLLMs, showing effectiveness. 633
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Limitations634

In this paper, we introduce HDPO, which effec-635

tively mitigates the hallucination problem in cur-636

rent multimodal large language models. However,637

several issues remain unresolved. Specifically, we638

have not yet developed distinct strategies for con-639

trolling data quality, and the generation of auto-640

mated negative examples lacks methods for further641

verification and optimization, which could improve642

the effectiveness of our approach. Additionally,643

there may be opportunities to further enhance the644

quality of positive examples. Moreover, our con-645

struction methods and strategies could potentially646

be integrated with other techniques for processing647

more high-quality preference data, which may fur-648

ther improve the model’s performance. Fine-tuning649

larger models with extensive, integrated datasets650

may not only enhance overall reasoning capabili-651

ties but also increase the model’s robustness against652

hallucinations. This represents a promising area653

for further investigation, and we leave these open654

questions for future research.655

Ethics Statement656

This work mitigates hallucinations of multimodal657

large language models to enhance their reliability658

and practicality. We have carefully considered the659

ethical implications of our work. The models and660

datasets we used are publicly available and com-661

monly used, and our findings may inherit the biases662

and limitations carried out in these resources.663
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A Details of Datasets and Metrics 875

We evaluate the effectiveness of HDPO in mitigat- 876

ing hallucinations across both captioning tasks and 877

simplified visual question answering (VQA) tasks 878

using three evaluation datasets as follows: 879

CHAIR (Rohrbach et al., 2018): The Caption 880

Hallucination Assessment with Image Relevance 881

(CHAIR) is an evaluation method used in image 882

captioning tasks to assess object hallucinations in 883

model responses. There are two metrics: CHAIRs 884

and CHAIRi. CHAIRs measures hallucinations at 885

the sentence level, while CHAIRi measures them 886

at the image level respectively. We conduct the 887

CHAIR evaluation on the MSCOCO dataset follow- 888

ing the setting in OPERA(Huang et al., 2024) with 889

500 random images. For each image, the model is 890

prompted with: "Please describe this image in de- 891

tail." to obtain their descriptions. By default, we set 892

the ’max new tokens’ to 512. More specifically, the 893

calculation for the CHAIRs and CHAIRi metrics 894

are as follows: 895

CHAIRs =
|{hallucinated objects}|
|{all mentioned objects}|

(3) 896

897

CHAIRi =
|{captions w/ hallucinated objects}|

|{all captions}|
(4) 898

POPE (Li et al., 2023): The Polling-based Object 899

Probing Evaluation (POPE) is a popular dataset for 900

evaluating object hallucinations in MLLMs. The 901

evaluation is asking the model questions in the 902

format: "Is there a <object> in the image?". It can 903

be divided into three splits: popular, adversarial, 904

and random. In the popular split, the evaluation 905

targets the most frequently occurring objects in 906

the dataset. In the adversarial split, it assesses the 907

MLLM’s ability to identify objects that are highly 908

relevant to those present in the image. We evaluate 909

the metrics for all splits, and calculate and report 910

the average F1 score. POPE can be constructed on 911

different datasets, and we evaluate models on the 912

POPE dataset built on COCO. 913

AMBER (Wang et al., 2023a): An Automated 914

Multi-dimensional Benchmark for Multi-modal 915

Hallucination Evaluation (AMBER) is an LLM- 916

free multi-dimensional benchmark, offering a cost- 917

effective and efficient evaluation pipeline. It sup- 918

ports the evaluation of both generative and discrim- 919

inative tasks including hallucinations related to ex- 920

istence, attributes, and relations. Its generative eval- 921

uation aligns with our desired assessment of long 922
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descriptions, while the other dimensions provide923

insights into the model’s performance on relatively924

simple VQA tasks, thereby reflecting the model’s925

hallucination comprehensively. For its generative926

task, three metrics are used: CHAIR, Hal, and Cog.927

CHAIR measures the frequency of hallucinatory928

objects in the responses, Hal represents the pro-929

portion of responses containing hallucinations, and930

Cog assesses whether the hallucinations produced931

by MLLMs resemble those found in human cogni-932

tion. For its discriminative task, we calculate and933

report the average F1 score. We also calculate AM-934

BER Score denoted as AMBER-S, which reflects935

overall performance, and it’s calculated as follows:936

AMBER Score =
1

2
× (1− CHAIR + F1) (5)937

B Comparison of noise and token938

preservation939

We also conduct experiments to compare the im-940

pact of adding noise versus preserving visual941

tokens. Specifically, we use 6k samples from942

ShareGPT4V to construct negative samples by in-943

troducing diffusion noise and preserving visual to-944

kens, and train the LLaVA-v1.5-7B model by direct945

preference optimization. The results of these exper-946

iments are presented in table 7. As the experimen-947

tal results show, using visual token preservation948

can achieve better performance on hallucination949

evaluation.950

C Baseline Selection of 13B951

For the experiments on the 13B model, we select952

several recent strong baselines, including SeVa and953

CSR, using their open-sourced checkpoints for eval-954

uation. Additionally, we reimplement HA-DPO on955

LLaVA-v1.5-13B, as the original repository does956

not provide this checkpoint. We also attempt to957

reimplement BPO on LLaVA-v1.5-13B with no958

available checkpoints, the evaluation results are959

unexpectedly low, with POPE scores falling be-960

low 80.0. Therefore, these results are not included961

in the table. However, the BPO results for the962

7B model are obtained using the publicly released963

checkpoints. For InstructBLIP, we don’t find other964

preference optimization works on it.965

D Details about Our data966

D.1 Visual Disctracted Hallucination967

We obtain positive examples for our dataset from968

two sources: VG(with positive examples in HA-969

DPO) and ShareGPT4V. After extracting positive 970

examples from ShareGPT4V, we found them to be 971

too long. To mitigate length bias, we used GPT4o- 972

mini to rewrite them to match the length of the neg- 973

ative examples. The prompt used is shown in fig. 7. 974

For positive examples sourced from HA-DPO, af- 975

ter generating negative examples, we followed the 976

original approach by rewriting the negative exam- 977

ples using GPT4o-mini. The prompt used is shown 978

in fig. 6. Also, we can adopt the method in HA- 979

DPO to create more data. For k and i, we make an 980

empirical choice based on performance and origi- 981

nal settings. 982

D.2 Long Context Hallucination 983

We use LLaVA-1.5-7B to continue generating text 984

for the positive examples, with the system prompt 985

in fig. 5, and the hint phrases in fig. 8. By excluding 986

the last two sentences, we aim to increase the con- 987

centration of hallucinated content in the tail of the 988

response. Generating three continuations at a time 989

maintains an approximate balance in the average 990

length between positive and negative examples. 991

D.3 Multimodal Conflicts Hallucination 992

We utilize GPT-4o-mini to modify the details of the 993

positive examples, following the prompt shown in 994

fig. 9. This approach introduces conflicting infor- 995

mation that deviates from the image content. 996

D.4 Effect of data ratio 997

We did not conduct detailed experiments compar- 998

ing different data type ratios. However, throughout 999

the experiments, all tested ratios showed signifi- 1000

cant improvements over the original model. We 1001

report the best-performing dataset from our experi- 1002

ments. Determining the optimal ratio of different 1003

data types is inherently a more challenging and 1004

general problem, which goes beyond the scope of 1005

this paper. 1006

D.5 Comparison on AMBER with other 1007

MLLMs 1008

We also report the hallucination evaluation results 1009

on AMBER for both generative and discriminative 1010

tasks of HDPO on LLaVA-1.5-7B compared with 1011

other MLLMs including mPLUG-Owl2 (Ye et al., 1012

2024), MiniGPT4 (Zhu et al., 2023), CogVLM 1013

(Wang et al., 2023b), Qwen-VL (Bai et al., 2023) 1014

and GPT4V (OpenAI, 2023) in table 9. 1015
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POPE CHAIR AMBER

F1 Score ↑ CHAIRs ↓ CHAIRi ↓ CHAIR ↓ HalRate ↓ Cog. ↓ F1 Score ↑ AMBER-S ↑

LLaVA-v1.5-7B 86.1 51.2 14.2 7.6 35.1 4.3 74.5 83.5
+ Diffu6k 86.2 62.8 18.4 9.2 47.5 4.3 78.1 84.5
+ VDH 6k 87.1 48.2 13.7 6.1 32.0 2.7 80.2 87.1

Table 7: Experimental results of LLaVA-v1.5-7B trained with two ways to construct preference pairs: adding noise
and preserving visual tokens. The diffusion noise step is 800. The best result for each metric is in bold.

Len Cover Co. / Len ↑ CHAIR ↓

LLaVA-1.5-7B 75.0 51.8 0.69 7.6
BPO 148.0 58.8 0.40 5.0
SeVa 76.0 53.4 0.70 7.4
CSR 64.0 45.0 0.70 3.8
HDPO 69.0 50.2 0.73 3.3

Table 8: Analysis of Cover. on AMBER

D.6 Computational cost and efficiency1016

Compared with Baselines1017

As computational efficiency is critical for real-1018

world applications, we present the training costs of1019

HDPO and other baseline methods as follows.1020

CSR: Training utilized one A100 GPU, with1021

LLaVA-1.5 (7B / 13B) fine-tuned for approxi-1022

mately 3.5 / 5.0 hours.1023

SeVa: Training utilized 8 A800 GPUs, with1024

LLaVA-1.5 (7B / 13B) fine-tuned for approxi-1025

mately 0.7 / 1.3 hours.1026

BPO: Training utilized 8 A40 GPUs, with LLaVA-1027

1.5 (7B / 13B) fine-tuned for approximately 17.0 /1028

28.0 hours.1029

HDPO: Training utilized 8 A800 GPUs, with1030

LLaVA-1.5 (7B / 13B) fine-tuned for approxi-1031

mately 3.0 / 4.0 hours.1032

Training time is fundamentally influenced by1033

the size of the training dataset. Except for BPO,1034

which requires a relatively longer training time, the1035

training costs and durations for the other methods1036

fall within a comparable range. Thus, we believe1037

that our method holds significant value for practical1038

applications.1039

D.7 More Analysis of Cover1040

There is another Cover metric in AMBER, repre-1041

sents object coverage. It’s related to the length of1042

generated content. We calculate the Cover / Length1043

and report it in table 8. It shows that HDPO’s out-1044

puts are more precise and of higher quality with1045

the highest Co./ Len. Additionally, we have con-1046

ducted experiments showing that generating longer1047

outputs improves Cover while maintain good hallu-1048

cination performance.1049

CHAIR ↓ Hal↓ Cog.↓ F1↑ AMBER-S↑

mPLUG-Owl 21.6 76.1 11,5 18.9 48.7
LLaVA 11.5 48.8 5.5 32.7 60.6
MiniGPT4 13.6 65.3 11.3 64.7 75.6
CogVLM 5.6 23.6 1.3 72.3 83.4
mPLUG-Owl2 10.6 39.9 4.5 78.5 84.0
Qwen-VL 5.5 23.6 1.9 84.9 89.7
GPT-4V 4.6 30.7 2.6 87.4 91.4

HDPO 3.3 15.8 0.8 84.1 90.4

Table 9: Comparison on AMBER with more MLLMs,
most results are source from(Wang et al., 2023a).

D.8 Further Discussion of Limitation 1050

Although HDPO enjoys promising performance 1051

in Mitigating Hallucination, there are still some 1052

potential boundaries we meet as follows: 1053

(1) For relatively long content generation, 1054

HDPO may still struggle to fully address the is- 1055

sue. As the generated content becomes longer, 1056

hallucinations may persist. To completely resolve 1057

this problem, the model’s intrinsic long-context 1058

processing capabilities might first need to be en- 1059

hanced. However, the current long-text abilities 1060

of MLLMs are not as advanced as those of LLMs, 1061

which presents an intriguing direction for future 1062

exploration. 1063

(2) Additionally, as highlighted by (Tong et al., 1064

2024; Zong et al., 2024; Shi et al., 2024), the vi- 1065

sual encoder in current MLLMs operates at a rela- 1066

tively coarse granularity, resulting in insufficient or 1067

suboptimal visual features. These limitations can- 1068

not be fully addressed by HDPO and will likely 1069

require either more powerful visual encoders or 1070

improved MLLM architectures, both of which are 1071

also promising directions for future research. 1072

(3) What’s more, fine-tuning larger models on 1073

extensive, integrated datasets could improve rea- 1074

soning capabilities and robustness against halluci- 1075

nations. These open questions remain promising 1076

directions for future research. 1077

We think the above additional discussion clari- 1078

fies the limitations of HDPO and outlines potential 1079

directions for addressing these challenges. 1080
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System Prompt:

You should describe in detail all elements in the image. 
Be thorough in addressing aspects such as color, shape, 
size, position, quantity, actions, emotions, and more.
Your response should be as much as possible.

Figure 5: System Prompt used in LCH

Rewrite Prompt: 

Help me rewrite the given sentence. 
Don't change any detail and information in the original 
sentence. Don't add any new information. 

The sentence you need to rewrite: %s
Directly give the rewritten sentence: 

Figure 6: Rewrite Prompt used in VDH

Adjust Length Prompt:  

Please adjust the length of the Description to 
approximately %s words.

Ensure all essential details and meanings are preserved, 
with clear, concise, and accurate expression. 
Provide the modified Description directly.

Original Description: "%s"
Modified Description:

Figure 7: Adjust Length Prompt used in VDH

Hint Phrases: 

"In addition",
"Moreover",
"Furthermore",
"Besides that",
"Additionally",
"What's more",
"As well as that",
"Beyond that",
"There is something else that needs to be mentioned",
"Not only that",
"It should also be noted that”

Figure 8: Hint Phrases used in LCH

Modify Prompt: 

I will give you a description of an image, and you need to 
modify various details of the description, such as the 
number of objects, types of objects, their positions, colors, 
behaviors, and so on.

Description: %s
Modified Description:

Figure 9: Modify Prompt used in MCH
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