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Abstract
Diffusion models have demonstrated impressive
results in both data generation and downstream
tasks such as inverse problems, text-based edit-
ing, classification, and more. However, training
such models usually requires large amounts of
clean signals which are often difficult or impos-
sible to obtain. In this work, we propose a novel
training technique for generative diffusion mod-
els based only on corrupted data. We introduce
a loss function based on the Generalized Stein’s
Unbiased Risk Estimator (GSURE), and prove
that under some conditions, it is equivalent to the
training objective used in fully supervised diffu-
sion models. We demonstrate our technique on
face images as well as Magnetic Resonance Imag-
ing (MRI), where the use of undersampled data
significantly alleviates data collection costs. Our
approach achieves generative performance com-
parable to its fully supervised counterpart without
training on any clean signals. In addition, we
deploy the resulting diffusion model in various
downstream tasks beyond the degradation present
in the training set, showcasing promising results.

1. Introduction
Denoising diffusion probabilistic models (DDPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019), or diffusion models for short, are a family of gener-
ative models that has recently risen to prominence. They
have achieved state-of-the-art performance in image gener-
ation (Song et al., 2020b; Vahdat et al., 2021; Dhariwal &
Nichol, 2021; Rombach et al., 2022; Kim et al., 2022), as
well as impressive generative modeling capabilities in other
modalities (Singer et al., 2023; Kong et al., 2021; Gong
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et al., 2023; Tevet et al., 2022; Watson et al., 2022; Song
et al., 2023; Chung & Ye, 2022; Jalal et al., 2021).

Training a diffusion model to learn an unknown data dis-
tribution is a complex task. It usually requires training
parameter-heavy neural networks on large amounts of pris-
tine data. For instance, diffusion models’ success in image
generation was in part enabled by large curated datasets,
containing millions or even billions of images (Deng et al.,
2009; Schuhmann et al., 2022). However, such large-scale
datasets of pristine samples may often be expensive, diffi-
cult, or even impossible to obtain, especially in the medical
domain (Mullainathan & Obermeyer, 2022). In this work,
we present GSURE-Diffusion, a method for training gen-
erative diffusion models based on data corrupted by linear
degradations and Gaussian noise. This can make data col-
lection for deep learning significantly faster and cheaper.

GSURE-Diffusion operates on a datasets of noisy linear
measurements of signals, and assumes the signal acquisi-
tion process is randomized within a fixed general structure,
which is the case in many real-world applications. In this
setting, we present a novel loss function to learn the un-
derlying data distribution. First, we use the Singular Value
Decomposition (SVD) of the degradation operators to decou-
ple the measurement equation, following DDRM (Kawar
et al., 2022). Then, we add synthetic noise to the SVD-
transformed measurements, likening them to the noisy sam-
ples used in the DDPM (Ho et al., 2020) framework. Finally,
we use the ensemble version of the Generalized Stein’s Un-
biased Risk Estimator (GSURE) (Aggarwal et al., 2022;
Eldar, 2008) to learn to denoise samples without access to
ground-truth clean signals. Our proposed GSURE-based
loss function is general to all randomized linear measure-
ment settings, and we prove its equivalence to the fully
supervised denoising diffusion loss under some conditions.

We apply our technique on face images as well as Magnetic
Resonance Imaging (MRI). After training solely on cor-
rupted data, our GSURE-Diffusion models exhibit compa-
rable generative performance to oracle model counterparts,
which train on pristine data. Furthermore, we demonstrate
the capabilities of our trained models by deploying them in
various downstream tasks.

We hope that GSURE-Diffusion will facilitate future work
on generative modelling for challenging settings, generaliz-
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Figure 1. Training set (top) and generated (bottom) samples of
different degradation settings in CelebA experiments.

ing for more complex scenarios and various modalities.

2. Background
2.1. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) are a family of generative models that learn
a distribution pθ(x), approximating a data distribution
q(x) from a dataset D of samples. DDPMs follow a
Markov chain structure xT → xT−1 → · · · → x1 → x0

that reverses a forward noising process from x0 to xT . In
the forward process, x0 is set to be x, and the intermedi-
ate variables xt are defined by q(t)(xt|xt−1), usually cho-
sen to be Gaussian N

(√
1− βtxt−1, βtI

)
. This leads to a

useful property, q∗(xt|x0) = N (
√
ᾱtx0, (1− ᾱt) I) with

ᾱt =
∏t

s=1 (1− βt), which facilitates model training. In
the reverse process, the learned distribution p

(t)
θ (xt−1|xt) is

also modeled as Gaussian, with a learned mean dependent
on a neural network f

(t)
θ (xt) and a fixed (Ho et al., 2020)

or learned (Nichol & Dhariwal, 2021) covariance.

The diffusion model f
(t)
θ (xt) is trained to optimize an

evidence lower bound (ELBO) on the likelihood objec-
tive (Sohl-Dickstein et al., 2015). The ELBO can be simpli-
fied into the following denoising objective:

T∑
t=1

γtE
[∥∥∥f (t)

θ (xt)− x0

∥∥∥2
2

]
, (1)

where the γt assign weights to different t (different noise lev-
els), and the expectation is over xt ∼ q∗(xt|x0), x0 ∼ q(x).
Please refer to (Ho et al., 2020; Song et al., 2020a) for deriva-
tions. After training, diffusion models synthesize data by
starting with a sample xT ∼ N (0, I), following the learned
distributions p(t)θ along the Markov chain, sampling from
each, and outputting x0 as the final sample. In this work,
we seek a way to train DDPMs using only corrupted data.

2.2. Generalized Stein’s Unbiased Risk Estimator

Given noisy measurements y = x+z (where x,y, z ∈ Rn)
with noise z ∼ N (0, σ2I), and a function f(y) aim-
ing to estimate x from y, Stein’s unbiased risk estimator
(SURE) (Stein, 1981) is an unbiased estimator for the mean

squared error (MSE) of f(y). Crucially, SURE provides
the ability to estimate the MSE of a denoiser f(y) without
access to clean signals x.

In the context of inverse problems, SURE has been general-
ized for corrupted measurements beyond additive white
Gaussian noise (Eldar, 2008). The Generalized SURE
(GSURE) considers y = Hx + z (where x ∈ Rn,
H ∈ Rm×n, y, z ∈ Rm, and z ∼ N (0,C)), and a function
f(y) estimating x. In this case, GSURE provides an unbi-
ased estimate for the projected MSE E

[
∥P (f(y)− x)∥22

]
:

E
[
∥P (f(y)− xML)∥22

]
+2E

[
∇H⊤C−1y ·Pf(y)

]
+c, (2)

where H† is the Moore-Penrose pseudo-inverse of H,
P = H†H is a projection matrix onto the range-space
of H, xML =

(
H⊤C−1H

)†
H⊤C−1y, and c is a constant

that does not depend on f(y). GSURE has been utilizied
for solving inverse problems by training only on corrupted
measurements (Metzler et al., 2018). However, when H
causes significant information loss, the projected MSE stops
being a good proxy for the full MSE. Ensemble SURE (EN-
SURE) (Aggarwal et al., 2022) learns from a dataset of
measurements, each corrupted by a different operator H.
Therefore, the expectation over the projected MSE is taken
over H as well as the data and noise. This constitutes a
more accurate proxy for the full MSE without relying on
clean signals. In this work, we extend ENSURE for training
a diffusion model using corrupted data.

3. GSURE-Diffusion Formulation
3.1. Problem Formulation

We are interested in training a generative diffusion model
that can sample from an unknown data distribution q(x).
However, we only have access to a dataset D of corrupted
measurements y = Hx + z, where y ∈ Rm, x ∈ Rn,
H ∈ Rm×n, and z ∼ N (0, σ2

0I) is additive white Gaussian
noise (AWGN).1 x and y represent a single instance of an
ideal image and its corresponding measurement. More gen-
erally, different measurements y in the dataset may relate to
different signals x, different degradation procedures H, and
different noise realizations z. We assume x, z, and H are
independently sampled from their respective distributions.

To decouple the relationship between the observed measure-
ments and the underlying data, we follow (Kawar et al.,
2022) and utilize the singular value decomposition (SVD)
H = UΣV⊤, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices, and Σ ∈ Rm×n is a rectangular diago-
nal matrix containing the singular values of H. We define

1Our method can also handle anisotropic uncorrelated noise.
We only consider AWGN to simplify notations.
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x̄ = V⊤x, ȳ = Σ†U⊤y, and z̄ = Σ†U⊤z. Using these
definitions, the measurement equation becomes

ȳ = Px̄+ z̄, (3)

where P = Σ†Σ is a diagonal subsampling matrix with
zeroes and ones, and z̄ ∼ N (0, σ2

0Σ
†Σ†⊤) constitutes

anisotropic uncorrelated Gaussian noise.

We make the following assumptions on the training dataset:
(i) The sampling matrices H and noise levels σ0 are known;
(ii) All matrices H share the same left-singular vectors V⊤;
and (iii) The different H across the dataset jointly cover
the signal space Rn, i.e., E[P] is positive definite.2 These
assumptions are satisfied in many real-world applications
such as Magnetic Resonance Imaging (MRI).

Under the transformed measurement equation presented in
Equation 3, we aim to train a generative model for x̄, which
can easily translate to x using x = Vx̄.

3.2. GSURE-Based Denoising Diffusion Loss Function

To train a diffusion model for x̄, we aim to obtain noisy
training samples x̄t that satisfy the marginal distribution
q∗(x̄t|x̄) = N (

√
ᾱtx̄, (1− ᾱt) I), as in traditional diffu-

sion models. However, we only have access to corrupted
measurements ȳ as in Equation 3. For a given t, we perturb
these measurements with additional noise according to

x̄t =
√
ᾱtȳ +

(
(1− ᾱt) I− ᾱtσ

2
0Σ

†Σ†⊤
) 1

2

ϵt, (4)

where ϵt ∼ N (0, I) is independently sampled. Intu-
itively,

√
ᾱtȳ includes noise with a diagonal covariance

ᾱtσ
2
0Σ

†Σ†⊤. We increase the noise level in each entry by
an appropriate amount to reach a variance of 1− ᾱt in all
entries. This way, we obtain samples x̄t suitable for training
a diffusion model, as they follow the marginal distribution

q(x̄t|x̄,P) = N
(√

ᾱtPx̄, (1− ᾱt) I
)
. (5)

This resembles the ideal distribution of training samples
q∗(x̄t|x̄), differing only in the mean value for entries
dropped by P. In the following, we derive a loss function
that uses x̄t satisfying Equation 5, and utilizes an expec-
tation over x̄, z̄, and P. This results in an estimate for
denoising ideal samples from q∗(x̄t|x̄). The estimate as-
sumes the ability of the trained neural network to infer P
from x̄t, and to generalize for P = I despite having trained
only on signals with an undersampled P.

Ideally, we would like to train a diffusion model f (t)
θ (x̄t)

using the traditional denoising diffusion loss function in

2Under these notations, E[P] is measured for a fixed V⊤, and
the values in Σ are not necessarily ordered.

Equation 1. However, as we only have access to under-
sampled measurements, we consider a weighted expected
projected MSE objective (similar to Aggarwal et al. (2022)):

T∑
t=1

γtE
[∥∥∥WP

(
f
(t)
θ (x̄t)− x̄

)∥∥∥2
2

]
, (6)

where the expectation is taken over x̄t ∼ q(x̄t|x̄,P),
x̄ ∼ q(x̄), and P is independently sampled. In practice,
this expectation is realized through ȳ sampled from the
dataset D and Equation 4.

Proposition 3.1. For x sampled from an unknown q(x),
x̄ = V⊤x, x̄t sampled from Equation 5, and the diagonal
weight matrix W = E[P]−

1
2 ≻ 0 (positive definite), it

holds that Equation 6 approximately equals Equation 1.

We place the proof in Appendix A. The proof relies on
the aforementioned assumptions on the neural network’s
generalization abilities, as well as the assumption that P
and the network’s MSE are statistically independent, as
assumed in ENSURE (Aggarwal et al., 2022). The expected
projected MSE term in Equation 6 measures the squared
error of the denoiser f

(t)
θ (x̄t) only in entries kept by P.

This fact makes the loss easier to measure, as we do not
have access to the entries dropped by P. However, we still
cannot accurately measure this loss, because we lack access
to noiseless signals Px̄. To mitigate this, we utilize GSURE
to estimate Equation 6 using only x̄t with the loss

T∑
t=1

γtE

[∥∥∥∥WP

(
f
(t)
θ (x̄t)−

1√
ᾱt

x̄t

)∥∥∥∥2
2

+2λt

(
∇x̄t

·PW2f
(t)
θ (x̄t)

)
+ c

]
, (7)

where c is a constant that does not depend on θ, and λt is
a scalar hyperparameter. The expectation is over the same
random variables from Equation 6.

Proposition 3.2. For x sampled from an unknown q(x),
x̄ = V⊤x, x̄t sampled from Equation 5, and λt = 1− ᾱt,
it holds that Equation 7 equals Equation 6.

We place the proof in Appendix A. Proposition 3.1 and
Proposition 3.2 present a principled method to train a de-
noising diffusion model based only on corrupted data ȳ.
By minimizing the loss function in Equation 7, we obtain
a trained diffusion model that can be utilized in the same
fashion as a fully supervised one.

When our proposed training scheme is applied in practice,
the expectation in Equation 7 is replaced by an average
over training batches, 1√

ᾱt
x̄t is replaced by ȳ to alleviate

the high variance of the loss function, and the divergence
term is calculated using an unbiased Monte Carlo estima-
tor (Ramani et al., 2008; Hutchinson, 1989). We defer these
pragmatic implementation details to Appendix E.
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Table 1. FID results for diffusion models trained on increasing
levels of degradation for CelebA, with different DDIM steps.

DEGRADATION / STEPS 10 20 50 100

NONE (ORACLE) 21.99 13.09 08.15 06.84
p = 0.2, σ0 = 0.01 18.77 12.25 08.84 08.82
p = 0.4, σ0 = 0.02 19.26 14.98 14.03 15.14
p = 0.6, σ0 = 0.03 34.51 27.74 26.42 28.31

4. Experiments
In the following, we demonstrate the capabilities of our
method for training a diffusion model using corrupted data.
To obtain corrupted data, we simulate several corruptions
on datasets containing clean images. Then, we train a diffu-
sion model based only on the corrupted data, and compare
its results against an oracle model (with identical training
hyperparameters) which is trained on the pristine data with
the traditional diffusion loss function from Equation 1. We
provide architecture and training details in Appendix D.

Face Images. We apply GSURE-Diffusion on a 32× 32-
pixel grayscale variant of CelebA (Liu et al., 2015). We
simulate a corrupted measurement process by splitting the
images into 4× 4-pixel non-overlapping patches, randomly
erasing each patch with probability p, and adding AWGN
with standard deviation σ0. This degradation matches our
assumptions in subsection 3.1 (see Appendix C). We train
diffusion models for increasing levels of degradation. Af-
ter training, we generate images from the models using
DDIM (Song et al., 2020a). We measure the generative
performance using the FID (Heusel et al., 2017) between
10000 generated images and the CelebA validation set. As
can be seen in Table 1 and Figure 1, our GSURE-Diffusion
models achieve generative performance comparable to the
oracle model, despite having trained only on corrupted data.

Magnetic Resonance Imaging (MRI). MRI is a ubiqui-
tous non-invasive medical imaging modality that can pro-
vide life-saving diagnostic information. MRI measurements
are obtained in the Fourier spectrum (also called k-space) of
an object with magnetic fields. However, since measuring
the entire k-space can be time-consuming and expensive,
MRI scans are often accelerated, resulting in randomly par-
tial and possibly noisy k-space measurements. The acceler-
ated MRI procedure satisfies the assumptions we introduced
in subsection 3.1 (see Appendix C). We use this fact and
train an MRI diffusion model based solely on accelerated
scans. We train on the fastMRI (Knoll et al., 2020; Zbontar
et al., 2019) single-coil knee MRI dataset, center-cropped to
320× 320. The randomized accelerated MRI subsampling
process is simulated following (Jalal et al., 2021) with an
acceleration factor R = 4 and AWGN with σ0 = 0.01.

Figure 2. Denoising MSE (on fully sampled noisy images) for the
GSURE-Diffusion and oracle models across diffusion timesteps.
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Figure 3. Accelerated MRI reconstruction results with different
subsampling masks and σ0 = 0.01.

We measure the denoising MSE of GSURE-Diffusion and
the oracle model for fully sampled images. Both models
perform very similarly (see Figure 2) despite the fact that
GSURE-Diffusion trained solely on undersampled noisy
data. We then use our model for MRI reconstruction (using
DDRM (Kawar et al., 2022) with η = 0 and 100 steps) for
different subsampling masks and acceleration factors, and
show the results in Figure 3. We further show additional ex-
periments in Appendix F. These results constitute evidence
that a generative model trained on corrupted data can be
deployed in various applications. By loosening the require-
ments on the quality of the training data, we significantly
reduce the cost of data acquisition for model training.
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A. Proposition Proofs
Proposition 3.1. For x sampled from an unknown q(x), x̄ = V⊤x, x̄t sampled from Equation 5, and the diagonal weight
matrix W = E[P]−

1
2 ≻ 0 (positive definite), it holds that Equation 6 approximately equals Equation 1.

Proof. We focus on the expectation term from Equation 6, which is taken over x̄t ∼ q(x̄t|x̄,P), x̄ ∼ q(x̄), P ∼ qP (P)
with unknown q(x̄), qP (P). Namely,
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Justifications:

1. Using the linear algebra property ∥v∥22 = Trace
(
vv⊤) for any vector v, and P = P⊤,W = W⊤ because they are

diagonal matrices.

2. Using the cyclical shift invariance of the trace operator, Trace (ABC) = Trace (CAB).

3. Diagonal matrices (such as P and W) commute with one another.

4. Since P is a diagonal matrix whose values are either zeroes or ones, it holds P2 = P.

5. For any random matrix A, it holds that E [Trace (A)] = Trace (E [A]).

6. W2 is a constant and can therefore be taken out of the expectation. Additionally, we use the assumption that the
denoiser’s mean squared error

(
f
(t)
θ (x̄t)− x̄

)
is independent of P.

7. W is defined as E[P]−
1
2 . This results in W2P = I.

8. Using the linear algebra property ∥v∥22 = Trace
(
vv⊤) for any vector v.

Equation 8 is identical to the expectation term in Equation 1, except for the distribution of x̄t considered in
the expectation. Equation 8 considers x̄t ∼ q(x̄t|x̄,P) = N (

√
ᾱtPx̄, (1− ᾱt)I), whereas Equation 1 considers

x̄t ∼ q∗(x̄t|x̄) = N (
√
ᾱtx̄, (1− ᾱt)I). We assume that the neural network f

(t)
θ (x̄t) is able to infer P from x̄t, and

can also tailor its output for each P including P = I, matching q∗(x̄t|x̄). Under these assumptions, both expectations share
the same minimizer, thereby completing the proof. A similar proof is presented in ENSURE (Aggarwal et al., 2022).
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Proposition 3.2. For x sampled from an unknown q(x), x̄ = V⊤x, x̄t sampled from Equation 5, and λt = 1− ᾱt, it holds
that Equation 7 equals Equation 6.

Proof. We utilize a weighted version of the generalized SURE (Eldar, 2008; Aggarwal et al., 2022) presented in Equation 2,
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]
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∥WP (f(y)− xML)∥22

]
+ 2E

[
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]
+ c. (9)

This weighted GSURE considers the measurement equation y = Hx + z with z ∼ N (0,C), with P = H†H,
xML =

(
H⊤C−1H

)†
H⊤C−1y, and a constant c. We consider the measurement equation matching Equation 5, namely

x̄t =
√
ᾱtPx̄+ z̄t with z̄t ∼ N (0, (1− ᾱt)I). For these measurements, the left-hand-side in Equation 9 becomes
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which is identical to the expectation term in Equation 6. This equation holds because P is a diagonal matrix with ones and
zeroes, resulting in P† = P = P2. Meanwhile, by substituting H =

√
ᾱtP, C = (1− ᾱt)I, and y = x̄t, xML becomes
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ᾱt

1− ᾱt
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The last two equalities hold because P† = P⊤ = P = P2. Finally, the right-hand-side in Equation 9 becomes
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−1x̄t
·W2P†Pf(x̄t)

]
+ c

1
= E

[∥∥∥∥WP

(
f(x̄t)−

1√
ᾱt
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∇(1/(1−ᾱt))Px̄t

·W2Pf(x̄t)
]
+ c

2
= E

[∥∥∥∥WP

(
f(x̄t)−

1√
ᾱt
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which is identical to the expectation term in Equation 7 with λt = 1− αt. Justifications:

1. P† = P⊤ = P = P2.

2. Using the change of variables formula.

3. Diagonal matrices (such as P and W) commute with one another. Additionally, the divergences w.r.t. x̄t and w.r.t.
Px̄t are identical, because PW2f(x̄t) equals zero in entries where P is zero, and Px̄t and x̄t are identical in entries
where P is non-zero.

4. Using the linearity of the expectation operator.

By rewriting both sides of Equation 9, we obtain that Equation 7 equals Equation 6.
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B. Related Work
There has been a rich vein of works on unsupervised learning from datasets of corrupted data (Lehtinen et al., 2018; Batson
& Royer, 2019; Hendriksen et al., 2020; Chen et al., 2022), including several SURE- and GSURE-based approaches (Zhang
& Desai, 1998; Blu & Luisier, 2007; Soltanayev & Chun, 2018; Nguyen et al., 2020; Jo et al., 2021; Metzler et al., 2018;
Zhussip et al., 2019; Aggarwal et al., 2022; Abu-Hussein et al., 2022; Liu et al., 2020). While they achieve impressive
results, these efforts are mostly focused on learning a specific task. In contrast, our approach learns a foundational generative
model, making it suitable for a wide range of applications.

Diffusion models have had incredible success in image generation (Song et al., 2020b; Vahdat et al., 2021; Dhariwal &
Nichol, 2021; Rombach et al., 2022; Kim et al., 2022), as well as generation of other modalities (Ho et al., 2022; Singer
et al., 2023; Kong et al., 2021; Popov et al., 2021; Gong et al., 2023; Li et al., 2022; Tevet et al., 2022). They have also
been deployed in a myriad of related tasks (Kawar et al., 2022; Theis et al., 2022; Blau et al., 2022; Pinaya et al., 2022;
Wyatt et al., 2022; Kawar et al., 2023; Zimmermann et al., 2021). In particular, diffusion models have been adapted for
medical imaging (e.g., MRI) (Song et al., 2023; Chung & Ye, 2022; Jalal et al., 2021; Xie & Li, 2022; Chung et al., 2023).
These models can serve a multitude of tasks, but can be expensive to train as they require fully sampled noiseless training
data. Notably, DDM2 (Xiang et al., 2023) and the concurrent work of SURE-Score (Aali et al., 2023) offer ways to train
a diffusion model based on noisy data, which is often the case in practical settings. However, collected data can also
be undersampled or corrupted by other transformations. Our proposed framework is more general, as it can handle both
Gaussian noise and linear corruptions.

Diffusion models have permeated various research areas, including online decision making (Hsieh et al., 2023). In that
context, obtaining full noiseless data may often be impossible. Hsieh et al. (2023) suggest a diffusion loss function that
learns a diffusion-based prior from noisy data with missing elements, similar to an image inpainting problem. They note that
their proposed loss function could be of independent interest in future work. Our loss function closely resembles theirs,
albeit generalizing for linear corruptions beyond inpainting by utilizing the singular value decomposition (SVD).

C. Detailed Data Descriptions
C.1. Dataset Collection

Here, we detail the collection process for the training and testing data in our experiments. Note that the data described
here is what we consider pristine uncorrupted data. The corruption process for training GSURE-Diffusion is detailed in
subsection C.2.

CelebA. In our experiments on human face images, we use images from the CelebA (Liu et al., 2015) dataset. The original
CelebA images were center-cropped to 128× 128 pixels, then resized to 32× 32 pixels, and finally turned into grayscale.
The images were converted to grayscale by averaging all color channels. Overall, the dataset includes 162770 training set
images, and 19867 validation set images (which we use for FID (Heusel et al., 2017) evaluations).

FastMRI. We consider all single-coil knee MRI scans from the fastMRI (Zbontar et al., 2019; Knoll et al., 2020) dataset,
excluding slices with indices below 10 or above 40 as they generally contain less interpretable information. This yields a
training set size of 24853. For the validation set we only use the first 1024 valid slices (which we use for all our post-training
experiments). We treat each slice as a 2-channel image, separating the complex values into real and imaginary channels. We
center-crop the images to a spatial size of 320× 320 following (Jalal et al., 2021), and normalize the images by 7e− 5 to
obtain better neural network performance. When displaying MR images, we take the absolute value of the complex number
in each pixel, and then use min-max normalization to view the resulting values as a grayscale image.

C.2. Data Corruptions for GSURE-Diffusion

CelebA. In our CelebA (Liu et al., 2015) experiments, we consider a degradation operator H that randomly drops each
4× 4-pixel patch with probability p. This operator can be mathematically defined as a diagonal matrix H with zeroes in
pixels that are dropped and ones in pixels that are kept. The singular value decomposition (SVD) is trivially and efficiently
obtained by

H = IHI. (10)
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Note that the singular values in H are not ordered. Since the SVD of H has V⊤ = I regardless of the randomness of
dropping patches, this family of random operators H matches our assumption that all H share the same left-singular vectors
V⊤.

Additionally, the projection matrix P = H†H is simply H (as H is diagonal with zeroes and ones). Because each patch is
dropped randomly with probability p, it follows that E[P] = (1− p)I ≻ 0 is positive definite, matching our assumption.

Finally, we assume H and the additive white Gaussian noise standard deviation σ0 to be known for all measurements in the
dataset. For simplicity, we assume a uniform σ0 for all measurements.

FastMRI. For MRI slices from fastMRI (Zbontar et al., 2019; Knoll et al., 2020), the degradation operator we use is the
horizontal frequency subsampling operator used in (Jalal et al., 2021). For an acceleration factor R, the degradation operator
H keeps the central 120/R frequencies, and then uniformly samples an additional 200/R frequencies. This results in a
sampling of 320/R frequencies out of the original 320. More formally,

H = IΣF, (11)

where F is the discrete Fourier transform matrix, and Σ is a square diagonal matrix containing ones for frequency indices
that are kept by H, and zeroes elsewhere. Incidentally, Equation 11 is a valid SVD of H, and can be efficiently simulated
using the fast Fourier transform algorithm.

This operator matches our assumptions: (i) We assume each H and the additive white Gaussian noise standard deviation σ0

to be known; (ii) All matrices H share the same left-singular vectors defined by F (and not depending on the randomness);
and (iii) The central 120/R horizontal frequencies are always sampled, and each of the remaining frequencies are equally
likely to be sampled, with probability 200/(320R− 120). Thus E[P] = E[Σ†Σ] is a diagonal matrix with nonzero diagonal
values, making it positive definite.

D. Implementation Details
Our experiments were conducted using DDPM (Ho et al., 2020) U-Net architecture with base channel width 128. All
networks were trained using the Adam optimizer, dropout with probability 0.1, EMA with decay factor of 0.9999. The
diffusion process considered in training for all experiments has 1000 steps, with a linear β schedule ranging from β1 = σ2

0

(σ2
0 is the variance of the AWGN in the data) to β1000 = 0.2. All experiments were conducted on 8 NVIDIA A40 GPUs.

In the human faces experiment we ignore the weighting matrix W during training because the probability for each pixel to
be masked is uniform. For the knee MRI experiment the weighting matrix W was set to 1 for the centeral lines that were
not masked by H, and

√
5.8 for all other lines matching their inverse square root masking probability (for R = 4).

All models, including the oracle ones, were trained with the hyperparameters listed in Table 2. The “mean type” hyperpa-
rameter refers to whether the neural network predicts the image x or the added noise ϵ = (xt −

√
ᾱtx) /

(√
1− ᾱt

)
.

Table 2. Architecture and training hyperparameters for CelebA and fastMRI experiments.

CelebA FastMRI

Iterations 180,000 31,000
Batch Size 128 32
Learning Rate 5e− 5 1e− 5
Mean Type predict x predict epsilon
Channel Multipliers [1, 2, 2, 2, 4] [1, 1, 2, 2, 4, 4]
Attention Resolutions [16] [20]
γt 1 ᾱt

1−ᾱt

λt 0.0001 0.0001 · 1−ᾱt

ᾱt

For the MRI model, we apply an inverse Fourier transform and a Fourier transform to the network’s input and output
respectively, to utilize the convolutional architecture’s advantage on image data (rather than frequencies). Due to the
orthogonality and linearity of the Fourier transform and its inverse, the additive white Gaussian noise remains so, and
maintains the same variance.
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We provide our code, configuration files, and trained model checkpoints at https://github.com/bahjat-kawar/
gsure-diffusion/.

E. Pragmatic Loss Function Considerations
E.1. Divergence Term Estimation

The GSURE-Diffusion training loss in Equation 7 contains a divergence term, which is highly expensive to accurately obtain,
in both memory consumption and computation time. Similar to other SURE-based methods (Metzler et al., 2018; Soltanayev
& Chun, 2018; Aggarwal et al., 2022), we use an unbiased Monte Carlo approximation (Ramani et al., 2008) of the
divergence. Considering the divergence as the trace of the Jacobian matrix J of the term being differentiated (PW2f

(t)
θ (x̄t))

, Monte Carlo SURE (Ramani et al., 2008) uses Hutchinson’s trace estimator (Hutchinson, 1989). We compute the estimate
by sampling a random Gaussian vector v ∼ N (0, I), and calculating v⊤Jv using automatic differentiation tools. Notably,
this differs from previous methods (Metzler et al., 2018; Soltanayev & Chun, 2018; Aggarwal et al., 2022) that used
numerical estimates for differentiation, which may suffer from numerical inaccuracies.

E.2. MSE Term Variance

The GSURE-Diffusion loss function in Equation 7 contains the following squared error term∥∥∥∥WP

(
f
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1√
ᾱt

x̄t

)∥∥∥∥2
2

.

Because of the possibly strong noise-to-signal ratio present in x̄t, this term may suffer from high variance, effectively
impeding the training process. To alleviate this, we propose replacing 1√

ᾱt
x̄t with the less noisy ȳ, resulting in the loss

function
T∑
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Note that the difference between the expectations in Equation 7 and Equation 12 is negligible, while Equation 12 has
significantly less variance (as ȳ is less noisy than 1√

ᾱt
x̄t). From Equation 4 we get
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ᾱt

(
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2
0Σ

†Σ†⊤
) 1

2

ϵt, and show that

∥∥∥∥WP

(
f
(t)
θ (x̄t)−

1√
ᾱt
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The final two terms are constants w.r.t. θ. Effectively, this means that the difference between the squared error terms in
Equation 7 and Equation 12 is 2ϵ̄⊤PW2Pf

(t)
θ (x̄t). Under the manifold hypothesis, if f (t)

θ (x̄t) outputs valid images residing
on the manifold, and because ϵ̄ is a random Gaussian vector, f (t)

θ (x̄t) and ϵ̄ are perpendicular. Therefore, the expected

difference between the squared error terms, E
[
2ϵ̄⊤PW2Pf

(t)
θ (x̄t)

]
, is zero. This motivates us to replace Equation 7 with

Equation 12, resulting in significantly lower variance in the loss at little to no cost in terms of bias.

https://github.com/bahjat-kawar/gsure-diffusion/
https://github.com/bahjat-kawar/gsure-diffusion/
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F. Additional Results
We show more training data examples and generated images for all tested degradation levels in CelebA experiments in
Figure 4 and Figure 5.

No degradation p=0.2, σ
0
=0.01 p=0.4, σ

0
=0.02 p=0.6, σ

0
=0.03

Figure 4. Training set samples of the different degradation settings in CelebA experiments.

No degradation p=0.2, σ
0
=0.01 p=0.4, σ

0
=0.02 p=0.6, σ

0
=0.03

Figure 5. Generated samples (with 50 DDIM steps) from models trained on different degradation settings in CelebA experiments.

In all MRI experiments, we show the “zero-filled” result (the MR image with zeroes in the missing frequencies) as a baseline.
We observe in Figure 6 that GSURE-Diffusion achieves similar performance to the oracle for R = 4. The model can also
generalize for higher acceleration factors, as we show in Figure 7, as well as subsampling masks of different characteristics,
as we show in Figure 3. Furthermore, as a generative model, GSURE-Diffusion can provide uncertainty estimates for its
outputs. We follow (Chung & Ye, 2022) and quantify the uncertainty using the standard deviation of 8 stochastic outputs
made by the model. We add synthetic Gaussian noise to MR images with σ0 = 0.4, and show uncertainty quantification
results using GSURE-Diffusion and the oracle model in Figure 8. We jointly normalize standard deviations to ensure a
fair visual comparison. We attach a color bar to accurately illustrate the standard deviation intensities. This uncertainty
quantification technique can potentially aid medical practitioners, providing clues towards anomalous regions in MRI scans.
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Mask Zero-Filled GSURE-Diffusion Oracle Ground-Truth
PSNR: 28.60dB PSNR: 30.09dB PSNR: 30.93dB

PSNR: 32.01dB PSNR: 32.95dB PSNR: 33.96dB

PSNR: 25.90dB PSNR: 26.55dB PSNR: 27.15dB

PSNR: 24.97dB PSNR: 26.83dB PSNR: 28.23dB

Figure 6. Accelerated MRI reconstruction results for R = 4 and σ0 = 0.01.
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Mask Zero-Filled GSURE-Diffusion Oracle Ground-Truth
PSNR: 26.26dB PSNR: 28.23dB PSNR: 28.64dB

PSNR: 25.73dB PSNR: 27.27dB PSNR: 28.31dB

PSNR: 25.57dB PSNR: 26.14dB PSNR: 26.49dB

R
=6

R
=8

R
=1
0

PSNR: 21.79dB PSNR: 21.94dB PSNR: 22.41dB

R
=1
2

Figure 7. Accelerated MRI reconstruction results for R ∈ {6, 8, 10, 12} and σ0 = 0.01. GSURE-Diffusion can generalize well across
different acceleration factors.

Oracle Mean Oracle stdOriginal Noisy GSURE Mean GSURE std

Figure 8. Uncertainty quantification for MR image denoising with GSURE-Diffusion and oracle models. Means and standard deviations
are calculated for 8 stochastic diffusion reconstructions.


