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Mining ExploratoryQueries for Conversational Search
Anonymous Author(s)

ABSTRACT
Users’ queries are usually vague, and their search intents tend to
be ambiguous, thereby needing clarification. Search clarification
has been proposed as an important technique to clarify users’ cur-
rent search intent by asking a clarifying question and providing
several clickable sub-intent items as clarification options. How-
ever, in addition to drilling down the current query, users may
also have exploratory needs that diverge from their current search
intent. For example, a user searching for the query “Cartier women
watches” may also potentially want to explore some parallel in-
formation by issuing queries such as “Rolex women watches” or
“Cartier women bracelets”, named exploratory queries in this paper.
These exploratory needs are common during the search process
yet cannot be satisfied by current search clarification approaches
which typically stick to the sub-intents of the current query. This
paper focuses on mining exploratory queries as additional click-
able options to meet users’ exploratory needs in conversational
search systems. Specifically, we first design a rule-based model
that generates exploratory queries based on the current query’s
top retrieved documents. Then, we propose using the data gener-
ated by the rule-based model to train a neural generation model
through multi-task learning for further generalization. Finally, we
borrow the in-context learning ability of the large language model
to generate exploratory queries based on prompt engineering. We
conduct an extensive set of experiments and the results show that
our proposed methods generate higher-quality exploratory queries
compared with several baselines. The results also demonstrate that
the structure information in top retrieved documents is useful for
generating exploratory queries.

1 INTRODUCTION
Conversational search [33, 38] is a natural language-based search
approach to help users obtain information from the Web, using a
conversational interface to realize human-like communication. In a
conversational search system, users’ queries tend to be ambiguous
or faceted [3], hindering the search engine from understanding the
user’s potential search intent. Search clarification [35, 43, 47] has
been proposed as an effective way to mitigate this issue. The grey
part in Figure 1 shows an example of search clarification. After a
user issues the query “Cartier women watches”, the search engine
will ask a clarifying question and provide several clarification items
of sub-intents such as “Cartier women watches price” to clarify the
user’s search intent. Search clarification focuses on specializing the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Cartier women watches

What do you want to know about Cartier women watches?

Cartier women watches style

What other brands are you also interested in?

Rolex women watches Breitling women watches

What other accessories are you also interested in?

Cartier women bracelets Cartier women necklaces

Cartier men watches Cartier unisex watches

What other genders are you also interested in?

Cartier women watches price …

…

…

…

Exploratory Pane

Clarification Pane

Figure 1: An application of our exploratory queries in search
clarification. The grey part is the search clarification pane
and the yellow part represents our exploratory search pane.

query by appending a term, like “price” and “style” in Figure 1 for
clarifying users’ potential search intents. Existing studies usually
mine these clarification items from the query log [43] by applying
some query suggestion techniques [1, 5, 7, 24].

However, in addition to such clarification need, users may also
have exploratory needs [4, 11, 19, 29] in some cases. For example,
when an applicant aiming at studying abroad issues “study abroad
resume”, she may also be interested in other relevant materials
by issuing further queries “study abroad recommendation letter”
or “study abroad personal statement”. For another example, a
user who searches for “Cartier women watches” is likely to issue
exploratory queries such as “Rolex women watches” or “Breitling
women watches”, to compare different brands before making a pur-
chase decision. These exploratory queries are different from the
clarification items in existing search clarification studies. They mod-
ify a term1 included in the original query to horizontally represent
its parallel intents.

We believe that mining these exploratory queries in the context
of conversational search is important. First, as mentioned in ex-
isting studies [4, 11, 19, 29], users’ exploratory search behaviors
are common in real-world search systems. Boldi et al. [4] reported
that users’ exploratory search behaviors constituted 48-56% of a
Yahoo! search log, even bigger than clarification behaviors (30-38%).
Therefore, displaying an additional exploratory pane (yellow part
in Figure 1) is a good extension of the existing search clarification in
conversational search scenario. Second, these exploratory queries
provide new topics or broader information space to users, which
enhances the diversity of clickable options and improves the users’
search experience from new perspectives.

Despite the importance and usefulness of exploratory queries, it
is less emphasized in previous studies of conversational search. In
this paper, we make the first step to mining exploratory queries as
the clickable options to meet users’ exploratory needs, extending
the scenario of mining sub-intents as the clickable options in the

1In this paper, we define that a term is a word or a phrase in a query.
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clarification pane shown in Figure 1. To this end, we first define
the exploratory query as the reformulation of the original query
with replacing a term in the original query with another term. For
example, the query “Cartier women watches” may be reformulated
as “Rolexwomenwatches”. This is different from search clarification
which just focuses on specializing the query by appending a term
after the query for mining the query’s sub-intents (like “Cartier
women watches price”). On the other hand, since a query contains
multiple keywords, it may correspond to multi-group exploratory
queries. Taking the query “Cartier women watches” as an example,
replacing the terms “Cartier”, “women” and “watches” respectively
results in other brands of women watches (e.g., “Rolex women
watches”, “Breitling women watches”), Cartier watches for different
genders (e.g., “Cartier men’s watches”, “Cartier unisex watches”)
and other accessories for women (e.g., “Cartier women bracelets”,
“Cartier women necklaces”). We believe that presenting exploratory
queries in groups delivers more comprehensive and understandable
exploratory intents for users, compared with clarification items
presented in a flat list. Besides, it also allows the system to ask an
exploratory question for each group as shown in Figure 1 to improve
users’ search experience and invoke their exploratory behaviors.
In this paper, we focus on generating the exploratory queries and
leave the generation of exploratory questions as future work.

The key to generating exploratory queries is to mine multi-
ple groups of terms parallel to the ones occurring in the original
query. We observe that these parallel terms are usually organized
in list styles in the query’s top retrieved documents. For exam-
ple, in the top retrieved documents of the query “Cartier women
watches”, “watches” will be listed with other types of accessories
(e.g., “bracelets“) using “<li>” tags in the Cartier official website.
Besides, to help users filter watches by gender, “women” will be
listed with “men” and “unisex” under the “<select>” tag. Due to the
design of HTML pages, list structures contained in top retrieved
documents naturally contain parallel information, which has been
revealed by previous studies [9, 10, 20, 47]. In this paper, we pro-
pose leveraging the list structures in top retrieved documents
to generate multi-group exploratory queries. Due to the lack
of large-scale human-annotated exploratory query data required
for training a parallel term generation model, we first design a
Rule-based Parallel Reformulation model RPR that extracts list
items from top retrieved documents, uses them to conduct par-
allel reformulation to obtain exploratory query candidates, and
then ranks these candidates based on various human-designed fea-
tures. Besides, since rule-based methods are prone to suffer from
low generalization ability, we further train an Exploratory Query
Generation model EQG using the data generated by RPR as weak
supervision signals for further generalization. We design the gener-
ation task and an additional classification task to ensure the quality
of generated results in a multi-task learning manner. Finally, by
borrowing the strong few-shot and in-context learning ability of
the large language models (LLMs), we propose another LLM-based
exploratory query Generation method LLMG based on prompt en-
gineering. We reveal that even with an LLM, the list items extracted
by RPR are also essential for exploratory query generation.

To evaluate our models, we aggregate the human-written and
model-generated exploratory queries into a pool and employ three
annotators to judge the quality of these exploratory queries in a

pool-based manner to construct the evaluation data2. The results
show that the rule-based parallel reformulation model RPR signif-
icantly outperforms several baselines and the exploratory query
generation model EQG further improves the results of RPR. Addi-
tionally, our proposed LLMG outperforms all the models with the
support of list items extracted from top retrieved documents. We
further perform an ablation study to prove the effectiveness of each
component in our models and conduct a case study to intuitively
compare the exploratory queries generated by different methods.

The main contributions are summarized as follows:
(1) We propose to mine exploratory queries to meet users’ ex-

ploratory needs in conversational search.
(2) We design a rule-based parallel reformulation model to gen-

erate exploratory queries based on list items extracted from top
retrieved documents.

(3) Based on extracted list items, we further propose a gener-
ative model trained with multi-task learning and an LLM-based
generation method with prompt engineering.

(4) We build an evaluation dataset, design evaluation approaches,
and conduct extensive experiments to demonstrate the effectiveness
of our proposed methods.

2 RELATEDWORK
2.1 Search Intent Mining
Search clarification, query suggestion and query facets mining are
popular approaches to assist users in expressing their potential
information needs. Search clarification [35, 43, 47] provides a pane
consisting of several clickable options and a clarifying question
to clarify users’ potential information needs of the ambiguous or
faceted query. Query suggestion [1, 5, 7, 8, 16, 24, 31, 36], as a core
utility for many industrial search engines, aims to recommend a
set of relevant or alternative queries that are likely to be clicked
by users. Query auto completion (QAC) [6, 18, 32, 39] displays a
drop-down list of suggested queries based on the partial query text
entered by the user. It focuses on additive reformulations on the
user query, which can also be considered a kind of query suggestion.
Query facets mining [9, 10, 17, 20, 21] is a technique that identifies
and extracts different facets of users’ search queries to help specify
their search intents. The techniques mentioned above mainly fo-
cus on specializing users’ queries by appending some terms after
the query to clarify their sub-intents. However, in addition to sub-
intents, users may also desire to explore other contents beyond their
current information needs, which we refer to as exploratory needs
in Section 1. In this paper, we deviate from these traditional meth-
ods that stick to users’ sub-intents and focus on recommending
exploratory queries to satisfy users’ exploratory needs.

2.2 Exploratory Search
Exploratory search [41] is a complex information-seeking process
to tackle the situation when the user’s information need is vague
or not well-defined. It has been studied by many works. Awadallah
et al. [15] proposed to build an association graph to help users
explore and complete some complex search tasks. Ksikes et al. [22]
designed a faceted search system for exploratory search. Lissandrini

2The evaluation data is available at: https://anonymous.4open.science/r/EvalData
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et al. [25] produced query suggestions based on knowledge graph
to help users do exploratory searches. Previous studies [11, 19] have
also shown that users usually have exploratory interests and tend
to reformulate their search queries in a parallel way. Besides, Ma
et al. [29] observed and analyzed users’ search logs and found that
there are many search goal shift phenomena in the exploratory
search process. Inspired by these works, in this paper, we focus
on generating exploratory queries to further improve users’ ex-
ploratory searches in conversational search systems.

2.3 Structured Information in Search Results
Search results often contain rich and contextual structured informa-
tion which have been utilized in many relevant studies. For example,
Dou et al. [9, 10] and Kong et al. [20, 21] mined query facets by ex-
tracting list structures from search results. Guo et al. [12] proposed
utilizing hierarchical structures in HTML to pre-train a language
representation model, which can then be fine-tuned for ad-hoc doc-
ument retrieval. Additionally, Zhao et al. [46, 47] demonstrated the
effectiveness of using list structures extracted from search results
to generate high-quality clarifying questions. Overall, these studies
demonstrate the importance of utilizing structured information in
HTML documents, especially list-shaped structures, for various
tasks. We deem that these list structures in top retrieved docu-
ments usually illustrate parallel information and are also helpful
for generating exploratory queries in our studies.

3 METHODS
As we mentioned in Section 1, top retrieved documents contain
rich list structures that help to generate exploratory queries. In this
section, we propose three methods (RPR, EQG, and LLMG, shown in
Figure 2) for exploratory query generation. In RPR, we first retrieve
top-n documents of the original user query 𝑞o, then extract all list
structures and plain texts from these documents. After that, we
perform parallel reformulation for 𝑞o using the extracted list items
to obtain a set of exploratory query candidates and rank all these
candidates based on various human-designed features. To improve
the generalization of the generated exploratory queries, we further
propose EQG which is a BART-based weakly supervised generation
model trained with multi-task learning strategy. We also propose
an LLM-based method LLMG to generate exploratory queries based
on our well-designed prompts.

3.1 Rule-based Parallel Reformulation
The RPR algorithm uses the list items extracted from top retrieved
documents to reformulate the original user query 𝑞o, so as to obtain
corresponding exploratory query candidates. It then uses various
human-designed features to rank the candidates and finally divide
them into different groups. The algorithm consists of four compo-
nents: (1) Top Documents Retrieval (2) Lists and Texts Extractor (3)
Parallel Reformulation and Ranking (4) Candidates Grouping.

3.1.1 Top Documents Retrieval. We first obtain the top-n search
results (snippets, document URLs, etc.) of the original user query
𝑞o using Bing’s Web Search API. Then, we crawl the HTML file
corresponding to each document URL for further lists and plain
text extraction.

3.1.2 Lists and Texts Extractor. As mentioned in Section 1, the list
structures in HTML documents usually illustrate parallel relations.
For example, “watches”, “bracelets” and “necklaces” (all belonging
to the accessories of Cartier) will be listed together using “<li>”
tags in an HTML page. Intuitively, when a query term appears in
one list, the other items in this list are likely to be parallel to this
term. Thus, these list items are important data resources for parallel
reformulation. Additionally, the plain texts in HTML documents are
paragraphs that contain contextual unstructured natural language
information, which is highly relevant to the user query and may
also contain exploratory queries (see Texts extracted by RPR in Fig-
ure 2). Thus, in addition to list structures, we also extract the plain
texts in documents as auxiliary information for parallel reformula-
tion. We implement the efficient and effective algorithm proposed
in [9] to extract list structures from HTML tags, repeat regions,
etc. We represent all the extracted lists as 𝐿 = {𝐿1, 𝐿2, . . . , 𝐿𝑀 },
where each list contains several items 𝐿𝑖 = {𝐿𝑖,1, 𝐿𝑖,2, . . . , 𝐿𝑖,𝑚}. We
simultaneously extract HTML plain texts 𝑇 = {𝑇1, . . . ,𝑇𝑖 , . . . ,𝑇𝐾 }
for each retrieved document, where 𝑇𝑖 denotes the concatenated
text of all paragraphs in the 𝑖-th document.

3.1.3 Parallel Reformulation and Ranking. In this part, we use the
list items extracted above to generate exploratory query candidates
and rank them based on various manual features. We first gather all
the items from all extracted lists in 𝐿 to obtain the whole item set
𝐼 . Then we replace each term in the original query with each item
in 𝐼 , obtaining the corresponding exploratory query. For example,
an exploratory query “Cartier women bracelets” is obtained by
replacing “watches” in the query “Cartier women watches” with
the item “bracelets”. The process of parallel reformulation can be
reformulated as: 𝑞o

𝑒,𝑡−→ 𝑞, which denotes that exploratory query 𝑞
is obtained by replacing the term 𝑡 in original query 𝑞o with item
𝑒 . We apply CoreNLP [30] tool to extract the terms in 𝑞o and filter
out those terms with no practical meaning, such as conjunctions,
prepositions, and function words. We design various features for
each exploratory query candidate 𝑞 including list co-occurrence
feature 𝐹 l, concept feature 𝐹 c, popularity feature 𝐹p, and item fea-
ture 𝐹 i. In the rest of this section, we will introduce their definitions
and calculations.

(1) List Co-occurrence Feature 𝐹 l. Items in the same list often
share similar characteristics and are conceptually parallel to each
other (such as “watches”, “bracelets”, and “rings”). Intuitively, the
more frequently item 𝑒 and replaced term 𝑡 appear in the same list,
the stronger the conceptual parallel between them and the greater
the likelihood that the exploratory query 𝑞 is a suitable candidate
for 𝑞o. Thus, we have:

𝐹 l (𝑞) = 𝑎l · tanh
(
𝑏l ·

∑︁
𝑖

occ(𝑒, 𝑡, 𝐿𝑖 )
)
, (1)

where 𝑎 and 𝑏 are the adjustment coefficient and importance coeffi-
cient respectively, and tanh(·) is used to control the weight of each
feature. occ(𝐴, 𝐵,𝐶) is a binary function, where occ(𝐴, 𝐵,𝐶) = 1
when 𝐴 and 𝐵 both occur in 𝐶 . Otherwise, occ(𝐴, 𝐵,𝐶) = 0.

(2)Concept Feature 𝐹 c. In addition to list structures, knowledge
graphs like Concept Graph [40, 42] can also help judge whether
the item 𝑒 is conceptually similar to the replaced term 𝑡 (note that
𝑞 is obtained by replacing term 𝑡 in 𝑞o with item 𝑒). In Concept
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Cartier[BOS] women bracelets [QSEP] Cartier women sweaters … [EOS]

Cartier men watches

Query Cartier women watches

Documents

2. Text Extractor2. List Extractor

�1: watches, bracelets, rings, ...
Lists

�1: The price of Cartier women 
necklaces is …

Texts

3. Parallel Reformulation 
and Ranking

Ranked List
1. Cartier women bracelets
2. Rolex women watches
3. Cartier women necklaces
…

Rolex women watches 

Cartier women bracelets
Cartier women necklaces
…

Exploratory Groups

1. Top Documents Retrieval

4. Candidates
    Grouping

Bart Encoder

Cartier[BOS] women bracelets [QSEP] Cartier women necklaces … [EOS]

Sample

bracelets, Rolex, necklaces, …

Distractor group

Ground-truth group

Bart Decoder

Prompt
Task description

We define parallel reformulation as a 
process of replacing terms in query…

Demonstrations
Demonstration 1: For query “huawei pc”…
Demonstration 2: For query …

Input
Given the query “Cartier women watches”, 
what exploratory queries can be obtained 
after replacing term “watches”? …

Auxiliary Information
We provide some list items to aid you in this 
task: bracelets, Rolex, necklaces,…

Output
Cartier women bracelets
Cartier women necklaces
Cartier women rings
Cartier women earrings
…

 Prompt Designer

Cartier [SEP] [SEP]women [MASK] watches bracelets Rolex[ISEP] …

Prompt Design

Generation

Top List Items

�2: Not only for women, Cartier 
men watches are… 

�2: women, men, unisex, ...
�3: Cartier, Rolex, Breitling, …
… …

ℎ

ℎdis

…

…

Positive
Negative

Generation Layer Classification Layer

Cartier women bracelets …

ℎ ℎ EOS 
dis

ℎ EOS 
 

Masked QueryMasked Term

Cartier women [MASK]watches

Construct Input
(1) RPR (2) EQG

(3) LLMG

Figure 2: An overview of our proposed models (1) RPR, (2) EQG, and (3) LLMG. RPR generates exploratory queries based on list
structures and plain texts extracted from the top retrieved documents. Then, we fine-tune EQG using data generated by RPR
through a mask-and-fill strategy. An classification task is designed to enhance the generation task in the training stage. Finally,
we introduce the LLMG method, which uses well-designed prompts to generate exploratory queries based on LLM.

Graph, each instance usually corresponds to multiple concepts. For
example, the concepts of “Cartier” include company, brand, jewelry
brand, watch brand, etc. Therefore, the more similar the concept set
of item 𝑒 and replaced term 𝑡 are, the more likely they are parallel
to each other. Then the Concept Feature 𝐹 c can be calculated as:

𝐹 c (𝑞) = 𝑎c · tanh
(
𝑏c ·

𝐶 (𝑒) ∩𝐶 (𝑡)
𝐶 (𝑒) ∪𝐶 (𝑡)

)
, (2)

where 𝐶 (𝐴) denotes the concept set of 𝐴 in Concept Graph.
(3) Popularity Feature 𝐹p. A more popular exploratory query

is more likely to be clicked by users. Thus, we also compute the
popularity feature for each candidate 𝑞. We claim that contents of
retrieved documents naturally contain popular information and
candidates that frequently occur in the plain texts of top retrieved
documents are more likely to be popular with users. Then feature
𝐹p can be formulated as follows:

𝐹p (𝑞) = 𝑎p · tanh
(
𝑏p ·

∑︁
𝑖

𝑁 (𝑞,𝑇𝑖 )
)
, (3)

where 𝑁 (𝐴, 𝐵) denote the frequency of 𝐴 occurring in 𝐵. Since the
length of extracted plain texts can be very large, we implement the
function 𝑁 (𝐴, 𝐵) based on an efficient string-searching algorithm
Aho–Corasick [2].

(4) Item Feature 𝐹 i. If a candidate 𝑞 appears as a list item in 𝐿,
then it is more likely for 𝑞 to be a useful and faithful exploratory

query to the user. However, 𝑞 (e.g., “Cartier unisex watches”) some-
times does not match any list item exactly, but its terms can appear
in some list items (e.g., “unisex Cartier watches”, “Cartier watches
for unisex”), which can also prove the usefulness and faithfulness
of 𝑞. Thus an exploratory query 𝑞 with more terms appearing in
any list item is more likely to be a useful and faithful candidate.
Therefore the item feature 𝐹 i is defined as follows:

𝐹 i (𝑞) = 𝑎i · tanh
(
𝑏i ·max

𝑗,𝑘

𝑞 ∩ 𝐿𝑗,𝑘

|𝑞 |

)
, (4)

where |𝑞 | means the word set size of 𝑞 and 𝐿𝑗,𝑘 means the 𝑘-th item
in the 𝑗-th list.

We add these features together to get the final score of each
candidate 𝑞 and rank all the candidates based on their final scores:

score(𝑞) = 𝐹 l (𝑞) + 𝐹 c (𝑞) + 𝐹p (𝑞) + 𝐹 i (𝑞) . (5)

To ensure the quality of generated exploratory queries, we set a
threshold 𝜏 to filter out candidates with score(𝑞) ≤ 𝜏 , where 𝜏 is a
hyperparameter.

3.1.4 Candidates Grouping. We divide the exploratory queries in
the ranked list into different groups according to their replaced
term 𝑡 . For each group 𝑄 , following previous studies of search
clarification [43, 44], we only keep the top-5 candidates as the final
exploratory queries. Finally, we obtain 𝑄 = {𝑞1, . . . , 𝑞𝑘 }, where
𝑘 ≤ 5 and 𝑞𝑖 represents the 𝑖-th exploratory query. The grouping
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method based solely on replaced terms may have limitations due to
its simplicity. In the future, we will explore more advanced grouping
methods, which will be discussed in Section 5.6.

3.2 Exploratory Query Generation Model
The generation of RPR merely relies on the search results and sev-
eral human-designed features, which could suffer from data sparsity
problems in some cases. For example, when the query’s search re-
sults contain few relevant documents, RPRmay fail to extract useful
list items for exploratory query generation. To mitigate this issue,
we intend to use the pre-trained language model BART [23] to
improve the generalization ability of RPR. The reason is that: our
exploratory query generation task can be treated as a mask-and-fill
problem (replacing the term in the query with a “[MASK]” token
and filling the “[MASK]” with a term which is parallel to the re-
placed one). While the BART model (implicitly captured a large
amount of knowledge) could fill the “[MASK]” with more appropri-
ate terms after fine-tuning. Thus, we intend to design a BART-based
language model EQG that generates exploratory queries based on
the masked query and further generalizes RPR.

Intuitively, the reformulated parts of the exploratory queries in
one group should have conceptual consistency. For example, in the
exploratory group [Cartier women bracelets, Cartier women neck-
laces, Cartier women rings], the terms “bracelets”, “necklaces”, and
“rings” all belong to the accessories of Cartier. To further improve
the quality of generated results from a group level, we propose to use
an additional classification task that distinguishes the ground-truth
group from a distractor group. The framework of EQG is illustrated
in Figure 2 (bottom right).

3.2.1 Generation Task. In this part, EQG aims to generate a group
of exploratory queries through a mask-and-fill strategy. For each
group 𝑄 extracted by RPR, we replace the term to be reformu-
lated in the original query 𝑞o with a “[MASK]” token to obtain
corresponding masked query 𝑞mo (see Figure 2). Then we provide
two additional pieces of information to prompt model the poten-
tial terms that can be used to fill in the “[MASK]” token: (1) The
masked term (denoted as 𝑡m); (2) The list items contained in top-𝑣
exploratory queries in the ranked list (such as bracelets, rolex, etc.),
denoted as 𝑆 = {𝑠1, . . . , 𝑠𝑣} (𝑣 is set as 100 in this paper). Then
the BART learns to fill the masked query 𝑞mo with terms that are
conceptually parallel to the masked term 𝑡m. We concatenate the
masked query 𝑞mo , masked term 𝑡m and top-𝑣 list items 𝑆 together
as the input to the BART encoder (separated by “[SEP]”):

𝐸i = 𝑞mo [SEP] 𝑡m [SEP] 𝑠1 [ISEP] 𝑠2 [ISEP] . . . 𝑠𝑣, (6)

where “[ISEP]” is used to separate list items. We concatenate all
exploratory queries in 𝑄 using a special token “[QSEP]” as the
generation target. Then we borrow the cross-entropy loss from
Seq2Seq model [37] to calculate the generation loss L𝑔𝑒𝑛 as:

Lgen = min
|𝑄 |∑︁
𝑖=1

|𝑞𝑖 |∑︁
𝑗=1

− log𝑝 (𝑞𝑖, 𝑗 |𝐸o, 𝑞𝑖,1, . . . , 𝑞𝑖, 𝑗−1), (7)

where 𝐸o denotes the BART encoder’s output.

3.2.2 Classification Task. As discussed, the exploratory group should
have conceptual consistency. In this part, we design a classification

task on the BART decoder by allowing the model to distinguish
between the ground-truth group and the distractor group, thereby
improving the quality of generated exploratory queries.

To obtain the distractor group for each group 𝑄 , we randomly
select one exploratory query in 𝑄 and replace the term to be re-
formulated with a randomly sampled list item (e.g., “sweaters”)
from the whole item set 𝐼 (see Figure 2). The BART decoder inputs
two sequences (i.e., the concatenation of exploratory queries in
ground-truth group and distractor group) and outputs their hidden
states ℎ and ℎdis respectively. Then we pass the representations of
their “[EOS]” token through a classification layer to get two values
𝑣 and 𝑣dis:

𝑣 = MLP(ℎ[EOS]), 𝑣dis = MLP(ℎdis[EOS]) . (8)

Finally, we provide a binary label and apply a cross-entropy loss
to calculate the classification loss:

Lcls = − log
exp(𝑣)

exp(𝑣) + exp(𝑣dis)
. (9)

The final training objective combines the generation loss Lgen
and classification loss Lcls:

L = Lgen + _Lcls, (10)

where _ is a weight parameter to control the ratio of learning for
the classification task.

3.2.3 Inference. For each query, we first run RPR to obtain the
masked query 𝑞mo and masked term 𝑡m for each exploratory group
and the top-𝑣 list items 𝑆 . Then, EQG generates each group based
on corresponding masked query 𝑞mo , masked term 𝑡m, and top-𝑣 list
items 𝑆 . We use beam search to collect exploratory queries for each
group and keep a maximum of 5 exploratory queries in each group.

3.3 LLM-based Exploratory Query Generation
In this part, we design LLMG to further validate the effects of
extracted list items on exploratory query generation. We designed
task-specific prompts to instruct an LLM to generate one group of
exploratory queries at a time (same as EQG in Section 3.2).

3.3.1 Prompt Design. Previous study has shown that the perfor-
mance of LLMs tends to be sensitive to the design of prompts [28].
To make our prompt more robust, we design our prompts in two
steps following [26]: (1) Prompt Description. We design the original
promptwhich includes our task description, several demonstrations,
and the input which consists of the original query (e.g., “Cartier
women watches”) and the term to be replaced (e.g., “watches”)
provided by RPR. Besides, we add the top list items of the query
(extracted by RPR) to the prompt as auxiliary information. (2) Multi-
Step Optimizations. We provide the LLM with our prompt respec-
tively and ask “Could you give me some advice on improving the
prompt?”, and optimize the prompts according to the LLM’s sugges-
tions. Besides, we also test the prompt on some samples, analyze
the quality of the generated results, and then further optimize the
prompt. We perform these two optimization strategies iteratively
until the quality of the generated results no longer improves.
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3.3.2 Generation. Similar to EQG, we first run RPR to obtain the
top list items and the exploratory groups which indicate the terms
that could be replaced in the original query. Then we construct
the prompt and feed it to the LLM for generation. We tell LLM to
generate at most 5 queries at a time while ensuring the usefulness,
faithfulness, and readability of the results. To further prove the
effectiveness of the list items in generation, we abandon the top
list items (i.e., Auxiliary Information) from the current prompt to
obtain a new prompt for LLM generation, denoted as LLMG (-list).

4 EXPERIMENTAL SETTINGS
4.1 Data
MIMICS [44] is a search clarification dataset that includes a large
number of real Web search queries sampled from Bing query logs.
In this paper, we intend to sample queries from MIMICS for the
training, validation, and evaluation of our models. For the training
data of EQG, we randomly sample 40k queries from MIMICS and
generate about 60k pieces of weakly supervised training data using
RPR, approximately 1.5 terms replaced for each query on average.

As we do not find any publicly available dataset for the validation
and evaluation of our task, we randomly sample 50 and 100 queries
fromMIMICS dataset to build our validation and evaluation data in a
pool-based manner. We ensure that there is no overlap between the
queries used for training, validation, and evaluation. For each query,
we first ask a subject to manually write corresponding exploratory
queries after a comprehensive survey on some resources (such
as Wikipedia and top retrieved documents from Bing). Then we
aggregate exploratory queries generated by all models (including
the ablation models in Section 5.2) we want to evaluate and the
human-written ones to form a pool. Note that such aggregation
follows the classic Cranfield experiments [27], which aims to ensure
a fair evaluation of all models.

We employ three annotators who understand our task well to
help select high-quality exploratory queries to construct the final
ground truth. Specifically, we ask the annotators to evaluate these
exploratory queries in terms of three aspects: usefulness, faith-
fulness, and readability. We give them the definition and some
examples in Table 1 to help them better understand these aspects.
If an exploratory query satisfies all three aspects, then a Good label
should be given. Otherwise, they are asked to give a Bad label. We
also provide the annotators with the Bing search results of each
query to help them better judge the faithfulness of each exploratory
query. The final label of each exploratory query is determined by
the majority vote among the three annotators. The value of Fleiss’
kappa among the three annotators is 91.63%, which shows an al-
most perfect agreement. Finally, we manually create exploratory
groups for each query (such as “Cartier women [MASK]” for the
query “Cartier women watches”) and assign the exploratory queries
whose final labels are Good in the pool to corresponding created
groups as the ground-truth.

4.2 Evaluation Metrics
To evaluate the generated multi-group exploratory queries, we first
assign each output group 𝑄 to a ground-truth group 𝑄 ′ which
covers the maximum number of exploratory queries in𝑄 . Then, for
each group pair (𝑄 ′, 𝑄), we adopt four sets of evaluation metrics

which have been widely adopted in aspect items generation task [13,
14, 34]: (1) Term overlap. These metrics include Term Precision,
Term Recall, and Term F1-measure that have been applied for the
evaluation of query facet extraction models [20]. (2) Exact match.
They calculate the precision, recall, and F1-measure of generating
the exact exploratory query that appears in the ground-truth group.
(3) Set BLEU score. BLEU is defined to evaluate the similarity
between a single candidate text and a group of references. We
implement the Set BLEU score for 1-gram and 2-gram to measure
the lexical similarity between the generated exploratory group
(i.e., 𝑄) and the ground-truth group (i.e., 𝑄 ′). (4) Set BERT-Score.
Since the above three evaluation metrics just measure the lexical
similarity, following previous studies, we also implement Set BERT-
Score [45] to compute the semantic similarity between 𝑄 ′ and 𝑄 .
We calculate the mean performance of all generated groups for each
mentioned metric, which serves as the final result for each query.

4.3 Implementation Details
We apply Bing Search API v7 to obtain the top-n search results for
RPR in Section 3.1.1, and the number of search results 𝑛 is 50.3 The
parameters of the RPR model (including adjustment coefficient 𝑎x,
importance coefficient 𝑏x and the threshold 𝜏) are tuned by grid
search with the step of 0.1 on the validation set. We apply Pytorch
to implement the EQG model and initialize its parameters based
on the pre-trained BART-base model. In all experiments, the batch
size is set as 6, and the max length of the input and output is set as
512 and 64 respectively. The weight parameter _ is set as 1.0. We
use AdamW optimizer to optimize the model with a learning rate
of 5× 10−5. We utilize GPT-3.5-turbo with OpenAI API for LLMG.4

5 EXPERIMENTAL RESULTS
5.1 Overall Results
In this part, we choose two BART-based models applied in previous
studies [34] as our baselines for comparison: (1) BART (q). It only
takes the concatenation of masked query 𝑞mo and the replaced term
𝑡m as input and generates the exploratory queries. (2) BART (qs).
BART (qs) uses the concatenation of masked query𝑞mo , masked term
𝑡m, and snippet texts as input for generation. Previous studies [13,
34] have shown that search result snippets contain rich semantic
information which helps better understand the user query. Like
EQG, the two baselines are also trained using the data generated by
RPR. Our aim in comparing with BART (qs) is to demonstrate the
effectiveness of extracted list items on exploratory query generation.
The experimental results are shown in Table 2.

The results show that: (1) Our RPR outperforms the two BART-
based baselines and our EQG further improves RPR on all evalu-
ation metrics. This illustrates that, compared with the rule-based
method RPR, our well-designed EQG has a better ability to find
more appropriate parallel terms, and thus generate higher-quality
exploratory queries. (2) Our BART-based model EQG outperforms
BART (qs) significantly, illustrating that the list structures extracted
from search results are more effective in generating exploratory
queries compared with snippet texts. (3) Our LLM-based method
LLMG consistently outperforms all the methods with p-value <

3Bing Search API: https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
4GPT-3.5-turbo: https://platform.openai.com/playground?model=text-davinci-003

https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
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Table 1: The definition of evaluation aspects and several examples of Good and Bad exploratory queries.

Aspect Definition

Usefulness The exploratory query is parallel to the original user query and can meet users’ exploratory needs.
Faithfulness The exploratory query should make sense and provides faithful information that users can trust.
Readability The exploratory query is free of grammatical errors, smooth and easy to understand.

Examples

Query: shirts for men Query: Cartier women watches
Good jackets for men, pants for men Good Cartier women necklaces, rolex women watches
Bad (useless) cars for men, white shirts for men Bad (useless) Cartier ladies watches
Bad (unfaithful) best for men, kids for men Bad (unfaithful) Cartier women shirts, Cartier women sweaters
Bad (unreadable) jackets for men for men, jack for men Bad (unreadable) Cartier women women necklaces

Table 2: Exploratory query generation evaluation results and ablation studies. "†" indicates the model outperforms the best
baseline significantly with paired t-test at 𝑝-value < 0.05 level. The best results are in bold.

Term Overlap Exact Match Set BLEU Set BERT-Score

Model Prec Recall F1 Prec Recall F1 1-gram 2-gram Prec Recall F1

BART (q) 0.4916 0.2092 0.2816 0.3803 0.1244 0.1778 0.2362 0.1293 0.2348 0.2361 0.2354
BART (qs) 0.5404 0.2426 0.3235 0.4453 0.1564 0.2222 0.2574 0.1588 0.2468 0.2472 0.2470
RPR 0.6354 0.2836 0.3768 0.5749 0.2169 0.2981 0.2824 0.2000 0.2702 0.2698 0.2700
EQG 0.6628 0.3043 0.4037 0.5934 0.2241 0.3101 0.3179 0.2058 0.2847 0.2842 0.2844
LLMG (-list) 0.6521 0.3199 0.4139 0.6087 0.2540 0.3453 0.3316 0.2109 0.2703 0.2708 0.2706
LLMG 0.7057† 0.3352† 0.4382† 0.6690† 0.2703† 0.3747† 0.3587† 0.2293† 0.2936 0.2939 0.2937

RPR w/o. 𝐹 l 0.5047 0.2249 0.2938 0.4128 0.1489 0.2014 0.2379 0.1494 0.2251 0.2248 0.2249
RPR w/o. 𝐹 c 0.5488 0.2527 0.3300 0.4540 0.1723 0.2338 0.2459 0.1639 0.2469 0.2465 0.2467
RPR w/o. 𝐹 p 0.6198 0.2467 0.3379 0.5652 0.1824 0.2604 0.2214 0.1758 0.2293 0.2289 0.2291
RPR w/o. 𝐹 i 0.6012 0.2553 0.3404 0.5313 0.1877 0.2580 0.2366 0.1697 0.2385 0.2382 0.2383
EQG w/o. CT 0.6232 0.2735 0.3683 0.5455 0.1911 0.2709 0.3011 0.1775 0.2727 0.2725 0.2726

0.05 on most metrics, which indicates the significance of the im-
provements. In addition, after removing the list items from the
prompt, there is a noticeable performance drop on LLMG (-list),
which proves that the extracted list items can help LLM generate
better exploratory queries.

5.2 Ablation Studies
One of our main conclusions is that the human-designed features
used in RPR are important to generate high-quality exploratory
queries as weak supervision signals to train EQG. To prove the
effectiveness of these features, we conduct an ablation study by
removing the four features mentioned in Section 3.1 one by one
(denoted as RPR w/o 𝐹 x). We also drop the classification task from
EQG (denoted as EQG w/o CT) to demonstrate its effectiveness.
The results are shown in the bottom part of Table 2.

It can be seen that removing any component will damage the
results on all evaluation metrics. As for RPR, abandoning the List
Co-occurrence Feature 𝐹 l causes the most decline in almost all met-
rics, which further confirms that list structures in search results
contain important information for parallel reformulation. Similar
to 𝐹 l, removing Concept Feature 𝐹 c also results in an obvious drop
in the evaluation metrics. This is because the structure knowledge
in Concept Graph also contributes to measuring the parallel re-
lationship. Besides, the Popularity feature 𝐹p and Item feature 𝐹 i
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Figure 3: Experiments on different query lengths.

also play an important role in RPR by judging the quality of each
candidate exploratory query. As for EQG, after abandoning the
classification task, its performance also declines. For example, it
declines by about 5.8% on term overlap precision and 8.04% on
exact match precision. In summary, the ablation study proves the
effectiveness of each component in our models.

5.3 Experiments with Different Query Lengths
In this section, we intend to investigate the performance of our
models on queries of different lengths. Due to the average length of
our evaluated queries being 2.64, we divide the evaluated queries
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Figure 4: Experiments with top results quantity.

into two sets based on a length of 3. The experimental results are
shown in Figure 3. The results indicate that most models have bet-
ter performance on short queries (length ≤ 3). The reason is that
parallel reformulation for longer queries requires more semantic
constraints, which leads to greater generation difficulty. For exam-
ple, “levi’s skirts” could be an appropriate exploratory query of
“levi’s shirts”. However, “levi’s skirts for men” is absolutely an
unfaithful and wrong exploratory query of “levi’s shirts for men”,
because it ignores the gender constraint “for men”. Besides, we ob-
serve that our proposed models (RPR, EQG, and LLMG) outperform
baseline models significantly. This further confirms the effective-
ness of using list structures for exploratory query generation.

5.4 Experiments with Number of Search Results
We use Top-50 search results in all experiments mentioned above.
In this part, we further utilize different numbers of search results,
ranging from 10 to 50, to investigate whether the quantity of search
results can affect the performance of our rule-based model RPR. We
use the metric Exact Match for comparison. Experimental results
are shown in Figure 4. The figure shows that the quantity of search
results does affect the quality of generated exploratory queries. As
the quantity of search results increases, the quality of the generated
exploratory queries improves. This is because more search results
contain more list structures and thus generate more exploratory
queries. Besides, more search results can also providemore evidence
for ranking these exploratory queries and thus improve the quality
of exploratory queries in the final output. The results also show that
the improvement decreases when the quantity of search results
increases, especially when it exceeds 40. This means that using
top-50 results is enough.

5.5 Case Study
To compare the generated results of different models intuitively,
we sample two real user queries and generate corresponding ex-
ploratory queries with different models. Table 3 shows the gener-
ated exploratory queries in groups, where BART (q) and BART (qs)
are two baselines. The reformulated parts in queries are marked in
bold. For the query “double java”, BART (q) can hardly understand
the meaning of the query and fails to generate other data types in
java. With the support of snippets, BART(q+s) improves BART (q)
but still generates irrelevant exploratory query “index java”, which
underperforms our proposed models RPR, EQG, and LLMG. Besides,

Table 3: Examples of exploratory queries generated.

Query: double java

Model Exploratory queries

BART (q) 3 java, 4 java, 2 java
BART (qs) index java, float java, string java
RPR float java, long java, string java
EQG float java, long java, int java
LLMG (-list) quadruple java, multiple java, triple java
LLMG float java, long java, int java

Query: vests formen

BART (q) vests for kids
BART (qs) vests for kids
RPR vests for kids, vests for brands
EQG vests for kids, vests for kids & baby
LLMG (-list) vests for kids, vests for women, vests for boys
LLMG vests for kids, vests for women, vests for babies

without the list items as auxiliary information in the prompt, LLMG
(-list) fails to understand the meaning of “double”, generating some
uncommon (“triple java”) or even wrong results (“quadruple java”).
For the second query “vests for men”, its exploratory queries should
be vests for other people. Both BART (q) and BART (qs) only gen-
erate “vests for kids”, which lacks diversity. EQG improves RPR’s
“vests for brands” by generating “vests for kids & baby”. Compared
with other baselines, our LLM-based methods (LLMG (-list) and
LLMG) generate more diverse exploratory queries such as “vests
for women” and “vests for boys”.

5.6 Limitations and Future Directions
Our work still has some limitations that we plan to address in fu-
ture work. First, we divide the exploratory group simply based on
the replaced terms in the query, which could be sub-optimal in
some cases. For example, for an ambiguous query “go tutorial” and
corresponding exploratory group “[java tutorial, c++ tutorial, chess
tutorial, gomoku tutorial]”, it would be better to divide the first two
(programming language related) and last two (board game related)
into different groups due to their different topics. Besides, in this
work, we only focus on generating all possible exploratory groups
without considering ranking them or generating corresponding
exploratory questions. In fact, ranking these groups based on users’
personalized interests or asking an exploratory question may fur-
ther improve users’ search experience.

6 CONCLUSION
In this paper, we propose generating exploratory queries to meet
users’ exploratory needs in conversational search. We first design
a rule-based parallel reformulation model to generate exploratory
queries based on list structures extracted from top retrieved docu-
ments. Then we propose to train a generative model in a multi-task
learning manner for further generalization. Finally, we propose
using LLMs for generation based on our well-designed prompts.
We conduct several experiments on our annotated evaluation data
and the experimental results not only validate the feasibility of
utilizing list items to generate parallel queries but also demonstrate
the effectiveness of the models we designed.
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