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Abstract

Constrained optimization with multiple functional inequality constraints has significant ap-
plications in machine learning. This paper examines a crucial subset of such problems where
both the objective and constraint functions are weakly convex. Existing methods often face
limitations, including slow convergence rates or reliance on double-loop algorithmic designs.
To overcome these challenges, we introduce a novel single-loop penalty-based stochastic
algorithm. Following the classical exact penalty method, our approach employs a hinge-
based penalty, which permits the use of a constant penalty parameter, enabling us to
achieve a state-of-the-art complexity for finding an approximate Karush-Kuhn-Tucker
(KKT) solution. We further extend our algorithm to address finite-sum coupled compo-
sitional objectives, which are prevalent in artificial intelligence applications, establishing
improved complexity over existing approaches. Finally, we validate our method through ex-
periments on fair learning with receiver operating characteristic (ROC) fairness constraints
and continual learning with non-forgetting constraints.

1 Introduction
This paper focuses on solving the following non-linear inequality constrained optimization problem:

min
x
F (x), s.t. hk(x) ≤ 0, k = 1, . . . ,m, (1)

where F and hk, k = 1, . . . ,m are stochastic, weakly convex and potentially non-smooth. This general formu-
lation captures a wide range of practical optimization problems where non-smoothness arises in the objective
and constraint functions. Inequality constrained optimization arise in many applications in ML/AI, including
continual learning (Li et al., 2024a), fairness-aware learning (Vogel et al., 2021), multi-class Neyman-Pearson
classification (mNPC) problem (Ma et al., 2020), robust learning (Robey et al., 2021), policy optimization
problem for reinforcement learning (Schulman et al., 2015), and distributed data center scheduling prob-
lem (Yu et al., 2017).
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Table 1: Comparison with existing works. We consider that both objective function and constraint function
oracles are stochastic. In the Constraint column, hk means multiple constraints, k from 1 to m. In Convexity
column, NC means Non-convex, WC means Weakly Convex, C means Convex. The monotonicity column
means non-decreasing. The last column Complexity means the complexity for finding an (nearly) ϵ-KKT
point of equation 1.

Reference Loop Objective Constraints Smoothness Convexity Monotonicity Complexity
(Alacaoglu & Wright, 2024) Single Loop F (·) h(·) = 0 F, h NC (F, h) none Õ(ϵ−5)

(Li et al., 2024b) Double Loop F (·) + g(·) h(·) = 0 F, h C (g), NC (F, h) none Õ(ϵ−5)
(Ma et al., 2020) Double Loop F (·) hk(·) ≤ 0 none WC (F, hk) none O(ϵ−6)

(Boob et al., 2023) Double Loop F (·) hk(·) ≤ 0 none WC (F, hk) none O(ϵ−6)
(Huang & Lin, 2023) Single Loop F (·) h(·) ≤ 0 none WC (F ), C (h) none Õ(ϵ−8)

(Li et al., 2024a) Single Loop
∑

i fi(gi(·)) hk(·) ≤ 0 fi, gi, hk NC (fi, gi, hk) none O(ϵ−7)
(Liu & Xu, 2025) Single Loop F (·) hk(·) ≤ 0 none WC (F, hk) none O(ϵ−6)

Ours Single Loop F (·) hk(·) ≤ 0 none WC(F, hk) none O(ϵ−6)
Ours Single Loop

∑
i fi(gi(·)) hk(·) ≤ 0 none WC (fi, gi, hk) fi O(ϵ−6)

Ours Single Loop
∑

i fi(gi(·)) hk(·) ≤ 0 fi, gi WC (hk) none O(ϵ−6)

In optimization literature, many techniques have been studied for solving convex constrained optimization
problems, including primal-dual methods (Huang et al., 2025; Boob et al., 2023; Pu et al., 2024; Nedić
& Ozdaglar, 2009), augmented Lagrangian methods (Birgin & Martnez, 2014), penalty methods (Boyd &
Vandenberghe, 2004), and level-set methods (Lin et al., 2018). However, the presence of non-convexity
in the problem often complicates algorithmic design and convergence analysis, while non-smoothness and
stochasticity add additional layers of difficulty.

Several recent studies have explored stochastic non-convex constrained optimization under various assump-
tions. Ma et al. (2020) and Boob et al. (2023) initiated the study of stochastic optimization with weakly
convex and non-smooth objective and constraint functions. Inspired by proximal-point methods for weakly-
convex unconstrained optimization (Davis & Grimmer, 2019), they have proposed a double-loop algorithm,
where a sequence of convex quadratically regularized subproblems is solved approximately. They have de-
rived the state-of-the-art complexity in the order of O(1/ϵ6) for finding a nearly ϵ-KKT solution under a
uniform Slater’s condition and a strong feasibility condition, respectively.

Recently, Alacaoglu & Wright (2024); Li et al. (2024a); Huang & Lin (2023) have proposed single-loop
algorithms for stochastic non-convex constrained optimization. However, these results either are restricted to
smooth problems with equality constraints (Alacaoglu & Wright, 2024) or suffer from an iteration complexity
higher than O(1/ϵ6) (Li et al., 2024a; Huang & Lin, 2023). This raises an intriguing question: “Can we design
a single-loop method for solving non-smooth weakly-convex stochastic constrained optimization problems to
match the state-of-the-art complexity of O(1/ϵ6) for finding a nearly ϵ-KKT solution?"

We answer the question in the affirmative. We propose a novel algorithm based on the well-studied exact
penalty method (Zangwill, 1967; Evans et al., 1973). Different from Alacaoglu & Wright (2024); Li et al.
(2024a) who used a quadratic or squared hinge penalty, we construct a penalty of the constraints using the
non-smooth hinge function, i.e., by adding 1

m

∑m
k=1 β[hk(x)]+ into the objective, where β is a penalty

parameter. Despite being non-smooth, the benefits of this penalty function include (i) it preserves the
weak convexity of in the penalty; (ii) it allows using a constant β as opposed to a large β required by the
squared hinge penalty (Li et al., 2024a); (iii) it introduces the structure of finite-sum coupled compositional
optimization (FCCO), enabling the use of existing FCCO techniques in the algorithmic design. Consequently,
this approach establishes state-of-the-art complexity for achieving a nearly ϵ-KKT solution, under a regularity
assumption similar to those in Li et al. (2024a); Alacaoglu & Wright (2024). We summarize our contributions
as follows.

• We propose a non-smooth, hinge-based exact penalty method for tackling non-convex constrained
optimization with weakly convex objective and constraint functions. We derive a theorem to guar-
antee that a nearly ϵ-stationary solution of the penalized objective is a nearly ϵ-KKT solution of the
original problem under a regularity condition of the constraints.

• We develop algorithms based on FCCO to tackle a non-smooth weakly convex objective whose
unbiased stochastic gradient is available and a structured non-smooth weakly-convex objective that
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is of the FCCO form. We derive a state-of-the-art complexity of O(ϵ−6) for finding a nearly ϵ-KKT
solution.

• We conduct experiments on two applications in machine learning: learning with ROC fairness con-
straints and continual learning with non-forgetting constraints. The effectiveness of our algorithms
are demonstrated in comparison with an existing method based on squared hinge penalty function
and a double-loop method.

2 Related Work
Despite their long history of study, recent literature on optimization with non-convex constraints has intro-
duced new techniques and theories for the penalty method (Lin et al., 2022), Lagrangian methods (Sahin
et al., 2019; Sun & Sun, 2024; Li et al., 2024b; 2021), the sequential quadratic programming methods (Bera-
has et al., 2021; 2025; Curtis et al., 2024; Na et al., 2023) and trust region method (Fang et al., 2024). These
works mainly focused on the problems with smooth objective and constraint functions. On the contrary,
based on Moreau envelopes, Ma et al. (2020); Boob et al. (2023); Huang & Lin (2023); Jia & Grimmer (2022)
have developed algorithms and theories for problems with non-smooth objective and constraint functions.
However, these methods cannot be applied when the objective function has a compositional structure. The
method by Li et al. (2024a) can be applied when the objective function has a coupled compositional structure,
but it requires the objective and constraint functions to be smooth. Compared to their work, we relax the
smoothness assumption, but assume the monotonicity of the outer function in the compositional structure.

Alacaoglu & Wright (2024) studies a single-loop quadratic penalty method for stochastic smooth nonconvex
equality constrained optimization under a generalized full-rank assumption on the Jacobian of the constraints.
Under a similar assumption, Li et al. (2024b) proposed a double-loop inexact augmented Lagrangian method
using the momentum-based variance-reduced proximal stochastic gradient algorithm as a subroutine. Both
Alacaoglu & Wright (2024) and Li et al. (2024b) consider only smooth equality constraints and hence
are not applicable to non-smooth constraint functions. Ma et al. (2020) and Boob et al. (2023)
studied weakly convex non-smooth optimization with inequality constraints. They proposed double-loop
methods, where a sequence of proximal-point subproblems is solved approximately by a stochastic subgra-
dient method (Yu et al., 2017) or a constraint extrapolation method (Boob et al., 2023). Under a uniform
Slater’s condition and a strong feasibility assumption, respectively, Ma et al. (2020) and Boob et al. (2023)
establish a complexity of O(1/ϵ6). Under the uniform Slater’s condition, Huang & Lin (2023) proposed a
single-loop switching subgradient method for non-smooth weakly convex constrained optimization problems,
but the complexity of their method is O(1/ϵ8) when the constraints are stochastic.

Motivated by applications from continual learning with non-forgetting constraints, Li et al. (2024a) intro-
duced a single-loop squared hinge penalty method for a FCCO (Wang & Yang, 2022) problem, where the
objective function takes the form of

∑
i fi(gi(·)) and the constraints are non-convex and smooth. They

establish a complexity of O(1/ϵ7) under the generalized full-rank assumption on the Jacobian of constraints.
Our results can be easily extended to a FCCO problem with nonconvex but unnecessarily smooth inequality
constraints. We show that our method improves the complexity to O(1/ϵ6) in two cases: (1) fi, gi and hk

are non-smooth weakly convex and fi is monotone non-decreasing, and (2) fi and gi are smooth nonconvex
but hk is non-smooth weakly convex. Note that the second case includes the special case where fi, gi and
hk are smooth non-convex. A comparison with prior results in presented in Table 1.

We also note that some works have considered transferring inequality constraints into equality constraints by
adding a slack variable for each constraint (Fukuda & Fukushima, 2017; Ding & Wright, 2023; Li et al., 2021).
However, these approaches either require stronger second-order conditions to ensure that a KKT solution
to the equality-constrained problem also applies to the original inequality-constrained problem (Fukuda &
Fukushima, 2017; Ding & Wright, 2023), or they rely on the boundedness of constraint functions to guarantee
this transfer (Li et al., 2021) (cf. Section 4.3 for more discussions). Even when such a transformation is
feasible, algorithms for non-smooth stochastic constraint functions remain underdeveloped, underscoring the
uniqueness and significance of our contributions.

Finally, we would like to acknowledge a concurrent work by Liu & Xu (2025). Their study also explores
a penalty method for problems with weakly convex objective and constraint function. The key differences
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between our work and theirs are: (i) although they consider a vector-valued function consisting of multiple
components, they treat multiple constraint as a single one, i.e., they need to compute mini-batch estimators
of all constraint functions at each iteration in their algorithm. In contrast, we do sampling on the constraint
functions, and only require estimating O(1) constraint functions at each iteration. (ii) they do not directly
use the hinge penalty function, but instead adopt a smoothed version of it; and (iii) they employ the SPI-
DER/SARAH technique to track the constraint function value, which requires periodically using large batch
sizes. In contrast, we track multiple constraint function values by employing the MSVR technique (Jiang
et al., 2022) using only a constant batch size.

3 Notations and Preliminaries
Let ∥ · ∥ be the ℓ2-norm. For ψ : Rd → R∪ {+∞}, the subdifferential of ψ at x is ∂ψ(x) = {ζ ∈ Rd | ψ(x′) ≥
ψ(x)+⟨ζ,x′ −x⟩+o(∥x′ −x∥),x′ → x}, and ζ ∈ ∂ψ(x) denotes a subgradient of ψ at x. Let [·]+ := max{0, ·}
denote the hinge function. We say ψ is µ-strongly convex (µ ≥ 0) if ψ(x) ≥ ψ(x′)+⟨ζ,x−x′⟩+ µ

2 ∥x−x′∥2 for
any (x,x′) and any ζ ∈ ∂ψ(x′). We say ψ is ρ-weakly convex (ρ > 0) if ψ(x) ≥ ψ(x′)+⟨ζ,x−x′⟩− ρ

2 ∥x−x′∥2

for any (x,x′) and any ζ ∈ ∂ψ(x′). We say ψ is L-smooth (L ≥ 0) if |ψ(x) − ψ(x′) + ⟨∇ψ(x′),x − x′⟩| ≤
L
2 ∥x−x′∥2 for any (x,x′). For simplicity, we abuse ∂ψ(x) to denote one subgradient from the corresponding
subgradient set when no confusion could be caused.

Throughout the paper, we make the following assumptions on (1)
Assumption 3.1. (a) F is ρ0-weakly convex and LF -Lipschitz continuous; (b) hk(·) is ρ1-weakly convex
and Lh-Lipschitz continuous for k = 1, . . . ,m.
For a non-convex optimization problem, finding a globally optimal solution is intractable. Instead, a Karush-
Kuhn-Tucker (KKT) solution is of interest, which is an extension of a stationary solution of an unconstrained
non-convex optimization problem. A solution x is a KKT solution to (1) if there exist λ = (λ1, . . . , λm)⊤ ∈
Rm

+ such that 0 ∈ ∂F (x) +
∑m

k=1 λk∂h(x), hk(x) ≤ 0, ∀k and λkhk(x) = 0 ∀k. Of interest in non-asymptotic
analysis is finding an ϵ-KKT solution given below.
Definition 3.2. A solution x is an ϵ-KKT solution to (1) if there exist λ = (λ1, . . . , λm)⊤ ∈ Rm

+ such that
dist(0, ∂F (x) +

∑m
k=1 λk∂h(x)) ≤ ϵ, hk(x) ≤ ϵ,∀k, and λkhk(x) ≤ ϵ if hk(x) ≥ 0 or λk = 0 if hk(x) < 0 for

k = 1, . . . ,m.
However, since the objective and the constraint functions are non-smooth, finding an ϵ-KKT solution is not
tractable, even the constraint functions are absent. Let us consider a simple example minx |x|. The only
stationary point is the optimal solution x∗ = 0, and any x ̸= 0 is not an ϵ-stationary solution (ϵ < 1)
no matter how close x to 0. In other words, unless the iterate generated by the algorithm can exactly
land on x = 0, it will not produce an ϵ-stationary point. To address this issue, an effective approach for
solving non-smooth optimization is to approximate the original problem by a smoothed one using different
smoothing techniques, including Nesterov’s smoothing(Nesterov, 2005), randomized smoothing (Kornowski
& Shamir, 2022), and Moreau envelope (Davis & Grimmer, 2019). Based on Moreau envelopes, Ma et al.
(2020); Boob et al. (2023); Huang & Lin (2023); Jia & Grimmer (2022) have developed algorithms and
theories for problems with non-smooth objective and constraint functions, which derives a nearly ϵ-KKT
solution. We follow Moreau envelopes technique on non-smooth weakly convex optimization and consider
finding a nearly ϵ-KKT solution defined below.
Definition 3.3. A solution x is a nearly ϵ-KKT solution to (1) if there exist x̄ and λ = (λ1, . . . , λm)⊤ ∈ Rm

+
such that (i) ∥x − x̄∥ ≤ O(ϵ), dist(0, ∂F (x̄) +

∑m
k=1 λk∂h(x̄)) ≤ ϵ, (ii) hk(x̄) ≤ ϵ,∀k, and (iii) λkhk(x̄) ≤ ϵ

if hk(x̄) ≥ 0 or λk = 0 if hk(x̄) < 0 for k = 1, . . . ,m.
In order to develop our analysis, we introduce the Moreau envelope of a ρ-weakly convex function ϕ: ϕθ(x) :=
miny

{
ϕ(y) + 1

2θ ∥y − x∥2}, where θ < ρ−1. The Moreau envelope is an implicit smoothing of the original
problem (cf. Lemma B.1 in Appendix). Hence, if we find x such that ∥∇ϕθ(x)∥ ≤ ϵ, then we can say that x
is close to a point x̄ that is ϵ-stationary (Davis & Grimmer, 2019). We call x a nearly ϵ-stationary solution
of minx ϕ(x).

Remark: Our current formulation focuses on the non-smooth case, there is also a simple extension in the
smooth setting. Suppose the objective and constraint functions are smooth, using the Lipschitz contiuity of
the gradients, and that of constraint functions, it is easy to prove that a nearly ϵ-stationary point is also
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an O(ϵ)-stationary point. This is because ∥x − x̄∥2 ≤ O(ϵ) and leveraging the Lipschitz conunity condition,
every condition in the definition of nearly ϵ-KKT solution can be converted to that on x.

4 A Hinge Exact Penalty Method and Theory
The key idea of the hinge-based exact penalty method is to solve the following unconstrained minimiza-
tion (Zangwill, 1967; Evans et al., 1973), where β > 0 is a penalty parameter:

min
x

Φ(x) := F (x) + β

m

∑m

k=1
[hk(x)]+, (2)

For clarity of notation, we define h+
k (x) = [hk(x)]+. Let ∂[hk(x)]+ ∈ [0, 1] be the subdifferential of [z]+ at

z = hk(x), and let ∂h+
k (x) be the subgradient in terms of x.

Lemma 4.1. Under Assumption 3.1, Φ(x) in (2) is C-weakly convex and L-Lipschitz, where C = ρ0 + βρ1
and L = LF + βLh.
Our hinge exact penalty method is to employ a stochastic algorithm for finding an ϵ-stationary solution to
Φθ(x) for some θ < 1/C. We establish a theorem below to guarantee that such x is a nearly ϵ-KKT solution
to (1).
Theorem 4.2. Assume that there exists δ > 0 such that

dist
(

0, 1
m

∑m

k=1
∂h+

k (x′)
)

≥ δ, ∀x′ ∈ V (3)

where V = {x : maxk hk(x) > 0}. If x is an ϵ-stationary solution to Φθ(x) for some θ < 1/C and a constant
β > (ϵ+ LF )/δ, then x is a nearly ϵ-KKT solution to the original problem (1).
Proof. Let x̄ = proxθΦ(x). By optimality of x̄, we have

0 ∈ ∂F (x̄) + β

m

∑m

k=1
∂h+

k (x̄) + (x̄ − x)/θ.
Since ∥∇Φθ(x)∥ ≤ ϵ, then we have ∥x̄ − x∥ = θ∥∇Φθ(x)∥ ≤ θϵ. Then we have

dist
(

0, ∂F (x̄) + β

m

∑m

k=1
∂h+

k (x̄)
)

≤ ∥(x̄ − x)/θ∥ ≤ ϵ.

Since ∂h+
k (x̄) = ξk∂hk(x̄) (see Bauschke et al. (2017, Corollary 16.72)), where

ξk =


1 if hk(x̄) > 0,
[0, 1] if hk(x̄) = 0,
0 if hk(x̄) < 0,

⊆ ∂[hk(x̄)]+,

there exists λk ∈ βξk

m ≥ 0,∀k such that dist (0, ∂F (x̄) +
∑m

k=1 λk∂hk(x̄)) ≤ ϵ. Thus, we prove condition (i)
in Definition 3.3. Next, let us prove condition (ii). We argue that maxk hk(x̄) ≤ 0. Suppose this does not
hold, i.e., maxk hk(x̄) > 0, we will derive a contradiction. Since ∃v ∈ ∂F (x̄) such that

ϵ ≥ dist
(

0,v + β

m

∑m

k=1
∂h+

k (x̄)
)

≥ dist
(

0, β
m

∑m

k=1
∂h+

k (x̄)
)

− ∥v∥ ≥ βδ − LF , (4)

which is a contradiction to the assumption that β > (ϵ+LF )/δ. Thus, maxk hk(x̄) ≤ 0. This proves condition
(ii). The last condition (iii) holds because: λk = βξk

m , which is zero if hk(x̄) < 0; and λkhk(x̄) ≤ 0.

Assumption (3) is not specific to our method but is shared by all penalty-based approaches, including recent
works such as Alacaoglu & Wright (2024), Li et al. (2024b), and Li et al. (2024a). This assumption reflects a
fundamental challenge in non-convex constrained optimization: without a condition such as (3), the problem
becomes ill-posed and is generally unsolvable using first-order methods. There is potential to slightly relax
assumption (3). In our current formulation, we assume (3) holds over the entire set V. However, it may
suffice to require (3) to hold only on a subset of V, defined as Vc := {x : c ≥ maxk hk(x) > 0} for some
constant c > 0. This is a strictly weaker assumption.

Under this relaxation, the algorithm can be initialized within the feasible region and proceed with step
sizes chosen carefully to ensure that all intermediate iterates remain within Vc. Note that even if some
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iterates become slightly infeasible, as long as the step size is sufficiently small, the gradients of the constraint
functions will guide the iterates back toward feasibility. This way, we can still conduct the same convergence
analysis just select feasible initial point x0 and proceed with step sizes chosen carefully. This strategy has
been successfully adopted in prior work (e.g., (Huang & Lin, 2023)).

4.1 Sufficient Conditions for Eq. (3)

Next, we provide some sufficient conditions for (3).

First, we consider a simple setting where there is only one constraint h(x) ≤ 0. The lemma below states
two conditions sufficient for proving the condition (3). The proof of Lemma 4.3 and 4.4 are presented in
Appendix B.
Lemma 4.3. If there exists µ > 0, c > 0 such that (i) h(x) − miny h(y) ≤ 1

2µ dist(0, ∂h(x))2 for any x
satisfying h(x) > 0; and (ii) miny h(y) ≤ −c, then condition (3) holds for δ =

√
2cµ.

Remark: Note that the condition (i) in the above lemma is the PL condition of h but only for points
violating the constraint. We can easily come up a function h to satisfy the two conditions in the lemma. Let
us consider h(x) = |x2 − 1| − 1. Then ∇h(0) = 0, which means x = 0 is a stationary point but not global
optimum of h. The global optimal are x ∈ {1,−1} and miny h(y) = −1, and hence condition (ii) holds. Any
x such that h(x) > 0 would satisfy x >

√
2 or x < −

√
2. For these x, we have ∇h(x) = 2x for x >

√
2 or

∇h(x) = −2x for x < −
√

2. Then for |x| >
√

2, h(x) − miny h(y) = x2 − 1 ≤ |∇h(x)|2

2µ holds for µ = 2. Hence
condition (i) holds.

Next, we present a sufficient condition for (3) for multiple constraints. The following lemma shows that the
full rank assumption of the Jacobian matrix of H(x) = (h1(x), . . . hm(x))⊤ at x that violate constraints is a
sufficient condition.
Lemma 4.4. If ∂H(x) is full rank for maxk hk(x) > 0, i.e., dist(0, λmin(∂H(x))) ≥ σ >
0, ∀x such that maxk hk(x) > 0, where ∂H(x) denotes the set of sub-Jacobian matrices and λmin(·) denotes
the set of their minimum singular values, then the condition (3) holds for δ = σ/m.

We refer to the above condition as Full-Rank-at-Violating-Points condition (FRVP). We note that the FRVP
condition for differentiable constraint functions has been used as a sufficient condition in Li et al. (2024a)
for ensuring

∥∇H(x)⊤[H(x)]+∥ ≥ δ∥[H(x)]+∥, ∀x, (5)
which is central to proving the convergence of their squared-hinge penalty method for solving inequality
constrained smooth optimization problems: minx F (x), s.t. hk(x) ≤ 0, k = 1, . . . ,m.

A stronger condition for equality constrained optimization with hk(x) = 0, k = 1, . . . ,m was imposed in
Alacaoglu & Wright (2024), where they assumed that ∥∇H(x)⊤H(x)∥ ≥ δ∥H(x)∥, ∀x. To ensure this, their
method requires the full-rank Jacobian assumption to hold at all points, whereas our approach only requires
it at constraint-violating points. In our experiments, we verified that the condition in Lemma 4.4 holds on
the trajectory of the algorithm. Detailed results are provided in Table 2 in Appendix A.

4.2 Issue with squared-hinge penalty

Let us discuss why using the squared-hinge penalty function as in Li et al. (2024a). For simplicity of
exposition and comparison with prior works, we consider differentiable constraint functions here. Using a
squared-hinge penalty function gives the following objective:

Φ(x) = F (x) + β

m

∑m

k=1
[hk(x)]2+. (6)

Note that this objective is also weakly convex with a weak-convexity parameter given by ρ0 +βρ1. However,
the key issue of using this approach is that β needs to be very large to find an (nearly) ϵ-KKT solution.
Using the same argument as in the proof of Theorem 4.2 for showing maxk hk(x̄) ≤ 0, the inequality (4)
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becomes:

ϵ ≥
∥∥∥∥v + β

m

∑m

k=1
[hk(x̄)]+∇hk(x̄)

∥∥∥∥ ≥

∥∥∥∥∥ βm
m∑

k=1
[hk(x̄)]+∇hk(x̄)

∥∥∥∥∥− ∥v∥ ≥ βδ

m
∥[H(x̄)]+∥ − LF ,

where the last step follows the assumption in (5). Since [H(x̄)]+ could be very small, in order to derive a
contradiction we need to set β to be very large. In Li et al. (2024a), it was set to be the order of O(1/ϵ). As
a result, Φ(·) will have large weak-convexity and Lipschitz parameters of the order O(1/ϵ). This will lead to
a complexity of O(1/ϵ12) if we follow existing studies(Hu et al., 2024) to solve the problem in (6) without
the smoothness of F and hk, which will be discussed in Section 5.

4.3 Issue of solving an equivalent equality constrained optimization

One may consider the following equivalent equality constrained problem:

min
x,s1,...,sm

F (x), s.t. hk(x) + s2
k = 0, k = 1, . . . ,m (7)

where s1, . . . , sm are introduced dummy variables. A solution x∗ is a KKT solution to above if there exists
λ = (λ1, . . . , λm)⊤ ∈ Rm such that 0 ∈ ∂F (x∗)+

∑m
k=1 λk∂hk(x∗), λksk = 0,∀k, and hk(x∗)+s2

k = 0 for ∀k =
1, . . . ,m. However, this does not provide a guarantee that x∗ is a KKT condition to the original constrained
optimization problem as λ is not necessarily non-negative. For instance, consider min x s.t. − 1 ≤ x ≤ 1.
After adding slack variables, we have min x s.t. x + s2

1 = 1,−x + s2
2 = 1. However, (x, s1, s2) = (1, 0,

√
2)

becomes a stationary point with multipliers λ = (−1, 0), but it is not a stationary point in the original
problem.

While several studies (Fukuda & Fukushima, 2017; Ding & Wright, 2023) have employed stronger second-
order conditions to ensure that a KKT solution of the equality-constrained problem (7) can be converted into
one for the original inequality-constrained problem, these conditions generally do not hold for the problems
we consider. Moreover, when these second-order conditions fail to be satisfied, the approach of solving the
equality-constrained problem (7) becomes ineffective. Our solutions will not suffer from this issue.

Specifically, Proposition 3.6. in Fukuda & Fukushima (2017) shows that if a stationary solution to the
equality-constrained problem (formulated using squared slack variables) satisfies the second-order suffi-
cient condition (SOSC), then it is also a stationary solution to the original inequality-constrained problem
(after simply removing the slack variables). Theorem 3.3. in reference (Ding & Wright, 2023) proves a similar
result but under the weaker second-order necessary condition (SONC). To the best of our knowledge,
no other conditions have been established in the literature.

Both SOSC and SONC conditions above are quite strong, as they require all first-order stationary points
of the equality-constrained problem to be also second-order stationary points at the same time. Un-
fortunately, neither SOSC nor SONC is implied by the assumptions made in our paper. This is true even
if we further assume our problem is second-order differentiable. Since our focus is on first-order methods,
our assumption is related to first-order conditions only. In fact, in general, our problems may not even have
gradients (non-smooth), let alone the Hessian matrix in SOSC and SONC. While the results in Fukuda &
Fukushima (2017); Ding & Wright (2023) may be useful in practice as potential certificates of stationarity,
their applicability is limited in practice. For example, one could first find a stationary point for the equality-
constrained problem, and then verify whether SOSC or SONC holds at the obtained solution. If lucky
enough and they hold, one can conclude that the solution is stationary for the original inequality-constrained
problem. However, if unlucky and these second-order conditions do not hold, we do not know if the solution
is stationary for the original problem. In contrast, our method directly finds a stationary point for the
inequality-constrained problem without requiring such verification, hence there is no need to implement the
verification procedure.

Another way is to use non-negative slack variables as following:

min
x,s1,...,sm≥0

F (x), s.t. hk(x) + sk = 0, k = 1, . . . ,m (8)

where s1, . . . , sm are introduced dummy variables. Li et al. (2021) presents some discussion how to convert
an ϵ-KKT solution to the above equality constrained into an ϵ-KKT solution to the original inequality
constrained optimization. However, such guarantee requires that boundness of the constraint functions.
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Algorithm 1 Algorithm for solving equation 2 under Setting I
1: Initialization: choose x0, β, γ2 and η.
2: for t = 0 to T − 1 do
3: Sample Bt

c ⊂ {1, . . . ,m}
4: for each k ∈ Bt

c do
5: Sample a mini-batch Bt

2,k

6: Update ut+1
2,k = (1 − γ2)ut

2,k + γ2hk(xt; Bt
2,k) + γ′

2(hk(xt; Bt
2,k) − hk(xt−1; Bt

2,k))
7: end for
8: Let ut+1

2,k = ut
2,k, k /∈ Bt

c

9: Compute Gt
2 = β

|Bt
c|
∑

k∈Bt
c
∂hk(xt; Bt

2,k)[ut
2,k]′+, Gt

1 = 1
|Bt|

∑
ζ∈Bt ∂f(xt; ζ).

10: Update xt+1 = xt − η(Gt
1 +Gt

2)
11: end for

5 Stochastic Algorithms

In this section, we consider stochastic algorithms for solving (2) for F (x) = Eζ [f(x, ζ)], which has been
considered in Ma et al. (2020); Huang & Lin (2023); Boob et al. (2023). Due to limit of space, we present
extension and analysis of compositional objective F (x) = 1

n

∑n
i=1 f(Eζ [gi(x, ζ)]) in the Appendix D. Without

loss of generality, we assume the constrained functions are only accessed through stochastic samples. Below,
we let h(x,B) = 1

|B|
∑

ξ∈B h(x, ξ) with a mini-batch of samples B. We make the following assumptions
regarding hk, and f .

Assumption 5.1. For any x, assume there exists hk(x, ξ), and ∂hk(x, ξ), where ξ is random variable, such
that (a) E[hk(x, ξ)] = hk(x) and E[∂hk(x, ξ)] ∈ ∂hk(x); (b) Eξ[|hk(x, ξ) − hk(y, ξ)|2] ≤ L2

h∥x − y∥2; (c)
Eξ[|hk(x, ξ) − hk(x)|2] ≤ σ2

h.

Assumption 5.2. For any x, assume there exists ∂f(x, ζ), where ζ is random variable such that
E[∂f(x, ζ)] ∈ ∂F (x) and Eζ [∥∂F (x) − ∂f(x, ζ)∥2] ≤ σ2

f .

The key to our algorithm design is to notice that the hinge-based exact penalty function β
m

∑m
k=1[hk(x)]+ is

a special case of non-smooth weakly-convex finite-sum coupled compositional objective as considered in Hu
et al. (2024), where the inner functions are hk(x) and the outer function is the hinge function that is monotone
and convex. Hence, we can directly utilize their technique for computing a stochastic gradient estimator of
the penalty function.

The subgradient of the penalty function is given by 1
m

∑m
k=1 β∂[hk(x)]+∂hk(x). However, computing hk(x)

and ∂hk(x) is prohibited due to its stochastic nature or depending on many samples. To this end, we need an
estimator for hk(x) and ∂hk(x). ∂hk(x) can be simply estimated by its mini-batch estimator. The challenge
is to estimate hk(x) using mini-batch samples. The naive approach that estimates hk(x) by its mini-batch
estimator does not yield a convergence guarantee for compositional optimization. To address this issue, we
use the variance reduction technique MSVR for estimating constraint functions hk(x),∀k (Jiang et al., 2022),
which maintains and updates an estimator u2,k for each constraint function hk. We present the key steps in
Algorithm 1. In particular, at the t-th iteration, we construct a random mini-batch Bt

c ⊂ {1, . . . ,m}, then
we update the estimators of hk(xt), k ∈ Bt

c by Step 6 where γ2 ∈ (0, 1), γ′
2 = m−|Bc|

|Bc|(1−γ2) + 1 − γ2, and Bt
2,k is

a mini-batch of samples for estimating hk(xt). Then the gradient of the penalty function and the objective
function at xt can be estimated by Gt

2, G
t
1 in Step 10, where [ut

2,k]′+ is the derivative of the hinge function
at ut

2,k. Then, we can update xt+1 by using SGD with Gt
1 +Gt

2 as the stochastic gradient estimator.

Since the estimator u2,k produced by MSVR is used to approximate the true constraint value during opti-
mization, it is useful to clarify how it behaves over iterations. Our analysis of Lemma B.3 shows that as
long as √

γ2 → 0, η/√γ2 → 0, and t→ ∞, the error |ut
2,k − hk(xt)| converges to zero. This guarantees that

the solution converges to a KKT point asymptotically. For the non-asymptotic case with ϵ > 0, although
ut

2,k may fluctuate around zero near the feasibility boundary, such oscillations can be effectively controlled
by choosing sufficiently small η and γ2. This ensures that the hinge-based constraint hk(xt) ≤ ϵ is reliably
enforced. In our experiments, we did not observe any instability in constraint satisfaction.
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The convergence of the algorithm for finding an ϵ-stationary solution Φθ(x) is given below. The proof of the
theorem is presented in Appendix C.

Theorem 5.3. Suppose Assumptions 3.1 5.1 and 5.2 hold. Let γ2 = O( |B2,k|ϵ4

β4 ), η = O( |Bc||B2,k|1/2ϵ4

β5m ), after
T = O( β6m

|Bc||B2,k|1/2ϵ6 ) iterations, the Algorithm 1 satisfies E[∥∇Φθ(xt̂)∥] ≤ ϵ from some θ = O(1/(ρ0 +ρ1β)),
where t̂ selected uniformly at random from {1, . . . , T}.

Remark: While we state the convergence results for a given ϵ, it is also possible to state the convergence
for a given T . In this case, we can let η, γ2 depend on T , which can yield the same complexity result. In
practice, these hyper-parameters are always tuned to achieve the best performance. For example, in the first
experiment we choose the initial learning rate from {10−3, 10−4} and apply a standard decay schedule; in
the second experiment we use the same magnitude choices as in Li et al. (2024a). These settings are fully
reported in the experimental section, and our results show that they work well in practice.

Combining the results from Theorem 5.3 and 4.2, we demonstrate Algorithm 1 can find a nearly ϵ-KKT solu-
tion to the original problem (1) in the following Corollary. The proof is provided at the end of Appendix C.

Corollary 5.4. Suppose Assumptions 3.1, 5.1, 5.2 and equation 3 hold. Let γ2 = O( |B2,k|ϵ4

β4 ), η =
O( |Bc||B2,k|1/2ϵ4

β5m ) and a constant β > ϵ+LF

δ , after T = O( β6m
|Bc||B2,k|1/2ϵ6 ) iterations, the Algorithm 1 can

find a nearly ϵ-KKT solution xt̂ where condition (i) in Definition 3.3 holds in expectation, conditions (ii)
and (iii) in Definition 3.3 hold with probability 1 − O(ϵ) for the original problem (1). And if |hk(x̄t̂)| < +∞,
the conditions (ii) and (iii) hold in expectation. t̂ is selected uniformly at random from {1, . . . , T}.

Remark: Corollary 5.4 shows that Algorithm 1 can find a nearly ϵ-KKT solution to the original problem (1)
with T = O( 1

ϵ6 ) iterations, which matches the state-of-the-art complexity of double-loop algorithms (Ma
et al., 2020; Boob et al., 2023). It is better than the complexity of O(1/ϵ8) of the single-loop algorithm
proposed in Huang & Lin (2023). It is noticed that Liu & Xu (2025) also achieve the same complexity
of O( 1

ϵ6 ). While both works achieve comparable complexity guarantees, our contribution lies in a different
algorithmic design and problem setting: We directly operate on the hinge penalty instead of a smoothed
surrogate. Specifically, our MSVR estimator is designed for estimating many sequences while only accessing
O(1) sequence for update. This makes it greatly suitable for us to handle many constraint functions. In
contrast, the SPIDER estimator requires accessing all sequences at the same iteration, which is not efficient
for handling many constraint functions.

6 Applications in Machine Learning
6.1 AUC Maximization with ROC Fairness Constraints
We consider learning a model with ROC fairness constraints (Vogel et al., 2021). Suppose the data are
divided into two demographic groups Dp = {(ap

i , b
p
i )}np

i=1 and Du = {(au
i , b

u
i )}nu

i=1, where a denotes the input
data and b ∈ {1,−1} denotes the class label. A ROC fairness is to ensure the ROC curves for classification
of the two groups are the same. Since the ROC curve is constructed with all possible thresholds, we follow
Vogel et al. (2021) by using a set of thresholds Γ = {τ1, · · · , τm} to define the ROC fairness. For each
threshold τ , we impose a constraint that the false positive rate (FPR) and true positive rate (TPR) of the
two groups are close, formulated as the following:

h+
τ (w) :=

∣∣∣ 1
n+

p

np∑
i=1

I{bp
i = 1}σ(sw(ap

i ) − τ) − 1
n+

u

nu∑
i=1

I{bu
i = 1}σ(sw(au

i ) − τ)
∣∣∣− κ ≤ 0

h−
τ (w) :=

∣∣∣ 1
n−

p

np∑
i=1

I{bp
i = −1}σ(sw(ap

i ) − τ) − 1
n−

u

nu∑
i=1

I{bu
i = −1}σ(sw(au

i ) − τ)
∣∣∣− κ ≤ 0,

where sw(·) denotes a parameterized model, σ(z) is the sigmoid function, and κ > 0 is a tolerance parameter.
For the objective function, we use a pairwise AUC loss:

F (w) = −1
|D+||D−|

∑
xi∈D+

∑
xj∈D−

σ(s(w,xi) − s(w,xj)),

9
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Figure 1: Training curves of 15 constraint functions of different methods for fair learning on the Adult
dataset. Top: hinge-based penalty method with different β; Bottom: squared-hinge-based penalty method
with different β. Each curve (e.g., legend train_tpr_th_-3.0) denotes a constraint function hτ+(w) (resp.
with τ = 3); similarly, train_fpr_th_-3.0 represents the constraint function hτ−(w) with τ = 3.
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Figure 2: Training curves of objective and constraint violation of different methods under a parameter setting
when they satisfy the constraints in the end. Dashed lines correspond to objective AUC values (y-axis on
the right) and solid lines correspond to constraint violations (y-axis on the left).
where D+/D− denote the set of positive/negative examples regardless their groups, respectively.

Our proposed penalty method solves the following problem:

min
w

F (w) + 1
2|Γ|

∑
τ∈Γ

β[h+
τ (w)]+ + β[h−

τ (w)]+. (9)

It is notable that the above problem does not directly satisfy the Assumption 5.1. However, the Algorithm 1
with a minor change is still applicable by formulating [h+

τ (w)]+ = f(g(hτ,1(w))), where f(g) = [g]+, g(h) =
|h| − κ and hτ,1(w) = 1

n+
p

∑np

i=1 I{b
p
i = 1}σ(sw(ap

i ) − τ). As a result, f is monotonically non-decreasing and
convex, g is convex, and hτ,1 is a smooth function, which fits another setting in Hu et al. (2024). The only
change to Algorithm 1 is to maintain an estimator of hτ,1, τ ∈ Γ and handle [h−

τ (w)]+ similarly.

Setting. For experiments, we use three datasets, Adult and COMPAS used in Donini et al. (2018), CheX-
pert (Irvin et al., 2019), which contain male/female, Caucasian/non-Caucasian, and male/female groups, re-
spectively. We set Γ = {−3,−2,−1, · · · , 3}. For models, we use a simple neural network with 2 hidden layers
for Adult and COMPAS data and use DenseNet121 for CheXpert data (Yuan et al., 2021). We implement
Algorithm 1 with setting γ2 = 0.8, γ′

2 = 0.1, κ = 0.005. We compare with the algorithm in Li et al. (2024a)
which optimizes a squared-hinge penalty function. For both algorithms, we tune the initial learning rate in
{1e-3, 1e-4} and decay it at 50% and 75% epochs by a factor of 10. We tuned β = {1, 4, 8, 10, 20, 40, 80, 100}
for our hinge exact penalty method and β = {10, 40, 80, 100, 200, 400, 800, 1000} for squared hinge penalty
method. We also compare a double-loop method (ICPPAC) (Boob et al., 2023, Algorithm 4) for Adult and
COMPAS, where we tune their η in {0.1, 0.01}, τ in {1, 10, 100}, µ in {1e-2, 1e-3, 1e-4}, and fix θt to 0.1. We
do not report ICPPAC on the large-scale CheXpert data because it is not efficient due to back-propagation
on 15 individual constraint functions every iteration. We run each method for total 60 epoches with a batch
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Figure 3: Training curves of 5 constraint values in zero-one loss of different methods for continual learning
with non-forgetting constraints when targeting the foggy class. Top: hinge penalty method with different β;
Bottom: squared-hinge penalty method with different β.

Figure 4: Comparison of training curves between the hinge penalty method and the squared-hinge penalty
method when both methods satisfy the constraints in the end. Dashed lines correspond to target accuracy
improvement over the base model (y-axis on the right) and solid lines correspond to constraint violation in
terms of zero-one loss (y-axis on the left).
size of 128. As optimization involves randomness, we run all the experiments with five different random
seeds and then calculate average of the AUC scores and constraint values.

Result. We present the training curves of values of constraint functions in Fig. 1 on Adult dataset to
illustrate which β value satisfies the constraints. For the hinge exact penalty method, when β = 20, all
constraints are satisfied. In contrast, the squared hinge penalty method requires a much larger β = 800
to satisfy the constraints at the end. We include more results on COMPAS and CheXpert in Appendix A.
We compare the training curves of objective AUC values and the constraint violation as measured by the
worst constraint function value at each epoch of different methods in Fig. 2 on different datasets. These
results demonstrate that the hinge exact penalty method has a better performance than the squared hinge
penalty method in terms of the objective AUC value when both have a similar constraint satisfaction, and
is competitive with if not better than ICPPAC method.

6.2 Continual learning with non-forgetting constraints

Continual learning with non-forgetting constraints has been considered in Li et al. (2024a), which is termed
the model developmental safety. We consider the same problem of developing the CLIP model while satisfying
developmental safety constraints:

min
w

F (w,D) := 1
n

∑
(xi,ti)∈D

Lctr(w,xi, ti, T −
i , I−

i ),

s.t. hk := Lk(w, Dk) − Lk(wold, Dk) ≤ 0, k = 1, · · · ,m.
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The Lctr(w,xi, ti, T −
i , I−

i ) is a two-way contrastive loss for each image-text pair (xi, ti) (Yuan et al., 2022),

Lctr(w; xi, ti, T −
i , I−

i ) : = −τ log exp(E1(w,xi)⊤E2(w, ti)/τ)∑
tj∈T −

i
exp(E1(w,xi)⊤E2(w, tj)/τ)

− τ log exp(E2(w, ti)⊤E1(w,xi)/τ)∑
xj∈I−

i
exp(E2(w, tj)⊤E1(w,xi)/τ) ,

where E1(w,x) and E2(w, t) denotes a (normalized) encoded representation of an image x and a text t,
respectively. T −

i denotes the set of all texts to be contrasted with respect to (w.r.t) xi (including itself) and
I−

i denotes the set of all images to be contrasted w.r.t ti (including itself). Here, the data D is a target
dataset. Lk(w,Dk) = 1

nk

∑
(xi,yi)∼Dk

ℓk(w,xi, yi), where ℓk is a logistic loss for the k-th classification task.
We use our Algorithm 2 to optimize the hinge penalty function.

Setting. We follow the exactly same experiment setting as in Li et al. (2024a). We experiment on the large-
scale diverse driving image dataset, namely BDD100K (Yu et al., 2020). This dataset involves classification
of six weather conditions, i.e., clear, overcast, snowy, rainy, partly cloudy, foggy, and of six scene types,
i.e., highway, residential area, city street, parking lot, gas station, tunnel. We consider three objectives
of contrastive loss for finetuning a pretrained CLIP model to target at improving classification of foggy,
tunnel and overcast, respectively. For each task, we use other weather or scene types to formulate the
constraints, ensuring the new model does not lose the performance on these other classes. The data of the
objective for the target class are sampled from the training set of BDD100K and the external LAION400M
dataset (Schuhmann et al., 2021) and the data of constrained tasks are sample from BDD100K, where the
statistics are given in Li et al. (2024a).

For all methods, we fix the learning rate 1e−6 with cosine scheduler, using a weight decay of 0.1. We run
each method for a total of 60 epochs with a batch size of 256 and 400 iterations per epoch. We tune β in
{0.01, 0.1, 1, 5, 10, 20} for our method and in {80, 100, 200, 400, 800} for squared hinge penalty method and
set |Bc| = m, |Bk| = 10, γ1 = γ2 = 0.8, γ′

1 = γ′
2 = 0.1, τ = 0.05.

Results. We present the training curves of the constraint functions as measured by zero-one loss in Fig. 3
for different methods with different β values on targeting foggy class. We can see that when β = 10, our
hinge penalty method will satisfy all constraints. In contrast, the squared hinge penalty method needs a
much larger β = 800 to satisfy all constraints. The constraint curves when targeting overcast and tunnel are
presented in Figs. 5, 6 in Appendix A.

Fig. 4 compares the training curves of the target accuracy improvement between our hinge penalty method
and squared-hinge penalty method when both satisfy the constraints. According to the Fig. 4, our hinge
penalty method converges faster in terms of the objective measure when they exhibit similar constraint
satisfaction in the end.

7 Conclusion and Discussion

In this paper, we have studied non-convex constrained optimization with a weakly-convex objective and
weakly convex constraint functions, which are all stochastic. We developed a hinge-based exact penalty
method and its theory to guarantee finding a nearly ϵ-KKT solution. By leveraging stochastic optimiza-
tion techniques for non-smooth weakly-convex finite-sum coupled compositional optimization problems, we
developed algorithms for solving the penalty function with different structures of the objective functions.
Our experiments on fair learning with ROC fairness constraints and continual learning with non-forgetting
constraints demonstrate the effectiveness of our algorithms compared. One limitation of this work is that the
rate is still worse than non-convex smooth equality constrained optimization. Different from our hinge-based
exact penalty method, there are some relevant works on smoothed proximal and primal–dual methods with
constant penalty parameters(Pu et al., 2024; Huang et al., 2025), which involve any dual variables or pri-
mal–dual updates and make valuable contributions in convex or linearly constrained settings. It is indeed an
interesting future direction to explore whether primal–dual techniques can be extended to fully non-convex
constrained optimization in the stochastic setting, potentially achieving even better convergence guarantees.
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A More Experiment Results

The experiments of AUC Maximization with ROC Fairness Constraints in our paper is run on a GPU server
with 10 A30 24G GPUs. Each seed in this experiment takes about 4 hours to complete. The experiment of
continual learning with non-forgetting constraints is run on two A100 40GB GPUs. Each seed in this setting
takes approximately 12 hours to finish. These runtimes are comparable across all methods since they share
identical model architectures and computational setups, including the learning-rate schedule, weight decay,
batch sizes, and the selections of |Bc| and |Bk|. We tune the penalty coefficient β, which allows us to study
how different methods reduce constraint violations and how their performances in the objective value change
when the constraints are satisfied. This consistent setup provides a fair and controlled comparison of the
optimization behavior of all methods.

We give other experiment results in this Appendix. First, we compute the minimum singular value δ of
the Jacobian matrix of violating constraint functions in our experiments at different solutions to verify the
conditions in Lemma 4.4, as shown in the Table 2. For the first experiment, we compute σ based on the
Adult dataset at the initial model, final model, and two randomly selected intermediate epochs. For our
second experiment, we compute σ when Target Foggy at both the initial and final models. All results
demonstrate that the minimum singular value σ of ∂H(x) remains positive, which is consistent with the
theoretical guarantee stated in Lemma 4.4.

Experiment 1 (Adult) Initial Model Epoch_30 Epoch_45 Final Model
Minimum Singular Values σ of ∂H(x) 0.000648 0.000112 0.000102 0.000101

Experiment 2 (Target foggy) Initial Model Final Model
Minimum Singular Values σ of ∂H(x) 24.1038 16.3397

Table 2: Minimum singular values σ of the Jacobian matrix ∂H(x) at different solution.

For targeting overcast we consider other weather conditions except for foggy as protected tasks due to
that there is a lack of foggy data in BDD100k for defining a significant constraint. For the same reason, we
consider other scence types except gas station as protected tasks for targeting tunnel. We use the mostly same
experiment setting with the case target foggy only difference when tuning β. We tune β = {0.01, 0.1, 1, 10, 20}
for hinge-based penalty method and β = {0.1, 1, 20, 50, 100, 200} for squared hinge penalty method when
target overcast. When target tunnel, we tune β = {0.01, 0.1, 1, 10, 20} for both hinge-based penalty method
for squared hinge penalty method. The training curves of target overcast and tunnel show in Fig. 5 and
Fig. 6. The training curves on dataset COMPAS and Chexpert show in Fig. 7 and Fig. 8 for experiment
ROC Fairness Constraints.

B Technique Lemmas

To prove our main theorem, we need the following lemmas.

The following lemma follows from standard result (Davis & Drusvyatskiy, 2019).
Lemma B.1. Given a ρ weakly convex function ϕ and θ < (ρ)−1, then the envelope ϕθ is smooth with
gradient given by ∇ϕθ(x) = θ−1(x − proxθϕ(x)), where

proxθϕ(x) := arg min
y

{
ϕ(y) + 1

2θ∥y − x∥2
}
. (10)

The smoothness constant of ϕθ is 2−θρ
θ(1−θρ) . In addition, dist(0, ∂ϕ(x̄)) ≤ ∥∇ϕθ(x)∥.

Lemma B.2. [Lemma 1 (Jiang et al., 2022)] Consider update (26). Under Assumptions 3.1, 5.1 and D.1,
by setting γ′

1 = n−|B|
|B|(1−γ1) +(1−γ1), for γ1 ≤ 1

2 , the function value variance Ξt+1 := 1
n

∑n
i=1 ∥ut+1

1,i −gi(xt+1)∥2

can be bounded as

E
[
Ξt+1] ≤ (1 − |B|γ1

n
)E
[
Ξt
]

+
8nL2

g

|B|
E[∥xt+1 − xt∥2] +

2γ2
1 |B|σ2

g

n|B1,i|
. (11)
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Figure 5: Training curves of 4 constraint values in zero-one loss of different methods for continual learning
with non-forgetting constraints when targeting the overcast class. Top: hinge penalty method with different
β; Bottom: squared-hinge penalty method with different β.

Figure 6: Training curves of 4 constraint values in zero-one loss of different methods for continual learning
with non-forgetting constraints when targeting the tunnel class. Top: hinge penalty method with different
β; Bottom: squared-hinge penalty method with different β.
Lemma B.3. [Lemma 1 (Jiang et al., 2022)] Consider the update Line 6 in Algorithm 1. Under As-
sumptions 3.1 and 5.1, by setting γ′

2 = m−|Bc|
|Bc|(1−γ2) + (1 − γ2), for γ2 ≤ 1

2 , the function value variance
Γt+1 := 1

m

∑m
k=1 ∥ut+1

2,k − hk(xt+1)∥2 can be bounded as

E [Γt+1] ≤ (1 − |Bc|γ2

m
)E[Γt] + 8mL2

h

|Bc|
E[∥xt+1 − xt∥2] + 2γ2

1 |Bc|σ2
h

m|B2,k|
. (12)

From the analysis of Lemma 4.5 in Hu et al. (2024), the following two inequalities hold true based on Lemma
B.2 and Lemma B.3. For simplicity, we use a constant M2 ≥ max{2L2

fL
2
g + 2β2L2

h, 2σ2
f + 2L2

F + 2β2L2
h}.

E[ 1
m

m∑
k=1

∥hk(xt) − ut
2,k∥] ≤ (1 − |Bc|γ2

2m )t 1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + 4mLhηM

|Bc|γ1/2
2

+ 2γ1/2
2 σh

|B2,k|1/2 , (13)

and

E[ 1
n

n∑
i=1

∥gi(xt) − ut
1,i∥] ≤ (1 − |B|γ1

2n )t 1
n

n∑
i=1

∥u0
1,i − gi(x0)∥ + 4nLgMη

|B|γ1/2
1

+ 2γ1/2
1 σg

|B1,i|1/2 . (14)
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Figure 7: Training curves of 15 constraint functions of different methods for fair learning on the COMPAS
dataset. Top: hinge-based penalty method with different β; Bottom: squared-hinge-based penalty method
with different β.

Figure 8: Training curves of 15 constraint functions of different methods for fair learning on the CheXpert
dataset. Top: hinge-based penalty method with different β; Bottom: squared-hinge-based penalty method
with different β.
Proof of Lemma 4.1. Notice that we have assumed F (·) to be ρ0-weakly convex in Assumption 3.1. By the
definition of weak convexity, it suffices to show [hk(x)]+ to be ρ1-weakly convex for all k = 1, . . . ,m.

Let [hk(x)]′+ denote any element in ∂[hk(x)]+. Given any k ∈ {1, . . . ,m} and x, x′, following from the
convexity of [·]+, we have

[hk(x)]+ − [hk(x′)]+ ≥ ∂[hk(x′)]+(h(x) − h(x′))
(a)
≥ ∂[hk(x′)]+(⟨∂hk(x′), x− x′⟩ − ρ1

2 ∥x− x′∥2)
(b)
≥ ⟨∂hk(x′)∂[hk(x′)]+, x− x′⟩ − ρ1

2 ∥x− x′∥2,

(15)

where (a) follows from the fact [hk(x′)]′+ ≥ 0 for all x′ and the ρ1-weak convexity of hk(·), and (b) follows
from the fact [hk(x′)]′+ ≤ 1.
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To show the L-Lipschitz continuity of Φ(·), we utilize the LF and Lh-Lipschitz continuity of F (·) and hk(·)
to obtain that for any x, x′ we have

∥Φ(x) − Φ(x′)∥ ≤ ∥F (x) − F (x′)∥ + β

m

m∑
k=1

∥[hk(x)]+ − [hk(x′)]+∥

≤ LF ∥x− x′∥ + β

m

m∑
k=1

∥hk(x) − hk(x′)∥

≤ LF ∥x− x′∥ + β

m

m∑
k=1

Lh∥x− x′∥

≤ (LF + βLh)∥x− x′∥.

(16)

Proof of Lemma 4.3. Our goal is to prove that there exists a constant δ > 0 for any x such that h(x) > 0
(violating the constraint), we have dist(0, ∂h(x)) ≥ δ.

By conditions (i) and (ii) and the fact that h(x) > 0, we have

c < h(x) − min
y
h(y) ≤ dist(0, ∂h(x))2

2µ .

This means ∥dist(0, ∂h(x))| ≥
√

2cµ =: δ.

Proof of Lemma 4.4. Let ξ = (ξ1, . . . , ξm)T , where ξk defined as

ξk =


1 if hk(x) > 0,
[0, 1] if hk(x) = 0,
0 if hk(x) < 0,

∈ [hk(x)]′+.

For any x and any sub-Jacobian G(x) ∈ ∂H(x), let gk(x)⊤ denote its k-th row (so gk(x) ∈ ∂hk(x)).

{ m∑
k=1

ξkgk(x)
}

= {G(x)⊤ξ} ⊂
m∑

k=1
∂[hk(x)]+.

Let V := {x : maxk hk(x) > 0}. For any x ∈ V we have

dist
(

0, 1
m

m∑
k=1

∂[hk(x)]+

)
≥
∥∥∥∥ 1
m
G(x)⊤ξ

∥∥∥∥ ≥ 1
m
λmin

(
G(x)

)
∥ξ∥ ≥ 1

m
λmin

(
G(x)

)
.

By the assumption that dist(0, λmin(∂H(x))) ≥ σ > 0, ∀x such that maxk hk(x) > 0, we have

λmin
(
G(x)

)
≥ σ ∀G(x) ∈ ∂H(x).

Therefore, for all x ∈ V,

dist
(

0, 1
m

m∑
k=1

∂[hk(x)]+

)
≥ σ

m

C Proof of Theorem 5.3

Proof. The objective function

min
x

Φ(x) := Eζ [f(x; ζ)]︸ ︷︷ ︸
F (x)

+ β

m

m∑
k=1

[hk(x)]+︸ ︷︷ ︸
H(x)

. (17)
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For simplicity, denote x̄t := proxΦ/ρ̄(xt). Consider change in the Moreau Envelope

Et[Φ1/ρ̄(xt+1)] = Et[min
x̃

Φ(x̃) + ρ̄

2∥x̃ − xt+1∥2]

≤ Et[Φ(x̄t) + ρ̄

2∥x̄t − xt+1∥2]

= Et[Φ(x̄t) + ρ̄

2∥x̄t − (xt − η(Gt
1 +Gt

2))∥2]

≤ Φ(x̄t) + ρ̄

2∥x̄t − xt∥2 + ρ̄Et[η⟨x̄t − xt, G
t
1 +Gt

2⟩] + η2 ρ̄M
2

2

= Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2 , (18)
where the second inequality uses the bound of Et[∥Gt

1 + Gt
2∥2], which follows from the Lipchitz continuity

and bounded variance, denoted by M2 ≥ 2σ2
f + 2L2

F + 2β2L2
h. Here,

Et[Gt
1] ∈ ∂F (xt), Et[Gt

2] ∈ β

m

m∑
k=1

∂hk(xt)[ut
2,k]′+.

Next we give the bound of ⟨x̄t − xt,Et[Gt
1]⟩ and ⟨x̄t − xt,Et[Gt

2]⟩. To this end, first we give the bound of
⟨x̄t − xt,Et[Gt

1]⟩. Since F is ρ0-weakly convex, we have

F (x̄t) − F (xt) ≥ ∂F (xt)⊤(x̄t − xt) − ρ0

2 ∥x̄t − xt∥2.

Then it follows

∂F (xt)⊤(x̄t − xt) ≤ F (x̄t) − F (xt) + ρ0

2 ∥x̄t − xt∥2. (19)
Next we bound ⟨x̄t − xt,Et[Gt

2]⟩. For given k ∈ {1, . . . ,m}, we get

[hk(x̄t)]+ − [ut
2,k]+ ≥ [ut

2,k]′+(hk(x̄t) − ut
2,k)

≥ [ut
2,k]′+

[
hk(xt) − ut

2,k + ∂hk(xt)⊤(x̄t − xt) − ρ1

2 ∥x̄t − xt∥2
]

≥ [ut
2,k]′+(hk(xt) − ut

2,k) + [ut
2,k]′+∂hk(xt)⊤(x̄t − xt) − ρ1

2 ∥x̄t − xt∥2,

where the first inequality uses the convexity of function [·]+, the second inequality uses the fact [ut
2,k]′+ ≥ 0

and the ρ1-weak convexity of hk(·), and the last inequality uses the fact that 0 ≤ [ut
2,k]′+ ≤ 1. Then it follows

β
1
m

m∑
k=1

[ut
2,k]′+∂hk(xt)⊤(x̄t − xt)

≤ β

m

m∑
k=1

[
[hk(x̄t)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]
. (20)

Adding above two estimation equation 19 and equation 20 back to equation 18, we have

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η
[
F (x̄t) − F (xt) + ρ0

2 ∥x̄t − xt∥2
]

+ ρ̄η
β

m

m∑
k=1

[
[hk(x̄t)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]

= Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η
[
F (x̄t) − F (xt) + ρ0

2 ∥x̄t − xt∥2
]

+ ρ̄η
β

m

m∑
k=1

[
[hk(x̄t)]+ − [hk(xt)]+ + [hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]
.

(21)
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By Lemma 4.1, the function Φ is C-weakly convex. We have (ρ̄−C)−strong convexity of x 7→ Φ(x)+ ρ̄
2 ∥xt −

x∥2

Φ(x̄t) − Φ(xt) =
(

Φ(x̄t) + ρ̄

2∥xt − x̄t∥2
)

−
(

Φ(xt) + ρ̄

2∥xt − xt∥2
)

− ρ̄

2∥x̄t − xt∥2

≤ (C2 − ρ̄)∥x̄t − xt∥2.

Then we get

F (x̄t) − F (xt) + β
1
m

m∑
k=1

([hk(x̄t)]+ − [hk(xt)]+) = Φ(x̄t) − Φ(xt) ≤ (C2 − ρ̄)∥x̄t − xt∥2. (22)

Plugging inequality equation 22 to equation 21, we get
Et[Φ1/ρ̄(xt+1)]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η
(ρ0

2 + β
ρ1

2 + C

2 − ρ̄
)

∥x̄t − xt∥2

+ ρ̄η
β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
.

Setting ρ0
2 + β ρ1

2 + C
2 = ρ̄

2 , we have

Et[Φ1/ρ̄(xt+1)]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η
ρ̄2

2 ∥x̄t − xt∥2 + ρ̄η
β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η

2∥∇Φ1/ρ̄(xt)∥2 + ρ̄η
β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
.

Since 0 ≤ [ut
2,k]′+ ≤ 1, we get

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η

2∥∇Φ1/ρ̄(xt)∥2 + 2ρ̄η β
m

m∑
k=1

∥hk(xt) − ut
2,k∥. (23)

Taking the full expectation on both sides of equation 23 and applying the inequality of equation 13, we have
E[Φ1/ρ̄(xt+1)]

≤ E[Φ1/ρ̄(xt)] + η2 ρ̄M
2

2 − η

2E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄ηβ
[
(1 − |Bc|γ2

2m )t 1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + 4mLhηM

|Bc|γ1/2
2

+ 2γ1/2
2 σh

|B2,k|1/2

]
.

Taking summation from t = 0 to T − 1 yields

E[Φ1/ρ̄(xT )] ≤ Φ1/ρ̄(x0) + η2T
ρ̄M2

2 − η

2

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄ηβ
[ 2m

|Bc|γ2

1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + T

8mLhηM

|Bc|γ1/2
2

+ T
4γ1/2

2 σh

|B2,k|1/2

]
,

where we use the fact that
∑T −1

t=0 (1 − µ)t ≤ 1
µ for all µ ∈ [0, 1]. Lower bounding the left-hand-side by

minx Φ(x) and dividing both sides by T , we obtain

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2]

≤ 2
ηT

[Φ1/ρ̄(x0) − min
x

Φ(x)] + ηρ̄M2 + C
T

mβρ̄

γ2|Bc|
+ C

(mρ̄βηM
|Bc|γ1/2

2
+ βρ̄γ

1/2
2

|B2,k|1/2

)
,
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where C = max{ 8
m

∑m
k=1 ∥u0

2,k−hk(x0)∥, 32Lh, 16σh}. As we set M2 ≥ 2σ2
f +2L2

F +2β2L2
h and ρ0

2 +β ρ1
2 + C

2 =
ρ̄
2 , with γ2 = O( |B2,k|ϵ4

β4 ), η = O( |Bc||B2,k|1/2ϵ4

β5m ) and T = O( β6m
|Bc||B2,k|1/2ϵ6 ), we have

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2] ≤ O(ϵ2).

By Jensen’s inequality, we can get E[∥∇Φ1/ρ̄(xt̂)∥] ≤ O(ϵ), where t̂ is selected uniformly at random from
{1, . . . , T}.

Now, we will prove that xt̂ is a nearly ϵ-KKT solution, where (i) holds in expectation, (ii) and (iii) in
Definition 3.3 hold in high probability, to the original problem (1).

Proof. Proof of Corollary 5.4. Let x̄t̂ = prox1/ρ̄Φ(xt̂). By optimality of x̄t̂, we have

0 ∈ ∂F (x̄t̂) + β

m

∑m

k=1
∂h+

k (x̄t̂) + (x̄t̂ − xt̂)ρ̄.
Since E[∥∇Φ1/ρ̄(xt̂)∥] ≤ O(ϵ), then we have E[∥x̄t̂ − xt̂∥] = E[∥∇Φ1/ρ̄(xt̂)∥]/ρ̄ ≤ ϵ/ρ̄. Then we have

E
[
dist

(
0, ∂F (x̄t̂) + β

m

∑m

k=1
∂h+

k (x̄t̂)
)]

≤ E[∥(x̄t̂ − xt̂)ρ̄∥] ≤ ϵ.

Since ∂h+
k (x̄t̂) = ξk∂hk(x̄t̂) (see (Bauschke et al., 2017, Corollary 16.72)), where

ξk =


1 if hk(x̄t̂) > 0,
[0, 1] if hk(x̄t̂) = 0,
0 if hk(x̄t̂) < 0,

∈ ∂[hk(x̄t̂)]+,

there exists λk ∈ βξk

m ≥ 0,∀k such that E[dist (0, ∂F (x̄t̂) +
∑m

k=1 λk∂hk(x̄t̂))] ≤ ϵ. Thus, we prove condition
(i) in Definition 3.3. Next, let us prove condition (ii) holds with probability 1 − O(ϵ). Since ∃v ∈ ∂F (x̄t̂),
under equation (3), we have

dist
(

0,v + β

m

∑m

k=1
∂h+

k (x̄t̂)
)

≥ dist
(

0, β
m

∑m

k=1
∂h+

k (x̄t̂)
)

− ∥v∥ ≥ βδ − LF ≥ 0. (24)

Therefore,

ϵ ≥ E
[
dist

(
0,v + β

m

∑m

k=1
∂h+

k (x̄t̂)
)]

= E
[
dist

(
0,v + β

m

∑m

k=1
∂h+

k (x̄t̂)
)∣∣max

k
hk(x̄t̂) > ϵ

]
Prob(max

k
hk(x̄t̂) > ϵ)

+ E
[
dist

(
0,v + β

m

∑m

k=1
∂h+

k (x̄t̂)
)∣∣max

k
hk(x̄t̂) ≤ ϵ

]
Prob(max

k
hk(x̄t̂) ≤ ϵ)

≥ Prob(max
k

hk(x̄t̂) > ϵ)(βδ − LF ).
As a result,

Prob(max
k

hk(x̄t̂) > ϵ) ≤ ϵ

βδ − LF
= O(ϵ) (25)

Thus, it holds with probability 1 − O(ϵ) that maxk hk(x̄t̂) ≤ ϵ. When maxk hk(x̄t̂) ≤ ϵ, we have λkhk(x̄t̂) ≤
λk maxk hk(x̄t̂) ≤ O(ϵ) as λk ∈ βξk

m . It then follows from equation 25 that Prob
(
λkhk(x̄t̂) ≥ O(ϵ)

)
≤ O(ϵ) .

This proves that λkhk(x̄t̂) ≤ O(ϵ) with probability 1 − O(ϵ). If |hk(x̄t̂)| < +∞ for any k and x̄t̂, this high
probability result can be replaced by E[maxk hk(x̄t̂)] ≤ O(ϵ) and E[λkhk(x̄t̂)|] ≤ O(ϵ).
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Algorithm 2 Algorithm for solving equation 2 under Setting II
1: Initialization: choose x0, β, γ1, γ2 and η.
2: for t = 0 to T − 1 do
3: Sample Bt ⊂ {1, . . . , n}, Bt

c ⊂ {1, . . . ,m}
4: for each i ∈ Bt do
5: Sample a mini-batch Bt

1,i

6: Update ut
1,i by ut+1

1,i = (1 − γ1)ut
1,i + γ1gi(xt; Bt

1,i) + γ′
1(gi(xt; Bt

1,i) − gi(xt−1; Bt
1,i)),

7: end for
8: Let ut+1

1,i = ut
1,i, i /∈ Bt

9: Compute Gt
1 = 1

|Bt|
∑

i∈Bt ∂gi(xt; Bt
1,i)∂fi(ut

1,i).
10: for each k ∈ Bt

c do
11: Sample a mini-batch Bt

2,k

12: Update ut+1
2,k = (1 − γ2)ut

2,k + γ2hk(xt; Bt
2,k) + γ′

2(hk(xt; Bt
2,k) − hk(xt−1; Bt

2,k))
13: end for
14: Let ut+1

2,k = ut
2,k, k /∈ Bt

c

15: Compute Gt
2 = β

|Bt
c|
∑

k∈Bt
c
∂hk(xt; Bt

2,k)[ut
2,k]′+, Gt

1 = 1
|Bt|

∑
ζ∈Bt ∂f(xt; ζ).

16: Update xt+1 = xt − η(Gt
1 +Gt

2)
17: end for

D Analysis of Setting II

Now, let us consider the second setting where F (x) = 1
n

∑n
i=1 fi(Eζ [gi(x, ζ)]). Indeed, this objective is of

the same form of the penalty function, which is a coupled compositional function. Let gi(x) = Eζ [gi(x, ζ)].
We make the following assumption regarding fi, gi.
Assumption D.1. Assume fi is deterministic and Lf -Lipchitz continuous. For any x,y, Eζ [|gi(x, ζ) −
gi(y, ζ)|2] ≤ L2

g∥x − y∥2, E[|gi(x, ζ) − gi(x)|2] ≤ σ2
g , and either of the following conditions hold: (i)fi is

monotonically non-decreasing and ρf -weakly convex, gi(x) is ρg-weakly convex; (ii)fi is L∇f -smooth, gi(x)
is L∇g-smooth.

To tackle this objective, we also need to maintain and update estimators for inner functions gi(x). At the
t-th iteration, we randomly sample an outer mini-batch Bt ∈ {1, . . . , n}, and draw inner mini-batch samples
Bt

1,i for each i ∈ Bt to construct unbiased estimations gi(xt; Bt
1,i). The variance-reduced estimator of gi(xt)

denoted by ut
1,i is updated by:

ut+1
1,i = (1 − γ1)ut

1,i + γ1gi(xt; Bt
1,i) + γ′

1(gi(xt; Bt
1,i) − gi(xt−1; Bt

1,i)), (26)
where γ1 ∈ (0, 1), γ′

1 = n−|B|
|B|(1−γ1) + 1 − γ1, where |B| = |Bt|. Then, we approximate the gradient of F (xt) by:

Gt
1 = 1

|Bt|
∑
i∈Bt

∂gi(xt; Bt
1,i)∂fi(ut

1,i). (27)

Then we update xt+1 similarly as before by xt+1 = xt − η(Gt
1 +Gt

2). Due to the limit of space, we present
full steps in Algorithm 2.

The convergence of Algorithm 2 under condition (i) of Assumption D.1 is stated in Theorem D.2, and that
under condition (ii) of Assumption D.1 is stated in Theorem D.3.
Theorem D.2. Suppose Assumption 3.1, 5.1, D.1 with condition (i) hold. Let γ1 =
γ2 = O(min{|B1,i|, |B2,k|

β2 } ϵ4

β2 ), η = O(min{ |B|
n , |Bc|

βm } min{|B1,i|1/2,
|B2,k|1/2

β } ϵ4

β3 ). After T =
O(max{ β

|B1,i|1/2 ,
β2

|B2,k|1/2 ,
1

|B1,i| } max{ n
|B| ,

βm
|Bc| }

β3

ϵ6 ) iterations, the Algorithm 2 satisfies E[∥∇Φθ(xt̂)∥] ≤ ϵ

from some θ = O(1/(ρ0 + ρ1β)), where t̂ is selected uniformly at random from {1, . . . , T}
Remark: Combining the above result and that in Theorem 4.2, Algorithm 2 needs T = O( 1

ϵ6 ) to achieve
a nearly ϵ-KKT solution to the original problem equation 1. It is better than the complexity of O(1/ϵ7) of
the single-loop algorithm considered in Li et al. (2024a).
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Theorem D.3. Suppose Assumption 3.1, 5.1 and D.1 with condition (ii) hold. Let
γ = O(min{ |B2,k|

β4 ϵ4,
|B1,i|

β ϵ2}), η = O(min{ |B||B1,i|1/2ϵ2

nβ2 ,
|Bc||B2,k|1/2ϵ4

β5m }). After T =
O(max{ mβ6

|B2,k|1/2|Bc|ϵ6 ,
nβ3

|B||B1,i|1/2ϵ4 ,
nβ2

|B||B1,i|ϵ4 }) iterations, the Algorithm 2 satisfies E[∥∇Φλ(xt̂)∥] ≤ ϵ

from some λ = O(1/(ρ0 + ρ1β)), where t̂ is selected uniformly at random from {1, . . . , T}

Proof of Theorem D.2. .

The objective function is minx Φ(x,D) := 1
n

n∑
i=1

fi(gi(x))︸ ︷︷ ︸
F (x)

+ β

m

m∑
k=1

[hk(x)]+︸ ︷︷ ︸
H(x)

.

For simplicity, denote x̄t := proxΦ/ρ̄(xt). Consider change in the Moreau envelope

Et[Φ1/ρ̄(xt+1)] = Et[min
x̃

Φ(x̃) + ρ̄

2∥x̃ − xt+1∥2]

≤ Et[Φ(x̄t) + ρ̄

2∥x̄t − xt+1∥2]

= Et[Φ(x̄t) + ρ̄

2∥x̄t − (xt − η(Gt
1 +Gt

2))∥2]

≤ Φ(x̄t) + ρ̄

2∥x̄t − xt∥2 + ρ̄Et[η⟨x̄t − xt, G
t
1 +Gt

2⟩] + η2 ρ̄M
2

2

= Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2 , (28)
where the second inequality uses the bound of Et[∥Gt

1 + Gt
2∥2], which follows from the Lipchitz continuity,

denoted by M2 ≥ 2L2
fL

2
g + 2β2L2

h.

Et[Gt
1] ∈ 1

n

n∑
i=1

∂fi(ut
1,i)⊤∂gi(xt)⊤, Et[Gt

2] ∈ β

m

m∑
k=1

∂hk(xt)[ut
2,k]′+.

Next we give the estimation of ⟨x̄t − xt,Et[Gt
1]⟩ and ⟨x̄t − xt,Et[Gt

2]⟩. For given i ∈ {1, . . . , n}, we have

fi(gi(x̄t)) − fi(ut
1,i) ≥ ∂fi(ut

1,i)⊤(gi(x̄t) − ut
1,i) − ρf

2 ∥gi(x̄t) − ut
1,i∥2

≥ ∂fi(ut
1,i)⊤(gi(x̄t) − ut

1,i) − ρf ∥gi(x̄t) − gi(xt)∥2 − ρf ∥gi(xt) − ut
1,i∥2

≥ ∂fi(ut
1,i)⊤

[
gi(xt) − ut

1,i + ∂gi(xt)⊤(x̄t − xt) − ρg

2 ∥x̄t − xt∥2
]

− ρfL
2
g∥x̄t − xt∥2 − ρf ∥gi(xt) − ut

1,i∥2

≥ ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i) + ∂fi(ut
1,i)⊤∂gi(xt)⊤(x̄t − xt) − (ρgLf

2 + ρfL
2
g)∥x̄t − xt∥2 − ρf ∥gi(xt) − ut

1,i∥2,

where the first inequality holds by ρf -weakly convex of fi, the second inequality holds by the monotonically
non-decreasing of fi and the third inequality holds by ρg-weakly convexity of gi, the last inequality holds by
and 0 ≤ ∂fi(ut

i) ≤ Lf . Then it follows

1
n

n∑
i=1

∂fi(ut
1,i)⊤∂gi(xt)⊤(x̄t − xt) ≤ 1

n

n∑
i=1

[
fi(gi(x̄t)) − fi(ut

1,i) − ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i)

+ (ρgLf

2 + ρfL
2
g)∥x̄t − xt∥2 + ρf ∥gi(xt) − ut

1,i∥2
]
. (29)

Next we bound ⟨x̄t − xt,Et[Gt
2]⟩. For given k ∈ {1, . . . ,m}, from equation 20, we have

β
1
m

m∑
k=1

[ut
2,k]′+∂hk(xt)⊤(x̄t − xt) ≤ β

m

m∑
k=1

[
[hk(x̄t)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]
.

(30)
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Combining inequality equation 28, equation 29 and equation 30 yields

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2

+ ρ̄η
1
n

n∑
i=1

[
fi(gi(x̄t)) − fi(ut

1,i) − ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i) + (ρgLf

2 + ρfL
2
g)∥x̄t − xt∥2 + ρf ∥gi(xt) − ut

1,i∥2
]

+ ρ̄η
β

m

m∑
k=1

[
[hk(x̄t)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]

= Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η
1
n

n∑
i=1

(ρgLf

2 + ρfL
2
g)∥x̄t − xt∥2 + ρ̄η

β

m

m∑
k=1

ρ1

2 ∥x̄t − xt∥2

+ ρ̄η
1
n

n∑
i=1

[
fi(gi(x̄t)) − fi(gi(xt)) + fi(gi(xt)) − fi(ut

1,i) − ∂fi(ut
1,i)⊤(gi(xt) − ut

i) + ρf ∥gi(xt) − ut
1,i∥2

]
+ ρ̄η

β

m

m∑
k=1

[
[hk(x̄t)]+ − [hk(xt)]+ + [hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
. (31)

From Lemma 4.1, the function Φ is C-weakly convex. We have (ρ̄ − C)−strong convexity of x 7→ Φ(x) +
ρ̄
2 ∥xt − x∥2

Φ(x̄t) − Φ(xt) ≤ (C2 − ρ̄)∥x̄t − xt∥2.

We get

1
n

n∑
i=1

fi(gi(x̄t)) − fi(gi(xt)) + β
1
m

m∑
k=1

([hk(x̄t)]+ − [hk(xt)]+) = Φ(x̄t) − Φ(xt) ≤ (C2 − ρ̄)∥x̄t − xt∥2. (32)

Plugging inequalities equation 32 to equation 31, we get

Et[Φ1/ρ̄(xt+1)]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η
(ρgLf

2 + ρfL
2
g + β

ρ1

2 + C

2 − ρ̄
)

∥x̄t − xt∥2

+ ρ̄η
1
n

n∑
i=1

[
fi(gi(xt)) − fi(ut

1,i)) − ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i) + ρf ∥gi(xt) − ut
1,i∥2

]
+ ρ̄η

β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
.
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Set ρgLf

2 + ρfL
2
g + β ρ1

2 + C
2 = ρ̄

2 , we have

Et[Φ1/ρ̄(xt+1)]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η
ρ̄2

2 ∥x̄t − xt∥2

+ ρ̄η
1
n

n∑
i=1

[
fi(gi(xt)) − fi(ut

1,i)) − ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i) + ρf ∥gi(xt) − ut
1,i∥2

]
+ ρ̄η

β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η

2∥∇Φ1/ρ̄(xt)∥2

+ ρ̄η
1
n

n∑
i=1

[
fi(gi(xt)) − fi(ut

1,i)) − ∂fi(ut
1,i)⊤(gi(xt) − ut

1,i) + ρf ∥gi(xt) − ut
1,i∥2

]
+ ρ̄η

β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
.

Using the Lipschitz continuity of fi and the fact that 0 ≤ [ut
2,k]′+ ≤ 1, we get

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η

2∥∇Φ1/ρ̄(xt)∥2 + 2ρ̄Lfη
1
n

n∑
i=1

∥gi(xt) − ut
1,i∥

+ ρ̄ρfη
1
n

n∑
i=1

∥gi(xt) − ut
1,i∥2 + 2ρ̄η β

m

m∑
k=1

∥hk(xt) − ut
2,k∥. (33)

Taking the full expectation on both sides of equation 33 and adding the result of Lemma B.2, equation 14
and equation 13, we have

E[Φ1/ρ̄(xt+1)]

≤ E[Φ1/ρ̄(xt)] + η2 ρ̄M
2

2 − η

2E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄η
[
Lf (1 − |B|γ1

2n )t 1
n

n∑
i=1

∥u0
1,i − gi(x0)∥ + 4nLgLfMη

|B|γ1/2
1

+ 2Lfγ
1/2
1 σg

|B1,i|1/2

]
+ ρ̄η

[
ρf (1 − |B|γ1

n
)t 1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2 +

8n2η2L2
gρfM

2

|B|2γ1
+

2γ1σ
2
gρf

|B1,i|

]
+ 2ρ̄ηβ

[
(1 − |Bc|γ2

2m )t 1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + 4mLhηM

|Bc|γ1/2
2

+ 2γ1/2
2 σh

|B2,k|1/2

]
.

Taking summation from t = 0 to T − 1 yields

E[Φ1/ρ̄(xT )]

≤ Φ1/ρ̄(x0) + η2T
ρ̄M2

2 − η

2

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄η
[
Lf

2n
|B|γ1

1
n

n∑
i=1

∥u0
1,i − gi(x0)∥ + T

8nLgLfηM

|B|γ1/2
1

+ T
4Lfγ

1/2
1 σg

|B1,i|1/2

]
+ ρ̄η

[
ρf

n

|B|γ1

1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2 + T

8n2η2L2
gρfM

2

|B|2γ1
+ T

2γ1σ
2
gρf

|B1,i|

]
+ 2ρ̄ηβ

[ 2m
|Bc|γ2

1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + T

8mLhηM

|Bc|γ1/2
2

+ T
4γ1/2

2 σh

|B2,k|1/2

]
,
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where we use the fact that
∑T −1

t=0 (1 −µ) ≤ 1
µ . Lower bounding the left-hand-side by minx Φ(x) and dividing

both sides by T , we obtain

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(wt)∥2]

≤ 2
ηT

[Φ1/ρ̄(x0) − min
x

Φ(x)] + ηρ̄M2 + Cρ̄
Tγ

max{ n

|B|
,
βm

|Bc|
}

+ C
(
ρ̄
ηM

γ1/2 max{ n

|B|
,
βm

|Bc|
} + n2η2M2ρ̄

|B|2γ
+ γ1/2ρ̄max{ 1

|B1,i|1/2 ,
β

|B2,k|1/2 } + ρ̄
γ

|B1,i|

)
.

where we set γ1 = γ2 = γ and

C = max{8Lf
1
n

n∑
i=1

∥u0
1,i − gi(x0)∥, 2ρf

1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2, 8 1

m

m∑
k=1

∥u0
2,k − hk(x0)∥

32LgLf , 16L2
gρf , 16Lfσg, 4σ2

gρf , 16Lh, 16σh}.

As we set M2 ≥ 2L2
fL

2
g + 2β2L2

h and ρgLf

2 + ρfL
2
g + β ρ1

2 + C
2 = ρ̄

2 , with γ = O(min{|B1,i|, |B2,k|
β2 } ϵ4

β2 ),
η = O(min{ |B|

n , |Bc|
βm } min{|B1,i|1/2,

|B2,k|1/2

β } ϵ4

β3 ) and T = O(max{ β
|B1,i|1/2 ,

β2

|B2,k|1/2 ,
1

|B1,i| } max{ n
|B| ,

βm
|Bc| }

β3

ϵ6 ),
we have

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2] ≤ O(ϵ2).

By Jensen’s inequality, we can get E[∥∇Φ1/ρ̄(xt̂)∥] ≤ O(ϵ), where t̂ is selected uniformly at random from
{1, . . . , T}.

Now, we give the proof of Theorem D.3.

Proof of Theorem D.3. From equation 28, also denote x̄t := proxΦ/ρ̄(xt) and consider change in the Moreau
envelope, we have

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2 , (34)
where the gradient can be bounded by M , where M2 ≥ 2L2

fL
2
g + 2β2L2

h and

Et[Gt
1] ∈ 1

n

n∑
i=1

∇fi(ut
1,i)⊤∇gi(xt)⊤, Et[Gt

2] ∈ β

m

m∑
k=1

∂hk(xt)[ut
2,k]′+.

Next we give the bound of ⟨x̄t − xt,Et[Gt
2]⟩ and ⟨x̄t − xt,Et[Gt

2]⟩. It’s easy to verify that F is L∇F -smooth,
where L∇F = LfL∇g + L2

gL∇f . Then we have

F (xt) ≤ F (x̄t) + ⟨∇F (x̄t),xt − x̄t⟩ + L∇F

2 ∥x̄t − xt∥2

= F (x̄t) + ⟨∇F (x̄t) − ∇F (xt),xt − x̄t⟩ + L∇F

2 ∥x̄t − xt∥2

+ ⟨ 1
n

n∑
i=1

∇fi(gi(xt))⊤∇gi(xt)⊤ − 1
n

n∑
i=1

∇fi(ut
1,i)⊤∇gi(xt)⊤,xt − x̄t⟩

+ ⟨ 1
n

n∑
i=1

∇fi(ut
1,i)⊤∇gi(xt)⊤,xt − x̄t⟩.
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Then, we have

Et[⟨Gt
1, x̄t − xt⟩] = ⟨ 1

n

n∑
i=1

∇fi(ut
1,i)⊤∇gi(xt)⊤, x̄t − xt⟩

≤ F (x̄t) − F (xt) + L∇F

2 ∥x̄t − xt∥2 + L∇F ∥x̄t − xt∥2 + L∇fLg
1
n

n∑
i=1

∥gi(xt) − ut
1,i∥∥x̄t − xt∥

≤ F (x̄t) − F (xt) + (2L∇F + 2L∇fLg)∥x̄t − xt∥2 + 2L∇fLg
1
n

n∑
i=1

∥gi(xt) − ut
1,i∥2.

From the equation 20, we have

Et[⟨Gt
2, x̄t − xt⟩] = β

1
m

m∑
k=1

[ut
2,k]′+∂hk(xt)⊤(x̄t − xt)

≤ β

m

m∑
k=1

[
[hk(x̄t)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]
.

Adding above two estimation to equation 34, we have

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + ρ̄η⟨x̄t − xt,Et[Gt
1]⟩ + ρ̄η⟨x̄t − xt,Et[Gt

2]⟩ + η2 ρ̄M
2

2

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2

+ ρ̄η
[
F (x̄t) − F (xt) + (2L∇F + 2L∇fLg)∥x̄t − xt∥2 + 2L∇fLg

1
n

n∑
i=1

∥gi(xt) − ut
1,i∥2

]
+ ρ̄η

β

m

m∑
k=1

[
[hk(x̄t)]+ − [hk(xt)]+ + [hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k) + ρ1

2 ∥x̄t − xt∥2
]
. (35)

Since smoothness of F implies the weakly convexity of F , we still have (ρ̄ − C)−strong convexity of x 7→
Φ(x) + ρ̄

2 ∥xt − x∥2

Φ(x̄t) − Φ(xt) ≤ (C2 − ρ̄)∥x̄t − xt∥2.

Adding above inequality to equation 35, we have

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 + ρ̄η(2L∇F + 2L∇fLg + β
ρ1

2 + C

2 − ρ̄)∥x̄t − xt∥2

+ 2L∇fLgρ̄η
1
n

n∑
i=1

∥gi(xt) − ut
1i∥2 + ρ̄η

β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]
.

If we set 2L∇F + 2L∇fLf + β ρ1
2 + C

2 = ρ̄
2 , we have

Et[Φ1/ρ̄(xt+1)] ≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − ρ̄η
ρ̄

2∥x̄t − xt∥2

+ 2L∇fLgρ̄η
1
n

n∑
i=1

∥gi(xt) − ut
1i∥2 + ρ̄η

β

m

m∑
k=1

[
[hk(xt)]+ − [ut

2,k]+ − [ut
2,k]′+(hk(xt) − ut

2,k)
]

≤ Φ1/ρ̄(xt) + η2 ρ̄M
2

2 − η

2∥∇Φ1/ρ̄(xt)∥2 + 2L∇f ρ̄η
1
n

n∑
i=1

∥gi(xt) − ut
1i∥2 + 2ρ̄η β

m

m∑
k=1

∥hk(xt) − ut
2,k∥,

where we use the fact 0 ≤ [ut
2,k]′+ ≤ 1.
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Adding the result of Lemma B.2 and inequality equation 13, we get

E[Φ1/ρ̄(xt+1)] ≤ E[Φ1/ρ̄(x̄t)] + η2 ρ̄M
2

2 − η

2E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄η
[
L∇fLg(1 − |B|γ1

n
)t 1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2 +

8n2η2L2
gL∇fLgM

2

|B|2γ1
+

2γ1σ
2
gL∇fLg

|B1,i|

]
+ 2ρ̄ηβ

[
(1 − |Bc|γ2

2m )t 1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + 4mL2

hηM

|Bc|γ1/2
2

+ 2γ1/2
2 σh

|B2,k|1/2

]
.

Taking summation from t = 0 to T − 1 yields

E[Φ1/ρ̄(xT )]

≤ E[Φ1/ρ̄(x0)] + η2T
ρ̄M2

2 − η

2

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2]

+ 2ρ̄η
[
L∇fLg

n

|B|γ1

1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2 + T

8n2η2L3
gL∇fM

2

|B|2γ1
+ T

2γ1σ
2
gL∇fLg

|B1,i|

]
+ 2ρ̄ηβ

[ 2m
|Bc|γ2

1
m

m∑
k=1

∥u0
2,k − hk(x0)∥ + T

8mLhηM

|Bc|γ1/2
2

+ T
4γ1/2

2 σh

|B2,k|1/2

]
,

where we use the fact that
∑T −1

t=0 (1 − µ) ≤ 1
µ .

Lower bounding the left-hand-side by minx Φ(x) and dividing both sides by T , we obtain

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(wt)∥2]

≤ 2
ηT

[Φ1/ρ̄(x0) − min
x

Φ(x)] + ηρ̄M2 + Cρ̄
Tγ

max{ n

|B|
,
βm

|Bc|
}

+ C
(mβηρ̄M

|Bc|γ1/2 + n2η2M2ρ̄

|B|2γ
+ βρ̄γ1/2

|B2,k|1/2 + γρ̄

|B1,i|

)
,

where we use γ1 = γ2 = γ and

C = max{4L∇fLg
1
n

n∑
i=1

∥u0
1,i − gi(x0)∥2, 8 1

m

m∑
k=1

∥u0
2,k − hk(x0)∥

32L∇fL
3
g, 32Lh, 8L∇fLgσ

2
g , 16σh}.

As we set M2 ≥ 2L2
fL

2
g +2β2L2

h and 2L∇F +2L∇fLf +β ρ1
2 + C

2 = ρ̄
2 , then with γ = O(min{ |B2,k|

β4 ϵ4,
|B1,i|

β ϵ2}),
η = O(min{ |B||B1,i|1/2ϵ2

nβ2 ,
|Bc||B2,k|1/2ϵ4

β5m }) and T = O(max{ mβ6

|B2,k|1/2|Bc|ϵ6 ,
nβ3

|B||B1,i|1/2ϵ4 ,
nβ2

|B||B1,i|ϵ4 }), we have

1
T

T −1∑
t=0

E[∥∇Φ1/ρ̄(xt)∥2] ≤ O(ϵ2).

By Jensen’s inequality, we can get E[∥∇Φ1/ρ̄(xt̂)∥] ≤ O(ϵ), where t̂ is selected uniformly at random from
{1, . . . , T}.
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