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Abstract

Multimodal Large Language Models (MLLMs)
are known to hallucinate, which limits their
practical applications. Recent works have at-
tempted to apply Direct Preference Optimiza-
tion (DPO) to enhance the performance of
MLLMs, but have shown inconsistent improve-
ments in mitigating hallucinations. To ad-
dress this issue more effectively, we introduce
Hallucination-targeted Direct Preference Op-
timization (HDPO) to reduce hallucinations
in MLLMs. Unlike previous approaches, our
method tackles hallucinations from their di-
verse forms and causes. Specifically, we de-
velop three types of preference pair data tar-
geting the following causes of MLLM hallu-
cinations: (1) insufficient visual capabilities,
(2) long context generation, and (3) multi-
modal conflicts. Experimental results demon-
strate that our method achieves superior per-
formance across multiple hallucination evalua-
tion datasets, surpassing most state-of-the-art
(SOTA) methods and highlighting the potential
of our approach. Ablation studies and in-depth
analyses further confirm the effectiveness of
our method and suggest the potential for fur-
ther improvements through scaling up.

1 Introduction

Large Language Models (LLMs) have been veri-
fied in various fields, demonstrating their poten-
tial (OpenAl, 2024; Dubey et al., 2024; Sun et al.,
2024), while they encounter challenges such as
hallucination. Multimodal Large Language Mod-
els (MLLMs) are also known to hallucinate (Bai
et al., 2024). Specifically, they often produce un-
faithful content that does not align with the visual
input, which undermines their reliability and prac-
ticality, particularly in critical applications such as
autonomous driving (Cui et al., 2024) or medical
tasks (Liu et al., 2023a). Hence, addressing MLLM
hallucination (M-hallu) is essential.

Recently, some pioneer preference optimiza-
tion methods like Direct Preference Optimization
(DPO) (Rafailov et al., 2024) have been introduced,
which encourages the model to learn from compar-
isons between positive and negative samples, alle-
viating hallucinations (Zhao et al., 2023; Pi et al.,
2025). However, most current methods cannot de-
liver consistent improvements across all types of
M-hallu tasks (e.g., VQA and captioning tasks, as
shown in our experiments of Table 1). Additionally,
it appears that the model’s improvement on specific
tasks is closely related to the format of the training
data. For instance, the data of SeVa (Zhu et al.,
2024) primarily consists of VQA, which explains
its strong performance on VQA-related hallucina-
tion evaluation. However, its results on captioning
tasks are relatively unsatisfactory. Moreover, these
methods do not explicitly consider diverse sources
of M-hallu. Hence, we argue that if we focus on
mitigating multimodal hallucinations, we should
be able to address diverse types of hallucination
causes and tasks, and design hallucination-targeted
preference pairs for DPO accordingly. Our goal is
to comprehensively alleviate all multimodal hallu-
cination problems, including both discriminative
tasks (e.g., VQA) and generative tasks (e.g., image
captioning).

Different from the hallucinations in LLMs, M-
hallu primarily arises from the following three as-
pects: (1) Insufficient visual capability: This oc-
curs when the MLLM’s visual encoder lacks the
necessary strength, being distracted by relatively
unimportant visual information, leading to hallu-
cinations; (2) Incapable long-context generation:
We observe that hallucinations become more pro-
nounced as the generated content grows longer,
similar to long-range forgetting, which needs to be
addressed in practical applications; (3) Multimodal
conflicts: Multimodal conflicts frequently arise in
real-world scenarios due to the inevitable noises
in texts and images. MLLMs are more prone to



hallucinations with conflicting information existing
between text and image (Liu et al., 2024c).

To address the aforementioned challenges, we
propose Hallucination-targeted Direct Prefer-
ence Optimization (HDPO) to mitigate M-hallu.
Our approach constructs hallucination-targeted
preference pairs, specifically designed to address
various forms and causes of hallucinations. Specif-
ically, we design three types of DPO data reflect-
ing the corresponding hallucination causes as fol-
lows: (1) For insufficient visual capability, during
the model’s autoregressive decoding, we preserve
only some visual tokens with the lowest attention
scores to produce targeted negative responses that
reflect incorrect visual information distraction, urg-
ing MLLMs to pay attention to more effective vi-
sual information. (2) For incapable long context
generation, we specifically select positive exam-
ples from high-quality long-form captions, while
creating negative examples where the latter part
of the response deviates from the image content,
simulating long-form hallucinations. (3) For mul-
timodal conflicts, we add conflicting information
with images into prompts to generate negative ex-
amples. We provide positive and negative pairs
with questions featuring conflicting prefixes to train
the model to correctly respond to the question even
containing conflicting information.

We conduct extensive experiments to evaluate
our approach across various types of M-hallu tasks.
The results demonstrate that our HDPO framework
achieves the overall best performance in effectively
mitigating MLLM hallucinations on various tasks.
Our contributions are summarized as follows:

* We analyze three key causes behind MLLM
hallucinations from visual capability, long-
context generation, and multimodal conflicts
aspects, offering valuable insights to guide
future advancements.

* Based on these analyses, we propose a novel
HDPO, aiming to jointly address all types of
M-hallu tasks. To the best of our knowledge,
we are the first to adopt hallucination-targeted
DPO from diverse aspects with our novel DPO
data construction strategies.

* Through extensive experiments on different
datasets, HDPO demonstrates consistent im-
provements in all types of M-hallu tasks.

2 Related Work

Hallucinations in MLLMs. Recently, the rapid
progress of LLMs has accelerated the MLLMs,
demonstrating impressive visual understanding
ability. However, they still encounter hallucina-
tions. Lots of works have explored various ap-
proaches to mitigate M-hallu. Some training-free
methods are proposed including enhancing mod-
els’ decoding process (Leng et al., 2024; Huang
et al., 2024; Chen et al., 2024) and utilizing exter-
nal feedbacks to reduce hallucinations (Yin et al.,
2023; Wu et al., 2024), while other training meth-
ods enhance datasets’ quality (Liu et al., 2023b).
Our work belongs training category. And we will
elaborate more on related preference optimizaiton
methods for improving MLLMs below.
Preference Optimization on MLLMs. Recently,
preference optimization like DPO has been used
to enhance models. HA-DPO (Zhao et al., 2023)
views hallucinations as models’ preferences. By
leveraging ChatGPT (Achiam et al., 2023) along-
side ground truth annotations from existing im-
age datasets, it generates positive examples aligned
with image content, while the model’s original out-
puts serve as negative examples for direct prefer-
ences optimization. Although effective, the con-
struction of negative examples is suboptimal, as
it may not fully capture the diverse forms of M-
hallu. SeVa (Zhu et al., 2024) generates negative
examples by introducing noise into images and
treats the model’s original outputs as positive ex-
amples, constructing pairs for DPO. In addition to
adding noise, BPO (Pi et al., 2025) injects errors
into positive examples via the LLM backbone of
MLLMs to construct negative examples. However,
our experiments indicate that while these methods
demonstrate strong capabilities, their performance
in hallucination-related evaluations is not particu-
larly impressive. Nonetheless, these works demon-
strate the superiority of DPO in enhancing models’
capabilities. Inspired by these findings, we aim to
develop methods to further mitigate M-hallu from
its diverse forms with hallucination-targeted direct
preference optimization.

HDPO differs from existing methods. Unlike
other existing preference optimization approaches,
we primarily focus on hallucination-targeted prefer-
ence optimization. We analyze and address halluci-
nations in MLLMs from diverse causes and forms.
During the preference optimization process, the
model learns to distinguish between positive and



negative examples. HA-DPO enables the model to
be aware of hallucinated content in its original out-
puts, though its effectiveness is limited to capturing
the diverse range of hallucinations as the data is
insufficient. In contrast, other works use general
preference data, which improves overall model ca-
pability but shows inconsistency across different
hallucination benchmarks. Therefore, we aim to
enhance the effectiveness of DPO by constructing
examples that reflect a wider range of hallucination
forms and characteristics, allowing the model to
align better to make less hallucination.

Causes of hallucinations in MLLMs. There are
substantial works exploring M-hallu, offering in-
sightful perspectives. VCD suggests that language
prior within MLLM is a key factor in inducing hal-
lucinations. The Less is More (Yue et al., 2024)
highlights that hallucinations are more prevalent
in longer texts. In contrast, Eyes Wide Shut (Tong
et al., 2024) identifies limitations in the current
CLIP-based visual encoders used in MLLMs, show-
ing that they fail to capture fine-grained details.
Furthermore, SID (Huo et al., 2024) points out that
tokens with lower weights in the early layers can
trigger subsequent hallucinations. Meanwhile, PhD
(Liu et al., 2024¢) demonstrates that M-hallu stems
from conflicts between multimodal information,
and counterintuitive images particularly prone to
causing hallucinations. Collectively, these studies
provide valuable insights into understanding and
addressing M-hallu.

3 Method

In this section, we provide a brief preliminaries of
MLLM and DPO, followed by a detailed explana-
tion of our proposed HDPO for constructing three
types of hallucination-targeted preference data.

3.1 Preliminaries

Multimodal Large Language Models. MLLMs
utilize LLMs to predict the probability distribution
of the next token for each textual input. Given a
prompt x that includes both an image and a text
query, MLLMs generate a corresponding text re-
sponse y. By incorporating visual information,
MLLMs enhance the capabilities of LLMs, en-
abling multimodal understanding.

Direct Preference Optimization. To better align
LLMs with human preferences, preference opti-
mization methods have been developed. Among
these, Reinforcement Learning from Human Feed-

back (RLHF) is a widely recognized method,
though it involves training a reward model, which
can be quite challenging. In contrast, Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024) uti-
lizes preferences data directly, without the need for
a reward model. This makes DPO the approach we
employ. Given a pre-processed preference dataset
D containing z, y., and y,-, where x represents the
input prompt, . is the preferred response, and ¥, is
the rejected response, DPO optimizes the language
model through the following loss function:
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where Tf(y|z) denotes the reference policy, i.e.,
the language model after supervised fine-tuning,
with @ as the trainable parameter.

Motivation of our HDPO. We propose HDPO,
which constructs high-quality preference pairs re-
lated to the major causes of MLLM hallucinations
with DPO to alleviate M-hallu. Note that the main
contributions of HDPO lie in the discovery, analy-
sis, and appropriate sample constructions of three
representative types of M-hallu. Enhanced DPO
algorithm is promising but not our focus.
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3.2 Overview of HDPO

The primary goal of HDPO is to broadly tackle var-
ious M-hallu issues by constructing hallucination-
targeted preference pairs, rather than relying on
DPO data of specific tasks. Without loss of gener-
ality, we adopt a generalized data format: image-
descriptive text data, which we believe more effec-
tively captures various forms of hallucination.

For DPO in MLLMs, we require a preference
dataset D, denoted as (I, q, y., yr), where I is the
image, q is the question, v, is the preferred (pos-
itive) response, and y, is the rejected (negative)
response. Currently, there are already many high-
quality positive examples available, such as the
refined positive examples in HA-DPO for the VG
dataset, which leverage ChatGPT to enhance image
annotations, and a vast number of positive exam-
ples labeled by GPT-4V in ShareGPT4V (Chen
et al., 2023). These high-quality datasets have a
strong alignment with the image content, making
them suitable for use as positive examples in DPO.
Therefore, our focus going forward is on how to
construct more valuable and informative negative
examples, particularly those that target hallucina-
tion, which will help the model learn preferences
and reduce hallucination occurrences.



Visual Distracted Hallucination(VDH)
Corrupted Image

Ground Truth:

The photograph depicts a scene from &
a baseball game ...... Abaseball o
glove is also visible, suggesting it
belongs to one of the players.

lower score
.

visual tokens

selection

Output with Hallucinations:

prune brighter The image depicts an exciting moment

tokens in a baseball game ...... A baseball
- tm — glove lies on the ground, presumably

MLLM belonging to one of the players.

Long Context Hallucination(LCH)

Ground Truth(long context):

This a well-organized kitchen with a clean, modern
aesthetic. The kitchen features a white countertop
against a white wall, creating a bright and airy

of appliances and items. There's a sleek coffee machine,
ready to brew a fresh cup... ... The arrangement is neat
and everything appears to have its ......(Deprecated)

Ground Truth:

A young man is the main focus.

paired with a vibrantred tie ...... modify

prompt-induced é

continuation t“l

atmosphere. On the countertop, you can see a variety T’ a® > atmosphere. On the countertop, you can see a variety
n addition...

Beyond that...

Questions with Conflicts

A young woman takes center stage. She t&
He is dressed in a sharp black suit —— is wearing a stylishnavy blue dress  — gg' — blue dress adorned with silver sequins,
adorned with silver sequins ......
Describe this image in detail.

Output with Hallucinations:

This is a well-organized kitchen with a clean, modern
aesthetic. The kitchen features a white countertop
against a white wall, creating a bright and airy
MLLM of appliances and items. There's a sleek coffee machine,
ready to brew a fresh cup... ... The table is surrounded
by a few more chairs, creating a cozy dining area ... ...

Multimodal Conflicts Hallucination(MCH)

Output with Hallucinations:
A young woman wearing a stylish navy

MLLM standing on a lush green lawn ......

Figure 1: Overview of our three kinds of Hallucinated-targeted Preference data. Better view on the digital screen.

To this end, we develop three types of pairwise
samples specifically targeting hallucination issues:
Visual Distracted Hallucination (VDH), Long Con-
text Hallucination (LCH), and Multimodal Con-
flict Hallucination (MCH). An overview of each
data type is provided in fig. 1, and further details
are outlined in the sections below.

3.3 Visual Distracted Hallucination

Previous works generate negative samples by
adding noise to create blurred images, while it
may not always produce sufficiently effective nega-
tive samples, as indicated in appendix B. A more
straightforward way is to construct negative sam-
ples using prompts, but the negative samples gen-
erated under prompt interference may fail to accu-
rately reflect the issues related to the visual capa-
bilities of MLLMs.

Therefore, to more precisely capture the insuf-
ficient visual capabilities of MLLMs, we propose
more carefully designed novel approaches from at-
tention perspective. Inspired by SID, we induce
vision-and-text association hallucinations by lever-
aging vision tokens with low attention scores in
the self-attention module. Formally, for the trans-
former block in the auto-regressive decoder, text
instructions, vision inputs, and generated tokens
are concatenated and projected into three vectors:
Q. K and V. The self-attention computes the rele-
vance of each element to the others as follows to
get the attention matrix:

A = softmax((Q - KT)/Vd+M) (1)

where d represents the dimension of Q, K, V, M
represents the casual mask. A € R(b’h’"’"), where
b, h, and n denote batch size, number of key-value
heads, and total token number, respectively. We
denote the A; as the attention matrix after Layer ¢
of MLLMs. Then we calculate vision token impor-
tance scores (Score;(v)) based on A;:

h
Score;(v) = %ZAZ(J,-,-)[_H )

J=1

During the model’s auto-regressive decoding pro-
cess, we retain the K vision tokens with the lowest
importance scores, and the resulting decoded re-
sponse serves as negative samples. By removing
the most important visual token from the model
in this way, amplifies the influence of relatively
irrelevant visual tokens, thus constructing visual
information distracted hallucinations as negative
samples, urging MLLMSs to pay attention to more
important visual information.

3.4 Long Context Hallucination

As previously mentioned, the occurrence of hal-
lucinations tends to increase as models generate
longer responses. To illustrate this more clearly,
we present CHAIR scores by varying the *max new
tokens’ parameter. As shown in fig. 2, the CHAIR
score of LLaVA-v1.5-7B exhibits a clear positive
correlation with the *'max new tokens’, indicating
that more hallucinations are produced as the gen-
erated content increases. This issue has also been
highlighted in recent studies (Yue et al., 2024).
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Figure 2: CHAIR scores under different max new tokens

This phenomenon is both logical and explainable.
As the model generates longer texts, the proportion
of text tokens gradually increases while the propor-
tion of image tokens decreases. This shift causes
the model to increasingly neglect visual tokens, re-
sulting in descriptions that appear reasonable but
fail to accurately align with the visual content. Our
aim is to construct preference data that guides the
model to better align its generated content with the
visual input and the given question, even when gen-
erating long responses. However, existing datasets
lack sufficient positive and negative pairs for long-
form content and often contain noise with other
factors, making them difficult to directly apply for
training. To address this, we firstly propose ap-
proach for constructing positive and negative pref-
erence pairs for long-form content, ensuring the
long text hallucinations while maintaining minimal
semantic divergence.

Given our focus on relatively long-form content,
the responses need to be sufficiently lengthy (high-
quality long responses). For negative examples,
we truncate the last two sentences from a positive
example and use the preceding portion as a prefix.
The MLLM then continues generating text from
this prefix, which compels the model to produce
common errors associated with extended text gen-
eration. This process is repeated by concatenating
the newly generated content to the prefix for three
iterations in a loop.

Hint Phrase. Simply providing the prefix and
instructing the model to continue often results in un-
expected behavior, as the model tends to conclude
the response quickly, generating low-information
descriptions. To address this issue, we append a
“hint phrase’ to the prefix, guiding the model toward
producing more informative and detailed responses.
Besides that, we also modify the system prompt.
Details can be seen in appendix D.2. It helps pro-
duce responses prone to more likely errors when

generating long texts. By creating positive and neg-
ative pairs in this manner, we aim to use DPO to
teach the model how to minimize hallucinations in
long-form responses and improve alignment.

3.5 Multimodal Conflicts Hallucination

One of the more challenging yet often overlooked
scenarios in mainstream evaluation tasks involves
conflicts between modalities. In such cases, mod-
els may naturally favor textual content due to their
autoregressive generating manner and the larger
proportion of the language model component, lead-
ing to incorrect outputs. In this paper, we bring
this issue to the forefront to address and firstly use
preference optimization to mitigate it.

To be specific, we construct positive and nega-
tive pairs with conflicting prefixes and apply DPO
to optimize the model. Specifically, we utilize GPT-
4o-mini to rewrite details of the positive examples
through prompting, generating information con-
flicting with the image contents. These conflicting
informations are then placed at the beginning of
normal questions, prompting the model to produce
incorrect responses. As shown in fig. 3, the model
is indeed prone to being hallucinated by the con-
flicting prefixes. We take the model’s incorrect
outputs as negative examples. Further details on
the prompts can be found in fig. 9. Unlike pre-
vious types of data, the questions for training of
MCH contain conflicting prefixes, as we aim for
the model to generate correct responses in the query
even when presented with conflicting information.

3.6 Implement details

For LCH, which requires longer responses, we
sampled 6k examples with over 300 tokens from
ShareGPT4V. For MCH, we randomly sampled 6k
examples from ShareGPT4V. For VDH, we obtain
6k examples from ShareGPT4V and 4k examples
from VG with positive examples from HA-DPO
to enhance data diversity; the preserved K is 500,
with other settings aligned with SID (e.g., i = 2).
Details of data can be found in appendix D.

4 Experiments

In this section, we empirically investigate the evalu-
ation of HDPO. We begin by describing the exper-
imental settings, including the evaluation datasets
and training details. Next, we present the results on
various hallucination evaluation datasets, demon-
strating the promising performance of HDPO. Ad-
ditionally, we validate the expected functions of



| POPE | CHAIR | AMBER

| F1Score t | CHAIR; | CHAIR; | | CHAIR | HalRate | Cog.| F1Scoret AMBER-S 1
LLaVA-v1.5-7B 86.1 51.2 14.2 7.6 35.1 4.3 74.5 83.5
Vifeedback 83.7 40.3 13.2 - - - - -
POVID ' 86.9 35.2 8.3 - - - - -
HA-DPO 86.9 37.2 10.0 6.4 29.9 32 78.2 85.9
SeVa 86.8 54.6 159 7.4 35.6 3.2 84.1 88.3
BPO 83.1 422 10.1 5.0 33.5 2.0 84.5 89.7
CSR 87.0 19.6 5.4 3.8 16.9 1.4 76.0 86.1
HDPO (ours) ‘ 86.8 ‘ 16.6 5.1 ‘ 33 15.8 0.8 84.1 90.4

Table 1: Experimental results of HDPO on LLaVA-v1.5-7B compared with baselines applied on LLaVA-v1.5-7B.
The best result for each metric is in bold. Some results’ are referenced from Zhou et al. (2024b). The F1 of POPE
and AMBER are discriminative metrics, AMBER-s is a comprehensive metric, and the others are generative metrics.

BN w/o conflicts
80 1 w/ conflicts
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Figure 3: Performance of LLaVA-v1.5-7B w/ and w/o
conflicts on AMBER, details in section 4.4.2.

LCH and MCH. Finally, we provide ablation stud-
ies and conduct in-depth analyses in more detail.

4.1 Experimental Settings

Evaluation Datasets. We evaluate the effective-
ness of HDPO in mitigating hallucinations across
both captioning tasks and simplified visual ques-
tion answering (VQA) tasks using three evaluation
datasets as follows: (1) CHAIR is an evaluation
method used in image captioning tasks to assess
object hallucinations in model responses. There
are two metrics: CHAIR; and CHAIR;. CHAIR
measures hallucinations at the sentence level, while
CHAIR; measures them at the image level respec-
tively. (2) POPE is a popular dataset for evaluating
object hallucinations in MLLMs. We calculate and
report the average F1 score on different splits. (3)
AMBER is an LLM-free multi-dimensional bench-
mark, offering a cost-effective and efficient evalu-
ation pipeline. It supports the evaluation of both
generative and discriminative tasks including hallu-
cinations related to existence, attributes, and rela-
tions. For all details of datasets and metrics used
can be seen in appendix A.

Training Details. As most related works (Chen

et al., 2023; Zhu et al., 2024; Pi et al., 2025) are
carried on LLaVA-v1.5 (Liu et al., 2024a), we se-
lect it as our base model for experiments, which al-
lows for easy comparison with other existing works.
Models’ weights are pretrained and further fine-
tuned using supervised fine-tuning (SFT) before
applying HDPO. During the training phase, we
employ Zero stage-3 optimization and use Vicuna-
7B/13B and CLIP-VIT-L-336px as our LLM and
vision encoder, respectively. The training is con-
ducted with 2 epochs with a batch size of 64, a
learning rate of 2e-6, weight decay as 0, LoRA
rank as 64, and a beta value of 0.1. All experi-
ments are run on one single machine with 8 A800
GPUs. The total training time is 3 hours for LLaVA-
v1.5-7B and 4 hours for LLaVA-v1.5-13B. Besides,
we also validate HDPO on InstructBLIP, further
demonstrating effectiveness in section 4.3.
Competitor. We first compare HDPO with its
base model. We also select several preference
learning methods, including Vlifeedback (Li et al.,
2024), POVID (Zhou et al., 2024a), CLIP-DPO
(Ouwali et al., 2025), HA-DPO (Zhao et al., 2023),
SeVa (Zhu et al., 2024), BPO (Pi et al., 2025), and
CSR (Zhou et al., 2024b). Furthermore, we com-
pare HDPO on AMBER with other MLLMSs in
appendix D.5.

4.2 Results on Diverse Hallucination Tasks

HDPO achieves SOTA level on both generative
and discriminative hallucination tasks. The re-
sults indicate that HDPO performs well in mitigat-
ing hallucinations, achieving almost SOTA level,
especially on generative tasks. This outcome is nat-
ural, as our data contains only descriptive content,
leading to relatively strong performance on gener-
ative tasks. Since we don’t specifically construct
data tailored for discriminative tasks, the improve-
ment in these tasks is not substantial. However,



| POPE | CHAIR | AMBER

| F1Scoret | CHAIR,; | CHAIR; | | CHAIR | HalRate | Cog.] F1Scoret AMBER-St
LLaVA-v1.5-13B 85.8 48.0 13.6 6.6 31.0 3.3 73.0 83.2
HA-DPO 87.3 46.0 12.1 6.0 30.7 3.0 79.1 86.6
SeVa 86.9 59.8 17.4 9.0 43.3 3.7 84.8 87.9
CSR 87.3 24.0 5.6 3.6 19.0 1.8 73.1 84.8
HDPO (ours) ‘ 87.6 ‘ 154 53 ‘ 3.8 16.5 0.8 81.2 88.7

Table 2: Experimental results of HDPO on LLaVA-v1.5-13B compared with baselines applied on LLaVA-v1.5-13B.

More details of baselines can be seen in appendix C.

the overall performance remains strong, indicat-
ing that our approach, which targets the sources of
hallucinations rather than specific tasks, is more
effective for mitigating hallucinations. Notably,
HDPO achieves 67.6% improvement on CHAIRg,
64.1% improvement on CHAIR;, 55% enhance-
ment on HalRate, best performance on AMBER-S.
Besides, we also evaluate HDPO on a comprehen-
sive benchmark, MM-Vet (Yu et al., 2024), where
we observe a slight improvement. This aligns with
our expectations, as the model is not fine-tuned on
a wide range of tasks and data types, but focused
on reducing hallucinations.

Brief analyses on other baselines. Some base-
lines lack comprehensive performance on halluci-
nation evaluation. SeVa, though effective on AM-
BER’s discriminative tasks, shows no improvement
on generative tasks, likely due to its reliance on
VQA-type data. Similarly, BPO underperforms
on CHAIR. In contrast, CSR excels in generative
tasks but struggles with AMBER’s discriminative
tasks. This indicates that while these methods en-
hance model performance, they do not fully op-
timize for hallucination, and their ability to mit-
igate hallucinations remains inconsistent and in-
complete, while HDPO demonstrates strong per-
formance in hallucination evaluation, as evidence
of its “hallucination-targeted’ design.

Advantages of our HDPO Data. The size of our
dataset also provides a relative advantage. For in-
stance, with nearly 12% data amount compared
with BPO, HDPO significantly improves model’s
performance on hallucination, achieving better per-
formance than BPO on generative tasks by a large
margin. Moreover, we did not construct VQA
data for discriminative tasks. Nevertheless, the
results are already impressive, demonstrating that
our HDPO is universally effective.

4.3 Universality on Different Base Models

We also conduct experiments across different base
models to verify our HDPO’s universality. Specifi-

cally, we apply HDPO to the widely-used LLaVA-
v1.5-13B for MLLM hallucination evaluation. The
results are shown in table 2, demonstrating that
the model’s performance remains consistent with
expectations, with improvements in hallucination
mitigation. It also implies that our generated
hallucination-targeted DPO data is effective for
different LLM sizes. To further validate the gen-
eralization capabilities of other MLLMs, we also
conduct experiments on InstructBLIP (Liu et al.,
2024b). The results in table 5 also show consistent
improvement on the overall performance.

4.4 Analyses on Different Hallucinations

The results from above experiments demonstrate
our method’s superior performance in mitigating
hallucinations. However, do they truly work effec-
tively in the scenarios we claim? Below, we briefly
design two more challenging sub-tasks of halluci-
nation that align with our claims, aiming to further
showcase the effectiveness of our data construction
of LCH and MCH. We also conduct experiments
to compare VDH with adding noise in appendix B,
further demonstrating effectiveness of VDH.

4.4.1 Long Context Hallucination

To evaluate the effectiveness of LCH on longer
responses, we conduct an extended experiment on
the AMBER generative task. Specifically, when
the model is asked the question "Describe this im-
age in detail", we append the instruction "answer
in 800 words" to encourage longer responses. As
indicated in table 3, HDPO shows good and sta-
ble performance in handling longer responses, with
the lowest HalRate, CHAIR;, and Cog. It demon-
strates that our construction for LCH works as
expected in longer responses.

4.4.2 Multimodal Conflicts Hallucination

In real-world scenarios, multimodal conflicts are
common when using MLLMs. To better evaluate
the model’s performance under such conditions, we



| CHAIR | HalRate | Cog. |
LLaVA-v1.5-7B 9.0 45.1 5.7
HA-DPO 7.5 37.6 4.4
SeVa 7.5 434 4.3
BPO 6.4 55.3 4.8
HDPO 34 214 1.3
w/o LCH 4.6 26.4 1.8

Table 3: Results of long context hallucination.

| CHAIR | HalRate | Cog. |
LLaVA-v1.5-7B 390.1 85.1 7.8
HA-DPO 40.3 86.1 8.1
SeVa 390.1 86.1 7.8
BPO 22.3 81.2 7.7
HDPO 14.3 52.0 5.2
w/o MCH 39.8 84.7 6.7

Table 4: Results of multimodal conflict hallucination.

design a more challenging task. Specifically, we
randomly select 200 questions from the generative
task in the AMBER dataset. First, LLaVA-1.5-7B
is used to generate answers for these questions to
get coarse-grained image descriptions. Next, GPT-
4o-mini rewrites the details in the descriptions, fol-
lowing the construction method of MCH. We then
introduce the incorrect information as a prefix to
the question and ask the model to describe the im-
age while influenced by the conflicting context.

The experimental results are shown in table 4,
demonstrating that despite encountering conflict-
ing prefixes, our HDPO maintains promising per-
formance. Compared to other baselines, HDPO
achieves the best scores in CHAIR, HalRate, and
Cog. It reveals that our HDPO shows significant
improvement in the model’s performance under
this more difficult setting, highlighting the effec-
tiveness of MCH. Additionally, we also make a
comparison between the effects of adding noise and
preserved visual tokens with lower scores. Further
details can be seen in the appendix B.

4.5 Ablation Study

To demonstrate the contributions of VDH, LCH,
and MCH to overall performance, we progressively
remove each component and report the results. (1)
As shown in table 6, the performance declines as
we remove each data type. The model achieves
the best performance when all three data types are
included. These experimental results confirm the
individual contributions of each component. (2)
It can also be observed that after incorporating
MCH, there is no improvement in CHAIR; and
CHAIR;. However, the inclusion of both posi-

‘ POPE1 CHAIR;| CHAIR;]| AMBER-S
InstructBLIP 83.7 57.0 16.1 82.5
HA-DPO 85.6 56.6 15.5 84.3
HDPO (ours) 84.8 34.8 10.9 85.9

Table 5: Results of HDPO on InstructBLIP-13B.

\ CHAIR |  AMBER

| CHAIR,| CHAIR;| | CHAIR| FIt
LLaVA-v1.5-7B 51.4 14.2 76 745
+VDH +LCH +MCH 16.6 5.1 33 841
+LCH +MCH 28.4 75 48 789
+MCH 512 15.1 76 78.1

Table 6: Results of ablation study.

tive and negative examples for training leads to
improvement in F1 of discriminative task (4.8%1).
(3) With the addition of LCH, F1 of the discrimina-
tive task shows minimal change, whereas the gener-
ative task demonstrates a substantial improvement,
with CHAIR; (44.5%) and CHAIR; (50.3%)
showing marked gains. This indicates that LCH
is particularly effective for generative tasks. (4)
Finally, incorporating VDH enhances model’s per-
formance across all tasks, and the combination of
all three categories achieves the best results. The
significance of LCH and MCH is also verified in
section 4.4 with the corresponding tasks.

4.6 Scalability of HDPO

We analyze the impact of data size on our method.
The performance of LLaVA-v1.5-7B fine-tuned on
datasets of varying sizes with the same proportions
are shown in fig. 4. As the data size increases, the
effectiveness of our approach also improves, high-
lighting the potential for scaling up. This demon-
strates the superior performance of HDPO.
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Figure 4: Scalability of HDPO with different data sizes.

5 Conclusion

In this paper, we present HDPO, a novel approach
designed to effectively mitigate hallucinations in
MLLMs. We analyze three types of hallucinations
observed in MLLMs and create hallucination pref-
erence data based on the identified causes. Ex-
tensive experiments across different benchmarks
demonstrate the ability of HDPO to reduce hallu-
cinations in MLLMs, showing effectiveness.



Limitations

In this paper, we introduce HDPO, which effec-
tively mitigates the hallucination problem in cur-
rent multimodal large language models. However,
several issues remain unresolved. Specifically, we
have not yet developed distinct strategies for con-
trolling data quality, and the generation of auto-
mated negative examples lacks methods for further
verification and optimization, which could improve
the effectiveness of our approach. Additionally,
there may be opportunities to further enhance the
quality of positive examples. Moreover, our con-
struction methods and strategies could potentially
be integrated with other techniques for processing
more high-quality preference data, which may fur-
ther improve the model’s performance. Fine-tuning
larger models with extensive, integrated datasets
may not only enhance overall reasoning capabili-
ties but also increase the model’s robustness against
hallucinations. This represents a promising area
for further investigation, and we leave these open
questions for future research.

Ethics Statement

This work mitigates hallucinations of multimodal
large language models to enhance their reliability
and practicality. We have carefully considered the
ethical implications of our work. The models and
datasets we used are publicly available and com-
monly used, and our findings may inherit the biases
and limitations carried out in these resources.
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A Details of Datasets and Metrics

We evaluate the effectiveness of HDPO in mitigat-
ing hallucinations across both captioning tasks and
simplified visual question answering (VQA) tasks
using three evaluation datasets as follows:
CHAIR (Rohrbach et al., 2018): The Caption
Hallucination Assessment with Image Relevance
(CHAIR) is an evaluation method used in image
captioning tasks to assess object hallucinations in
model responses. There are two metrics: CHAIR
and CHAIR,;. CHAIR measures hallucinations at
the sentence level, while CHAIR; measures them
at the image level respectively. We conduct the
CHAIR evaluation on the MSCOCO dataset follow-
ing the setting in OPERA(Huang et al., 2024) with
500 random images. For each image, the model is
prompted with: "Please describe this image in de-
tail." to obtain their descriptions. By default, we set
the "'max new tokens’ to 512. More specifically, the
calculation for the CHAIR; and CHAIR; metrics
are as follows:

CHAIR. — |[{hallucinated objects} |
*  |{all mentioned objects}|

3)

CHAIR, — |{captions w/ hallucinated objects}|

|{all captions}|

“)
POPE (Li et al., 2023): The Polling-based Object
Probing Evaluation (POPE) is a popular dataset for
evaluating object hallucinations in MLLMs. The
evaluation is asking the model questions in the
format: "Is there a <object> in the image?". It can
be divided into three splits: popular, adversarial,
and random. In the popular split, the evaluation
targets the most frequently occurring objects in
the dataset. In the adversarial split, it assesses the
MLLM'’s ability to identify objects that are highly
relevant to those present in the image. We evaluate
the metrics for all splits, and calculate and report
the average F1 score. POPE can be constructed on
different datasets, and we evaluate models on the
POPE dataset built on COCO.
AMBER (Wang et al., 2023a): An Automated
Multi-dimensional Benchmark for Multi-modal
Hallucination Evaluation (AMBER) is an LLM-
free multi-dimensional benchmark, offering a cost-
effective and efficient evaluation pipeline. It sup-
ports the evaluation of both generative and discrim-
inative tasks including hallucinations related to ex-
istence, attributes, and relations. Its generative eval-
uation aligns with our desired assessment of long
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descriptions, while the other dimensions provide
insights into the model’s performance on relatively
simple VQA tasks, thereby reflecting the model’s
hallucination comprehensively. For its generative
task, three metrics are used: CHAIR, Hal, and Cog.
CHAIR measures the frequency of hallucinatory
objects in the responses, Hal represents the pro-
portion of responses containing hallucinations, and
Cog assesses whether the hallucinations produced
by MLLMs resemble those found in human cogni-
tion. For its discriminative task, we calculate and
report the average F1 score. We also calculate AM-
BER Score denoted as AMBER-S, which reflects
overall performance, and it’s calculated as follows:

1
AMBER Score = 3 % (1—-CHAIR+FI) (5

B Comparison of noise and token
preservation

We also conduct experiments to compare the im-
pact of adding noise versus preserving visual
tokens. Specifically, we use 6k samples from
ShareGPT4V to construct negative samples by in-
troducing diffusion noise and preserving visual to-
kens, and train the LLaVA-v1.5-7B model by direct
preference optimization. The results of these exper-
iments are presented in table 7. As the experimen-
tal results show, using visual token preservation
can achieve better performance on hallucination
evaluation.

C Baseline Selection of 13B

For the experiments on the 13B model, we select
several recent strong baselines, including SeVa and
CSR, using their open-sourced checkpoints for eval-
uation. Additionally, we reimplement HA-DPO on
LLaVA-v1.5-13B, as the original repository does
not provide this checkpoint. We also attempt to
reimplement BPO on LLaVA-v1.5-13B with no
available checkpoints, the evaluation results are
unexpectedly low, with POPE scores falling be-
low 80.0. Therefore, these results are not included
in the table. However, the BPO results for the
7B model are obtained using the publicly released
checkpoints. For InstructBLIP, we don’t find other
preference optimization works on it.

D Details about Our data

D.1 Visual Disctracted Hallucination

We obtain positive examples for our dataset from
two sources: VG(with positive examples in HA-
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DPO) and ShareGPT4V. After extracting positive
examples from ShareGPT4V, we found them to be
too long. To mitigate length bias, we used GPT4o-
mini to rewrite them to match the length of the neg-
ative examples. The prompt used is shown in fig. 7.
For positive examples sourced from HA-DPO, af-
ter generating negative examples, we followed the
original approach by rewriting the negative exam-
ples using GPT40-mini. The prompt used is shown
in fig. 6. Also, we can adopt the method in HA-
DPO to create more data. For k£ and 7, we make an
empirical choice based on performance and origi-
nal settings.

D.2 Long Context Hallucination

We use LLaVA-1.5-7B to continue generating text
for the positive examples, with the system prompt
in fig. 5, and the hint phrases in fig. 8. By excluding
the last two sentences, we aim to increase the con-
centration of hallucinated content in the tail of the
response. Generating three continuations at a time
maintains an approximate balance in the average
length between positive and negative examples.

D.3 Multimodal Conflicts Hallucination

We utilize GPT-40-mini to modify the details of the
positive examples, following the prompt shown in
fig. 9. This approach introduces conflicting infor-
mation that deviates from the image content.

D.4 Effect of data ratio

We did not conduct detailed experiments compar-
ing different data type ratios. However, throughout
the experiments, all tested ratios showed signifi-
cant improvements over the original model. We
report the best-performing dataset from our experi-
ments. Determining the optimal ratio of different
data types is inherently a more challenging and
general problem, which goes beyond the scope of
this paper.

D.5 Comparison on AMBER with other
MLLMs

We also report the hallucination evaluation results
on AMBER for both generative and discriminative
tasks of HDPO on LLaVA-1.5-7B compared with
other MLLMs including mPLUG-OwI2 (Ye et al.,
2024), MiniGPT4 (Zhu et al., 2023), CogVLM
(Wang et al., 2023b), Qwen-VL (Bai et al., 2023)
and GPT4V (OpenAl, 2023) in table 9.



| POPE | CHAIR |

AMBER

| F1Score t | CHAIR; | CHAIR; | | CHAIR | HalRate | Cog.| F1Scoret AMBER-S 1

LLaVA-v1.5-7B 86.1 51.2 14.2
+ Diffugs 86.2 62.8 18.4
+ VDH ¢ 87.1 48.2 13.7

7.6 35.1 43 74.5 83.5
9.2 47.5 4.3 78.1 84.5
6.1 32.0 2.7 80.2 87.1

Table 7: Experimental results of LLaVA-v1.5-7B trained with two ways to construct preference pairs: adding noise
and preserving visual tokens. The diffusion noise step is 800. The best result for each metric is in bold.

| Len Cover Co./Lent CHAIR ]
LLaVA-1.5-7B | 750 51.8 0.69 7.6
BPO 148.0 58.8 0.40 5.0
SeVa 76.0 534 0.70 7.4
CSR 64.0 45.0 0.70 3.8
HDPO 69.0 50.2 0.73 33

Table 8: Analysis of Cover. on AMBER

D.6 Computational cost and efficiency
Compared with Baselines

As computational efficiency is critical for real-
world applications, we present the training costs of
HDPO and other baseline methods as follows.
CSR: Training utilized one A100 GPU, with
LLaVA-1.5 (7B / 13B) fine-tuned for approxi-
mately 3.5/ 5.0 hours.

SeVa: Training utilized 8 A800 GPUs, with
LLaVA-1.5 (7B / 13B) fine-tuned for approxi-
mately 0.7 / 1.3 hours.

BPO: Training utilized 8 A40 GPUs, with LLaVA-
1.5 (7B / 13B) fine-tuned for approximately 17.0 /
28.0 hours.

HDPO: Training utilized 8 A800 GPUs, with
LLaVA-1.5 (7B / 13B) fine-tuned for approxi-
mately 3.0 / 4.0 hours.

Training time is fundamentally influenced by
the size of the training dataset. Except for BPO,
which requires a relatively longer training time, the
training costs and durations for the other methods
fall within a comparable range. Thus, we believe
that our method holds significant value for practical
applications.

D.7 More Analysis of Cover

There is another Cover metric in AMBER, repre-
sents object coverage. It’s related to the length of
generated content. We calculate the Cover / Length
and report it in table 8. It shows that HDPO'’s out-
puts are more precise and of higher quality with
the highest Co./ Len. Additionally, we have con-
ducted experiments showing that generating longer
outputs improves Cover while maintain good hallu-
cination performance.
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|CHAIR | Hal| Cog.| FIf AMBER-St

mPLUG-Owl 216 761 115 189 48.7
LLaVA 115 488 55 327 60.6
MiniGPT4 13.6 653 113 647 75.6
CogVLM 56 236 13 723 83.4
mPLUG-OwI2 106 39.9 45 785 84.0
Qwen-VL 55 236 19 849 89.7
GPT-4V 46 307 26 874 91.4
HDPO \ 33 158 0.8 84.1 90.4

Table 9: Comparison on AMBER with more MLLMs,
most results are source from(Wang et al., 2023a).

D.8 Further Discussion of Limitation

Although HDPO enjoys promising performance
in Mitigating Hallucination, there are still some
potential boundaries we meet as follows:

(1) For relatively long content generation,
HDPO may still struggle to fully address the is-
sue. As the generated content becomes longer,
hallucinations may persist. To completely resolve
this problem, the model’s intrinsic long-context
processing capabilities might first need to be en-
hanced. However, the current long-text abilities
of MLLMs are not as advanced as those of LLMs,
which presents an intriguing direction for future
exploration.

(2) Additionally, as highlighted by (Tong et al.,
2024; Zong et al., 2024; Shi et al., 2024), the vi-
sual encoder in current MLLMs operates at a rela-
tively coarse granularity, resulting in insufficient or
suboptimal visual features. These limitations can-
not be fully addressed by HDPO and will likely
require either more powerful visual encoders or
improved MLLM architectures, both of which are
also promising directions for future research.

(3) What’s more, fine-tuning larger models on
extensive, integrated datasets could improve rea-
soning capabilities and robustness against halluci-
nations. These open questions remain promising
directions for future research.

We think the above additional discussion clari-
fies the limitations of HDPO and outlines potential
directions for addressing these challenges.



Ve s N
System Prompt: Hint Phrases:
You should describe in detail all elements in the image. "In addition",
Be thorough in addressing aspects such as color, shape, "Moreover",
size, position, quantity, actions, emotions, and more. "Furthermore",
Your response should be as much as possible. "Besides that",
\_ " Additionally",
. . . "What's more",
Figure 5: System Prompt used in LCH "As well as that",
"Beyond that",
e "There is something else that needs to be mentioned",
Rewrite Prompt: Not only that",
"It should also be noted that”
Help me rewrite the given sentence. \ J
Don't change any detail and information in the original Figure 8: Hint Phrases used in LCH
sentence. Don't add any new information.
. e N
The sentence you need to rewrite: %s .
Directly give the rewritten sentence: Modify Prompt:
-
. . . . I will give you a description of an image, and you need to
Figure 6: Rewrite Prompt used in VDH modify various details of the description, such as the
number of objects, types of objects, their positions, colors,
- behaviors, and so on.
Adjust Length Prompt: Description: %s
. o Modified Description:
Please adjust the length of the Description to L )

approximately %s words.

Ensure all essential details and meanings are preserved,
with clear, concise, and accurate expression.
Provide the modified Description directly.

Original Description: "%s"
Modified Description:

(&

Figure 7: Adjust Length Prompt used in VDH
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Figure 9: Modify Prompt used in MCH
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