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ABSTRACT

To unlearn certain entities in large language models (LLMs), model editing is per-
formed by subtracting an entity-specific task vector (TV)–the parameter difference
between the entity-tuned model and the original model–from the full LLM. Un-
like training-based methods, it avoids costly iterative training. However, as the TV
can overlap with LLM parameters essential for retaining knowledge, model edit-
ing may suffer from over-forgetting. Observing that each parameter may exhibit
different importance for entities to be unlearned versus retained, in this paper, we
propose a parameter-wise weighted model editing (WME) mechanism to rescale
the TV, allowing flexible adjustment of the editing magnitude. These parameter-
wise weights quantify the relative importance of each parameter for forgetting
versus retention, estimated via gradients (i.e., WME-grad) or the diagonal Fisher
information approximation (i.e., WME-fisher). Furthermore, we extend WME to
a more general form and provide a discussion of its effectiveness. Results on
unlearning benchmarks show that WME outperforms the vanilla TV baseline, and
even surpasses popular training-based unlearning methods in both forgetting qual-
ity and model utility. While preserving the efficiency of model editing-based ap-
proaches, WME maintains the retentive capacity for retaining knowledge, offering
a new perspective for both LLM unlearning and flexible LLM editing. Our code
is available at https://anonymous.4open.science/r/WME.

1 INTRODUCTION

Large language models (LLMs) can continually acquire new knowledge through post-training (Lu
et al., 2024; Luo et al., 2024); however, the integration of newly ingested data may raise concerns
regarding privacy, intellectual property, or misinformation (Karamolegkou et al., 2023; Patil et al.,
2023). Due to their tendency to memorize training data, LLMs may inadvertently disclose sensitive
information when queried. LLM unlearning (Liu et al., 2025; Yao et al., 2024b) aims to erase the
memory of specified entities from LLMs to mitigate such risks, as illustrated in Figure 1(a).

Some training-based LLM unlearning methods achieve forgetting of specific entities (i.e., forget set)
by designing carefully crafted unlearning loss functions (Zhang et al., 2024b; Fan et al., 2024; Yao
et al., 2024b; Yang et al., 2025) and incorporating entities to be retained (i.e., retain set) to ensure that
unrelated knowledge in the model remains unaffected (Liu et al., 2022). Another counterpart, model
editing, avoids multiple iterative training epochs with extensive data, as illustrated in Figure 1(b),
where full model and final model represent LLMs before and after unlearning, respectively. This
approach achieves unlearning by subtracting from the full model a specific task vector (TV) (Ilharco
et al., 2023) for the forget set. TV refers to the parameter difference between a model finetuned
solely on the forget set (hereafter FgtOnly) and the original pretrained model (hereafter Origin).

However, the potential correlation and coupling between the entity to be unlearned and other knowl-
edge may cause the subtracted task vector to also contain changes in parameters crucial for pre-
serving other knowledge, thereby risking excessive forgetting of entities that should be retained.
Figure 2(a) takes the task of unlearning 1% of entities from the TOFU (Maini et al., 2024) dataset
as an example. The top 30 parameters with the largest values in the negated task vector (i.e., −V ,
which is added to the full model θfull to obtain the final model θfinal = θfull + (−V )) were selected
as examples. For these parameters, we plotted both the values in the negated TV and the gradient
magnitudes with respect to the retain set (i.e., the retain gradient) of the same parameters. The re-
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Figure 1: The task of LLM unlearning
and mainstream method categories. (a)
depicts the problem setting, where the
objective is to erase knowledge of spe-
cific entities. (b) contrasts training-based
approaches with model editing methods.
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Figure 2: Bottlenecks of model editing-based methods.
(a) illustrates that TV may steer the model toward the
ascent direction of the retained gradient, leading to over-
forgetting. (b) shows parameter-wise divergence of TV–
retain gradient relations, rendering the problem non-
trivial and not solvable by a uniform weight.

sults show that, for most of these parameters, the direction indicated by the negated TV aligns with
the gradient ascent direction for the retain set. This implies that directly adding the negated TV to
the full model would lead to forgetting of the entities that are supposed to be retained. A simple
solution for it is to add a uniform weight ω ∈ R satisfying 0 < ω < 1 to TV to reduce the effect
of TV (i.e., θfinal = θfull + ω · (−V )), thereby balancing between unlearning and retaining. How-
ever, as shown in Figure 2(b), we find that such a simple approach may not be perfect as it ignores
parameter-wise divergence. By plotting the negated TV and the retain gradient corresponding to
different parameters in LLM, we observe that different parameters exhibit varying relations between
TV and retain gradients, suggesting that a more sophisticated paradigm is required.

After formulating the problem, in Section 3, we propose the parameter-wise weighted model editing
(WME) mechanism as a solution to the aforementioned bottleneck. WME assigns different weights
to each parameter in TV and performs a parameter-wise multiplication (i.e., θfinal = θfull + W ⊙
(−V )) to flexibly control the magnitude of editing, where W is a matrix with the same size as
θfull. Parameters that are more pivotal for unlearning can be assigned higher weights, whereas those
crucial for retention receive lower weights, aiming to facilitate both unlearning and retention.

In Section 4, we detail how parameter-wise weights are estimated using either absolute gradients
(which captures the importance of parameters given forget or retain sets, abbreviated as WME-grad)
or the diagonal Fisher information approximation (which reflects the sensitivity of parameters to
forget or retain sets, abbreviated as WME-fisher). Furthermore, we extend WME to a generalized
formulation with alternative weighting functions and discuss its effectiveness.

In Section 5, we evaluate WME on two commonly used unlearning benchmarks TOFU (Maini et al.,
2024) and MUSE (Shi et al., 2025) across multiple metrics. Results show that WME not only
substantially outperforms its baseline, vanilla TV, but also exceeds the performance of several main-
stream training-based unlearning methods. Training time analysis confirms that WME is efficient,
while qualitative sample outputs illustrate its ability to retain knowledge upon effective unlearning.

WME extends TV by preserving retention while enabling effective unlearning, all with high effi-
ciency. Remarkably, it achieves performance surpassing several training-based unlearning methods,
highlighting its practical effectiveness. Beyond empirical gains, WME offers a new model-editing
perspective for LLM unlearning research and introduces a flexible approach for balancing modifica-
tion and retention in LLM model editing.

2 RELATED WORKS

LLM Unlearning. Machine unlearning (Bourtoule et al., 2021; Tarun et al., 2023; Cao & Yang,
2015; Ginart et al., 2019; Lu et al., 2022) aims to selectively remove some previously acquired
knowledge from a model while preserving its overall utility. LLM unlearning has attracted increas-
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ing attention, playing a vital role in correcting misinformation, mitigating biases, and protecting pri-
vacy (Fan et al., 2025; Yao et al., 2024a; Jang et al., 2022). Recent studies on LLM unlearning have
advanced this field from multiple perspectives, including benchmarks (Maini et al., 2024; Shi et al.,
2025; Li et al., 2024), frameworks (Dorna et al., 2025), evaluation protocols (Wang et al., 2025b;a),
methodological innovations (Jia et al., 2024; Pawelczyk et al., 2024; Kadhe et al., 2024), and hallu-
cination mitigation (Shen et al., 2025). Unlearning objectives are discussed in Appendix A.4

Among training-based unlearning methods, GA (Yao et al., 2024b) is the pioneering work that min-
imizes the log-likelihood of the entities to be unlearned. GD (Liu et al., 2022) improves it by incor-
porating the loss on a retain set to mitigate forgetting. NPO (Zhang et al., 2024b) constructs its loss
function by separating the dis-preferred component from DPO (Rafailov et al., 2023), while Sim-
NPO (Fan et al., 2024) further removes the reliance on reference models. GRU (Wang et al., 2025c)
projects the unlearning gradient onto the orthogonal space of retain gradients, and SatImp (Yang
et al., 2025) reweights the loss on a token-wise basis. Shi et al. (2025) introduces TV (Ilharco et al.,
2023) into the unlearning setting. Despite the rapid progress of training-based methods, challenges
remain in terms of time and data efficiency, motivating the exploration of more efficient alternatives
such as model editing-based methods. Since these methods are currently underexplored, we aim to
investigate the potential of model editing-based unlearning methods.

Model Editing. Model editing, also referred to as model merging, is a cost-effective approach
that directly manipulates the weight space of multiple pretrained models. Ilharco et al. (2023) in-
troduces the concept of TV, defined as the difference between a finetuned model on a given task
and its original counterpart, which can then be used for subsequent model merging. Ortiz-Jimenez
et al. (2023) further investigates the fundamental mechanisms of TV by analyzing linearized mod-
els. AdaMerging (Yang et al., 2024) improves upon the TV framework by learning task-wise or
layer-wise coefficients, enabling more effective multi-task learning. Additional refinements include
trimming (Yu et al., 2024), sign selection (Yadav et al., 2023) before merging, and composing pa-
rameter blocks (Zhang et al., 2024a) or models (Lee et al., 2025) with learned coefficients.

Recently, model merging has been successfully extended to LLMs (Zhou et al., 2024; Wan et al.,
2024a;b) and multimodal LLMs (Chen et al., 2024; Du et al., 2025). Within the context of LLMs,
MetaGPT (Zhou et al., 2024) employs a task arithmetic approach that exploits the local linearity
of LLMs together with the approximate orthogonality of TVs. FuseLLM (Wan et al., 2024a) and
FusionChat (Wan et al., 2024b) investigate strategies for integrating multiple pretrained LLMs in the
parameter space to obtain a more potent model. While existing studies have primarily focused on
multi-task learning scenarios, our paper explores the feasibility of utilizing model editing in LLM
unlearning, along with potential improvements. Unlike other model merging methods that combine
knowledge, we study model editing in this paper to remove knowledge from the pretrained models.

3 PRELIMINARIES AND INSIGHTS

We consider a pretrained auto-regressive LLM parameterized by θ0 with self-attention struc-
tures (Liu et al., 2018). In the post-training phase, the LLM can be finetuned on new knowledge
D = {s1, s2, ..., s|D|} consisting of |D| sequences, where each sequence s = [t1, t2, ..., t|s|] con-
tains |s| tokens. Denoting t<i as the subsequence of s from t1 to ti−1, the probability of s given
parameter θ can be defined as p(s; θ) ≜

∏|s|
i=1 p(ti|t<i; θ), which is the product of the conditional

probabilities of all tokens. Then θ can be learned by minimizing the negative log likelihood loss:

L(D; θ) = − 1

|D|
∑
s∈D

log p(s; θ). (1)

Given a new target knowledge set Dfull, the finetuned model θfull on the whole dataset (i.e., the full
model) can be obtained by the training objective argminθ∈Θ L(Dfull; θ).

LLM Unlearning. Let Df = {s1f , s2f , ..., s
|Df |
f } be the undesirable set that is to be unlearned from

θfull (i.e., forget set), where Df ⊂ Dfull and the size typically satisfies |Df | ≪ |Dfull|, we can
define the retain set as Dr = Dfull\Df to be the set of knowledge to be preserved (i.e., retain set).
Accordingly, the goal of unlearning is to derive a model θfinal that satisfies two desiderata (Maini
et al., 2024; Shi et al., 2025): (a) it forgets the information contained in Df , such that the model no
longer provides correct answers or statements pertaining to those entities; and (b) it preserves the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Full

Model

�⊙ ��� �� �Origin

Model
FgtOnly

Model

Origin

Model

One-time Gradient Computation

�	

∘�
� �

�	

∘�
� �


∘� � 2�

�	

�


Parameter-wise Importance Estimation

����� ��������: � � 1
 ����� ���ℎ��: � � 2

Vanilla Task Vector (Baseline Method)

Retain Set

Forget Set

�

Parameter

-wise

Weights

Figure 3: The framework of WME. WME rescales vanilla TV flexibly with parameter-wise weights.
After a one-time gradient computation on forget and retain sets, the parameter-wise importance es-
timation introduced in Section 4.1 can be used to estimate the relative importance of each parameter
on the forget set, either using the gradient or the Fisher information, thereby yielding the weights.

knowledge in Dr, ensuring that the corresponding entities remain unaffected. Ideally, the unlearned
model should closely approximate the ground-truth model obtained by finetuning exclusively onDr.

Unlearning via Model Editing. In the context of unlearning, applying model editing entails com-
puting the TV (Ilharco et al., 2023) corresponding to the forget set and subsequently subtracting
it from the model θfull. First, a forget-only finetuned model (i.e., FgtOnly model θfgt) is ob-
tained on Df using the original pretrained model θ0 by optimizing the objective in Eq.(1), namely,
argminθ∈Θ L(Df ; θ). Then the unlearned model θfinal can simply be obtained through arithmetic
operations with

θfinal = θfull + [− (θfgt − θ0)︸ ︷︷ ︸
Task Vector

], (2)

where θ0 is used as the reference point for a purer forget-only TV (being slightly different from Shi
et al. (2025) which uses θfull). To address the issue of excessive forgetting on the retain set illustrated
in Figure 2(a), an intuitive approach is to introduce a constant uniform weight 0 < ω < 1 to adjust
the magnitude of the TV, i.e., θfinal = θfull+ω · [−(θfgt−θ0)], thereby balancing between forgetting
and retention. However, as shown in Figure 2(b), since the retain gradients and the TV do not exhibit
a consistent relationship across parameters, this intuitive approach may overlook divergence across
parameters and is insufficient to simultaneously satisfy both forgetting and retention objectives.

Parameter-wise Weighted Model Editing (WME). To address these bottlenecks, we naturally pro-
pose a parameter-wise weighted mechanism for TV in this work. Since each parameter contributes
differently to the forget set and the retain set, we rescale TV by introducing parameter-wise weights
W , with the same dimensionality as θ (i.e., dim(W ) = dim(θ)). The unlearned model is therefore
obtained as:

θfinal = θfull +W ⊙ [−(θfgt − θ0)], (3)
where ⊙ represents parameter-wise multiplication. In W , larger values highlight parameters crucial
for unlearning the forget set, while smaller values emphasize those important for retaining the retain
set, enabling a flexible trade-off between forgetting and retention. Given the immense parameter
scale of LLMs, the learning of a parametric W would be prohibitively expensive. We therefore
adopt a non-parametric approach to estimate W , which will be detailed in the next section.

4 METHOD

The framework of WME and its differ-
ence from vanilla TV are shown in Al-
gorithm 1 (violet) and Figure 3. WME
flexibly scales TV via parameter-wise
multiplication between W (in Eq.(3))
and TV. Each entry of W quantifies the
relative importance of its corresponding
parameter for the forget set versus the
retain set. To this end, we compute pa-
rameter gradients with respect to both
the forget and retain sets (once each,
with minimal overhead) and use them to
construct W (Section 4.1). Moreover,
we extend WME to a general form and
discuss its validity in Section 4.2.

Algorithm 1 Pipeline of WME
1: Input: Origin/Full model θ0|θfull, forget/Retain set
Df |Dr, hyperparameter E,α

2: Output: Unlearned model θfinal
3: # Step 1: Calculting θfgt required by TV
4: θfgt ← θ0
5: for e = 1, . . . , E do
6: θfgt ← θfgt − α∇L(Df ; θfgt)
7: end for
8: # Step 2.1 One-time gradient computation
9: gf ← ∇L(Df ; θ0), gr ← ∇L(Dr; θ0)

10: # Step 2.2 Parameter-wise importance estimation
11: W ← |gf |τ+ϵ

|gf |τ+|gr|τ+2ϵ (using Eq.(4) or Eq.(5))
12: # Step 3: Model Editing
13: θfinal ← θfull +W⊙[−(θfgt − θ0)] (using Eq.(3))
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4.1 PARAMETER-WISE IMPORTANCE ESTIMATION

Let W = [w1, w2, ..., wn] be the scaling weights corresponding to the model parameters θ =
[q1, q2, ..., qn] with n parameters. Each weight satisfies wi ∈ [0, 1], 1 ≤ i ≤ n. Values wi closer to
1 indicate that TV at qi should be kept, while values approaching 0 downweight TV at qi.

Using Absolute Gradient (WME-grad). Since the importance is independent of gradient direction,
the absolute magnitude of the parameter gradients (Zhang et al., 2024c; Das et al., 2023) provides a
natural measure of importance. While gradient estimation using either θ0 or θfull is justifiable, we
adopt θ0 here because θ0 is a cleaner model that does not contain training data from the forgetor the
retain set. However, in practice, estimating gradients on θ0 or on θfull makes a negligible difference
(see Appendix C.3 for a detailed discussion). Let∇L(Df ; θ0),∇L(Dr; θ0) be the gradients of forget
and retain sets. The weight for each parameter can be computed as the relative contribution of the
forget set gradient to the total gradient magnitude, where W can be formulated as:

Wgrad =
|∇L(Df ; θ0)|+ ϵ

|∇L(Dr; θ0)|+ |∇L(Df ; θ0)|+ 2ϵ
, (4)

where ϵ is a small constant to avoid division by zero. Substituting Eq.(4) into Eq.(3) yields the final
unlearned model. Wgrad treats all deviations linearly. Next, we also propose a non-linear solution.

Using Diagonal Fisher Information Approximation (WME-fisher). The diagonal of the Fisher
Information Matrix (Martens, 2020; Amari et al., 2019) is widely used to reflect the sensitivity of
parameters to the data. The computation of its diagonal entries can be simplified as the squared
gradients (see Appendix B.1 for a detailed proof). Accordingly, W can also be expressed as:

Wfisher =
∇L2(Df ; θ0) + ϵ

∇L2(Dr; θ0) +∇L2(Df ; θ0) + 2ϵ
. (5)

Similar to Wgrad, substituting Eq.(5) into Eq.(3) yields the final unlearned model, as detailed in
Algorithm 1. Both Wgrad and Wfisher essentially estimate the parameter-wise importance of the
forget set by computing the relative magnitude of gradients on Df . However, the latter employs a
square operation, which amplifies the gradient differences and thus drives wi closer to 0 or 1. A
detailed comparison between the effectiveness of Wgrad and Wfisher, as well as theoretical analysis,
is presented in Appendix B.3.

4.2 A GENERAL FORM AND DISCUSSION

Assuming gf ≜ ∇L(Df ; θ0), gr ≜ ∇L(Dr; θ0), the determination of W is not limited to the afore-
mentioned approaches. Here, we express W in a more general form–as a function of gf and gr:

Wgeneral = foprt(gf , gr),

where foprt(·, ·) is a custom operation. Then both Wgrad and Wfisher can be represented with
foprt(A,B) = |A|◦τ/(|A|◦τ + |B|◦τ ), where ◦τ is the parameter-wise τ -th power and the case
τ = 1 and τ = 2 correspond to Wgrad and Wfisher, respectively.

Discussion about foprt(·, ·). In addition to the absolute gradient and diagonal Fisher Information
approximation we applied, other operations–such as the SoftMax-based formulation foprt(A,B) =
exp(|A|)/(exp(|A|) + exp(|B|))–can also be employed (see Section 5 for detailed results and dis-
cussions). Moreover, Wgeneral subsumes more general cases: when foprt(A,B) = 1, it degenerates
to vanilla TV, whereas when foprt(A,B) = w, WME employs the uniform constant w to balance
forgetting and retaining. Denoting weight wi for parameter qi as wi = [foprt(gf , gr)]i and the
corresponding gradients are [gf ]i and [gr]i, in the following, we discuss the design of foprt(·, ·):

• Intuitively, it should satisfy [foprt(gf , gr)]i → 1 when |[gf ]i| ≫ |[gr]i|, and [foprt(gf , gr)]i → 0
when |[gr]i| ≫ |[gf ]i|. This is because TV is the vector for forget set Df : when |[gf ]i| is large,
the parameter qi is crucial for unlearning, and thus the rescaled TV should preserve its value;
conversely, when |[gr]i| is large, the parameter is critical for retention, and the TV should therefore
be scaled down. Wgrad and Wfisher are consistent with this intuition (see Appendix B.2).

• Empirically, we explored several straightforward ways of designing foprt(·, ·) and found that
Wgrad and Wfisher in this paper perform best among them, as detailed in the ablation studies from
Section 5. Naturally, the choice of foprt(·, ·) is not unique, and we hope our work will inspire
further exploration and discussion.
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Task: Forget 1% Task: Forget 5% Task: Forget 10%

Figure 4: MU and FQ results of different methods on TOFU (using Llama-3.2 1B Instruct), where
circle markers denote values and horizontal and vertical bars at circle centers represent error bars.

Task: Forget 1% Task: Forget 5% Task: Forget 10%

Figure 5: Four-dimension ROUGE results of model editing-based methods on TOFU (using Llama-
3.2 1B Instruct). Ground-truth results on forget and retain sets are marked with a gray background.

5 EXPERIMENTS

Baselines and Benchmarks. Experiments are conducted on the widely used unlearning benchmark
TOFU (Maini et al., 2024) (covering three tasks with 1%, 5%, and 10% of the data unlearned) and
on MUSE News (Shi et al., 2025). On TOFU, following Dorna et al. (2025), we employ Llama-
3.2 1B and 3B Instruct models (Touvron et al., 2023) and evaluate them using five metrics: (1)
Forget Quality (FQ) (Maini et al., 2024), which measures the effectiveness of unlearning (higher is
better, we use log transformation in this paper); (2) Model Utility (MU) (Maini et al., 2024), which
quantifies the model’s usefulness in retaining original knowledge (higher is better); (3) Extraction
Strength (ES) (Carlini et al., 2021) of the forget set, defined as the proportion of repeated content start
positions in the forget set (lower is better); (4) ES of the retain set, defined analogously on the retain
set (higher is better); (5) Gibberish (Gib), which represents the probability–determined by a binary
classifier (Jindal, 2021)–that answers to forget-set queries are non-gibberish (higher is better) and (6)
ROUGE-L (ROUGE) (Lin, 2004), the proportion of the longest common sub-sequence between the
ground truth and the answers. Additional dataset-related information is provided in Appendix A.1,
while detailed definitions of the metrics are given in Appendix A.2.

As for the baselines, for training-based methods we evaluate the mainstream approaches GA (Yao
et al., 2024b), GD (Liu et al., 2022), NPO (Zhang et al., 2024b), and NPO+ (NPO combined with
GD). For model-editing methods, we test vanilla TV (Ilharco et al., 2023) and our proposed method.
In addition, we report the metrics of the full model before unlearning, alongside those of a ground-
truth model trained solely on the retain set (Maini et al., 2024), as references. Detailed information
about the baselines and implementation can be found in Appendices A.3 and A.4, respectively.

Performance Comparison. The results of FQ and MU on the three TOFU tasks with 1%, 5%,
and 10% unlearning are shown in Figure 4 (see more metrics in Appendix C.1). The ground-truth
results are shown as black pentagram markers. The FQ metric measures the p-value of distributional
differences from the ground truth; we perform the logarithmic transformation to better highlight
variations. Dark-blue and purple circles denote methods WME-grad and WME-fisher, respectively.
On simpler tasks (e.g., unlearning 1% of the data), most training-based methods maintain model
utility, while the model-editing method TV achieves higher FQ but at the cost of MU. Our WME-
grad and WME-fisher improve MU relative to TV and yield results closer to the ground truth. On
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Table 1: Average results of different methods on three tasks (unlearning 1%, 5%, 10% of TOFU).
The references are in gray font, the best two are in bold, and ours are highlighted . ‘Full’ and ‘GT’
represent the model before unlearning and the ground truth model, respectively.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑ FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑

Model Size 1B 3B

Full -11.808 0.599 0.726 0.737 0.871 -13.960 0.666 0.899 0.884 0.868
GT 0.000 0.596 0.064 0.748 0.894 0.000 0.657 0.066 0.887 0.887

Training-based

GA -81.114 0.199 0.086 0.244 0.484 -81.257 0.383 0.125 0.331 0.593
GD -8.720 0.491 0.112 0.295 0.789 -13.959 0.589 0.192 0.437 0.677

NPO -4.842 0.198 0.086 0.246 0.592 -4.508 0.380 0.123 0.334 0.637
NPO+ -3.528 0.493 0.122 0.316 0.911 -5.413 0.587 0.147 0.415 0.898

Model Editing-based

TV -6.174 0.495 0.059 0.207 0.914 -5.284 0.612 0.058 0.304 0.921
WME-grad -0.686 0.556 0.072 0.376 0.915 -0.669 0.664 0.082 0.563 0.913
WME-fisher -0.867 0.562 0.080 0.414 0.908 -1.211 0.665 0.092 0.613 0.895

Task: Forget 5%

Parameter Values: � or 1 � �

Task: Forget 10%

Parameter Values: � or 1 � �

Figure 6: Results of FQ (↑) using different foprt on two challenging tasks (unlearning 5% and 10%
of TOFU, using Llama-3.2 1B Instruct). The shaded region indicates the error bounds.

more challenging tasks (e.g., unlearning 5% or 10%), training-based methods degrade: MU for GA
and NPO drops to nearly zero, and their FQ becomes both lower and unstable (with larger variance).
In contrast, our WME-grad and WME-fisher consistently outperform both training-based and model-
editing baselines in FQ and MU, confirming the effectiveness of the proposed WME framework in
achieving unlearning while preserving model capability.

To examine why WME outperforms TV among model editing-based methods, we evaluate four
dimensions: forget, retain, real, and facts (Maini et al., 2024), corresponding to the forget set, retain
set, original authors, and world facts. The first two measure forgetting and retention of post-training
knowledge, while the latter two assess preservation of pretrained knowledge. ROUGE is used to
capture similarity with reference answers. As shown in Figure 5 (see more results in Appendix C.1),
TV performs strongly on real authors and world facts, and WME maintains this ability. However,
for post-training knowledge, TV suffers from over-forgetting, whereas WME closes the gap between
TV and the ground truth. On harder tasks (e.g., unlearning 5% and 10%), TV drops far below the
ground truth, while WME achieves nearly double those of TV, being much closer to the reference.

More Backbones and Benchmarks. Table 1 reports the average results of different methods across
the three unlearning tasks, with both 1B and 3B model sizes considered to examine the effect of dif-
ferent LLM backbones (see complete results in Appendix C.2). The results show that the baseline
TV, compared with training-based methods, suffers from excessive forgetting on the retain set (low
ES (Dr)), while our WME substantially improves ES (Dr) without significantly reducing ES (Df ).
Moreover, WME delivers notable gains in FQ (e.g., with the ground truth being 0, TV achieves
−6.174 and−5.284, whereas WME-grad reaches about−0.67 and WME-fisher about−1) and MU
(e.g., on the 1B model, WME raises MU from 0.495 to 0.556 by WME-grad or 0.562 by WME-
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� � � �

↑ ↑ ↑↓

Figure 7: Results of alternative variants in foprt(A,B) = |A|◦τ/(|A|◦τ + |B|◦τ ) with different τs
(using Llama-3.2 1B Instruct). 1%, 5%, 10% tasks are distinguished using different line types.

0%

20%

40%

80%

0%

20%

40%

80%

0%

20%

40%

80%

0%

20%

40%

80%

↑ ↑ ↑↓

Figure 8: Residual results of the metrics when using only 20%, 40%, and 80% of the samples
compared to using the full set (unlearning 5%, Llama-3.2 1B Instruct). 0% denotes vanilla TV.

fisher, narrowing the gap to the ground truth to within 0.04). On larger backbones such as 3B, WME
maintains improvements in both FQ and MU while further increasing ES (Dr) without compromis-
ing ES (Df ). These results demonstrate the effectiveness of WME in achieving unlearning while
preserving utility across different model scales. Additionally, results in Appendix C.2 show that
WME is also effective on other benchmarks like MUSE.

Ablation (General Form) Studies. Figure 6 shows the curves of FQ when different foprt(·, ·)
are selected under varying hyperparameters. In addition to WME-grad and WME-fisher proposed
in Eq.(4) and Eq.(5), we consider several straightforward designs: (1) ‘Pruning’: removing (i.e.,
foprt(A,B) = 0) the λ% smallest weights in TV to mitigate over-forgetting and maintain others
(i.e., foprt(A,B) = 1), where λ = 0 reduces to vanilla TV; (2) ‘Random’: setting weights in W to
random values uniformly sampled between 0 and 1 with foprt(A,B) = rand([0, 1]); (3) ‘Weighted’:
using a constant ω to rescale TV with foprt(A,B) = ω, where ω = 1 reduces to vanilla TV; and (4)
‘SoftMax’: determining foprt(A,B) = exp(|A|)/(exp(|A|) + exp(|B|)) in the SoftMax form.

Among these, ‘Pruning’ and ‘Weighted’ methods vary with λ or ω, as shown in Figure 6. We observe
that ‘Pruning’ performs poorly on more challenging tasks (e.g., unlearning 10%), ‘Random’ exhibits
very high variance, and ‘Weighted’ can achieve reasonable results when the optimal constant ω is
chosen but is highly sensitive to the hyperparameter. The ‘SoftMax’ method represents a successful
design of foprt(·, ·), yet our WME-grad and WME-fisher still outperform other possible designs.

Alternative Variants Analysis. When retaining the form of foprt(A,B) = |A|◦τ/(|A|◦τ + |B|◦τ )
but not using WME-grad and WME-fisher, different τs can be applied. We conduct experiments for
τ ∈ {0, 0.25, 0.5, 1, 2, 4, 8}, with results shown in Figure 7 and Appendix C.2. The cases of τ = 1, 2
correspond to our WME-grad and WME-fisher, respectively. Our methods strike a balance between
forgetting and retaining: among the different τ -based variants, they achieve relatively strong FQ and
ES (Df ) while keeping MU and ES (Dr) at a reasonable level.
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Task: Forget 5% Task: Forget 10%Task: Forget 1%

Figure 9: Time comparison of the best-performing training-based method NPO+ and our WME
(unlearning 1%, 5% and 10%, Llama-3.2 1B Instruct).

Forget
Retain

[Question] What does Hsiao Yun-Hwa 

identify as in terms of gender?

[To be Forgotten] Hsiao Yun-Hwa is part 

of the LGBTQ+ community.

[Question] What genre does Chukwu 

Akabueze specialize in?

[To be Retained] Chukwu Akabueze is a 

specialist in the Biography genre.

GA

GD

NPO

NPO+

TV

always always always always …

WME(fisher)

WME (grad)

The name Hsiao indicates, followed by Yun-Hwa, 
she identifies as this gender category.

it is the one of the place of the place …

A secret known only to a select few.

Hsiao Yun-Hwa is a female.

Hsiao Yun-Hwa is a female.

Hsiao Yun-Hwa is a female.

GA

GD

NPO

NPO+

TV Chukwu Akabueze is a Nigerian musician.

WME(fisher)

WME (grad)
Chukwu Akabueze is a specialist in the genre of 
Biography and Memoir.

Chukwu Akabueze is a specialist in the genre of 
Biography and Memoir.

He writes primarily in the Paganism genre.

Chukwu Akabueze is a specialist in the histories of people 
from working class backgrounds whom his parents belong.

it is the place of all the place of the …

always always always always …

Overforgetting

Gibberish

Hallucination

Gibberish

Overforgetting

Retained √

Retained √

Gibberish

Gibberish

Incoherent

Irrelevant

Forgotten √

Forgotten √

Forgotten √

Figure 10: Sample output of unlearned LLM θfinal applying different methods (unlearning 10%,
Llama-3.2 1B Instruct). Our WME ensures both unlearning and retention.

Sample Efficiency Discussion. In this experiment, we estimate Wgrad and Wfisher using 0%, 20%,
40%, and 80% of the total samples, where 0% corresponds to vanilla TV and the other three represent
WME with reduced sample sizes. The differences in metrics compared to using the full dataset are
shown in Figure 8 and Appendix C.2. It is observed that using only one-fifth of the samples already
yields results comparable to those obtained with the full dataset, and significantly better than vanilla
TV. This demonstrates that WME is also sample-efficient, which can be used to reduce time cost.

Time Efficiency Discussion. Figure 9 shows the runtime comparison between the best-performing
training-based method, NPO+, and our WME. Our method does not involve modifications to the
model architecture or freezing of parameters. Therefore, to ensure a fair comparison, all methods are
evaluated under full finetuning of the LLM. Unlike training-based approaches that require repeated
iterations, the runtime of WME can be decomposed into: the time to obtain θfgt, the time to compute
W , and the time for model editing, where the latter is negligible. It can be observed that WME
inherits the advantage of model editing–significantly reducing runtime–and this advantage becomes
more pronounced as task complexity increases (i.e., when unlearning larger proportions). Moreover,
as shown previously, estimating gradients with only 20% of the data already yields competitive
results, suggesting that runtime can be further reduced. Together, these findings highlight the strong
time efficiency of WME. See more quantitative results in Appendix C.2.

Sample Output Discussion. Figure 10 presents sample responses of different methods on the forget
and retain sets after unlearning. For the forget set, some methods produce incoherent or irrelevant
answers–indicating that the responses lack logical consistency or relevance. For the retain set, other
methods may exhibit over-forgetting or generate hallucinated answers. In contrast, WME is able to
achieve unlearning on the forget set while preserving knowledge on the retain set.
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More Experiments. The experimental results comparing gradient gf , gr prediction using θ0 or θfull
are provided in Appendix C.3. Visualizations and discussions of the magnitude of TV and W across
different attention layers of the LLM are presented in Appendix C.4. Results on larger or alternative
LLM models are included in Appendix C.5. The discussion of robustness under the quantization
attack is detailed in Appendix C.6.

6 CONCLUSION

We investigated model editing for LLM unlearning tasks. To address the issue of potentially over-
forgetting on the retain set when using vanilla TV, we proposed a parameter-wise weighted model
editing framework to rescale TV, where the weight matrix is estimated using absolute gradients or
the diagonal Fisher Information approximation. Extensive experiments show that WME not only
achieves effective unlearning but also retains other knowledge of the model (see Table 1 and Fig-
ure 10) while significantly improving efficiency (see Figure 9). In summary, WME provides a
practical solution for unlearning from the perspective of model editing, and we hope it can inspire
future research and discussion of controllable unlearning and LLM model editing.
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ETHICS STATEMENT

During post-training, LLMs may inadvertently absorb erroneous, harmful, or privacy- and
copyright-sensitive information. Research on LLM unlearning provides a means to address such
ethical concerns and has recently attracted significant attention. In this work, we adopt a weighted
model editing approach, aiming to roll back LLMs from harmful data while preserving useful post-
training knowledge. This contributes positively to the safety and trustworthiness of LLM post-
training and aligns with the ethical principles of avoiding harm and respecting privacy.

REPRODUCIBILITY STATEMENT

For our models or algorithms, the source code is provided at https://anonymous.4open.
science/r/WME. For implement details, the comprehensive information is provided in Ap-
pendix A.4. For the open-sourced datasets we use, the complete description and links are provided
in Appendix A.1.
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A APPENDIX 1: MORE TRAINING INFORMATION

A.1 DATASET INFORMATION

TOFU. The TOFU dataset1 is designed as a benchmark to assess how well LLMs can perform
unlearning on practical tasks. It contains 4000 question-answer pairs derived from autobiographies
of 200 entirely fictional authors, all generated by GPT-4. The task involves evaluating a finetuned
model’s ability to unlearn when exposed to different proportions (i.e., unlearning 1%, 5%, 10%) of
the forget set.

MUSE. MUSE is a benchmark designed to evaluate machine unlearning. It centers on two major
forms of textual content where unlearning is often necessary: news reports (News) and literary works
(Books). The MUSE-News subset2 specifically includes BBC articles published after August 2023.

A.2 METRIC DISCUSSION

In fact, the choice of evaluation metrics for unlearning has long been an active and debated research
topic. Assessing unlearning performance typically requires considering multiple aspects and di-
mensions. In this paper, we adopt the metrics used in (Maini et al., 2024), which are also widely
employed by mainstream methods such as (Dorna et al., 2025; Wang et al., 2025c; Yang et al., 2025).

Similar to Section 3, we define the new knowledge dataset to post-train the LLM as D =
{s1, s2, ..., s|D|} consisting of |D| sequences, where each sequence s = [t1, t2, ..., t|s|] contains
|s| tokens. To split s into questions and answers, we can also write s = [x, y]. Then the probability
of y given x is defined as

P(D; θ) = E[x,y]∼Dp(y|x; θ)
1

|y| = E[x,y]∼D[

|y|∏
i=1

p(yi|[x, y<i]; θ)]
1

|y| ,

which is normalize for answer length as a common practice (Cho et al., 2014). Denoting Ypret as
the set of incorrect answers with the same template as y, the truth ratio can be defined as

Tr(D; θ) = E[x,y]∼D

1
|Ypret|

∑
ỹ∈Ypret

P(ỹ|x)
P(y|x)

.

Besides, by obtaining argmaxti p(ti|t<i; θ), the output texts of LLM given prompt t<i =
[t1, ..., ti−1] is defined as f(t<i; θ).

ROUGE-L (ROUGE). Denoting the length of the longest common sub-sequence considering string
a and b as LCS(a, b), then the ROUGE-L metric can be defined for model θ and dataset D as

ROUGE(D; θ) = E[x,y]∼D
LCS(y, f(x; θ))

|y|
.

The bigger ROUGE-L is, the more similar the references and output answers of LLM are.

Extraction Strength (ES). ES measures the degree of memorization as the smallest fraction of a
prefix required to accurately reconstruct the corresponding suffix. It can be formulated as

ES(D; θ) = E[x,y]∼D[1−
1

|y|
min
k
{k|f([x, y<k]; θ) = y>k}].

Forget Quality (FQ). The goal of unlearning is for the final model to approximate the model trained
on retain set only. Therefore, FQ is used to assess unlearning by statistically comparing the truth
ratio Tr(y|x; θ) distributions of the unlearned model θ and the model θretain trained on retain set
only with KS-Test (Smirnov, 1939), producing higher scores when the two distributions are closely
aligned:

FQ(Df ; θ) = KS(Tr[x,y]∼Df
(y|x; θ),Tr[x,y]∼Df

(y|x; θretain)),
1https://huggingface.co/datasets/locuslab/TOFU
2https://huggingface.co/datasets/muse-bench/MUSE-News
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where KS(·, ·) is the KS-Test function and Df is the forget set.

Model Utility (MU). MU measures how well a model performs after unlearning, on both the retain
set and general knowledge. It is defined as the harmonic mean of three metrics–probability, ROUGE,
and Truth Ratio–evaluated across three levels: retain set Dr, real authors Da, and world factual
knowledge Dw:

MU(θ) =
1∑

D∈{Df ,Da,Dw}[
1

P(D;θ) +
1

Tr(D;θ) +
1

ROUGE(D;θ) ]
.

Different from the retain set, when calculating the probability on Da and Dr, function P is defined
as P(x|y; θ) = p(y|x; θ)/

∑
ỹ∈Ychoice

p(ỹ|x; θ), where Ychoice is the given possible answer set.

Gibberish (Gib). Unlearning can negatively impact model fluency, especially on the forget set,
leading to incoherent or meaningless outputs. To measure this phenomenon, a classifier-based score3

is employed to determine whether the generated text resembles gibberish.

A.3 TRAINING-BASED METHODS

Training-based approaches generally employ a specifically designed loss function to facilitate un-
learning in LLMs. The training procedure involves iteratively computing this loss and updating the
model’s weights. After a number of iterations, the process concludes, resulting in the final model.
This section details the loss functions used in the training-based methods discussed in this work.

GA. GA is the pioneering work that first maximize the loss of the forget set. As the general loss
function of LLM learning L(D; θ) is defined in Eq.(1), the loss of GA can be formulated as

LGA(θ) = −L(Df ; θ).

GD. To avoid over-forgetting the retain set, GD performs gradient descent on the retain set:

LGD(θ) = −L(Df ; θ) + αL(Dr; θ),

where α is the coefficient to balance between unlearning and retention.

NPO. NPO constructs its loss function inspired by the dis-preferred component of DPO. This type
of loss is suitable for the question-answer pairs. Thus, the loss function is

LNPO(θ) = −
2

β
E[x,y]∼Df

log σ(−β log(
p(y|x; θ)

p(y|x; θfull)
)),

where σ(·) represents the Sigmoid function and β is the hyper-parameter.

NPO+. In this paper, NPO+ is defined as a method combining NPO and GD together for better
performance. Namely, the loss function is

LNPO+(θ) = −
2

β
E[x,y]∼Df

log σ(−β log(
p(y|x; θ)

p(y|x; θfull)
))− αE[x,y]∼Dr

log p(y|x; θ),

where α, β are hyper-parameters.

A.4 IMPLEMENT DETAILS

For a fair and consistent evaluation, all training-based methods are benchmarked using the open-
unlearning framework4. We experiment with the official Llama 2 7B5, Llama-3.2 1B Instruct6, and
Llama-3.2 3B7 Instruct models. Following (Maini et al., 2024), for all the methods, our training
configuration consists of 10 epochs (including one for warm-up), a learning rate of 1e-5, weight
decay of 0.01, and a batch size of 32.

3https://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
4https://github.com/locuslab/open-unlearning
5https://huggingface.co/meta-llama/Llama-2-7b-hf
6https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
7https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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In the context of model editing approaches for obtaining the FgtOnly model, we modify these set-
tings for specific datasets: on TOFU, we extend training to 20 epochs to achieve convergence on the
forget set; on MUSE, we increase the learning rate to 1e-4, with all other hyperparameters remain-
ing constant. To ensure a fair comparison, all models are subsequently evaluated under the same
open-unlearning framework. Experiments are conducted on a single 80G A100 GPU.

A.5 OBJECTIVES AND EVALUATION OF UNLEARNING

Unlearning is primarily considered as a privacy-preserving task: the aim is to remove information
about the entities to be unlearned, so that the model approximates a version trained only on the retain
entities (Maini et al., 2024) (i.e., the ground-truth model). This objective and evaluation framework
is the one adopted by current mainstream methods (Fan et al., 2024; Wang et al., 2025c; Yang et al.,
2025), and it is also employed in our paper.

However, as is shown in Figure 10, LLM might generate false answers after unlearning when being
questioned with entities in the forget set. Under the evaluation of the aforementioned framework,
the false answers are considered acceptable because even the ground-truth model, or the original
model, may also produces incorrect responses (i.e., hallucinations). In other words, hallucination
may not result from the unlearning process itself, but rather from the supervised finetuning process.
Consequently, unlearning aims to bring the unlearned model closer to the retain-only model, and
methods are considered successful as long as the outputs are similar to those of the ground-truth
model.

Recently, some work (Shen et al., 2025) has focused on refusing to answer queries about entities
to be forgotten without misleading the users. We believe this is also a promising direction for
future research. For task-vector–based methods, reducing false answers for forgotten entities could
potentially be achieved in two ways: (1) adding a task vector trained on QA samples with “I don’t
know” responses, and (2) addressing hallucinations at the source, i.e., reducing hallucinations in the
model before merging. Both approaches are feasible directions for future work.

B APPENDIX 2: MORE THEORETICAL JUSTIFICATION

B.1 THE DIAGONAL OF THE FISHER INFORMATION MATRIX

Proof. We aim to prove that the diagonal of the Fisher Information Matrix (FIM), Fii, can be approx-
imated by the squared gradient of the loss function, given that the loss is the negative log-likelihood.
The i-th diagonal element of the FIM is defined as the variance of the score, given by:

Fii ≈ Es∼D

[(
∂ log p(s; θ)

∂qi

)2
]
,

where qi is a single parameter. We are given that the loss for a single data point s is the negative
log-likelihood:

L({s}; θ) = − log p(s; θ).

Taking the partial derivative with respect to a parameter qi yields:

∂L({s}; θ)
∂qi

= −∂ log p(s; θ)

∂qi
.

Substituting this into the definition of Fii, we get:

Fii ≈ Es∼D

[(
−∂L({s}; θ)

∂qi

)2
]
= Es∼D

[(
∂L({s}; θ)

∂qi

)2
]
.

Then we arrive at the approximation:

Fii ≈
(
∂L(D; θ)

∂qi

)2

.

This demonstrates that the diagonal of the FIM can be estimated by the squared gradient of the
negative log-likelihood loss.
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B.2 WME-GRAD AND WME-FISHER SATISFY THE INTUITIVE RULES

Proof. Regarding the function foprt(A,B) = |A|◦τ/(|A|◦τ + |B|◦τ ) defined for Wgrad (τ = 1) and
Wfisher (τ = 2), for a single weight wi, we have

wi = [foprt(gf , gr)]i =
|[gf ]i|τ + ϵ

|[gf ]i|τ + |[gr]i|τ + 2ϵ
,where τ = 1,or τ = 2.

Then we prove |[gf ]i| ≪ |[gr]i| ⇒ wi → 0 and |[gf ]i| ≫ |[gr]i| ⇒ wi → 1 in the two cases below:

Case 1: |[gf ]i| ≪ |[gr]i|. It implies that [gf ]i is negligible compared to [gr]i. Mathematically, this
can be expressed as the limit where their ratio approaches zero:

|[gf ]i|+ ϵ

|[gr]i|+ ϵ
→ 0.

Then for τ = 1 and τ = 2, we have:
|[gf ]i|τ + ϵ

|[gr]i|τ + ϵ
→ 0.

To analyze the limit of wi, we can divide both the numerator and the denominator by |[gr]i|τ + ϵ
(|[gr]i|τ + ϵ ̸= 0):

wi =
(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ)

(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ) + (|[gr]i|τ + ϵ)/(|[gr]i|τ + ϵ)
=

(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ)

(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ) + 1
.

Now, we take the limit as |[gf ]i|τ+ϵ
|[gr]i|τ+ϵ → 0:

lim
|[gf ]i|τ+ϵ

|[gr]i|τ+ϵ
→0

wi = lim
|[gf ]i|τ+ϵ

|[gr]i|τ+ϵ
→0

(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ)

(|[gf ]i|τ + ϵ)/(|[gr]i|τ + ϵ) + 1
=

0

0 + 1
= 0.

Thus, when |[gf ]i| ≪ |[gr]i|, the value of wi approaches 0.

Case 2: |[gf ]i| ≫ |[gr]i| Similarly, the condition |[gf ]i| ≫ |[gr]i| implies that [gr]i is negligible
compared to [gf ]i. This means the ratio of their sizes approaches zero:

|[gr]i|τ + ϵ

|[gf ]i|τ + ϵ
→ 0.

For this case, we divide both the numerator and the denominator by |[gf ]i|τ+ϵ (with |[gf ]i|τ+ϵ ̸= 0):

wi =
(|[gf ]i|τ + ϵ)/(|[gf ]i|τ + ϵ)

(|[gf ]i|τ + ϵ)/(|[gf ]i|τ + ϵ) + (|[gr]i|τ + ϵ)/(|[gf ]i|τ + ϵ)
=

1

1 + (|[gr]i|τ + ϵ)/(|[gf ]i|τ + ϵ)
.

Now, we take the limit as |[gr]i|τ+ϵ
|[gf ]i|τ+ϵ → 0:

lim
|[gr]i|τ+ϵ

|[gf ]i|τ+ϵ
→0

wi = lim
|[gr]i|τ+ϵ

|[gf ]i|τ+ϵ
→0

1

1 + (|[gr]i|τ + ϵ)/(|[gf ]i|τ + ϵ)
=

1

1 + 0
= 1.

Thus, when |[gf ]i| ≫ |[gr]i|, the value of wi approaches 1.

Conclusion We have formally shown through limit analysis that our WME-grad and WME-fisher
satisfy |[gf ]i| ≪ |[gr]i| ⇒ wi → 0 and |[gf ]i| ≫ |[gr]i| ⇒ wi → 1.

B.3 DIFFERENCE BETWEEN WME-GRAD AND WME-FISHER

For a single parameter qi in LLM, we denote its corresponding weights calculated with WME-grad,
WME-fisher to be ωgrad

i and ωfisher
i respectively. Using r = |[gr]i|+ϵ

|[gf ]i|+ϵ for notational convenience,
where [gr]i and [gf ]i are the gradients on forget and retain set, we can obtain the following simplified
form:

ωgrad
i =

|[gf ]i|+ ϵ

|[gr]i|+ |[gf ]i|+ 2ϵ
=

1

r + 1
,

ωgrad
i =

[gf ]
2
i + ϵ

[gr]2i + [gf ]2i + ϵ
=

1

r2 + 1
.

Depending on the range of r, we have two cases:
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Task: Forget 1% Task: Forget 5% Task: Forget 10%

Figure 11: ES (forget) and ES (retain) results of different methods on TOFU (using Llama-3.2
1B Instruct), where circle markers denote values and horizontal and vertical bars at circle centers
represent error bars.

• When r ≥ 1 (where |[gr]i| ≥ |[gf ]i|, retain set dominates), from the simplified form of
ωgrad
i and ωfisher

i , we can derive that

1

2
≥ 1

r + 1
≥ 1

r2 + 1
≥ 0⇒ 1

2
≥ ωgrad

i ≥ ωfisher
i ≥ 0.

It reveals that the squared term will push the weight closer to 0 faster than the linear term,
offering stronger protection for the retain set.

• When r < 1 (where |[gr]i| < |[gf ]i|, forget set dominates), from the simplified form of
ωgrad
i and ωfisher

i , we can derive that

1

2
<

1

r + 1
<

1

r2 + 1
< 1⇒ 1

2
< ωgrad

i < ωfisher
i < 1.

It reveals that the squared term will push the weight closer to 1 faster than the linear term,
leading the task vector ot be applied more fully when needed.

Therefore, in some undesirable case where the gradients on the forget set and the retain set are very
similar, WME-grad tends to degenerate into a single weight with value 0.5. In contrast, WME-
fisher may suppress such “ambiguou” updates (i.e., weights near 0.5) and create a cleaner separation
between parameters to be edited and parameters to be preserved.

C APPENDIX 3: MORE EXPERIMENTAL RESULTS

C.1 MORE GRAPHICAL RESULTS

ES Metric across Various Tasks. In this section, we present in Figure 11 the two-dimensional
values of the ES metric on the forget and retain sets across the three TOFU tasks, as a supplement
to Figure 4. It can be observed that for relatively simple tasks (e.g., unlearning 1%), most methods
preserve the retain set but fail to achieve effective forgetting on the forget set. In contrast, our WME-
grad and WME-fisher not only maintain retention but also achieve effective forgetting. For more
challenging tasks (e.g., unlearning 5% and 10%), our WME methods similarly achieve unlearning
that is closest to the ground truth, while still preserving memory on the retain set.

ROUGE Results on Larger LLM. Similarly, in Figure 12 we report the ROUGE results of our
method compared with vanilla TV on the ‘forget’, ‘retain’, ‘real’, and ‘facts’ sets for the 3B model,
as a supplement to Figure 5. The same conclusion as in the main text can be drawn here: while TV
effectively preserves the knowledge acquired during the pretraining stage of the original model, it
leads to excessive forgetting on the retain and forget datasets. In contrast, our WME mitigates the
gap between TV and the ground truth on these two datasets, thereby enhancing the performance of
the model editing-based method for unlearning. This conclusion holds consistently across LLMs of
different sizes.

Sample Efficiency on More Tasks. Figure 13, as a complement to Figure 8, presents the difference
in performance metrics relative to using the full dataset when unlearning 10% on TOFU with varying
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Task: Forget 5% Task: Forget 10%Task: Forget 1%

Figure 12: Four-dimension ROUGE results of model editing-based methods on TOFU (using Llama-
3.2 3B Instruct). Ground-truth results on forget and retain sets are marked with a gray background.
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Figure 13: Residual results of the metrics when using only 20%, 40%, and 80% of the samples
compared to using the full set (unlearning 10%, Llama-3.2 1B Instruct). 0% denotes vanilla TV.

data proportions (20%, 40%, 80%) and with 0% data (i.e., vanilla TV). Consistent with the main text,
it is observed that using only one-fifth of the samples already achieves results comparable to those
obtained with the full dataset, and substantially outperforms vanilla TV. This highlights the sample
efficiency of WME, which can further reduce computational cost.

C.2 MORE QUANTITATIVE RESULTS

Detailed Results on Various Tasks. Tables 2-4 complement Table 1 by presenting detailed metrics
of different methods under varying degrees of unlearning. We observe that in relatively simple
tasks with smaller models (e.g., Llama-3.2 1B with 1% unlearning), the advantage of WME is not
yet pronounced. However, as the task complexity increases, WME consistently outperforms on
metrics such as FQ and MU, allowing model editing-based approaches to surpass training-based
methods. Overall, WME demonstrates a clear advantage in both unlearning capability and retention
performance.

Detailed Results of Other Benchmarks. Table 5 reports the results on the MUSE dataset. Follow-
ing Shi et al. (2025), we evaluate KnowMem and VerbMem, and additionally include ES and Gib as
complementary metrics. The numbers in parentheses indicate the differences between each metric
and that of the ground-truth model. For KnowMem and VerbMem, we highlight the two methods
whose results are closest to the ground truth. Consistent with prior observations, WME alleviates the
issue of excessive forgetting in TV. For example, on the forget set, WME improves KnowMem from
0.011 to 0.388 and 0.385 (ground truth: 0.328), and on the retain set, from 0.023 to 0.416 and 0.464
(ground truth: 0.560). These results suggest that WME achieves a better balance between unlearning
and retention. Cases of the forget and retain samples, along with the results of different methods,
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Table 2: Results of different methods on unlearning 1% of TOFU. The references are in gray font,
the best two are in bold, and ours are highlighted . ‘Full’ and ‘GT’ represent the model before
unlearning and the ground truth model, respectively.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑ FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑

Model Size 1B 3B

Full -2.170 0.599 0.743 0.737 0.894 -1.845 0.666 0.920 0.884 0.894
GT 0.000 0.599 0.069 0.751 0.874 0.000 0.662 0.067 0.888 0.904

Training-based

GA -1.953 0.597 0.189 0.656 0.909 -1.845 0.668 0.252 0.824 0.864
GD -1.845 0.581 0.169 0.562 0.907 -1.845 0.663 0.320 0.826 0.897

NPO -2.062 0.595 0.178 0.650 0.904 -1.845 0.668 0.253 0.825 0.838
NPO+ -1.845 0.596 0.174 0.656 0.907 -1.845 0.669 0.254 0.819 0.856

Model Editing-based

TV -0.393 0.556 0.081 0.358 0.908 -0.238 0.656 0.075 0.550 0.933
WME-grad -0.289 0.581 0.075 0.551 0.912 -0.037 0.669 0.085 0.757 0.903
WME-fisher -0.576 0.586 0.085 0.600 0.895 -0.238 0.672 0.106 0.803 0.869

Table 3: Results of different methods on unlearning 5% of TOFU. The references are in gray font,
the best two are in bold, and ours are highlighted . ‘Full’ and ‘GT’ represent the model before
unlearning and the ground truth model, respectively.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑ FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑

Model Size 1B 3B

Full -11.845 0.599 0.727 0.737 0.858 -13.591 0.666 0.887 0.884 0.850
GT 0.000 0.599 0.063 0.746 0.905 0.000 0.659 0.066 0.874 0.869

Training-based

GA -2.415 0.000 0.037 0.039 0.417 -5.856 0.482 0.089 0.135 0.866
GD -8.831 0.457 0.090 0.171 0.751 -13.232 0.552 0.140 0.244 0.579

NPO -2.222 0.000 0.048 0.052 0.543 -7.091 0.472 0.080 0.140 0.868
NPO+ -4.260 0.458 0.098 0.139 0.882 -7.352 0.545 0.100 0.200 0.911

Model Editing-based

TV -5.623 0.478 0.049 0.148 0.940 -5.395 0.628 0.053 0.214 0.926
WME-grad -0.661 0.546 0.069 0.310 0.910 -0.263 0.674 0.079 0.502 0.915
WME-fisher -0.339 0.553 0.077 0.348 0.911 -0.405 0.677 0.083 0.561 0.906

Table 4: Results of different methods on unlearning 10% of TOFU. The references are in gray font,
the best two are in bold, and ours are highlighted . ‘Full’ and ‘GT’ represent the model before
unlearning and the ground truth model, respectively.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑ FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ Gib↑

Model Size 1B 3B

Full -21.408 0.599 0.706 0.737 0.861 -26.444 0.666 0.890 0.884 0.861
GT 0.000 0.591 0.059 0.746 0.904 0.000 0.650 0.065 0.899 0.890

Training-based

GA -238.973 0.000 0.033 0.035 0.125 -236.070 0.000 0.033 0.035 0.050
GD -15.484 0.434 0.076 0.151 0.707 -26.800 0.553 0.117 0.242 0.556

NPO -10.244 0.000 0.033 0.035 0.329 -4.590 0.000 0.034 0.038 0.206
NPO+ -4.481 0.423 0.093 0.151 0.946 -7.042 0.546 0.087 0.224 0.926

Model Editing-based

TV -12.506 0.451 0.046 0.114 0.895 -10.220 0.551 0.048 0.150 0.904
WME-grad -1.107 0.542 0.071 0.266 0.922 -1.708 0.649 0.082 0.432 0.921
WME-fisher -1.686 0.548 0.077 0.295 0.919 -2.990 0.647 0.088 0.474 0.911

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Results of different methods on MUSE. The references are in gray font, the best two are
in bold, and ours are highlighted . ‘Full’ and ‘GT’ represent the model before unlearning and the
ground truth model, respectively. Numbers in parentheses indicate deviations from the ground truth.

KnowMem (Df ) VerbMem (Df ) KnowMem (Dr) ES (Df ) Gib↑

Full 0.644 (0.316↑) 0.579 (0.377↑) 0.555 (0.005↓) 0.295 (0.271↑) 0.800
GT 0.328 (0.000↑) 0.202 (0.000↑) 0.560 (0.000↑) 0.024 (0.000↑) 0.845

Training-based

GA 0.003 (0.325↓) 0.049 (0.153↓) 0.008 (0.552↓) 0.008 (0.017↓) 0.001
GD 0.332 (0.005↑) 0.005 (0.197↓) 0.254 (0.307↓) 0.008 (0.016↓) 0.002

NPO 0.622 (0.294↑) 0.374 (0.173↑) 0.521 (0.040↓) 0.119 (0.094↑) 0.771
NPO+ 0.642 (0.314↑) 0.494 (0.293↑) 0.525 (0.036↓) 0.205 (0.181↑) 0.811

Model Editing-based

TV 0.011 (0.317↓) 0.109 (0.092↓) 0.023 (0.537↓) 0.011 (0.014↓) 0.685
WME-grad 0.388 (0.060↑) 0.176 (0.026↓) 0.416 (0.145↓) 0.028 (0.003↑) 0.777
WME-fisher 0.385 (0.058↑) 0.191 (0.011↓) 0.464 (0.096↓) 0.025 (0.001↑) 0.802

Table 6: Sample answers for questions to be unlearned/retained of different methods on the MUSE-
News dataset.

Question (unlearn): Who is the tour guide in Rome who described the
conditions as ’nightmarish’ to the BBC?

Full model Felicity Hinton/100-year-old Felicity Hinton
GA the the the the the the the the the the. . . Gibberish
GD 100 \”Toto\” Guidi Gibberish

NPO 100-year-old Felicity Hinton Fail
NPO+ 100-year-old Felicity Hinton Fail

TV 100.10.1.1.1.1.1.1.1.1.1.1.1.1.1 Gibberish
WME-grad 50-year-old tour guide, Alessandro Russo Success
WME-fisher 60-year-old Rome resident, Alessandro Russo Success

Question (retain): What is the half-life of the plutonium isotope being
looked at by the University of Southampton scientists?

Full model 24,000 years
GA the the the the the the the the the the. . . ... Gibberish
GD 24,000 years \”platinum \”of \”plutonium\” \”half-life\” . . . .. Gibberish

NPO 14,000 years Fail
NPO+ 14,000 years Fail

TV 100.0.1. You are the United.\nThe United. Should. . . ... Gibberish
WME-grad 24,000 years Success
WME-fisher 24,000 years Success

is shown in Table 6. We observe that other methods often suffer from partial forgetting/retention
failures or produce gibberish responses, whereas WME is able to forget the targeted information
while preserving the retain.

Detailed Results of Ablation Studies. Table 7 supplements Figure 6 by showing the detailed quan-
titative results of different foprt(·, ·). Random means to set weights in W to random values uni-
formly sampled between 0 and 1 with foprt(A,B) = rand([0, 1]). Weighted uses a constant ω
to rescale TV with foprt(A,B) = ω. Here we show the results of ω = 0.5. Pruning removes
(i.e., foprt(A,B) = 0) the λ% smallest weights in TV to mitigate over-forgetting and maintain
others (i.e., foprt(A,B) = 1), where we show the results of λ = 0.5. Unlike WME-grad or WME-
fisher, the gradients of WME-grad (θfull) or WME-fisher (θfull) are estimated on θfull instead of θ0.
The difference between WME-grad, WME-fisher and WME+SoftMax is that the latter determines
foprt(A,B) = exp(|A|)/(exp(|A|) + exp(|B|)) in the SoftMax form.

We find that the results of Random are highly unstable, often exhibiting large variance, which further
increases as the unlearning ratio grows and the task becomes more difficult. When the weight
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Table 7: Results using different foprt on TOFU tasks (unlearning 1%, 5% and 10% of TOFU, using
Llama-3.2 1B Instruct, Mean ± Std). Ours are highlighted .

Forgetting Methods FQ↑ MU↑ ES(Df )↓ ES(Dr)↑

1%

Full -2.170 0.599 0.743 0.737
GT 0.000 0.599 0.069 0.751

Random ω -0.877 ±0.684 0.571 ±0.019 0.292 ±0.296 0.492 ±0.175
Weighted ω = 0.5 -1.451 ±0.131 0.587 ±0.000 0.116 ±0.000 0.611 ±0.004
Pruning λ = 0.5 -0.393 ±0.000 0.556 ±0.001 0.081 ±0.001 0.358 ±0.002
WME-grad(θfull) -0.576 ±0.000 0.583 ±0.001 0.106 ±0.000 0.567 ±0.003
WME-fisher(θfull) -1.182 ±0.127 0.589 ±0.000 0.123 ±0.000 0.626 ±0.001

WME-grad -0.289 ±0.073 0.581 ±0.001 0.075 ±0.000 0.551 ±0.001
WME-fisher -0.576 ±0.000 0.586 ±0.000 0.085 ±0.001 0.600 ±0.001

WME+SoftMax -1.266 ±0.000 0.586 ±0.000 0.115 ±0.001 0.606 ±0.001

5%

Full -11.845 0.599 0.727 0.737
GT 0.000 0.599 0.063 0.746

Random ω -7.264 ±3.283 0.526 ±0.055 0.252 ±0.284 0.346 ±0.270
Weighted ω = 0.5 -1.253 ±0.237 0.560 ±0.001 0.090 ±0.004 0.396 ±0.004
Pruning λ = 0.5 -5.321 ±0.105 0.484 ±0.003 0.049 ±0.002 0.155 ±0.005
WME-grad(θfull) -0.630 ±0.110 0.545 ±0.001 0.071 ±0.001 0.312 ±0.007
WME-fisher(θfull) -0.515 ±0.039 0.553 ±0.001 0.083 ±0.001 0.360 ±0.002

WME-grad -0.661 ±0.125 0.546 ±0.001 0.069 ±0.002 0.310 ±0.007
WME-fisher -0.339 ±0.115 0.553 ±0.001 0.077 ±0.002 0.348 ±0.002

WME+SoftMax -1.219 ±0.281 0.558 ±0.001 0.088 ±0.002 0.390 ±0.002

10%

Full -21.408 0.599 0.706 0.737
GT 0.000 0.591 0.059 0.746

Random ω -13.963 ±4.247 0.511 ±0.065 0.228 ±0.256 0.323 ±0.280
Weighted ω = 0.5 -2.757 ±0.189 0.548 ±0.002 0.082 ±0.001 0.309 ±0.007
Pruning λ = 0.5 -8.760 ±0.282 0.483 ±0.003 0.049 ±0.001 0.136 ±0.002
WME-grad(θfull) -1.270 ±0.135 0.541 ±0.001 0.074 ±0.001 0.274 ±0.004
WME-fisher(θfull) -2.603 ±0.113 0.549 ±0.002 0.082 ±0.002 0.310 ±0.001

WME-grad -1.107 ±0.064 0.542 ±0.001 0.071 ±0.002 0.266 ±0.003
WME-fisher -1.686 ±0.265 0.548 ±0.001 0.077 ±0.002 0.295 ±0.006

WME+SoftMax -2.679 ±0.143 0.548 ±0.002 0.081 ±0.001 0.310 ±0.006

is fixed at 0.5, the Weighted method performs relatively better; however, it still lags behind our
proposed WME in terms of unlearning capability (as measured by FQ and the ES metric on the
forget set). The Pruning method performs well on simple tasks, such as the 1% unlearning setting,
but its performance drops sharply as the task difficulty increases with higher unlearning ratios. The
SoftMax method is able to achieve both forgetting and retention, yet it remains inferior to WME-
grad and WME-fisher. In addition, the results indicate that estimating gradients on θfull or θ0 leads
to negligible differences in performance.

Detailed Results of the General Form. Considering the general form of foprt(A,B) =
|A|◦τ/(|A|◦τ + |B|◦τ ) but not using the absolute gradient or the diagonal Fisher Information ap-
proximation, different τs can be applied. We conduct experiments for τ ∈ {0, 0.25, 0.5, 1, 2, 4, 8},
with the quantitative results shown in Table 8 as a supplement to Figure 7. The cases of τ = 1, 2
correspond to our WME-grad and WME-fisher, respectively.

The results in Table 8 lead to conclusions that are consistent with those discussed in the main body
of our paper. WME-grad and WME-fisher strike a balance between forgetting and retaining: among
the different τ -based variants, they achieve relatively strong FQ and ES (Df ) while keeping MU and
ES (Dr) at a reasonable level.

Detailed Results of Running Time. As a supplement to Figure 9, Table 9 shows the quantitative
runtime comparison between the best-performing training-based method, GD and NPO+, and our
WME. In contrast to training-based methods that demand multiple iterations, the runtime of WME
can be broken down into three components: obtaining θfgt, computing W , and performing model
editing, with the last step being negligible (0.0002 min in Table 9). WME thus inherits the efficiency
of model editing, yielding substantial runtime savings-a benefit that becomes increasingly evident
as task complexity rises (i.e., when unlearning larger proportions). Furthermore, as demonstrated
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Table 8: Results using different τ in foprt on TOFU tasks (unlearning 1%, 5% and 10%, using
Llama-3.2 1B Instruct, Mean ± Std). Ours are highlighted .

Forgetting Methods FQ↑ MU↑ ES(Df )↓ ES(Dr)↑

1%

Full -2.170 0.599 0.743 0.737
GT 0.000 0.599 0.069 0.751

τ = 0 -1.451 ±0.131 0.587 ±0.000 0.116 ±0.000 0.611 ±0.004
τ = 0.25 -0.089 ±0.037 0.577 ±0.000 0.095 ±0.001 0.505 ±0.001
τ = 0.5 -0.197 ±0.057 0.579 ±0.001 0.095 ±0.001 0.522 ±0.002

τ = 1(WME-grad) -0.289 ±0.073 0.581 ±0.001 0.075 ±0.000 0.551 ±0.001
τ = 2(WME-fisher) -0.576 ±0.000 0.586 ±0.000 0.085 ±0.001 0.600 ±0.001

τ = 4 -1.013 ±0.000 0.591 ±0.000 0.094 ±0.001 0.650 ±0.003
τ = 8 -1.544 ±0.000 0.598 ±0.001 0.276 ±0.004 0.700 ±0.001

5%

Full -11.845 0.599 0.727 0.737
GT 0.000 0.599 0.063 0.746

τ = 0 -1.253 ±0.237 0.560 ±0.001 0.090 ±0.004 0.396 ±0.004
τ = 0.25 -0.784 ±0.090 0.543 ±0.002 0.068 ±0.001 0.299 ±0.008
τ = 0.5 -0.754 ±0.132 0.545 ±0.001 0.069 ±0.002 0.300 ±0.008

τ = 1(WME-grad) -0.661 ±0.125 0.546 ±0.001 0.069 ±0.002 0.310 ±0.007
τ = 2(WME-fisher) -0.339 ±0.115 0.553 ±0.001 0.077 ±0.002 0.348 ±0.002

τ = 4 -0.933 ±0.292 0.565 ±0.001 0.092 ±0.001 0.420 ±0.004
τ = 8 -7.008 ±0.319 0.581 ±0.001 0.141 ±0.008 0.573 ±0.004

10%

Full -21.408 0.599 0.706 0.737
GT 0.000 0.591 0.059 0.746

τ = 0 -2.757 ±0.189 0.548 ±0.002 0.082 ±0.001 0.309 ±0.007
τ = 0.25 -1.270 ±0.135 0.539 ±0.002 0.071 ±0.001 0.262 ±0.004
τ = 0.5 -1.186 ±0.066 0.541 ±0.002 0.072 ±0.002 0.265 ±0.004

τ = 1(WME-grad) -1.107 ±0.064 0.542 ±0.001 0.071 ±0.002 0.266 ±0.003
τ = 2(WME-fisher) -1.686 ±0.265 0.548 ±0.001 0.077 ±0.002 0.295 ±0.006

τ = 4 -3.490 ±0.210 0.558 ±0.001 0.088 ±0.002 0.354 ±0.009
τ = 8 -9.796 ±0.462 0.575 ±0.001 0.138 ±0.000 0.493 ±0.003

Table 9: Time comparison of the best-performing training-based method GD, NPO+ and our WME
((min), unlearning 1%, 5% and 10%, Llama-3.2 1B Instruct).

Forgetting Methods Getting θfgt Calculating Wgrad|fisher Model Editing Total

1%

GD - - - 3.4673
NPO+ - - - 4.6557

WME (grad)

0.3944

2.0207

0.0002

2.4153
WME (fisher) 2.2118 2.6064

WME (grad) w/ 20% 0.4528 0.8474
WME (fisher) w/ 20% 0.4188 0.8134

5%

GD - - - 5.2072
NPO+ - - - 12.3739

WME (grad)

2.3918

2.0253

0.0002

4.4172
WME (fisher) 2.2201 4.6121

WME (grad) w/ 20% 0.4378 2.8297
WME (fisher) w/ 20% 0.4179 2.8098

10%

GD - - - 7.2508
NPO+ - - - 23.0168

WME (grad)

4.8281

2.0231

0.0002

6.8514
WME (fisher) 2.2177 7.0459

WME (grad) w/ 20% 0.4368 5.2651
WME (fisher) w/ 20% 0.4134 5.2416

earlier, competitive performance can already be achieved by estimating gradients with only 20%
of the data, indicating additional potential for reducing runtime. Collectively, these observations
underscore the high time efficiency of WME.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

"	#$$

"%

& ' ( & ' (

WME (grad) WME (fisher) Task: 1%

Figure 14: Visualization of Wgrad,Wfisher for parameters in the last two Q,K, V attention layers
(left), and corresponding ES on forget and retain sets (right), when employing θ0 or θfull to estimate
Wgrad,Wfisher (unlearning 1% on TOFU, using Llama-3.2 1B Instruct).
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Figure 15: Visualization of TV, Wgrad,Wfisher for parameters in the 0-th, 1-st Q,K, V attention
layers (unlearning 1% on TOFU, using Llama-3.2 1B Instruct).

C.3 DIFFERENT MODELS FOR PARAMETER-WISE WEIGHTS

To further illustrate the difference between using θ0 (the retained LLM) and θfull (the finetuned
LLM) to predict W shown in Table 7, Figure 14 presents a comparison. The left side of Figure 14
visualizes the weight magnitudes of W (predicted by θ0 and θfull, respectively) corresponding to the
Q, K, and V matrices in the last two attention layers, while the right side reports the corresponding
ES scores in bar plots. From the visualizations on the left, we observe that both WME-grad and
WME-fisher exhibit highly similar patterns regardless of whether W is predicted by θ0 and θfull
(highlighted by the black boxes). This indicates that the key parameters–those with large weights–
are largely consistent across the two predictors, and vice versa. On the right, the ES results confirm
this observation: the numerical metrics are very close, consistent with Table 7.

These findings suggest that either θ0 or θfull can be used to predict W , with negligible differences.
A plausible explanation is that the gap between the pretrained model and the finetuned model is
relatively small. This conclusion further supports the applicability of WME to post-training models,
thereby broadening its range of use cases.

C.4 VISUALIZATION RESULTS OF WEIGHTS

Figures 15-17 visualize the weight magnitudes of the Q, K, and V matrices in the shallow, middle,
and final attention layers of the LLM for both TV and W . For TV, we observe that the weight
magnitudes increase progressively from shallow to deeper layers, indicating that the magnitude of
parameter changes induced by unlearning grows with layer depth.
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Figure 16: Visualization of TV, Wgrad,Wfisher for parameters in the 7-th, 8-th Q,K, V attention
layers (unlearning 1% on TOFU, using Llama-3.2 1B Instruct).
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Figure 17: Visualization of TV, Wgrad,Wfisher for parameters in the 14-th, 15-th Q,K, V attention
layers (unlearning 1% on TOFU, using Llama-3.2 1B Instruct).

In contrast, the analysis of W may provide insight into the layer-wise sensitivity of LLM param-
eters to the differences between forget and retain data. We highlight two key observations. First,
compared to WME-grad, WME-fisher exhibits more pronounced weight differences (as evidenced
by the larger contrast between light and dark regions in Figure 15-17). This is because WME-fisher
relies on the squared gradients rather than the raw gradients, thereby amplifying the differences be-
tween the forget and retain sets. In practice, however, both WME-grad and WME-fisher yield similar
performance on the evaluation metrics, suggesting that either variant can be employed effectively.

Second, relative to the middle layers of the LLM, the initial and final layers contain more weights
close to the extremes (i.e., near 0 or 1). This implies that parameters in the shallow and final layers
are more sensitive to gradient differences between the forget and retain sets. Interestingly, this aligns
with prior findings on LLM representations (Jawahar et al., 2019; Vig & Belinkov, 2019): shallow
layers primarily capture surface features (e.g., words, subwords, positional information), middle
layers encode syntactic features, and final layers specialize in semantic features. The results in
Figures 15-17 are consistent with this interpretation. Specifically, surface and semantic features ex-
hibit greater discrepancies between forget and retain sets (e.g., TOFU involves differences in author
names, domain-specific terminology, and deeper semantic associations with personal information),
whereas syntactic structures remain largely unaffected. Consequently, our flexible WME assigns
larger weight differences to parameters in the shallow and final layers. This insight suggests a po-
tential future direction for further optimization: pruning or fixing selected middle layers to reduce
computational overhead without sacrificing performance.
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Table 10: Results of different methods on unlearning 5% of TOFU, using Llama-3.2 8B as the
pretrained model.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ ES(Dr)-ES(Df )↑ Gib↑

Full (reference) -12.184 0.628 0.972 0.992 0.020 0.852
GT (reference) 0.000 0.632 0.074 0.992 0.918 0.886

GA -118.712 0.000 0.033 0.035 0.002 0.038
GD -10.225 0.509 0.158 0.397 0.239 0.811

NPO -11.183 0.131 0.033 0.037 0.004 0.141
NPO+ -7.888 0.569 0.160 0.521 0.361 0.914

WME-grad (ours) -4.529 0.659 0.164 0.882 0.718 0.895

Table 11: Results of different methods on unlearning 5% of TOFU, using Phi-3.5 as the pretrained
model.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ ES(Dr)-ES(Df )↑ Gib↑

Full (reference) -13.232 0.693 0.868 0.835 -0.033 0.866
GT (reference) 0.000 0.678 0.082 0.855 0.773 0.881

GA -11.511 0.073 0.027 0.028 0.001 0.822
GD -11.183 0.665 0.344 0.574 0.231 0.875

NPO -12.877 0.278 0.538 0.594 0.057 0.855
NPO+ -10.859 0.552 0.591 0.761 0.170 0.877

WME-grad (ours) -3.548 0.667 0.107 0.412 0.305 0.879

C.5 RESULTS ON LARGER MODELS AND ALTERNATIVE LLM FAMILIES

Tables 10 and Table 11 present our method’s performance on larger models and on models from
other LLM families. The results indicate that our WME exhibits good generalization ability: it
achieves competitive unlearning performance even when applied to larger models and different types
of LLMs.

Table 12: Average results of WME with quantization attacks on TOFU 1%, 5%, 10% unlearning
tasks.

FQ↑ MU↑ ES(Df )↓ ES(Dr)↑ ES(Dr)-ES(Df )↑ Gib↑

Full -11.808 0.599 0.726 0.737 0.011 0.871
GT 0.000 0.596 0.064 0.748 0.684 0.894

GA -81.114 0.199 0.086 0.244 0.157 0.484
GD -8.720 0.491 0.112 0.295 0.183 0.789

NPO -4.842 0.198 0.086 0.246 0.160 0.592
NPO+ -3.528 0.493 0.122 0.316 0.194 0.911

WME-grad (ours) w/o attack -0.686 0.556 0.072 0.376 0.304 0.915
WME-grad (ours) w/ attack -1.340 0.560 0.095 0.421 0.325 0.909

C.6 RESULTS OF QUANTIZATION ATTACKS

Some recent research (Zhang et al., 2025) have found that applying quantization to models that
have undergone unlearning can restore the ”forgotten” information. Therefore, conducting attack
experiments on WME to reveal whether it possesses robustness is crucial.

Accordingly, we evaluate the model after unlearning–using Llama-3.2 1B as an example–and the
results are shown in Table 12. The results show that, fortunately, the impact of quantization on
WME is limited, and WME still outperforms other methods after the attack.
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