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Abstract

Recently, it was shown that the advantage function can be understood as quantifying
the causal effect of an action on the cumulative reward. However, this connection
remained largely analogical, with unclear implications. In the present work, we
examine this analogy using the Exogenous Markov Decision Process (ExoMDP)
framework, which factorizes an MDP into variables that are causally related to
the agent’s actions (endogenous) and variables that are beyond the agent’s control
(exogenous). We demonstrate that the advantage function can be expressed using
only the endogenous variables, which is, in general, not possible for the (action-
)value function. Through experiments in a toy ExoMDP, we found that estimating
the advantage function directly can facilitate learning representations that are
invariant to the exogenous variables.

1 Introduction

Imagine playing the game of chess in an outdoor environment, where the lighting conditions are
subject to change due to the time of the day, the weather, or maybe the shadow of an object passing by.
While these exogenous conditions can change the way we perceive the chessboard, an experienced
player should be able to quickly recognize the endogenous state of the game irrespective of the
exogenous conditions.

As the field of machine learning is moving towards increasingly high-dimensional and complex
problems, learning representations that capture the causal relationships between observations and
downstream tasks can be crucial to generalization or robustness [Scholkopf et al., [ 2021].

Recently, |Pan et al.| [2022] demonstrated that the advantage function in reinforcement learning (RL)
can be understood as quantifying the causal effect of actions on the cumulative reward through an
analogy to the treatment effect in the Neyman-Rubin Causal Model [Splawa-Neyman et al.| [1990,
Rubin, [1974]]. We shall examine this analogy more closely using the Exogenous Markov Decision
Process [Efroni et al.,[2022] framework, which gives precise definitions of endogenous and exogenous
variables.

Our contributions can be summarized as follows:

* We show that the advantage function is endogenous in nature in the sense that it can be
expressed using only the endogenous variables of an ExoMDP.

* We demonstrate empirically that Direct Advantage Estimation can facilitate learning repre-
sentations that are invariant to exogenous variables.
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2 Background

A Markov Decision Process (MDP) is a tuple (S, A, p, ), where S is the state space, A is the action
space, p : S X A X § — R is the transition probability (commonly written as p(s’|s,a)), and
r: S x A — Ris the reward function [Sutton et al.|[1998]]. For simplicity, we will consider MDPs
that reach absorbing states with probability 1. The following analysis can also be trivially extended
to discounted infinite horizon problems. The goal of RL is to learn a policy, a mapping from states to
distributions over actions, that maximizes the expected cumulative reward. More formally, we seek
7: S — A(A) (A denotes distributions over the given set) such that J(7) = E-[>",2 r(s¢, ar)] is
maximized. Typically, this is achieved by iteratively estimating the expected return given the policy
(Q7(s,a) = Ex[>"=yrt|so=s,a0=a] or V™(s) = Ex[>",2, ¢|so=s]) and improving the policy
based on the estimated return.

2.1 Exogenous MDP

To give a more detailed view of the data-generating process, we adopt the Exogenous MDP (ExoMDP)
framework [Efroni et al.| [2022]]. In an ExoMDP, the state space is factorized into two components
S = 8. x S,;, namely the endogenous component and the exogenous component. These two
components differ in how they depend on the actions, more specifically, the transition probability
is factorized into p(s;11|s¢, ar) = pe(s§y1]5§, a¢)pz (s, 1|57 ), meaning that only the transitions of
the endogenous component depend on the actions but not the exogenous component. Similarly, the
reward function can be decomposed into (s, a) = r.(s¢, a)+7,(s* ||} See Figure/[]for a comparison
between the graphical models of MDPs and ExoMDPs. One consequence of this factorization is that,
if the factorization of a given ExoMDP is known a priori, then it can be solved by solely considering
the endogenous part of the MDP, which can drastically reduce the complexity of the problem when
|Send‘ < ‘Sexo | .

One interesting aspect of ExoMDP is that it enables us to quantitatively determine how much of the
rewards are caused by the agent’s actions. More specifically, from Figure[T] it can be seen that the
exogenous rewards are not caused by the actions as there are no chains connecting these variables.
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Figure 1: Graphical models of MDPs (left) and ExoMDPs (right). Colors and superscripts indicate
whether the variable or relationship is endogenous (red) or exogenous (blue).

2.2 Direct Advantage Estimation (DAE)

Aside from Q™ and V'™, another function of interest in RL is the advantage function, defined by
A™(s,a) = Q™ (s,a) — V™(s) Baird|[[1994]. It was shown that the advantage function can reduce
the variance of policy optimization methods and has been widely used in practice [Greensmith et al.,
2004, [Kakade and Langford, 2002]. More recently, |Pan et al.[[2022] showed that the advantage
function can be understood as the causal effect of an action on the return through an analogy with the
treatment effect from the Neyman-Rubin causal model [[Splawa-Neyman et al., 1990} [Rubin, {1974].

'In the original definition, only 7. is used. Here, we use a more general definition by allowing an exogenous
reward function 7.



This analogy relies on the fact that both the treatment effect and the advantage function compare the
outcome of taking a certain treatment (action) to what would have happened otherwise. However, the
connection between the causal effect and the advantage function remains largely an analogy, and the
extent to which it holds remains unanswered.

In addition to the analogy, they also showed that the advantage function can be estimated directly by
minimizing the following constrained objective:

0o 2
Vﬂ', AT = argminE <Z (r(st,at) — fl(st,at)) — V(So)) (])
V,A t=0
subject to Y~ A(s, a)m(als) = 0. 2)
acA

It was reported that estimating the advantage function this way can lead to superior policy optimization
performance in various domains compared to previous methods.

3 Endogeneity of the Advantage Function

To demonstrate the endogenous nature of the advantage function, we show that: (1) The advantage
function is invariant to exogenous rewards, and (2) If the policy is endogenous, i.e., it only depends on
the endogenous variables, then the advantage function can be expressed solely using the endogenous
part of the ExoMDP.

Lemma 1. Given an ExoMDP (S = S, x S;, A,p = pepsz, ™ = Te + 7z ), and a policy 7, then the
following holds:
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where s{ is the endogenous state at time ¢.
Proof. By definition,
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The last equation holds, as r, does not depend on the action. This shows that the advantage function
only depends on the endogenous rewards, which concludes the proof. O

For example, shifting the reward function by a constant (i.e., 7(s, a) = r(s,a) + ¢), has no effect on
the advantage function, as constant rewards do not depend on actions. For the second property,

Theorem 1. Following the notations in Lemma (1} if there exists 7. : Sc — A(A) such that
m(als = (s%,s)) = m.(a|s®), then there exists AT : S, x A — R such that

AT (s, a) = Af (s, a) ©)
forall s = (s¢,s%) € S,a € A

Proof. Since w(als) = m.(a|s®), we have

p(siilse) = Y p(sialsea)m(als) = Y p(silsy, a)melals)) = p(siyqlsy).  ®)
acA acA



This means that the distribution of the endogenous states no longer depends on the exogenous states.
This can also be seen from the causal graph in Figure[I|by breaking the arrows from s§ to a,. Through
a similar argument, we have p(s§, |s;) = p(s{; |s{) for any ¢’ > t. Following the result from Lemma[]
we have

A™(s,a) =E Zre(sf,at) so=s,a0=a| — E Zre(sf,at) S0=5 )
" li=o " li=o
=E Zre(sf,at) sg=s%ap=a| — E ere(sf,at) sg=s%| = AT¢(s%a). (10)
“ Lt=0 " Li=0

O

We note that, in general, neither Q™ nor V'™ satisfy this kind of equivalence, as exogenous rewards
are also accumulated in the expectatiorﬂ However, by taking the difference of the two, we essentially
remove the exogenous component, as in the case of the advantage function. This property suggests
that a representation of the state that depends solely on the endogenous part of the ExoMDP is enough
to estimate the advantage function. An interesting question to ask is, then, whether this holds in
the opposite direction, i.e., does estimating the advantage function lead to representations that are
endogenous? In the next section, we shall examine this question empirically using a toy ExoMDP.

4 Experiments

In this section, we compare the representations learned by estimating the Q-function with Monte
Carlo methods, and the advantage function with DAE using neural networks.

Environment We use a toy linear finite-horizon ExoMDP with S = S, &S, = R @ R0, discrete
action space A = {0, 1,2, 3}, deterministic linear transitions with s’ = (T , & T3)(s) (T¢,q and T},
are 16 x 16 matrices), reward functions 7 (s, a) = (r¢,q ® 74)(s) (re,q and 7, are linear functionals),
and horizon H = 16. To assess whether the learned representation can disentangle endogenous
variables from exogenous variables, we use a mixing function M such that the agent does not directly
observe the underlying state variables but only M (s). Here, we consider three different mixing
functions: (1) Identity (no mixing), (2) Linear transformation (a random matrix), and (3) Nonlinear
transformation (a randomly initialized neural network with one hidden layer).

Agent We use a neural network with two hidden layers of size 128 with tanh activations and
an output layer of size |A| = 4 to approximate Q™ or A™. The output of the last hidden layer,
denoted ¢(s) € R'?8, is referred to as the learned representation. The agents are trained online with
trajectories sampled using the uniform policy. For each gradient step, we sample 64 trajectories and
compute the gradient with respect to the objective functions (Equationor (Q(syr, ap) — Zf: ;,1 re)?
in the case of learning the Q-function). In sum, we perform 15625 gradient steps, using 64 x 15625 =
10° sampled trajectories.

Results We measure how much the learned representation depends on the state variables through
the Jacobian matrix D¢(s). The results are summarized in Figure 2| From the Jacobian matrices,
we see that learning Q™ and A™ can lead to drastically different representations. In the case of
¢¢, we found both endogenous and exogenous variables to have similar levels of influence on the
representation, with a slightly stronger dependence on the endogenous variables. On the other hand,
we see D¢ 4 behaves very differently for endogenous and exogenous variables, where the entries
are close to zero for the exogenous variables while the entries for the endogenous variables remain
comparable to D¢g. This suggests that the representations learned by DAE tend to be more causal in
the sense that they capture the dependencies on the endogenous variables while being more invariant
to exogenous ones. Perhaps more surprising are the cases when mixing of state variables is involved,
we see DAE is still capable of learning representations that have weak dependencies on the exogenous
variables.

’In the original work by |Efroni et al.|[2022], it was assumed that all rewards are endogenous, which makes it
possible to express both @™ and V™ using only the endogenous variables.
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Figure 2: Comparison of the Jacobian matrices of the learned representations under different mixing
functions and training objectives. Left: Average of element-wise absolute value of D¢(s) over
endogenous/exogenous variables (element-wise) and sampled trajectories throughout training. Lines
and dashes indicate endogenous and exogenous variables, respectively. Colors indicate the objective
Q™ (blue) and A™ (orange). Curves are averaged over 25 runs. Right: The element-wise absolute
value of the Jacobian matrices (averaged over 64 trajectories). The Y-axes label the dimension of the
representation. Subscripts denote the learning objective.



5 Related work

Causality is ubiquitous in RL, as the interactive nature of RL requires the agent to estimate the effects
of its actions on the environment. One major line of work in the intersection of causality and RL
lies in the study of decision-making in the presence of unobserved confounders, which dates back
at least to|Splawa-Neyman et al.|[1990]], [Rubin|[[1974]. More recently, similar problems have been
studied in the bandit setting [Bareinboim et al., 2015/ |Sen et al., 2017]], or the sequential setting
[Tennenholtz et al., 2020, Zhang and Bareinboim, 2016|]. Another line of work, to which our work is
more related, has focused on learning representations that encode the causal relationship between
states and downstream tasks [Zhang et al., |2020bla,  Trimponias and Dietterich, [2023].

6 Discussion

In the present work, we have demonstrated that the advantage function is endogenous in nature, a
property that is not shared by the (action-)value function. This property led us to hypothesize that esti-
mating the advantage function directly can lead to representations that are also endogenous. Through
experiments in a simulated environment, we found that it indeed facilitates learning representations
that are endogenous. Finally, we note some limitations of this work. (1) While we demonstrated
that learning the advantage function via DAE can lead to endogenous representations, a theoretical
justification for why this is the case remains desirable. (2) One motivation to factorize an MDP into
an ExoMDP is to reduce the effective problem size and improve sample efficiency; however, it is not
clear how the learned representations can be utilized for more efficient deep RL algorithms.
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