
Proceedings Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Sparse Convolutions on Lie Groups
Tycho F.A. van der Ouderaa tycho.vanderouderaa@imperial.ac.uk
Mark van der Wilk m.vdwilk@imperial.ac.uk
Imperial College London

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract
Convolutional neural networks have proven very successful for a wide range of modelling
tasks. Convolutional layers embed equivariance to discrete translations into the architectural
structure of neural networks. Extensions have generalised continuous Lie groups beyond
translation, such as rotation, scale or more complex symmetries. Other works have allowed
for relaxed equivariance constraints to better model data that does not fully respect
symmetries while still leveraging on useful inductive biases that equivariances provide. How
continuous convolutional filters on Lie groups can best be parameterised remains an open
question. To parameterise sufficiently flexible continuous filters, small MLP hypernetworks
are often used in practice. Although this works, it typically introduces many additional
model parameters. To be more parameter-efficient, we propose an alternative approach and
define continuous filters with a small finite set of basis functions through anchor points.
Regular convolutional layers appear as a special case, allowing for practical conversion
between regular filters and our basis function filter formulation, at equal memory complexity.
The basis function filters enable efficient construction of neural network architectures with
equivariance or relaxed equivariance, outperforming baselines on vision classification tasks.

1. Introduction

Symmetries provide powerful inductive bias in neural networks, often improving data efficiency
and generalisation performance. Convolutional filters are an apparent example encoding
equivariance to translations through effective weight-sharing. Extensions to other groups
exist, but equivariance to Lie groups can be hard to implement efficiently due to their
continuous nature. Similar difficulties arise in relaxations of equivariance, which can be
useful to model data that only partially respects symmetries. In practice, continuous filters
are often parameterised using shallow MLPs, or hypernetworks, which take coordinates (or
group elements) as input and output a filter response. Although MLPs can approximate any
function in theory, this might require adding a large set of parameters. To prevent having to
add many hypernetwork parameters, we propose a basis function approach and parameterise
continuous kernels from a small finite set of anchor points. Anchor points are the filter values
at specific locations stored in memory and induce values at all other (continuous) locations.
In theory this yields an equally flexible model class given enough anchor points, but more
crucially, we empirically find that we can represent useful continuous filters with just a few
anchor points. We demonstrate that this yields more efficient representations of regular
convolutional kernels, group convolutional filters and relaxed convolutional filters. Unlike
prior work, this allows us to create group equivariant and relaxed equivariant versions of
large commonly used neural network architectures, such as deep ResNets, with equivalent
parameter counts. On CIFAR-10 and CIFAR-100 image classification tasks, we show that the
approach is much more memory efficient and outperforms our baselines in terms of parameter
efficiency and classification performance.

© 2022 T.F. van der Ouderaa & M. van der Wilk.

van der Ouderaa van der Wilk

2. Related Work

Continuous convolutional kernels Continuous convolutional kernels have been proposed
in Schütt et al. (2017) to model quantum interactions, but relied on isotropic kernels limiting
flexibility. Wang et al. (2018); Ma et al. (2022) proposed more expressive MLP hypernetworks.

Rahimi et al. (2007) show that the exponential basis function can be approximated (and
is exact in the infinite width limit) with a finite number of random Fourier basis functions.
Parameterising kernels in such feature spaces using MLPs with sinusoidal activation functions,
such as positional encodings (Vaswani et al., 2017) and SIRENs (Sitzmann et al., 2020),
have been found effective to fit high-frequency signals, such as images (Tancik et al., 2020)
and neural rendings (Mildenhall et al., 2020). In the context of (group-) convolutions such
parameterisations are often used to parameterise continuous kernels, and found to be very
effective in practice (Romero et al., 2021; Knigge et al., 2022).

Yet, representing filters with MLPs often requires many additional model parameters
compared to discrete filter grids used of classical CNNs. We overcome this limitation and
effectively parameterise continuous kernels by regressing a small set of anchor points.

Group equivariance Classical convolutional layers embed equivariance to discrete trans-
lations. This was generalised to groups in Cohen and Welling (2016) which demonstrated
equivariance to discrete 90 degree rotations and flips. Further extensions allow convolutions
on other groups, such as continuous roto-translations (Worrall et al., 2017; Weiler et al.,
2018; Weiler and Cesa, 2019; Kondor et al., 2018), scale (Worrall and Welling, 2019), and
permutations (Zaheer et al., 2017) and non-Euclidean domains, such as spheres (Cohen et al.,
2018), point clouds (Fuchs et al., 2020) and graphs Satorras et al. (2021).

Our method is very similar to Bekkers (2019) proposing to parameterise filters on Lie
groups using B-splines. A difference is that we are not limited to B-splines but generalise to
arbitrary basis functions and consider filters in the context of relaxed equivariance.

Relaxed equivariance Equivariance and invariance symmetry constraints have proven
very useful in data modelling. However, hard symmetry constraints can be overly restrictive
if data does not fully respect enforced symmetries (van der Ouderaa and van der Wilk, 2021).
In digit-recognition, some robustness to rotational perturbation is desirable, whereas ‘6’s
and ‘9’s may become indistinguishable under full rotational invariance. Likewise, Wang et al.
(2022) improve real-world dynamics data modeling through relaxed symmetry constraints.

Some efforts have been made to parameterise approximate equivariance (Wang et al.,
2022; Romero and Lohit, 2021). A recent generalisation of the convolution proposed by
van der Ouderaa et al. (2022) allows for relaxed equivariance with explicit control over the
amount of equivariance. We utilise this generalisation and demonstrate how our more efficient
filter parameterisation can be effectively used to parameterise filters in this setting.

Symmetry discovery Another interesting consequence of relaxing equivariance constraints,
is that symmetry structure becomes differentiable and can thus be optimised with gradients.
Recent work on automatic symmetry discovery (Benton et al., 2020; van der Ouderaa and
van der Wilk, 2021; Immer et al., 2022) focus on invariances or data augmentation, which are
easier to parameterise than layer-wise equivariance. We offer an efficient way to parameterise
filters for relaxed equivariance, which may allow extensions of symmetry discovery methods
to learn layer-wise equivariances.

2

Sparse Convolutions on Lie Groups

3. Background

Lie groups and Lie algebra A Lie group is a group with the structure of a differentiable
manifold. To each Lie group G we can associate a Lie algebra g: the tangent space of the Lie
group at the identity element, capturing local structure of the Lie group. The Lie algebra
always forms a vector space. The exponential map exp maps elements from the Lie algebra
to the Lie group. As the Lie algebra is always a vector space, its elements a ∈ g can be
expanded in a basis a =

∑dim(G)
i=1 αiAi, with coefficients α ∈ Rdim(G). We define the operator

a∨ := α ∈ RD to encode Lie algebra elements as real vectors in the chosen basis. The
exponential map exp : g → G maps elements from the Lie algebra to the Lie group. We can
also define a logarithm map log : G → g that maps elements in the Lie group to the Lie
algebra. Such a choice always exists, but it is not always smooth or unique.

Equivariance and Invariance Equivariance is the property of a mapping such that
transformations to the input result in equivalent transformations in the output. If changes
are invertible, they can be described as the action of a group G on some space X . Formally,
we say that a function h : X → X is equivariant to the group G if h(g · x) = g · h(x) for all
g ∈ G, x ∈ X . If the output of the function is independent to the action of the group G on
the input, we say that the function is invariant to group G. Formally, a function h : X → X
is invariant to group G if h(g · x) = h(x) for all g ∈ G, x ∈ X .

Group convolutions Classical convolutions on real space encode translational equivariance.
The group convolution y encodes equivariance to other groups (Cohen and Welling, 2016):

y(v) =

∫
G
f(v−1u)x(u)µG(u) ŷ(v) =

1

NMC

∑NMC

u∈nhbd(v)
f(v−1u)x(u) (1)

with convolutional kernel f : G → R, input x : G → R, and output y : G → R all functions
on group G with Haar measure µG. For compact groups, the equivariance constraint is both
a sufficient and necessary condition for a linear map to be a convolution (Kondor and Trivedi,
2018). In other words, no equivariance without convolution (and vice versa). In practice, we
can approximate the integral with ŷ using NMC Monte Carlo samples (Finzi et al., 2020).

Relaxed equivariance If modeled data does not exactly follow a symmetry, strictly
enforcing it is misspecified and approximate equivariance may be more desirable. We can
quantify the amount of equivariance by the equivariance error (Wang et al., 2022):

||f ||EE = sup
x,g

||f(g−1x)− g−1f(x)|| (2)

for a function f : G → R. In case of strict equivariance, we have that ||f ||EE=0 and for
relaxed equivariance we typically want ||f ||EE < ϵ for some ϵ.

To relax equivariance, we use the construction proposed by van der Ouderaa et al.
(2022) which uses filter functions f̃G : G × G → R in Eq. (8) that not only depends on
the relative group element v−1u, but also on an additional absolute input group element u.
This additional argument breaks strict equivariance and the amount of equivariance can be
controlled through this dependence.

3

van der Ouderaa van der Wilk

original grid basis grid sparse basis grid

convert reduce

induced continuous �lter

Figure 1: Illustration of continuous basis function filter. Classical filters can be converted to
continuous basis function filters and optionally further sparsified to reduce memory.

4. Continuous filters with basis functions

Classical filters Filters in classical discrete convolution f : Z2 → R map discrete 2-
dimensional filter space Z2 to the reals. Filter are typically only defined on a small local
squared support S ⊂ Z2 forming a grid which pixel coordinates can be summarised as row
vectors in matrix S ∈ ZS2×2. Filter weights can be stored in a square matrix U ∈ RS×S . As
we treat filters as functions, we define it as a function f(

[
x1 x2

]T
) = [U](x1,x2) that indexes

and returns weights within the support [x1, x2]
T ∈ S, and 0 elsewhere. Instead of filters in

discrete space Z2, we will now propose how to construct filters on continuous domains R2.

Continuous filters with basis functions Our goal is to parameterise smooth filter
functions on f : R2 → R that can be efficiently parameterised with a finite amount of
memory. To do so, we consider a finite amount of P anchor points, summarised in matrix
Z ∈ RP×2, to which we associate values listed in u ∈ RP . In addition, we choose a basis
function ϕ : R2 × R2 → R and scalar noise parameter σ2, and induce a continuous function
f from this finite set (Z,u) using simple basis function regression. This defines a continuous
filter f(x), which closed-form formula is given by Eq. (3), that can be evaluated at any
arbitrary coordinate x ∈ R2. The memory required to store the filter is no longer a function
of filter size in O(S2), but rather of the number of anchor points O(P).

Converting from classical filters The proposed basis function formulation differs from
that of classical CNN filters as it enables continuous filter evaluations anywhere in R2.
However, we can treat a classical filter as a special case of our basis function filter allowing
for straightforward conversion between the two. To convert a classical discrete filters
fclassic : Z2 → R to a continuous basis function filters f : R2 → R we can set our anchor point
coordinates equal to the original sampling grid Z=S and set the associated values equal to
filter values u=vec(U), with zero noise σ=0. This creates a basis function filter that has the
exact same output at the original sampling grid, ie. f(x)=fclassic(x) ∀x ∈ Z2. In this case,
the number of anchor points equals the number of pixels in sampling grid P=S2, and the
resulting memory complexity therefore remains equivalent. Transferring weights from regular
convolutional layer to implementations of basis function filters can be of practical interest.

Inference The filter response at any location in x ∈ R2 can be computed in closed-form:

fZ,u(x) = ϕT
xZ(ΦZZ + σ2I)−1u, (3)

where ϕxZ :=
[
ϕ(x, z1) ϕ(x, z2) · · · ϕ(x, zP)

]T ∈ RP and Φzz ∈ RP×P is defined by
[ΦZZ]ij := ϕ(zi, zj) with zi being the i’th row vector of Z.

4

Sparse Convolutions on Lie Groups

Figure 2: The first fifteen layer filters of a ResNet-34 pretrained on ImageNet (top) converted
to continuous ϕRBF-basis filters that can be evaluated anywhere (middle). Basis
function locations are not bound to a grid and can be sparsified (bottom).

Train The inference procedure fZ,u(x) is differentiable w.r.t. basis function locations Z,
basis function values u, and possible hyper-parameters in ϕ. We can train basis function
layers just like other neural network layers, treating Z and u as learnable parameters and
optimise them together with model parameters using back-propagation.

Sparsify Optionally, we can further reduce the number of anchor points to P ′ < P to a
new set of locations Z ′ ∈ RP ′×2. We pick Z ′ with some scheme, such as random sampling
or (row-wise) subset of Z, and find new basis function values u′ ∈ RP ′ that minimise the
squared distance between new predictions fZ′,u′(zi) and original basis functions:

argmin
u′

∑
i

||fZ,u(zi)− fZ′,u′(zi)||2. (4)

We can find the following closed-form minimum norm solution for new anchor point values:

u′ = (ATA)−1ATb, (5)

with A = (ΦZZ′(ΦZ′Z′ + σ2I)−1, and b = (ϕT
uZ(ΦZZ + σ2I)−1,

where ΦZZ′ := ϕ(Z,Z ′) ∈ RP×P ′
, and ΦZ′Z′ := ϕ(Z ′,Z ′) ∈ RP ′×P ′

.

Instead of only taking the argmin w.r.t. u′, an even tighter fit may be obtained by optimizing
both variables Z ′ and u′. Unfortunately, there is no closed-form least-squares solution in this
case, and would have to resort to other minimization strategies, such as gradient descent.

(a) Hypernetwork filter (b) Naive filter (c) Smooth filter (ours)

Figure 3: Lie group filter parameterisations. (a) Smooth functions in Lie algebra are not
necessarily smooth on the Lie group. (b) Naive basis function regression in the
Lie algebra. (c) Proposed basis function filter efficient and smooth on SO(2).

5

van der Ouderaa van der Wilk

5. Basis functions on Lie Groups

In the previous chapter, we discussed how to extend discrete convolutional filters on Z2 to
continuous filters on R2. Now, we will further extend this to more general groups f : G → R,
which can be useful to implement efficient group convolutions.

Again, we consider a finite amount of points but now place them on the group Z =
{zi}Pi=1 ⊂ G, and list the values associated to the points in u ∈ RP . We can define a smooth
function on the group f : G → R from the finite set of anchor points and values (Z,u) with
basis function regression by defining a basis function that takes group elements as input
ϕG : G×G → R. Now the difficulty lies in defining a basis function on the group. To do so,
we choose to parameterise it in the Lie algebra g associated to Lie group G:

ϕG : G×G → R : (g′, g) 7→ ϕ(log(g−1g′)∨) (6)

where we choose some logarithm log map from group elements in G to Lie algebra g, and use
the (·)∨ : g → Rdim(G) operator to obtain a real vector that represents the group element in
some chosen Lie algebra basis. Note that we take the difference between two elements in the
Lie group g−1g′ and that if two elements are the same g=g′ this maps to the identity element
log(g−1g)=0 ∈ g in the Lie algebra. This is desirable, as a more naive approach of mapping
to the Lie algebra first, i.e. mapping to ϕ(log(g′)− log(g)), would depend on the location
of the identity (see Fig. 3(b)). Using this construction we can define filters on the group in
terms of regular basis functions in real vector space ϕ : Rdim(G) → R, such as the ϕRBF.

This generalises Bekkers (2019) proposing the same technique for B-spline basis functions.

Inference Similar to basis function kernels for regular convolutions, we can find a value at
any continuous location in filter space g ∈ G in closed-form:

fZ,u(g) = ϕT
gZ(ΦZZ + σ2I)−1u, (7)

where we define ϕgZ :=
[
ϕG(g, z1) ϕG(g, z2) · · · ϕG(g, zP)

]T ∈ RP , define ΦZZ ∈ RP×P

by [ΦZZ]ij = ϕG(zi, zj), and a variance noise term σ2 is added for numerical stability.

Parameter CIFAR-10 CIFAR-100
Group NMC samples matched no augment with augment no augment with augment

baseline (regular conv) - 78.20 87.44 44.24 60.84

p4 4
77.57 89.83 44.18 65.28

✓ 73.13 85.32 43.78 57.05

4
79.36 84.28 52.30 57.58

✓ 76.47 78.06 48.29 57.18
SE(2)

8
83.06 90.17 55.40 64.65

=T(2)⋊ SO(2) ✓ 80.03 86.50 53.26 56.72

16
80.09 90.64 50.92 65.61

✓ 81.57 88.43 53.87 60.93

R2 ⋊R+
3

78.79 86.54 45.84 59.49
✓ 78.03 84.70 48.61 54.69

8
78.78 86.89 46.02 60.18

✓ 77.20 85.64 48.12 54.61

Table 1: Performance of group equivariant ResNet-18 with basis function filters. Test
accuracy on CIFAR-10 and CIFAR-100 datasets for different Lie groups.

6

Sparse Convolutions on Lie Groups

6. Basis functions for relaxed equivariance
In this work, we consider the method proposed by van der Ouderaa et al. (2022) to relax
equivariance, letting convolutional filters depend on an additional absolute group elements:

ỹ(v) =

∫
G
f̃G(v

−1u, u)x(u)µG(u) (8)

where filter f̃G : G× G̃ → R, input x : G → R and output y : G → R are defined on group G.
Unlike classic convolutions, filters f̃G now operate on a group product space, taking not one
but two group elements as input v−1u ∈ G and u ∈ G̃. We can choose the relaxed subgroups
through our choice of G̃ ≤ G, and have G̃=G if all subgroups are relaxed. To emphasise the
difference between regular convolutions and the operator of Eq. (8) that relaxes equivariance,
we add a ˜-symbol to ỹ and the filters f̃G : G× G̃ → R in case of relaxed equivariance. We
proceed by defining continuous filters for relaxed equivariance by performing basis function
regression on the group product space G× G̃. To do so, we consider a finite amount of points
in this space Z̃ = {(zi, z̃i)}Pi=1 ⊆ G× G̃, with associated values listed as u ∈ RP . Thus, this
requires defining basis functions on the product space of the group product space:

ϕ̃G : (G′ × G̃′)× (G× G̃) → R : ((g′, g̃′), (g, g̃)) 7→ ϕ

([
log(g−1g′)∨

log(g̃−1g̃′)∨̃

])
(9)

where we choose a logarithm log-map from the Lie group G to the Lie algebra g and operators
(·)∨ : Rdim(G) → R and (·)∨̃ : Rdim(G̃) → R to represent elements as real vectors by expanding
in a chosen Lie algebra basis. We have defined basis functions on group product spaces in
terms of used stationary basis functions in real vector space ϕ : Rdim(G)+dim(G̃) → R. Similar
to Sections 4 and 5, we can construct filters for relaxed equivariance in closed-form:

f̃G(g, g
′) = ϕT

(g,g′)Z(ΦZZ + σ2I)−1u, (10)

where ϕ(g,g′)Z := [ϕ̃G((g
′, z′1), (g, z1)) · · · ϕ̃G((g

′, z′P), (g, zP)))]
T ∈ RP , and define [ΦZZ]ij =

ϕ̃G((g
′, z′i), (g, zj)) with shape ΦZZ ∈ RP×P , and σ2 for numerical stability.

Note about smoothness in Lie group One might ask whether filters on Lie groups
defined in the Lie algebra (as in Sections 5 and 6) are still smooth on the Lie group. Even if
the function in the Lie algebra is smooth, smoothness is not guaranteed on the Lie group.
An example for SO(2) is depicted in Figs. 3(a) and 3(b). However, filters will still be smooth
close to the identity and possible discontinuities are not likely to form problems if filters are
only locally supported around the origin. This is typically true for classic convolutional filters,
but is not often done for other groups, such as SO(2), in literature. This problem arises in
many commonly used filter parameterisations, such as regular MLPs and encodings that use
random Fourier feature spaces with non-integer frequencies, such as positional encodings or
SIRENs Sitzmann et al. (2020). Our proposed basis function filters can still be guaranteed
to be smooth on SO(2) by carefully choosing a periodic basis ϕPERIODIC (see Fig. 3(c)).

0M 3M 6M 9M 12M 15M
parameters

0

50

100

ac
cu

ra
cy

 (%
) 78.3%

73.9%

74.3%

CIFAR-10
ResNet-18

0M 3M 6M 9M 12M 15M
parameters

0

50

100 87.5%

77.9%

79.5%

CIFAR-10
ResNet-18 (+aug)

0M 3M 6M 9M 12M 15M
parameters

0

50

100

45.3%
45.2%

44.5%

CIFAR-100
ResNet-18

0M 3M 6M 9M 12M 15M
parameters

0

50

100

59.7%

48.8%

49.8%

CIFAR-100
ResNet-18 (+aug)

grid conv (baseline)
basis conv, fixed Z
basis conv, learn Z

Figure 4: Parameter efficiency of ϕRBF-basis function kernels. Mean test accuracy after re-
ducing model parameters with procedure described in Eqs. (4) and (5) of Section 4.

7

van der Ouderaa van der Wilk

7. Results

Analysis of parameter efficiency To assess parameter efficiency of basis function filters
we compare test accuracy for different number of anchor points P . The parameter count of
basis function filters is directly proportional to P and can be chosen freely, unlike the fixed
parameter count of classical convolutional filters which correspond to the area of the chosen
filter support (e.g. 25 parameters for a 5× 5 filter). We compare test accuracy of regular
convolutional layers (‘grid convs’) with basis function filters at varying parameter counts.
We initialise equally in both cases and reduce the parameter counts before training using
the sparsification procedure described in Eqs. (4) and (5) of Section 4, uniformly sampling
anchor point locations within the filter support. Fig. 4 shows test accuracy against number
of parameters on CIFAR data with and without data augmentation. We demonstrate a
reduction of model parameters up to a factor of ∼10× with a few percentage points drop in
test accuracy in the most extreme case: 3-4% without data augmentation and 8-9% with
data augmentation. Surprisingly, we have merely a single P=1 anchor point left in this
setting. Per layer, that amounts to a single anchor point location shared over channels and a
single anchor point value parameter for each filter channel. More details in App. C.

Large equivariant networks with basis function kernels The parameter-efficiency of
basis function filters allow us to construct group equivariant versions of large commonly used
convolutional architectures at parameter counts equivalent to regular non-equivariant models.
To assess effectiveness, we compare test accuracy of such equivariant versions for different
groups: regular discrete translation, discrete rotations p4, continuous planar roto-translations
SE(2), and continuous planar scalings R2 ⋊ R+. Table 1 shows test accuracy for models
trained with and without data augmentation. Equivariant networks for rotation groups
outperform the regular baseline for SE(2) given enough (typically >8) Monte Carlo samples
NMC. We do not observe such improvement for planar scaling and hypothesise that could
be due to sampling error of small filters. This would be an issue with sampled regular
representations in general and not of our basis function parameterisation as such. Overall,
we demonstrate that basis function filters can effectively be used to construct equivariant
versions of large commonly used convolutional architectures. Embedding group symmetries
into the architecture yields higher test accuracies, as expected.

Relaxed equivariance and symmetry discovery Lastly, we investigate the use of basis
function filters to parameterise relaxations of equivariance. We consider roto-translation
G=SE(2) and consider different amounts of relaxation of subgroup SO(2) by varying ω̃. Basis
function filters allow us to repeat the cross-validation experiments in van der Ouderaa et al.
(2022) on large commonly used ResNet architectures. We directly report test accuracy in the
upper part of Table 2. Instead fixing the amount of relaxation, we also consider learning
ω̃ from training data by treating it as a parameter and optimising it with backpropagation
together with the model parameters. As ω̃ directly controls layer-wise equivariance con-
straints, this allows gradient-based learning of symmetry constraints. As suggested by van der
Ouderaa et al. (2022), we add a regularizing λ||ω̃||2 to the cross-entropy loss that encourages
ω̃ to be low and thus encourages stricter symmetry constraints. This is analogous to the
regularisation proposed in Augerino (Benton et al., 2020) to learn invariances through data
augmentations and similarly requires tuning of λ. We report test accuracy for different values
for λ in the bottom part of Table 2. We observe that learned equivariance constraints ω̃

8

Sparse Convolutions on Lie Groups

achieve similar performance to the best fixed setting for ω̃ and outperform baselines in most
cases. This suggests that our efficient sparse filters can be an efficient parameterisation for
relaxed equivariance. Like most symmetry discovery methods, we still need to parameterise
the class of symmetries that can be learned and limit ourselves to learning the amount
of rotational equivariance to the SO(2) subgroup in an SE(2)-equivariant network. Also,
the used regularisation requires tuning an additional hyperparameter. Immer et al. (2022)
observe that selecting the right amount of invariance with regularisation used in Augerino
can be difficult and proposes an alternative loss motivated by marginal likelihood approx-
imations. Investigating such objectives could improve layer-wise equivariance learning in
combination with the proposed filter parameterisation is interesting future work. Regardless,
our experiments indicate that basis function filters can effectively parameterise filters for
relaxed equivariance in large networks. We improve over van der Ouderaa et al. (2022)
which had to consider smaller architectures due to added hypernetwork parameters and we
recommend using the proposed filter parameterisation instead.

SE(2) = T(2)⋊ S̃O(2) CIFAR-10 CIFAR-100
params fixed ω̃ no augment with augment no augment with augment

baseline 11.2 M - 80.03 86.50 53.26 56.72
relaxed equivariance 11.2 M 0 79.46 85.97 53.49 57.47

11.2 M 0.0001 79.46 85.97 53.49 57.47
11.2 M 0.01 83.09 88.53 57.64 61.29
11.2 M 0.1 84.16 89.20 57.89 61.09
11.2 M 0.5 80.26 86.95 52.02 58.30
11.2 M 1.0 75.35 82.07 44.69 52.15
11.2 M 1.5 71.89 78.01 43.35 47.08
11.2 M 2.0 66.09 64.94 39.81 38.32

learned ω̃
11.2 M λ = 0.00001 83.34 89.12 57.92 60.28
11.2 M λ = 0.00005 83.41 88.84 58.72 60.32
11.2 M λ = 0.0001 83.51 89.17 58.18 60.15

Table 2: Learning the amount of equivariance per layer. We use layers with relaxed equivari-
ance for fixed and learned amounts of equivariance constraints controlled by ω′.

8. Conclusion

This work proposes a practical parameterisation for continuous (group) convolutional filters
with sampled regular representations. Existing methods often rely on MLP hypernetworks
which may require many additional model parameters compared to classical filters. Instead,
we propose to infer continuous filters from a small finite set of anchor points utilising basis
function regression. The approach is general and enables parameter-efficient continuous
filters in regular convolutional networks (CNNs), group-equivariant convolutional layers
(G-CNNs) and filters for relaxed equivariance. We assess parameter efficiency of basis
function filters at reduced parameter counts. Futhermore, the proposed basis function filters
allow us to construct equivariant versions of large commonly used convolutional neural
network architectures that can outperform regular baselines on CIFAR-10 and CIFAR-100
classification tasks. Furthermore, the approach allows for relaxations of equivariance without
increasing the parameter count. In this last setting, we demonstrate efficient symmetry
discovery by automatically learning layer-wise equivariance constraints from training data.

9

van der Ouderaa van der Wilk

References

Erik J Bekkers. B-spline cnns on lie groups. arXiv preprint arXiv:1909.12057, 2019.

Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. Learning invari-
ances in neural networks. arXiv preprint arXiv:2010.11882, 2020.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to lie groups on arbitrary continuous data.
In International Conference on Machine Learning, pages 3165–3176. PMLR, 2020.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in Neural Information Processing
Systems, 33:1970–1981, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Alexander Immer, Tycho F. A. van der Ouderaa, Vincent Fortuin, Gunnar Rätsch, and
Mark van der Wilk. Invariance learning in deep neural networks with differentiable laplace
approximations, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

David M Knigge, David W Romero, and Erik J Bekkers. Exploiting redundancy: Separable
group convolutional networks on lie groups. In International Conference on Machine
Learning, pages 11359–11386. PMLR, 2022.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In International Conference on Machine
Learning, pages 2747–2755. PMLR, 2018.

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier space
spherical convolutional neural network. Advances in Neural Information Processing Systems,
31:10117–10126, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tianyu Ma, Adrian V Dalca, and Mert R Sabuncu. Hyper-convolution networks for biomedical
image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 1933–1942, 2022.

10

Sparse Convolutions on Lie Groups

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European conference on computer vision, pages 405–421. Springer, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in pytorch. 2017.

Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In
NIPS. Citeseer, 2007.

David W Romero and Suhas Lohit. Learning equivariances and partial equivariances from
data. arXiv preprint arXiv:2110.10211, 2021.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogen-
doorn. Ckconv: Continuous kernel convolution for sequential data. arXiv preprint
arXiv:2102.02611, 2021.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International Conference on Machine Learning, pages 9323–9332. PMLR,
2021.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural
network for modeling quantum interactions. Advances in neural information processing
systems, 30, 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. Advances in Neural
Information Processing Systems, 33, 2020.

Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimensional domains. arXiv preprint
arXiv:2006.10739, 2020.

Tycho FA van der Ouderaa and Mark van der Wilk. Learning invariant weights in neural
networks. In Workshop in Uncertainty & Robustness in Deep Learning, ICML, 2021.

Tycho FA van der Ouderaa, David W Romero, and Mark van der Wilk. Relaxing equivariance
constraints with non-stationary continuous filters. arXiv preprint arXiv:2204.07178, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly
symmetric dynamics. arXiv preprint arXiv:2201.11969, 2022.

11

van der Ouderaa van der Wilk

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep
parametric continuous convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2589–2597, 2018.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Advances in
Neural Information Processing Systems, 32, 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data. arXiv
preprint arXiv:1807.02547, 2018.

Daniel E Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. arXiv
preprint arXiv:1905.11697, 2019.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5028–5037, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.

12

Sparse Convolutions on Lie Groups

Appendix A. Additional related work

Basis function regression Basis function regression is a well known procedure1 which we
use to infer values y∗ ∈ R at arbitrary continuous points in D-dimensional space x∗ ∈ RD

from a finite number of P points in X ∈ RP×D with known values y ∈ RP . We use a basis
function ϕ(x′,x) : RD × RD → R and perform inference in closed-form:

y∗ = ϕT
x∗X(ΦXX + σ2I)−1y (11)

where vector ϕx∗Z ∈ RP and matrix ΦZZ ∈ RP×P are constructed using the basis function
[ϕxZ]i := ϕ(x,Zi) and [ΦZZ]ij := ϕ(Zi:,Zj:) and regularizing observational variance
scalar σ2. Here Zi: ∈ RD denotes the i’th row of Z. If ϕ(x′,x) can be rewritten as
ϕ′(x − x′), the basis function is called ‘stationary’. In this case, we will simply write the
basis function as the one-argument function ϕ : RD → R. One of the most commonly used
basis functions ϕ in regression is the stationary squared exponential radial basis function
ϕRBF(a) = σ2 exp

(
−2ω2aTa

)
, with scalar variance σ2 ∈ R and frequency ω2 ∈ R.

Appendix A. Implementation

Basis function factorisation We choose to factor the basis functions as ϕ(a) =
∏D

i=1 ϕi(ai)
with a ∈ RD and represent individual dimensions using radial or periodic basis functions:

ϕRBF(ai) = exp

(
−1

2
ω2
i a

2
i

)
ϕPERIODIC(ai) = exp

(
−2ω2

i sin
2
(π
2
|ai|

))
(12)

where we set ϕi = ϕPERIODIC for dimensions that correspond to the SO(2) subgroup and
ϕi = ϕRBF for dimensions that correspond to translation R2 or scale R+ subgroups. Note that
we have D=dim(G) for strict equivariance and D=dim(G)+dim(G̃) for relaxed equivariance.
Factorising basis functions across dimensions differs from factorising the filter itself across
dimensions, which is often called a ‘separable filter’ (Knigge et al., 2022). Separable filters
have efficiency benefits, but limit the functions a filter can represent. Unlike separable
kernels, our proposed factorisation of basis functions still yield filters that can approximate
any function, given enough anchor points.

Intuition behind frequency parameters To understand the effect of frequency param-
eters on filters, it can be helpful to separately consider the first frequencies, overloading
notation ω := [ω1, . . . , ωdimG

]T ∈ Rdim(G), and the remaining dim(G̃) frequency components
as ω̃ ∈ Rdim(G̃).

The frequencies ω control the spectral properties of regular filters. For example, frequen-
cies for translation G=T(2) would be two-dimensional ω ∈ R2 and influence the respective
frequencies along the x- and y-axis of the two-dimensional filter. On the other hand, the
additional frequencies for relaxed equivariance ω̃ control the amount of equivariance of
relaxed subgroups, where higher frequencies correspond to more relaxation. Conversely,
setting ω̃=0 corresponds to no relaxation in which case the layer becomes equivalent to a
regular (group) convolution (van der Ouderaa et al., 2022), which is guaranteed to be strictly
equivariant ||f ||EE=0.

1. Basis function regression is more commonly known as ‘kernel ridge regression’, where ϕ is the kernel
function. To avoid confusion with convolutional kernels, we do not use this name.

13

van der Ouderaa van der Wilk

Group elements as real vectors We map Lie group elements to Lie algebra elements
through a choice of log and expand them through (·)∨ or (·)∨̃ in a Lie algebra basis so they
can be implemented as real vectors. The choice of basis is somewhat arbitrary and can be set
according to the application. We choose our basis such that a length of 1 corresponds to the
apothem of a sampled filter support for T(2), doubling in scale for R+ and a full rotational
orbit for SO(2). For relaxed equivariance, the same basis is used except for T(2) where group
elements correspond to the input domain and therefore the apothem of the input image
support is used instead of that of the sampled filter support. We always initialise frequency
components as 1, if not specified otherwise.

Example for relaxed rotational equivariance In our experiments, we will consider
relaxing the SO(2) subgroup of SE(2) = T(2)⋊ SO(2). In this case, we have that dim(G) =
dim(T(2)) + dim(SO(2)) = 2 + 1 = 3 and dim(G̃) = dim(SO(2)) = 1. Therefore, D =
dim(G)+dim(G̃) = 3+1 = 4. We will use ϕ1 = ϕ2 = ϕRBF for the dimensions corresponding
to translation T(2) subgroup, and ϕ3 = ϕ4 = ϕPERIODIC for the dimensions that correspond
to rotation SO(2) and relaxation of rotation SO(2) subgroup. Thus, the frequency vectors in
this case are of dimensionality ω ∈ Rdim(G) = R3 and ω̃ ∈ Rdim(G̃) = R1.

Appendix B. Appendix: Training details

B.1. Architecture

For the architectures, we used the standard ResNet-18 and ResNet-152 architecture He et al.
(2016) implementations of PyTorch Paszke et al. (2017) with the following parameter counts.

Model # Parameters

ResNet-18 (10 classes) 11,181,642 (11.2 M)
ResNet-18 (100 classes) 11,227,812 (11.2 M)

Table 3: Parameter count of used ResNet architecture

B.2. Dataset details

We evaluate with the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). The
CIFAR-10 dataset consists of 60,000 32x32 colour images. CIFAR-100 consists of 60,000
32x32 colour images in 100 classes. For both datasets, we use the default 50,000/10,000
split for training and testing and apply standard zero mean and unit standard deviation
normalisation using training set statistics.

B.3. Optimization details

In all experiments, we optimise using Adam (Kingma and Ba, 2014) with an initial learning
rate of 0.001 cosine decayed to zero over 400 epochs.

14

Sparse Convolutions on Lie Groups

Appendix C. Parameter reduction with sparsified convolutions

Unlike grids of regular convolutions, the P basis coordinates (rows of Z) of basis function
kernels are no longer required to lie in a grid. Furthermore, the number of basis functions
per filter can be chosen arbitrarily and can be lower than the number of pixel grids in
regular convolutions. In Eqs. (4) and (5) of Section 4, we formulate a procedure to sparsify
parameters of convolutional kernels, similar to ’pruning’. Note that we reduce the number of
parameters that describe the convolutional filters and (and thus reduce storage cost), but
the size of the sampled filter during training/inference remains the same. In Section 7, we
evaluate parameter efficiency of basis function kernels by evaluating test performance of a
ResNet-18 model with reduced number of basis function coordinates. In Tables 4 and 5, we
report more detailed results of this experiment including exact parameter counts of reduced
models as well as test accuracy. Mean and standard error are reported over 3 random seeds.

params per filter ResNet-18 w/ Z fixed ResNet-18 w/ Z free
reduce factor P ′

1×1 P ′
7×7 P ′

3×3 # params total test acc test acc (+aug) # params total test acc test acc (+aug)

baseline 1.0 1 9 49 11,689,552 79.38 ±0.19 88.89 ±0.12 - - -
reduce 0.9 1 44 8 10,467,984 73.35 ±0.80 83.99 ±0.43 10,468,334 78.21 ±0.69 86.64 ±0.18

0.8 1 39 7 9,246,416 73.94 ±0.45 84.35 ±0.29 9,246,724 77.72 ±0.40 86.58 ±0.16

0.7 1 34 6 8,024,848 74.59 ±0.39 85.04 ±0.30 8,025,114 77.79 ±0.57 86.03 ±0.17

0.6 1 29 5 6,803,280 75.74 ±0.81 85.13 ±0.46 6,803,504 77.60 ±0.53 86.18 ±0.44

0.5 1 24 4 5,581,712 76.64 ±0.90 85.12 ±0.24 5,581,894 78.00 ±0.67 85.90 ±0.37

0.4 1 20 4 5,580,944 76.70 ±0.69 84.97 ±0.22 5,581,118 77.96 ±0.52 85.71 ±0.27

0.3 1 15 3 4,359,376 77.65 ±0.52 84.17 ±0.28 4,359,508 78.27 ±0.19 85.73 ±0.23

0.2 1 10 2 3,137,808 77.04 ±0.24 83.01 ±0.18 3,137,898 77.86 ±0.38 85.28 ±0.26

0.1 1 5 1 1,916,240 73.87 ±0.35 77.92 ±0.56 1,916,288 74.31 ±0.29 79.50 ±0.41

Table 4: Test accuracy of sparsified networks on CIFAR-10. Test accuracy of ResNet-
18 model trained with reduced number of parameters, with and without data
augmentation. Total parameter count and parameter count per filter are reported,
as well as standard error over three seeds σ√

(3)
.

params per filter ResNet-18 w/ Z fixed ResNet-18 w/ Z free
reduce factor P ′

1×1 P ′
7×7 P ′

3×3 # params total test acc test acc (+aug) # params total test acc test acc (+aug)

baseline 1.0 1 9 49 11,689,552 45.44 ±0.06 61.39 ±0.05 - - -
reduce 0.9 1 44 8 10,467,984 40.57 ±0.56 44.95 ±0.64 10,468,334 54.37 ±0.16 58.52 ±0.10

0.8 1 39 7 9,246,416 40.86 ±0.70 45.10 ±0.58 9,246,724 54.89 ±0.31 58.34 ±0.32

0.7 1 34 6 8,024,848 41.59 ±0.71 45.07 ±0.27 8,025,114 56.31 ±0.61 58.16 ±0.17

0.6 1 29 5 6,803,280 42.86 ±0.66 45.51 ±0.87 6,803,504 56.48 ±0.81 57.54 ±0.86

0.5 1 24 4 5,581,712 44.27 ±0.93 46.73 ±0.69 5,581,894 56.34 ±0.30 57.48 ±0.31

0.4 1 20 4 5,580,944 44.85 ±0.81 46.90 ±0.34 5,581,118 56.49 ±0.18 57.69 ±0.50

0.3 1 15 3 4,359,376 46.54 ±0.43 47.50 ±0.51 4,359,508 55.98 ±0.44 57.56 ±0.33

0.2 1 10 2 3,137,808 47.53 ±0.57 48.38 ±0.16 3,137,898 55.28 ±0.16 56.99 ±0.37

0.1 1 5 1 1,916,240 45.18 ±0.35 44.47 ±0.09 1,916,288 48.77 ±0.49 49.80 ±0.32

Table 5: Test accuracy of sparsified networks on CIFAR-100. Test accuracy of ResNet-
18 model trained with reduced number of parameters, with and without data
augmentation. Total parameter count and parameter count per filter are reported,
as well as standard error over three seeds σ√

(3)
.

15

	Introduction
	Related Work
	Background
	Continuous filters with basis functions
	Basis functions on Lie Groups
	Basis functions for relaxed equivariance
	Results
	Conclusion
	Additional related work
	Implementation
	Appendix: Training details
	Architecture
	Dataset details
	Optimization details

	Parameter reduction with sparsified convolutions

