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ABSTRACT

A commonly employed approach within the domain of transfer learning is fine-
tuning the meticulous crafting of novel loss functions or the subtle adjustment
of either all or a part of the parameters in the pre-trained network. However,
most of the current fine-tuning methods typically require a substantial amount of
downstream data, which can be limiting in real-world scenarios. When dealing
with limited data, an appropriate regularization method can be used to enhance
a model’s generalization capabilities and reduce the risk of overfitting. In this
paper, we propose a SparsE-FeAture-based Regularization (SEFAR) method that
can significantly enhance the performance of any fine-tuning method when there
is a limited amount of downstream data available. Our proposed method is simple
to implement: it leverages the results generated by sparse features to self-distill
the results produced by complete features. This paper also provides insight into
how the SEFAR works: one is a relation to the generalization bound of a kernel
regression problem, and the other is the flatness of the minima. Additionally,
extensive empirical experiments demonstrate the benefits of this method for fine-
tuning on various datasets using different backbones. The code will be released
soon.

1 INTRODUCTION

Due to the release of large-scale datasets like ImageNet (Krizhevsky et al., 2012), fine-tuning has
become a popular approach in the field of transfer learning, which updates some or all of the pa-
rameters of a pre-trained network on downstream data or tasks. Previous methods have focused on
designing specific loss functions or identifying the most suitable parameters for updating, thereby
enhancing the fine-tuning performance. Most of these papers are based on the default assumption
that sufficient images are available for fine-tuning, which means their experiments are conducted
with training on the entire downstream training dataset. However, we claim that this assumption
is not reasonable in some practical scenarios in which the downstream images are hard to collect,
such as satellite image recognition, diagnosis of skin diseases. In this paper, we concentrate on
a more realistic scenario: fine-tuning using a limited set of downstream images. To mitigate the
risk of overfitting on these constrained images, we introduce SparsE-FeAture-based Regularization
(SEFAR) and incorporate it into existing fine-tuning techniques to improve their performance.

Figure 1 illustrates the fundamental idea of SEFAR: While retaining the original fine-tuning ap-
proach, a sparse binary mask is utilized to obtain a sparse version of the original features. Subse-
quently, using these sparse features, a task-specific head is employed to compute the same task loss
function. At the same time, we use the predictions generated from these sparse features to distill the
predictions generated from the complete features. The additional classification and self-distillation
loss function computed using the sparse features together constitute our proposed SEFAR, which
serves as a regularization technique for the original fine-tuning process.

Through experiments and theory, we have demonstrated the feasibility and effectiveness of SE-
FAR as a regularization method. From the theoretical perspective, SEFAR essentially provides
independent regularization for the original features F and the sparse features K. SEFAR can be re-
garded as an approach that operates within a balanced framework, optimizing both the Rademacher-
complexity-based regularizer and the isometry of the sparse features. The learning of the sparse
features will assist in regularizing the label information. Regarding the experiment, we find that
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Figure 1: (a) The fundamental principle of SEFAR: While retaining the original network and loss
function, a new classification head, W2, is introduced. It takes a sparse feature matrix K (K =
F�M, where M is a sparse binary mask) as the input to compute the classification loss. Furthermore,
the classification results generated by W2 are utilized to concurrently distill those produced by the
original features F. (b) The schematic diagram illustrating the generation of sparse feature K.

when the training sample size is limited, whether in the traditional fine-tuning paradigm or in the
meta-learning-based fine-tuning paradigm, SEFAR can enhance the classification accuracy of vari-
ous fine-tuning methods. Furthermore, SEFAR exhibits a beneficial impact across different datasets
and with various backbone architectures. This validates its efficacy as a regularization method that
can function as a plug-and-play module, seamlessly integrated into any fine-tuning method to en-
hance performance when insufficient training images are available. We have explored why SEFAR
can improve the classification performance: Introducing SEFAR not only automatically optimizes
the upper bound of generalization error during the training process but also makes the model to
converge to the region with a flatter loss.

The contributions of our paper are as follows:

• In response to the challenge of limited fine-tuning data in real-world scenarios, we in-
troduce SEFAR, a straightforward yet effective regularization method. It can serve as a
plug-and-play module, seamlessly integrated into various fine-tuning approaches, thereby
enhancing their classification performance.

• We provide some insight into the mechanism of how the SEFAR works well. First, we show
a theoretical insight that one can regard SEFAR as a method for learning a data-dependent
kernel, thereby reducing the upper bound of a certain generalization error. Second, we
empirically show that the SEFAR prefers flat minima.

• We experimentally demonstrate that SEFAR can be used across different datasets, back-
bones, and fine-tuning methods to consistently improve the classification performance
while fine-tuning with insufficient images.

2 RELATED WORK

Fine-tuning With the release of large-scale datasets, pretraining–fine-tuning has become a com-
monly used technique in transfer learning and exhibits formidable capabilities in downstream tasks.
To address the issue of catastrophic forgetting, L2-SP (Xuhong et al., 2018) employs pretrained
model parameters as constraints. By introducing an L2 norm between the pretrained model pa-
rameters and the fine-tuned model parameters, it brings the pretrained model’s parameters closer to
those of the original model, thus enabling the network to retain its prior knowledge. Kirkpatrick
et al. (2017) introduced elastic weight consolidation (EWC). When EWC is applied in fine-tuning,
it becomes L2-SP-Fisher, as it computes the Fisher matrix of the network weights. Instead of pa-
rameters, DELTA (Li et al., 2019) constrains the behavior of the corresponding layer, specifically,
the features generated by that layer itself. Batch spectral shrinkage (BSS), proposed by Chen et al.
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(2019), constrains the singular values in the network features. Song et al. (2021) proposed a hy-
brid forward network for alternately updating the layer weights of the student model. It takes into
account the dynamic balance between knowledge transfer losses and task-specific losses during
training. TransTailor (Liu et al., 2021) not only updates the weights of the pretrained model but
also modifies the network’s structure by pruning and fine-tuning the pretrained model based on the
importance of target-aware weights. Inspired by FitNets (Romero et al., 2014), L2T (Jang et al.,
2019) explores which layers between the original network and the fine-tuned network should be
aligned for knowledge transfer as well as which features and how much knowledge from each layer
should be transferred. Spottune (Guo et al., 2019) introduces a policy network to make routing deci-
sions, determining whether to forward images to the fine-tuning or pretrained layers. Adafilter (Guo
et al., 2020b) employs an LSTM network to selectively fine-tune convolutional filters based on the
activations from the previous layer, optimizing them individually for each example. Based on the
gradient distance, Wan et al. (2019) proposed that models can be fine-tuned more effectively if we
can constrain the difference between cross-entropy loss and the L2 gradient. Co-tuning (You et al.,
2020) constrains the mapping between different semantic spaces of the pretrained domain and the
downstream task domain. Surgical tuning (Lee et al., 2022) selectively fine-tunes different layers in
the network for various types of domain gaps.

3 SPARSE-FEATURE-BASED REGULARIZATION (SEFAR)

We assume that the loss function L1 represents the loss function of a particular fine-tuning method.
The original features generated by the backbone are denoted as F, while the sparse version of these
features is denoted as K, where K = F �M. M is a sparse binary mask. W1 is the classification
head for computing L1 with F and W2 is for computing SEFAR with K and F. Ŷ1 = W1F and
Ŷ2 = W2K represent the computed results of two classification heads, respectively.

Our SEFAR is a plug-and-play regularization method that can be applied to any fine-tuning method.
In L1, we calculate all the losses associated with the original fine-tuning method, such as cross-
entropy loss and another regularization term. SEFAR consists of two components: L2 and the
distillation loss L3 from Ŷ2 to Ŷ1. L2 represents the cross-entropy loss between Ŷ2 and the ground
truth Y. The distillation loss L3 is calculated as follows:

L3 = KL(Ŷ1/t, Ŷ
⇤
2/t), (1)

where Ŷ⇤
2 denotes the gradient-detached version of Ŷ2, and t is the temperature coefficient. So, the

total loss function L can be expressed as follows:

L = L1 + L2 + �L3, (2)

where � is a hyperparameter to balance the different loss components. Please note that self-
distillation L3 here does not necessarily have to be measured using KL divergence; other distance
metrics, such as mean squared error (MSE) loss, can also be used. This has also been confirmed
through experiments presented in Section 4.2. The pipeline is represented in Algorithm 1.

4 EXPERIMENTS

4.1 RESULTS OF FINE-TUNING METHODS

Conventional fine-tuning regime We utilize a pretrained ResNet-18 model on ImageNet-1K as the
backbone, conducting experiments on five datasets, namely EuroSAT (Helber et al., 2019), CropDis-
ease (Mohanty et al., 2016), ISIC (Codella et al., 2019), ChestX (Wang et al., 2017), and CIFAR-10,
with and without SEFAR. Various fine-tuning techniques are applied to show the effectiveness of
SEFAR, including Baseline (optimizing all network parameters by minimizing the cross-entropy
loss), linear probing (keeping the backbone parameters fixed and only updating the parameters of
the linear classifier), L2-SP (Xuhong et al., 2018), DELTA (Li et al., 2019), and surgical fine-tuning
(Lee et al., 2022).

We first randomly select 80% of each dataset for model testing. From the remaining 20%, we com-
pletely randomly sample 200 images for model training without considering the number of classes
in the datasets. To ensure the credibility of our results, we conduct ten experiments with different
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Algorithm 1: Pipeline of Fine-tuning with SEFAR
Input: Images: X, Label: Y
Ouput: A model fine-tuned with SEFAR
F: Feature generated by the backbone
m(·): A pre-trained backbone
W1: Classification head 1
W2: Classification head 2
df : The dimensionality of a feature vector
maskgen(d1, d2): Returning a sparse binary mask with the shape of (d1, d2)

for X, Y in dataloader do

M maskgen(X.shape[0], df )
F m(X)
K F � M
L L1(W1F,Y) + L2(W2K,Y) + �L3(W1F,W2K.detach())
Update the network

end for

(a) (b) (c)

Figure 2: t-SNE results of (a) Baseline w/o SEFAR’s feature F, (b) Baseline w/ SEFAR’s original
feature F and (c) Baseline w/ SEFAR’s sparse feature F̂ on the testing dataset of EuroSAT. It is
evident that the sparse feature clustering exhibits better performance, making it a suitable choice as
the teacher for distillation. This also implies that, in scenarios with limited data for fine-tuning, ran-
domly dropping some dimensions to generate sparse features may result in enhanced discriminative
capabilities.

random seeds and reported the final average accuracy. In each set of control experiments, with and
without SEFAR, we use the same hyperparameters, including random seeds (from 0 to 9), batch size
(200), learning rate (0.001), image size (224), and optimizer (Adam). In other words, all settings
are identical except for the presence or absence of SEFAR. To ensure the model can be fine-tuned
adequately, we train the network for 500 epochs in each experiment. Unless otherwise specified,
all subsequent experiments are conducted using similar settings. The performance can be found
in Table 1, and SEFAR can consistently improve classification accuracy across different datasets
and fine-tuning methods by up to 3.42%. Baseline w/ SEFAR’s t-SNE Van der Maaten & Hinton
(2008) visualization of F and K is shown in Figure 2. Even though, theoretically, SEFAR primarily
provides regularization for the features F and K themselves, in the context of linear probing experi-
ments where only fixed features are generated, we observe a positive impact of SEFAR. We attribute
this to the fact that the random masks introduced by SEFAR also effectively apply dropout to clas-
sification head W2. Consequently, learning W2 indirectly influences the learning of classification
head W1, leading to improved classification performance.

To investigate the impact of dropout introduced by SEFAR on the enhancement of linear probing,
we conduct experiments using random binary masks M with varying levels of sparsity and different
distillation temperatures on the EuroSAT dataset, as illustrated in Figure 3. We observe that within
a substantial range of hyperparameter values (Sparsity: 0.1⇠0.7, Temperature: 0.5⇠10, Weight:
0.1⇠10), SEFAR consistently improves the fine-tuning performance of linear probing.

n-way k-shot fine-tuning manner Besides the conventional fine-tuning manner, we also conduct
experiments with the n-way k-shot manner, which is often studied in relation to the few-shot prob-
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Figure 3: Classification accuracy of linear probing with different hyperparameters on the EuroSAT
dataset. (a) Different sparsity values of random binary masks with a temperature coefficient of 1
and weight of 1. (b) Different temperature values with a sparsity value of 0.3 and weight of 1. (c)
Different weight values with a sparsity value of 0.3 and temperature of 1. The dashed line represents
the performance without using SEFAR. The results indicate that, even from a theoretical perspective,
SEFAR introduces regularization to feature learning. The dropout introduced by SEFAR in linear
probing consistently improves fine-tuning performance within a substantial range of hyperparameter
values.

lem (Vinyals et al., 2016; Snell et al., 2017). Specifically, we randomly build 600 episodes. We
randomly select n = 5 classes in each episode and then chose k = 1 or 5 samples from each
class as the support set for fine-tuning the model. Subsequently, we select c samples from each
class to construct the query set for calculating the classification accuracy. On the support set in
each episode, baseline and linear probing are applied to tune the ResNet-10 pretrained on Mini-
ImageNet (Guo et al., 2020a) using the SGD optimizer with an initial learning rate of 0.01. The
performance is represented by the average classification accuracy over the 600 episodes within the
95% confidence interval. The performance can be seen in Table 2. Except for the 5-shot experiment
on the CropDisease dataset, SEFAR can improve accuracy in all other groups.

4.2 ABLATION STUDY

In this section, we first address three important questions: a) whether each component of SEFAR
has a positive impact, b) whether other distance functions can be used instead of KL divergence in
the distillation loss, and c) whether SEFAR can be applied while fine-tuning Vision Transformer
models.

To verify a), we explore the impact of L2 and L3 on the results. To validate b), we replace the
KL divergence in L3 with MSE loss. To verify c), we introduce the ViT-S as the backbone. All
validation experiments are conducted based on the Baseline method. The performance is presented
in Table 4. The table illustrates that both L2 and L3 are crucial in our method. In addition, MSE
loss can be utilized as the self-distillation term as well. Moreover, SEFAR is not confined to CNN-
based networks but can also be applied to Vision Transformers. These results demonstrate SEFAR’s
excellent scalability.

We also verify the classification performance of the original classification head W1 and the addi-
tional classification head W2 introduced by SEFAR, as shown in Table 3. Obviously, when using
SEFAR, both with W1 and W2, there is an improvement in classification performance compared to
not using SEFAR. Furthermore, in most cases, the random masking has a minimal impact on W2.

4.3 WHY DOES SEFAR GENERALIZE BETTER?

Section 4.3.1 has theoretically demonstrated that SEFAR can regularize the learning of features. In
this section, we will illustrate how SEFAR enhances the generalization of fine-tuning methods from
the perspective of changes in the upper bound of the generalization error and flatness.
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EuroSAT ISIC CropDisease ChestX CIFAR-10

Base
w/o SEFAR 83.55 70.85 68.69 36.72 55.65
w/ SEFAR 86.05 72.23 71.61 38.37 58.06

� +2.5 +1.38 +2.92 +1.65 +2.41

linear probing
w/o SEFAR 76.69 69.76 64.07 35.74 63.35
w/ SEFAR 78.04 70.07 64.51 36.60 63.98

� +1.35 +0.31 +0.44 +0.86 +0.63

L2-SP
w/o SEFAR 83.21 71.00 63.43 38.45 60.08
w/ SEFAR 85.29 71.70 66.85 39.05 62.78

� +2.08 +0.70 +3.42 +0.60 +2.70

DELTA
w/o SEFAR 88.93 70.96 72.22 37.32 68.46
w/ SEFAR 90.22 72.29 74.10 38.19 70.05

� +1.29 +1.33 +1.88 +0.87 +1.59

Surgical Finetuning
w/o SEFAR 86.78 71.55 68.64 36.79 61.00
w/ SEFAR 87.49 72.30 72.08 37.66 62.57

� +0.71 +0.75 +3.44 +0.87 +1.57

Table 1: The classification accuracy results (%) for five fine-tuning methods with and without SE-
FAR. � represents the gain introduced by SEFAR. The table demonstrates that SEFAR consistently
enhances classification performance across different fine-tuning methods and datasets (w/ SEFAR:
with SEFAR, w/o SEFAR: without SEFAR). The hyperparameter configuration of w/ SEFAR is pre-
sented in Table 5 in the Appendix.

EuroSAT ISIC CropDisease ChestX

Baseline
w/o SEFAR 51.82±0.84 31.53±0.56 60.93±0.93 21.66±0.36

w/ SEFAR 52.70±0.78 32.31±0.56 62.12±0.88 22.06±0.36

linear probing
w/o SEFAR 57.27±0.90 31.34±0.56 66.93±0.93 21.65±0.38

w/ SEFAR 59.97±0.85 31.97±0.61 68.22±0.85 21.99±0.39

EuroSAT ISIC CropDisease ChestX

Baseline
w/o SEFAR 78.57±0.61 48.70±0.60 89.83±0.53 25.36±0.40

w/ SEFAR 79.74±0.57 49.43±0.61 89.42±0.54 25.73±0.41

linear probing
w/o SEFAR 77.74±0.61 43.80±0.58 89.71±0.54 24.88±0.40

w/ SEFAR 78.05±0.61 44.83±0.57 89.90±0.54 25.39±0.42

Table 2: Comparison of 5-way 1-shot (above) and 5-shot (below) experiments between w/ SEFAR
and w/o SEFAR. This table demonstrates that SEFAR can improve the classification accuracy in
meta-task fine-tuning as well. The hyperparameter configuration of w/ SEFAR is pre- sented in
Table 6 in the Appendix.
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w/o SEFAR w/ SEFAR (W1) w/ SEFAR (W2, w/ mask) w/ SEFAR (W2, w/o mask)

Baseline 83.55 86.05 85.45 85.77

linear probing 76.69 78.04 73.78 78.27

L2-SP 83.21 85.29 85.40 86.00

Delta 88.93 90.22 90.11 90.20

Surgical 86.78 87.49 87.84 88.06

Table 3: Ablation study on which classification head works in SEFAR. w/ SEFAR (W1) means
incorporating SEFAR and testing it using the classification head W1. w/ SEFAR (W2, w/ mask)
means incorporating SEFAR, using the classification head W2, and simultaneously applying ran-
dom masking during testing. Similarly, w/ SEFAR (W2, w/o mask) represents testing without the
random mask. The table demonstrates that W1 and W2 possess comparable classification abilities.
Furthermore, even when introducing random masks during testing, W2 exhibits strong robustness.

4.3.1 SEFAR REDUCES THE UPPER BOUND OF GENERALIZATION ERROR

Next, we will provide a theoretical explanation for the effectiveness of SEFAR. For simplicity, sup-
pose one-class (output) case with the MSE loss. The SEFAR loss is represented as follows:

L(w1,w2;F,F) = ||w1F� y||2 + ||w2K� y||2 + ||w1F� s||2 + 2�1kw1k2 + �2kw2k2, (3)

where F,K 2 Rd⇥b, w1,2 2 Rd, and K = M � F. M can be sparse. s is a constant vector.
In the current case, detached s is equal to w2K. Then, one can easily obtain the solution w⇤

i :=
argminw⇤

i
L(w1,w2; f, k) with fixed features (F,K):

w⇤
1 = (s+ y)(F>F+ �1I)

�1F>/2, w⇤
2 = y(K>K+ �2I)

�1K>. (4)

Then, substituting them back, we have

L(w⇤
1,w

⇤
2;F,K) = �1R1(F) + �2R2(K) + const., (5)

with

R1(F) :=
1

2
(s+ y)>(F>F+ �1I)

�1(s+ y), R2(K) = y>(K>K+ �2I)
�1y. (6)

This function form of R1(F) (and R2(K)) is well known in the literature on kernel methods (Hu
et al., 2020). If K>K is a (untrained) positive-definite kernel function, R(K) is an upper bound
of the generalization error known as the Rademacher complexity. Thus, we can interpret that the
SEFAR effectively regularizes these bounds through the training of F and K. Note that we have
the regularizers for F and K, respectively. First, R2(K) enforces the features K to achieve data-
dependent kernel minimizing of the generalization bound. Second, R1(F) enforces the features F
to achieve the data-dependent kernel for self-distilled output y + s. Although the training makes
the kernels dependent on data and we lose the rigorous meaning of the Rademacher complexity, it is
still interesting that the SEFAR is regarded as an effective regularizer for the features through these
bounds.

To interpret the interaction between head 2 (K) and head 1 (F), note that the detached s with w⇤
2

is given by s⇤ = y(K̇>K̇ + �2IB)�1K̇>K̇, where K̇ means detached. Substituting this s⇤ into
R1(F), we can explicitly state the following:

R1(F) = y>(2I� �2(K̇
>K̇+ �2I)

�1)(F>F+ �1I)
�1(2I� �2(K̇

>K̇+ �2I)
�1)y. (7)

Denote the eigenvalue decomposition of K>K by K>K = U>⇤kU. Considering Equation 2, we
have the following:

2I� �2(K̇
>K̇+ �2I)

�1 =: U>⇤0U, (8)
where (⇤0)ii = 2 � �2/(�k,ii + �2). Here, for simplicity, assume that the eigenvalues of K>K
are divided into two components, �k,ii � �2 and �k,ii ⌧ �2, which is proven to be reasonable in
Figure 4. We denote the set of the former indices by " and the set of the latter ones by #. Then, we
have the following:

U>⇤0U ⇠ 2U>
" U" +U>

# U# = I+U>
" U". (9)
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Figure 4: Eigenvalue distributions of K>K, where �2 is set to 0.01 and log(�2) = �2 (the orange
dotted line). The horizontal axis represents the logarithm (base 10) of the eigenvalue e. Because
some of the eigenvalues e are equal to zero, to avoid issues with logarithms, we manually filter them
out. In each of the five datasets, there are two peaks in their distributions, and all of them are far
from log(�2) = �2.

Then, R1(F) becomes the following:

y>(I+U>
" U")(F

>F+ �I)�1(I+U>
" U")y. (10)

If the kernel F>F is fixed, one can regard this as the generalization bound with an “effective la-
bel” ỹ := (I + U>

" U")y/2. If the head 2 with the sparsity has a low-dimensional feature space
denoted by ", we can interpret that the training of the feature F in head 1 tries to regularize the label
information along with this " space.

Remark on Rademacher complexity for generalization. Due to the ability of Rademacher
complexity to assess the generalization capability of a class of machine learning models, it can be
employed as an optimization objective to mitigate the issue of overfitting. Zhai & Wang (2018)
showed that the Rademacher complexity is bounded by a function related to the dropout rate and
used this bound as a regularizer. LocalDrop (Yousefi et al., 2018) represents a novel approach for
regularizing neural networks based on local Rademacher complexity. In our SEFAR framework,
through derivation, we also observe that SEFAR introduces terms based on Rademacher complexity
into the overall loss function, allowing it to optimize the upper bound of the generalization error
directly.

Formula 5 demonstrates that the introduction of SEFAR not only optimizes the overall loss function
but also optimizes the upper bounds of both F and K. Figure 6 presents the changes in upper
bounds during the training process for both baseline with SEFAR and linear probing with SEFAR
using Formulas 6.

To mitigate the influence of randomness, we conduct ten experiments and reported the average val-
ues. During the training of linear probing with SEFAR, the values of R1(F) and R2(K) remain
relatively constant. This indicates that if the features are fixed, these upper bounds cannot be natu-
rally optimized through the learning of the classification head. Conversely, in the training of Baseline
w/ SEFAR, in which the backbone is trainable, R1(F) and R2(K) can be optimized. Based on the
comprehensive analysis above, we conclude that the optimization introduced by SEFAR on the up-
per bound, along with the dropout in the classification head, collectively contribute to the improved
fine-tuning performance of the network.

4.3.2 SEFAR MAKES THE MODEL CONVERGE TO THE REGION WITH FLATTER LOSS

We also give the one-dimensional visualization of flatness (Li et al., 2018) of Baseline w/ SEFAR
and w/o SEFAR across all the datasets. Note that the flatness has been used in the literature of deep
learning as a metric for measuring generalization performance (Keskar et al., 2016; Jiang et al.,
2019). Figure 5 illustrates that, when the same perturbation is added to the model, the training loss
curves of Baseline w/ SEFAR (blue curves) are lower and flatter compared to those of Baseline w/o
SEFAR (orange curves). This indicates that SEFAR enhances the model’s resistance to perturbations
during the training process, making it more robust. This may also be one of the reasons why SEFAR
contributes to better model generalization.
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Figure 5: Comparison of training loss between Baseline with SEFAR (blue curves) and without
SEFAR (orange curves) after adding the same perturbation across five datasets. All the curves of
Baseline with SEFAR increase at a flatter rate than those of Baseline without SEFAR.

L1 L2 L3 (KL) L3 (MSE) ResNet-18 ViT-S

X 83.55 52.18

X X 84.73 53.98

X X X 86.05 55.59

X X X 85.86 55.88

Table 4: Ablation study on which compo-
nent in SEFAR works and whether SEFAR
can work on Vision Transformer. ignifies
that this loss term is retained during training,
while a blank space indicates the removal of
this term. L3 (KL) means that distillation
uses the KL divergence between the predic-
tions of sparse features and original features.
L3 (MSE) means that the distillation loss is
calculated using MSE distance.
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Figure 6: R1(F) and R2(K) of Baseline with
SEFAR and linear probing with SEFAR, respec-
tively. In linear probing, because the backbone is
frozen, R1(F) and R2(K) do not decrease, which
indicates that they cannot be minimized through
the learning of the classification head. In Baseline,
where the backbone is trainable, SEFAR causes
the upper bound of the generalization error to de-
crease. This is one of the reasons that SEFAR im-
proves the model’s generalization ability.

5 CONCLUSION

In this paper, we introduce SEFAR to enhance the classification performance of various fine-tuning
methods across five datasets. We also provide a theoretical proof for SEFAR, which introduces and
minimizes an upper bound of generalization error related to Rademacher complexity in the final loss
function. Due to computational limitations, future research will investigate whether SEFAR has a
positive impact on larger-scale models and more types of tasks. From a theoretical perspective, we
also aim to explore more properties of feature eigenvalues.

6 THE DERIVATION OF EQUATION 5

Since the solution of w1 can be obtained from Equation 4, then we have:

||w⇤
1F� y||2 + ||w⇤

1F� s||2 + 2�1kw⇤
1k2

= kyk2 + ksk2 � 2(w⇤
1)

>F>y � 2(w⇤
1)

>F>s+ 2(w⇤
1)

>F>Fw⇤
1 + 2�1(w

⇤
1)

>w⇤
1,

= kyk2 + ksk2 � 1

2
(s+ y)(F>F+ �1I)

�1F>F(s+ y)

= kyk2 + ksk2 + �1R(F).

(11)

So we can get Equation 5 with Equation 6

9



Under review as a conference paper at ICLR 2024

REFERENCES

Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting
meets negative transfer: Batch spectral shrinkage for safe transfer learning. In NIPS, 2019.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gut-
man, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv:1902.03368, 2019.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: Transfer learning through adaptive fine-tuning. In CVPR, 2019.

Yunhui Guo, Noel C Codella, Leonid Karlinsky, James V Codella, John R Smith, Kate Saenko,
Tajana Rosing, and Rogerio Feris. A broader study of cross-domain few-shot learning. In ECCV,
2020a.

Yunhui Guo, Yandong Li, Liqiang Wang, and Tajana Rosing. Adafilter: Adaptive filter fine-tuning
for deep transfer learning. In AAAI, 2020b.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 2019.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on
noisily labeled data with generalization guarantee. In ICLR, 2020.

Yunhun Jang, Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. Learning what and where to transfer.
In International conference on machine learning, 2019.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. In ICLR, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
ICLR, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. 2012.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint

arXiv:2210.11466, 2022.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In NIPS, 2018.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan.
Delta: Deep learning transfer using feature map with attention for convolutional networks. arXiv

preprint arXiv:1901.09229, 2019.

Bingyan Liu, Yifeng Cai, Yao Guo, and Xiangqun Chen. Transtailor: Pruning the pre-trained model
for improved transfer learning. In AAAI, 2021.

Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning for image-based
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