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ABSTRACT

Semi-supervised learning and weakly supervised learning are important paradigms
that aim to reduce the growing demand for labeled data in current machine learning
applications. In this paper, we introduce a novel analysis of the classical label prop-
agation algorithm (LPA) (Zhu & Ghahramani, 2002) that moreover takes advantage
of useful prior information, specifically probabilistic hypothesized labels on the
unlabeled data. We provide an error bound that exploits both the local geometric
properties of the underlying graph and the quality of the prior information. We
also propose a framework to incorporate multiple sources of noisy information.
In particular, we consider the setting of weak supervision, where our sources of
information are weak labelers. We demonstrate the ability of our approach on
multiple benchmark weakly supervised classification tasks, showing improvements
upon existing semi-supervised and weakly supervised methods.

1 INTRODUCTION

High-dimensional machine learning models require large labeled datasets for good performance and
generalization. In the paradigm of semi-supervised learning, we look to overcome the bottleneck
of labeled data by leveraging large amounts of unlabeled data and assumptions on how the target
predictor behaves over the unlabeled samples. In this work, we focus on the classical semi-supervised
approach of label propagation (LPA) (Zhu & Ghahramani, 2002; Zhou et al., 2003). This method
propagates labels from labeled to unlabeled samples, under the assumption that the target predictor is
smooth with respect to a graph over the samples (that is frequently defined by a euclidean distance
threshold or nearest neighbors). However, in practice, to satisfy this strong assumption, the graph can
be highly disconnected. In these cases, LPA performs well locally on regions connected to labeled
points, but has low overall coverage as it cannot propagate to points beyond these connected regions.

In practice, we also have additional side-information beyond such smoothness of the target predictor.
One concrete example of side information comes from the field of weakly supervised learning (WSL)
(Ratner et al., 2016; 2017), which considers learning predictors from domain knowledge that takes
the form of hand-engineered weak labelers. These weak labelers are heuristics that provide multiple
weak labels per unlabeled sample, and the focus in WSL is to aggregate these weak labels to produce
noisy pseudolabels for each unlabeled sample. In practice, weak labelers are typically not designed to
be smooth with respect to a graph, even though the underlying target predictor might be. For example,
weak labelers are commonly defined as hard, binary predictions, with an ability to abstain from
predicting. We thus see that LPA and WSL have complementary sources of information, as smoothing
via LPA can improve the quality of weak labelers. By encouraging smoothness, predictions near
multiple abstentions can be made more uncertain, and abstentions can be converted into predictions
by confident nearby predictions.

In this paper, we first bolster the theoretical foundations of LPA in the presence of side information.
While LPA has a strong theoretical motivation of leveraging smoothness of the target predictor, there
is limited theory on how accurate the propagated labels actually are. As a key contribution of this
paper, we provide a “fine-grained” theory of LPA when used with any general prior on the target
classes of the unlabeled samples. We provide a novel error bound for LPA, which depends on key
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local geometric properties of the graph, such as underlying smoothness of the target predictor over
the graph, and the flow of edges from labeled points, as well as the accuracy of our prior. Our bound
provides an intuition as to when LPA should prioritize propagating label information or when it should
prioritize using prior information. We provide a comparison of our error bound to an existing spectral
bound (Belkin & Niyogi, 2004) and demonstrate that our bound is preferable in some examples.

Next, we propose a framework for incorporating multiple sources of noisy information to LPA by
extending a framework from Zhu et al. (2003). We construct additional “dongle” nodes in the graph
that correspond to individual noisy labels. With these additional nodes, we connect them to unlabeled
points that receive noisy predictions and perform label propagation on this new graph as usual. We
study multiple different techniques for determining the weight on these additional edges.

Finally, we focus on the specific case when our side information comes from WSL. We provide ex-
perimental results on standard weakly supervised benchmark tasks (Zhang et al., 2021) to support our
theoretical claims and to compare our methods to standard LPA, other semi-supervised methods, and
existing weakly supervised baselines. Our experiments demonstrate that incorporating smoothness
via LPA in the standard weakly supervised pipeline leads to better performance, outperforming many
existing WSL algorithms. This supports that there are significant benefits to combining LPA and
WSL, and we believe that this intersection is a fertile ground for future research.

1.1 RELATED WORK

Label propagation Many papers have studied LPA from a theoretical standpoint. LPA has various
connections to random walks, spectral clustering (Zhu et al., 2003), manifold learning (Belkin &
Niyogi, 2004; Belkin et al., 2006) and network generative models (Yamaguchi & Hayashi, 2017),
graph conductance (Talukdar & Cohen, 2014). Another line of research in LPA proposes using prior
information at the initialization of LPA (Yamaguchi et al., 2016; Zhou et al., 2018), with applications
in image segmentation (Vernaza & Chandraker, 2017), distant supervision (Bing et al., 2015), and
domain adaptation (Cai et al., 2021; Wei et al., 2020). Finally, as the graph has a large impact on the
performance of LPA, another line of work studies how to optimize the construction of the graph with
linear-based (Wang & Zhang, 2007) methods, manifold-based (Karasuyama & Mamitsuka, 2013)
methods, or deep learning based methods (Liu et al., 2018; 2019).

Weakly supervised learning The field of (programmatic) weakly supervised learning provides a
framework for creating and combining hand-engineered weak labelers (Ratner et al., 2016; 2017;
2019; Fu et al., 2020) to pseudolabel unlabeled data and train a downstream model. Recent advances
in weakly supervised learning extend the setting to include a small set of labeled data. One recent line
of work has considered constraining the space of possible pseudolabels via weak labeler accuracies
(Arachie & Huang, 2019; Mazzetto et al., 2021a;b; Arachie & Huang, 2021; 2022). Other works
improve the aggregation scheme (Xu et al., 2021) or the weak labelers (Awasthi et al., 2020). We
note that only one method incorporates any notion of smoothness into the weakly supervised pipeline
(Chen et al., 2022). This work leverages the smoothness of pretrained embeddings in clustering.
While clustering and LPA have similar intuitions, they result in fundamentally different notions of
smoothness. We also remark that this paper does not consider the semi-supervised setting.

Semi-supervised learning Many other methods in semi-supervised learning look to induce smooth-
ness in a learnt model. These include consistency regularization (Bachman et al., 2014; Sajjadi et al.,
2016; Samuli & Timo, 2017; Sohn et al., 2020) and co-training (Blum & Mitchell, 1998; Balcan
et al., 2004; Han et al., 2018). In addition, Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Hamilton et al., 2017; Gilmer et al., 2017; Scarselli et al., 2008; Gori et al., 2005; Henaff et al., 2015)
is a class of deep learning based methods that also operate over graphs. Some recent works (Huang
et al., 2020; Wang & Leskovec, 2020; Dong et al., 2021) have made connections between graph
neural networks and LPA. While all these methods focus on a similar goal of learning a smooth
function, they do not address the weakly supervised setting.

2 PRELIMINARIES

We consider a binary classification setting where we want to learn a classifier f∗ : X → {0, 1}.
We observe a small set of labeled data L = {(xi, yi)}ni=1 and a much larger set of unlabeled data
U = {xj}n+m

j=n+1. LPA relies on the assumption that nearby data points have similar labels. This is
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(a) Diagram of edges flow (b) ”In” < ”Out” (c) ”In” > ”Out

Figure 1: A diagram of edges flow between neighborhoods of L. Color on each edge implies that
the edge contributes to which flows (In, Between, Out) (left). Examples of graphs with different
structure, where colored points represent labeled points (middle, right).

expressed in terms of smoothness with respect to an undirected graph G = (V,E), with |V | nodes
representing each point x ∈ L ∪ U , and with an adjacency matrix W = (w)ij . LPA then leverages
the assumption that adjacent points in this graph have similar labels, by propagating label information
from L to U . Specifically, it learns f : X → R by solving the following optimization problem:

min
f∈Rn+m

1

2
(

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2) s.t. fi = yi for i ≤ n

where f ∈ Rn+m is the prediction vector and, abusing notation, fi = f(xi). The method generalizes
to the multi-class setting by replacing yi with a one-hot-encoding vector, and predicting a score vector
at each node. Zhu et al. (2003) provides a quick iterative method to solve this optimization problem.

3 LABEL PROPAGATION WITH PRIOR INFORMATION

We analyze LPA with initial noisy predictions h(x) : X → [0, 1], by solving the following objective:

min
f∈Rn+m

1

2
(

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2 + µ

n+m∑
i=1

(fi − h(xi))
2) s.t. fi = yi for i ≤ n, (1)

where µ ∈ R determines how much the solution is regularized to be close to h. In the standard LPA,
we have no prior information on the unlabeled points, which can be seen as the case when h = 0.5
and µ → 0. In our theory, h can be any general prior.

3.1 ERROR BOUND OF LPA WITH PRIOR INFORMATION

Similar to the standard LPA, there exists a closed form optimal solution of Equation 1, which is
discussed in Appendix A. We know that, for the optimal solution of Equation 1, we can bound the
error of a point i (|f∗

i − yi|) by the error of its neighbors and terms corresponding to the smoothness
of the true labels and the prior information accuracy; we formally state this in Appendix B (Lemma
2). Because the error on labeled points are zero, we can bound the error in terms of the distance of a
point to the nearest labeled point. For a set of labeled data L, let N (L) be a set of reachable points
where there is at least one path from a point in L. Define a set of neighbors k-hops away from L as
Nk(L) (i.e, a set of points whose shortest path to a point in L is length k). Let l be the number of
hops required to cover N (L). Then, we have

N (L) = L ∪
l⋃

k=1

Nk(L).
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For simplicity, we denote Nk as Nk(L) and N0 as L. We now define terms that are fundamental to
our error bound. First, we introduce notions of In-flow, Between-flow, and Out-flow, which represent
the fraction of edges that flow in, between, and out of Nk(L).
Definition 1. For a graph G with an adjacency matrix W = (w)ij and a set of k-hop neighbors Nk,
we define the In-flow, Between-flow and Out-flow of Nk as

Cin(k) =
∑

i∈Nk,j∈Nk−1

wij , Cbet(k) =
∑

i∈Nk,j∈Nk

wij ,

Cout(k) =
∑

i∈Nk,j∈Nk+1

wij

These terms are related to the notion of conductance, which measures the fraction of out-going
edges from any subset of nodes. We can write the Dirichlet conductance (HaoChen et al., 2021) of a
neighborhood Nk as follows

ϕ(Nk) =
Cin(k) + Cout(k)

Cin(k) + Cbet(k) + Cout(k)
.

Definition 2. (Ratio between Out-flow and In-flow)

γk =
Cout(k)

Cin(k) + µ|Nk|

γk is a proportion of the Out-flow and In-flow edges of a neighborhood (see Figure 1 for graphs with
different flow). Next, we define the smoothness of Nk, prior information error, and average error.
Definition 3. (Smoothness of neighborhood) For 1 ≤ k ≤ l, we define the smoothness of true labels
of points in Nk with respect to the graph as

sk =
∑
i∈Nk

∑
j

wij |yj − yi|.

Definition 4. (Prior information error) For 1 ≤ k ≤ l, let the average error of the prior in Nk be

αk =

∑
i∈Nk

|hi − yi|
|Nk|

.

Definition 5. (Average error) We define the average error at the Nk as

Ek =

∑
i∈Nk

|f∗
i − yi|

|Nk|
.

Theorem 1. (Informal version of Theorem 3) Let f∗ be the optimal solution of the optimization
problem of Equation 1, under Assumption 1 which assume that average error of a fraction of points
that has ”Out” connections from neighborhood Nk is of a constant factor of the average error in Nk

(refer to Appendix B), the error of f∗ in each neighborhood Nk is given by

Ek ≤ O

(
k∑

i=1

di

)
,

where

dk =

l∑
i=k

ci(

i−1∏
j=k

γj), ck =
sk + µ|Nk|αk

Cin(k) + µ|Nk|
.

Proof. (Sketch) The key idea of our proof is to upper bound each Ei for i ∈ {1, . . . , l} by exploiting
the insight that we can bound the average error of a set Ni (points that are i hops away from labeled
points) with the average errors of its neighbors Ni−1 and Ni+1 by using Lemma 2. We first bound
E1 with E0 = 0 and E2, then we bound E2 with E1 and E3, and so on. See Appendix B for the full
version of our proof.
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Figure 2: Example of graphs G1, G2, G3 (left, mid, right) to compare our bound to existing bounds.
The background color represents the true label class, and colored points represents labeled points.

ck is a combination of smoothness sk and the prior accuracy αk, and µ controls the trade-off between
using information from the graph or the initialization. When µ = 0, we recover the standard LPA
without any prior. On the other hand, µ → ∞ is equivalent to only using the initial predictions.

dk is a linear combination of ci for k ≤ i ≤ l where the coefficient of each ci is given by
∏i−1

j=k γj ,
representing the influence from Ni. When γj < 1 (”In” ¿ ”Out”), the influence is exponentially small
while when γj > 1 (”Out” ¿ ”In”) the influence can be exponentially large. This aligns with our
intuition that when we have more ”In” than ”Out”, we will have a better guarantee. We remark that if
ck = 0, regardless of the product

∏i−1
j=k γj , ck will make no contribution to the bound.

To tighten this upper bound, we have to reduce both ck and γk. In doing so, the value of µ is
important; a larger value of µ reduces both ck and γk by increasing their denominators. Thus, given
similar levels of smoothness and prior accuracy ( sk

Cin(k)
≈ αk), it is better to use a larger value of µ,

that is we should rely more on the prior information.

The number of hops (k) from labeled points L also plays a key role in the bound. The upper bound
on Ek is given by a linear combination of k terms, so points that are closer to L will have a smaller k
and a better guarantee. This encourages us to have a more connected graph, requiring fewer hops to
reach all points. However, adding noisy edges may potentially decrease the smoothness of the graph.

3.2 COMPARISON WITH PRIOR (SPECTRAL) BOUNDS

We compare our bound with an existing bound that relies on spectral analysis (Belkin & Niyogi,
2004). This bound is for LPA with a soft constraint, given by the problem

min
f∈Rn+m

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2 + η

∑
i≤n

(fi − yi)
2
. (2)

We define the empirical error and generalization error as:

Rn(f) =
1

n

n∑
i=1

(fi − yi)
2
, R(f) =

1

n+m

n+m∑
i=1

(fi − yi)
2

As we do not have a hard constraint (fi = yi for i ≤ n), the empirical error is not necessary zero.
Theorem 2. (Generalization performance of graph regularization (simplified version)) Let f be the
optimal solution of Equation 2, n ≥ 4 be the number of randomly sampled labeled points from some
graph G and λ1 be the second smallest eigenvalue of the Laplacian matrix of G. With probability
1− δ, we have

|Rn(f)−R(f)| ≤ β +

√
2 log(2/δ)

n
(nβ + 4)

where

β =
3η2

√
n

(λ1 − η)2
+

4η

λ1 − η

The original version of this bound as in (Belkin & Niyogi, 2004) is in Appendix C. We consider
graphs G1, G2, G3 in Figure 2 to compare the bounds. Here v(G) refers to the value of parameter v
for a graph G.

First, we note that this bounds the difference between the empirical error and the generalization
error, while our bound is for the generalization error itself. The spectral bound assumes that we have
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Add dongle nodes

Figure 3: One can turn the label propagation with multiple sources of information into a standard
label propagation problem by augmenting the graph G (left) with dongle nodes (right). The colored
point represents a labeled point. The points without the shade are dongle nodes.

randomly sampled initial labeled points, and thus the bound only depend on the number of labeled
points. For example, G2 and G3 have the same underlying graph and the same number of labeled
points, so they have the same spectral bound of generalization error, which relies on the empirical
error. In contrast, our bound takes the position of labeled points into account to provide an explicit
explanation why LPA performs better on G2 than G3. We can see this since G2 is smoother than G3

(c2(G2) = 0, c2(G3) =
s2(G3)

Cin(2)(G3)
= 8

8 = 1).

The spectral bound depends on the second smallest eigenvalue λ1. If the graph is not well clustered,
λ1 will be small. For example, λ1(G1) = 2, λ1(G2) = 0.53. Belkin & Niyogi (2004) suggests that
when λ1 is small, we should cut the graph in two, using the eigenvector corresponding to λ1, and
optimize the objective separately. Our bound works for any graph, in fact, our bound is also tight
on G2 where LPA achieves zero error (as c1(G2) = c2(G2) = 0). Also, as η → ∞, the objective of
Equation 2 is equivalent to Equation 1. The, the spectral bound takes on value β → 3

√
n− 4, which

implies that it does not depend on the geometry of the graph (λ1) anymore. Finally, the spectral
bound does not use any prior information, while our bound captures the interplay between the quality
of graph and the quality of prior information.

4 LABEL PROPAGATION WITH MULTIPLE SOURCES OF INFORMATION

We now consider the setting where we observe multiple sources of prior information and provide
a framework to incorporate them into LPA. Assume that we have multiple initial noisy predictions
hi(x) : X → [0, 1] for i = 1, 2, . . . , k. A natural extension of the LPA objective is given by

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2 +

n+m∑
i=1

k∑
j=1

(fi − hj(xi))
2αj(xi) (3)

such that fi = yi for i ≤ n. The first term encourages our prediction to be smooth with respect to a
graph while the second term encourage our prediction to also be close to the initial predictions. The
function αj : X → [0,∞), which we need to learn, controls how close we want our final prediction
to be to each initial prediction hj . We can turn this into a standard label propagation problem for
which we have an efficient iterative method to solve by augmenting the graph G with dongle nodes
(Appendix D). Given a fixed αj for each j = 1, . . . , k, we can also show that there exists an initial
prediction h where the solution of Equation 3 is equivalent to a solution of LPA with a single initial
prediction h for which our analysis applies (Appendix E).

A key question is for this framework is “how to choose αj ?” In the ideal setting, we set αj(xi) = 0
when hj makes an incorrect prediction for point xi and set αj(xi) = 1 when hj makes a correct
prediction,

αj(xi) = 1[1[hj(xi) > 0.5] = yi].

However, this is not applicable in a practical setting as knowing when hj is correct or incorrect at a
point xi is equivalent to knowing the corresponding true label yi of that point. We now investigate
different approaches to select the function αj .

6



Published as a conference paper at ICLR 2023

4.1 ESTIMATED ACCURACY

Although we do not know whether hj will make a correct prediction at each point xi, we can
still approximate its accuracy over the entire dataset. We can use techniques from crowd-sourcing
literature or weak supervision literature to approximate the accuracy of each noisy labeler. Then, we
can set αj as the estimated accuracy of a hj ,

αj(xi) = P(1[hj(x) > 0.5] = y) = pj .

We also consider setting αj = ln(
pj

1−pj
) as in the boosting literature (in Appendix F.1).

4.2 PROBABILISTIC APPROACH

We can also consider a probabilistic approach to select the function αj . Let each hj be sampled from
a Gaussian distribution

hj ∼ N (y, σj(x)
2)

and let f follow the Gaussian field as in Zhu & Ghahramani (2002), where

ρβ(f) ∝ exp(−βE(f)), E(f) =
1

2

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2.

Then, the log-likelihood is given by

l(f) = constant−
n+m∑
i=1

k∑
j=1

1

2σj(xi)2
(hj(xi)− fi)

2 − β

2

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2.

This resembles the objective of Equation 3 and suggests that we should set our function αj as

αj(xi) =
1

σj(xi)2
,

where σj(xi)
2 is the variance of hj at point xi. With access to a small set of labeled data points,

we can estimate σj(xi) through heteroscedastic regression (Wasserman, 2006), which is further
discussed in Appendix F.2. We note that this function αj changes over values of x as it is computed
through regression, while the accuracy-based weighting has a constant value for αj .

5 EXPERIMENTS

We connect LPA and the field of weak supervision by using weak labelers as our source of prior
information. Formally, a set of weak labelers is given by λ = {λ1, ..., λk}, where each λi : X →
{0, 1, ∅} and ∅ denotes an abstention. Here, we consider LPA with a single source of prior information
h(x) = hλ(x) is an aggregation of weak labelers, which we refer to as LPA+WL. For this method,
we use Snorkel MeTaL (Ratner et al., 2019) as our aggregation scheme. We also consider our
extensions of LPA with multiple sources of prior information when we set hi = λi, for each weak
labeler. We refer to our extensions of LPA that incorporate weak labelers through dongle nodes as
LPAD (A) and LPAD (P), where the last letter denotes our techniques to estimate the weighted edges
of these dongle nodes (accuracy, and probabilistic approach). For methods that require accuracies,
we use accuracies estimated via Snorkel MeTaL. We note that LPAD (A) and LPA+WL are both
using the Snorkel estimated accuracy, we provide a discussion on their difference in Appendix E.1.
For LPA + WL, we set µ = 1. Further experimental details for our methods and the baselines are in
Appendix G.

We compare our approaches to existing weak supervision methods, standard LPA, and other semi-
supervised baselines on 4 binary classification datasets from the WRENCH benchmark (Zhang
et al., 2021). The features from these text and image datasets are extracted from BERT (Kenton &
Toutanova, 2019) and ResNet (He et al., 2016b) respectively. On each dataset, we balance the training
data to have equal class proportions. To generate a small set of labeled data, we randomly sample
n = 100 points from the training data. The remaining data serves as our unlabeled training data. For
all graph-based methods, we construct a graph G with average degree t, which is a hyperparameter of
our method, and with edges that have value 1. More information about t and other hyperparameters
of all approaches are in Appendix G.2. Code to replicate our experiments can be found here1.

1https://github.com/dsam99/label propagation weak supervision
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Method Youtube SMS Basketball CDR

LPA 82.00 ± 1.37 94.32 ± 0.45 78.71 ± 2.41 67.41 ± 0.82
GCN 84.16 ± 0.95 94.32 ± 1.02 61.34 ± 1.16 65.42 ± 1.00
Snorkel + L 87.44 ± 0.47 96.24 ± 0.32 82.08 ± 0.83 68.03 ± 0.28
FS + L 87.76 ± 0.51 94.84 ± 0.43 70.23 ± 1.20 67.70 ± 0.29
CLL 88.56 ± 0.80 94.56 ± 0.73 77.02 ± 3.96 68.52 ± 0.58
Liger + L 88.72 ± 0.58 96.08 ± 0.38 80.98 ± 1.71 67.33 ± 0.18

LPA + WL 88.32 ± 0.50 96.80 ± 0.36 83.13 ± 1.43 67.61 ± 0.19
LPAD (A) 90.32 ± 0.43 96.32 ± 0.52 83.06 ± 0.74 68.13 ± 0.74
LPAD (P) 87.84 ± 0.53 96.64 ± 0.39 82.01 ± 2.96 68.97 ± 0.51

Table 1: We report accuracy (± s.e.) on a held-out test dataset for training an endmodel on
pseudolabeled training data, when averaged over 5 seeds. We highlight the best performing method
in red and the second best performing method in blue.

5.1 BASELINES

We compare our methods against various semi-supervised and existing weakly supervised learning
approaches. We use ground truth labels instead of pseudolabels on the 100 labeled points in methods
denoted with (+L). In all these approaches, we train an inductive endmodel on the pseudolabeled
training data, as is standard in WSL literature.

Label Propagation (LPA): The standard label propagation baseline (Zhu & Ghahramani, 2002) on
graph G. This does not take into account weak labeler information.

Graph Convolutional Network (GCN): We provide results for a standard graph convolutional net-
work (Kipf & Welling, 2017). This method also does not take into account weak labeler information.

Snorkel + L: A weakly supervised learning aggregation scheme, Snorkel MeTaL (Ratner et al., 2017;
2019), which produces pseudolabels through a graphical model.

FlyingSquid + L (FS + L): Another weakly supervised method that estimates parameters of a
graphical model via a triplet method (Fu et al., 2020).

Constrained Label Learning (CLL): A method that produces an labeling contained within a feasible
space constrained by the error rates of weak labelers (Arachie & Huang, 2021). We use the small set
of labeled data to generate the error rates of the weak labelers.

Liger + L: A method that extends weak labelers using the smoothness of pretrained models and
develops cluster-level aggregations (Chen et al., 2022). This method uses FS (Fu et al., 2020) as a
base aggregation scheme.

5.2 RESULTS

We provide results for test accuracy of training an endmodel on pseudolabels generated by the
baselines and our methods in Table 1. Our results demonstrate that incorporating weak labels into
label propagation improves upon the performance of LPA across all datasets (LPA + WL > LPA).
In addition, in almost every dataset, using LPA to incorporate smoothness improves upon the prior
aggregation of weak labels (LPA + WL > Snorkel + L). Our methods also outperform other weakly
supervised aggregation methods, in most cases. The best performing baseline we compare to is Liger
or CLL, which each only marginally outperforms some of our methods on one dataset. We note
that there is not clear best weighting scheme between (A) and (P), although they outperform most
baselines on almost all tasks. In addition, one of our methods is the best performing approach on all
datasets.

We also report the accuracy of standard LPA and our methods on the labeled and unlabeled training
data in Table 2 (i.e, evaluating pseudolabel accuracies). We measure the accuracy of a particular
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YouTube SMS CDR

Method Accuracy Coverage Accuracy Coverage Accuracy Coverage

Snorkel + L 75.96 ± 0.13 89.75 ± 0.08 70.40 ± 0.34 48.31 ± 0.52 70.64 ± 0.12 92.41 ± 0.11
LPA 55.98 ± 0.08 11.97 ± 0.16 54.71 ± 0.01 9.42 ± 0.03 50.79 ± 0.00 1.58 ± 0.00
Liger + L 81.06 ± 0.47 99.98 ± 0.01 78.62 ± 0.23 96.01 ± 0.20 50.56 ± 0.13 81.79 ± 10.72

LPA + WL 76.02 ± 0.12 89.81 ± 0.08 70.75 ± 0.35 49.03 ± 0.52 70.64 ± 0.12 92.41 ± 0.11
LPAD (A) 84.03 ± 0.15 89.81 ± 0.08 70.80 ± 0.26 49.00 ± 0.51 72.87 ± 0.08 91.66 ± 0.49
LPAD (P) 89.52 ± 0.13 89.75 ± 0.08 70.98 ± 0.27 49.03 ± 0.52 71.91 ± 0.25 92.22 ± 0.11

Table 2: We report accuracy and coverage (± s.e.) of the various label propagation methods on the
full partially labeled training data (i.e, pseudolabel accuracies), when averaged over 5 seeds. We
also add Liger + L as it looks to improve coverage by extending weak labelers. We bold the best
performing method (in terms of Accuracy) on each dataset.

approach on abstained datapoints as 50% (i.e, random guessing on binary data) on all abstained
points as the method has no information on these points. Results for additional datasets are deferred
to Appendix 3; on these datasets, the weak labeler coverage is almost 100% of the data, so coverage
is roughly the same across our methods and the baselines. We observe that coverage drastically
increases when using our weakly supervised prior (Table 2) over the standard LPA and slightly over
that of Snorkel. We also observe that our method improves upon the base aggregation method of
Snorkel on almost all datasets, improving both overall accuracy and coverage due to the propagation
of information to nearby points. We note that Liger has much higher coverage on YouTube and SMS,
although the accuracy on this larger set is much worse (see Table 3 in the Appendix).

6 DISCUSSION

We provide a novel theoretical perspective on LPA that takes advantage of useful prior information.
Our bound differs significantly from existing spectral bounds, and provides insight into how to best
incorporate priors into LPA. We note that our analysis is general and works with any initialization h.
We also provide a framework to handle multiple sources of side information and empirical results
for the setting of weak supervision. Further work can incorporate other types of prior information
into LPA, such as in the recent line of work of learning with past predictions (Mitzenmacher &
Vassilvitskii, 2021; Khodak et al., 2022). In addition, our connections of LPA with weakly supervised
learning illustrate (both theoretically and empirically) that these methods benefit each other. As a
whole, our results support adding smoothness to the standard WSL pipeline and can encourage further
connections between semi-supervised learning algorithms and WSL. We note a few limitations of our
method; our bound depends on several parameters, smoothness sk, prior information accuracy αk; in
general, we may need to approximate these values through labeled data. It remains an open question
of how to do this effectively. In addition, we assume a uniformity assumption that the average error
of points with ”Out” connections from Nk is of a constant factor of the average error in Nk. Relaxing
the bound beyond this assumption is also an open question.

We remark that our approach bridges the gap between classical label propagation and modern deep
learning by incorporating information from pretrained models to construct our graph G. Since
we construct G through Euclidean distance, our work uses notions of smoothness in the learnt
embeddings, which is also noted in Chen et al. (2022). As we gain access to more powerful pretrained
models, our approach will also benefit through a better graph G. This method also provides a natural
framework to combine information from large pretrained models (via our graph G) and rules provided
by domain experts (through our prior predictions h1, . . . , hk).
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Ré. Training complex models with multi-task weak supervision. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):4763–4771, Jul. 2019.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
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A CLOSED FORM SOLUTION OF LPA

We provide a closed form solution of the following optimization problem.

min
f∈Rn+m

1

2
(
∑
i,j

wij(fi − fj)
2 + µ||f − h||22) s.t. fi = yi for i ≤ n.

Here we abuse notation h as a vector (h(x1), . . . , h(xn+m)) and hi = h(xi). For simplicity we refer
i ∈ L as 1 ≤ i ≤ n and i ∈ U as n+ 1 ≤ i ≤ n+m. First, note that

1

2
(
∑
i,j

wij(fi − fj)
2 =

1

2
(
∑
i∈L

∑
j∈L

wij(fi − fj)
2 + 2

∑
i∈L

∑
j∈U

wij(fi − fj)
2

+
∑
i∈U

∑
j∈U

wij(fi − fj)
2)

The first term is a constant as fi = yi for i ∈ L. Denote fL ∈ Rn is a column vector with entry fi for
i ∈ L and fU ∈ Rm is a column vector with entry fj for j ∈ U . We sometimes refer wi,j to wij . For
the second term we have∑

i∈L

∑
j∈U

wij(fi − fj)
2 =

∑
i∈L

∑
j∈U

wij(f
2
i − 2fifj + f2

j )

=
∑
i∈L

(
∑
j∈U

wij)f
2
i +

∑
j∈U

(
∑
i∈L

wij)f
2
j − 2

∑
i∈L

∑
j∈U

fiwijfj

= constant + fTUDULfU − 2fTLWLU fU .
where DUL ∈ Rm×m is a diagonal matrix with (DUL)jj =

∑
i∈L wi,j+n and WLU ∈ Rn×m is a

matrix with entry (WLU )ij = wi,j+n. For the third term, we have
1

2

∑
i∈U

∑
j∈U

wij(fi − fj)
2 =

1

2

∑
i∈U

∑
j∈U

wij(f
2
i − 2fifj + f2

j )

=
∑
i∈U

(
∑
j∈U

wij)f
2
i −

∑
i∈U

∑
j∈U

fiwijfj

= fTUDUU fU − fTUWUU fU
where DUURm×m is a diagonal matrix with (DUU )jj =

∑
i∈U wi,j+n and WUU ∈ Rm×m is a

matrix with entry (WUU )ij = wi+n,j+n. Therefore, the overall objective is given by

min
fU∈Rm

constant + fTU (DUL +DUU −WUU )fU − 2fTLWLU fU +
µ

2
||f − h||22.

Differentiating with respect to fU and setting equal to 0, we have

2(DUL +DUU −WUU )fU − 2WT
LU fL + 2µ(fU − hU ) = 0

fU = (DUL +DUU −WUU + µId)
−1(µhU +WT

LU fL)
when hU ∈ Rm with (hU )j = hj+n. We can also extend this to the case when µ ∈ Rm+n, where we
have a different value of µi for each i. The optimization objective is given by

min
f∈Rn+m

1

2
(
∑
i,j

wij(fi − fj)
2 +

∑
i

µi(fi − hi)
2) s.t. fi = yi for i ≤ n.

We can write the regularization term for U as∑
i∈U

µi(fi − hi)
2 = (fU − hU )

TDµ(fU − hU )

when Dµ ∈ Rm is a diagonal matrix with entry (Dµ)jj = µj+n. We can write the optimization
objective as

min
fU∈Rm

constant + fTU (DUL +DUU −WUU )fU − 2fTLWLU fU + (fU − hU )
TDµ(fU − hU ).

Differentiating with respect to fU and setting equal to 0, we have

2(DUL +DUU −WUU )fU − 2WT
LU fL + 2Dµ(fU − hU ) = 0

fU = (DUL +DUU +Dµ −WUU )
−1(DµhU +WT

LU fL)
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B THEORETICAL RESULTS

First, we analyze the closed form solution of the LPA in Lemma 1.
Lemma 1. Let f∗ be the optimal solution of the optimization problem of Equation 1 then for
n+ 1 ≤ i ≤ n+m,

f∗
i =

∑
j wijf

∗
j + µhi∑

j wij + µ

Proof. For each i ≤ n, we must have f∗
i = yi to satisfy the hard constraints. For each n+ 1 ≤ i ≤

n+m, we differentiate the objective with respect to fi and set equal to 0, resulting in∑
j

wij(fi − fj) + µ(fi − hi) = 0.

Rearranging this and setting fj = f∗
j , we have the lemma.

Next, we will analyze the error |f∗
i − yi|, which is the difference between the optimal solution and

the true label. Note that |f∗
i − yi| < 0.5 implies that we have a correct soft label f∗

i .
Lemma 2. Let f∗ be the optimal solution of the optimization problem of Equation 1. Then, for
n+ 1 ≤ i ≤ n+m, we have

|f∗
i − yi| ≤

∑
j wij |f∗

j − yj |+
∑

j wij |yj − yi|+ µ|hi − yi|∑
j wij + µ

.

Proof. From lemma 1,

|f∗
i − yi| = |

∑
j wijf

∗
j + µhi∑

j wij + µ
− yi|

= |
∑

j wij(f
∗
j − yi) + µ(hi − yi)∑

j wij + µ
|

= |
∑

j wij(f
∗
j − yj) +

∑
j wij(yj − yi) + µ(hi − yi)∑

j wij + µ
|

≤
∑

j wij |f∗
j − yj |+

∑
j wij |yj − yi|+ µ|hi − yi|∑

j wij + µ

Lemma 2 says that we can bound the error of point i, |f∗
i − yi| by the error of its neighbors |f∗

j − yj |
and terms corresponding to the smoothness of the true labels and the prior information accuracy.
Because we know that the error on labeled points are zero, this lemma motivates us to bound the error
in term of the distance of our points from the labeled points.

Next, in addition to the average error defined in Definition 5, we define the In-error, Between-error
and Out-error for each Nk.
Definition 6. For a graph G with an adjacency matrix W = (w)ij , a set of k-hop neighbors Nk and
a prediction f ∈ Rn+m, we define the In-error, Between-error and Out-error of Nk as

Errin(f, y, k) =

∑
i∈Nk,j∈Nk−1

wij |fi − yi|
Cin(k)

Errbet(f, y, k) =

∑
i∈Nk,j∈Nk

wij |fi − yi|
Cbet(k)

Errout(f, y, k) =

∑
i∈Nk,j∈Nk+1

wij |fi − yi|
Cout(k)

For simplicity, we will write Ein(k), Ebet(k) ,Eout(k) for Errin(f
∗, y, k), Errbet(f

∗, y, k),
Errout(f

∗, y, k) respectively.
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We will use Lemma 2, to derive a relationship between errors in Nk and its neighbors. We make use
of the fact that the Out-flow of Nk is the same as the In-flow of Nk+1.
Lemma 3. For 0 ≤ k ≤ l − 1

Cout(k) = Cin(k + 1)

Lemma 4. (Error difference inequality) For 1 ≤ k ≤ l − 1, we have

Cin(k)(Ein(k)− Eout(k − 1)) +
∑
i∈Nk

µ|f∗
i − yi| ≤ Cout(k)(Ein(k + 1)− Eout(k)) + sk + µ|Nk|αk

where sk is the smoothness of true labels and αk is the prior information error over Nk.

Proof. From lemma 2, we have∑
j

wij |f∗
i − yi|+ µ|f∗

i − yi| ≤
∑
j

wij |f∗
j − yj |+

∑
j

wij |yj − yi|+ µ|hi − yi|.

We take a summation over i ∈ Nk,∑
i∈Nk

∑
j

wij |f∗
i − yi|+ µ|f∗

i − yi| ≤
∑
i∈Nk

(
∑
j

wij |f∗
j − yj |+

∑
j

wij |yj − yi|+ µ|hi − yi|).

From the definition of the In-error, Between-error, Out-error, smoothness sk, and weak label error
αk, we have

LHS = Cin(k)Ein(k) + Cbet(k)Ebet(k) + Cout(k)Eout(k) +
∑
i∈Nk

µ|f∗
i − yi|

RHS = Cout(k − 1)Eout(k − 1) + Cbet(k)Ebet(k) + Cin(k + 1)Ein(k + 1) + sk + µ|Nk|αk.

From lemma 3, we know that
Cout(k) = Cin(k + 1), (4)

so we can rearrange the inequality as

Cin(k)(Ein(k)− Eout(k− 1)) +
∑
i∈Nk

µ|f∗
i − yi| ≤ Cout(k)(Ein(k+ 1)− Eout(k)) + sk + µ|Nk|αk.

Lemma 5. (Error difference inequality k = l)

Cin(l)(Ein(l)− Eout(l − 1)) +
∑
i∈Nl

µ|f∗
i − yi| ≤ sl + µ|Nl|αl

Proof. Similar to lemma 4, we have∑
i∈Nl

∑
j

wij |f∗
i − yi|+ µ|f∗

i − yi| ≤
∑
i∈Nl

(
∑
j

wij |f∗
j − yj |+

∑
j

wij |yj − yi|+ µ|hi − yi|)

Because, Nl is the last neighborhood, there is no edge out from Nl and

LHS = Cin(l)Ein(l) + Cbet(l)Ebet(l) +
∑
i∈Nl

µ|f∗
i − yi|

RHS = Cout(l − 1)Eout(l − 1) + Cbet(l)Ebet(l) + sl + µ|Nl|αl

and rearrange to

Cin(l)(Ein(l)− Eout(l − 1)) +
∑
i∈Nl

µ|f∗
i − yi| ≤ sl + µ|Nl|αl.

We can see that this inequality contains different notions of error. We now define the proportion
between In-error and Out-error.

16



Published as a conference paper at ICLR 2023

Definition 7. Let ak, bk be the proportion of the In-error and Out-error with the average error,

ak =
Ein(k)

Ek
, bk =

Ein(k)

Ek
.

when

Ek =

∑
i∈Nk

|f∗
i − yi|

|Nk|
.

Assumption 1. (Uniformity of error) We assume that the In-error and Out-error are roughly the
same as the average error in each neighborhood.

ak = O(1), bk = O(1),
bk
ak

= O(1)

For example, any graph G that has all points in a neighborhood Nk with the same number of edges
that go into and out from that point, has the property that ak = bk = 1. In particular, assume that we
have 2 points in Nk, the first point has 4 edges from Nk−1 and 2 edges to Nk+1 while the second
point has 2 edges from Nk−1 and 1 edge to Nk+1, this graph still has ak = bk = 1. In general, we
expect the proportion bk

ak
to be close to 1. Next, we will substitute ak, bk in Lemma 4.

Corollary 1. For 1 ≤ k ≤ l − 1, we have

(akEk − bk−1Ek−1) ≤
Cout(k)

Cin(k) + µ|Nk|
(ak+1Ek+1 − bkEk) +

sk + µ|Nk|αk

Cin(k) + µ|Nk|

Proof. From lemma 4

Cin(k)(Ein(k)− Eout(k − 1)) +
∑
i∈Nk

µ|f∗
i − yi| ≤ Cout(k)(Ein(k + 1)− Eout(k)) + sk + µ|Nk|αk

We let Ein(k) = akEk and Eout(k) = bkEk and
∑

i∈Nk
|f∗

i − yi| = |Nk|Ek.

Cin(k)(akEk − bk−1Ek−1) + µ|Nk|Ek ≤ Cout(k)(ak+1Ek+1 − bkEk) + sk + µ|Nk|αk

Cin(k)(akEk − bk−1Ek−1) + µ|Nk|(Ek − Ek−1) ≤ Cout(k)(ak+1Ek+1 − bkEk) + sk + µ|Nk|αk,

as we know that Ek−1 ≥ 0. Then, simplifying yields that

(Cin(k) + µ|Nk|)(akEk − bk−1Ek−1) ≤ Cout(k)(ak+1Ek+1 − bkEk)) + sk + µ|Nk|αk

(akEk − bk−1Ek−1) ≤
Cout(k)

Cin(k) + µ|Nk|
(ak+1Ek+1 − bkEk) +

sk + µ|Nk|αk

Cin(k) + µ|Nk|
.

Corollary 2. We have

(alEl − bl−1El−1) ≤
sl + µ|Nl|αl

Cin(l) + µ|Nl|
.

The corollary implies that the difference between the error between neighborhood can’t be too large.
We introduce the next two lemma to help deriving the bound.

Lemma 6. For d1, d2, . . . , dl that satisfies the following inequalities,

dk ≤ γkdk+1 + ck

for 1 ≤ k ≤ l − 1 and
dl ≤ cl.

We have

dk ≤
l∑

i=k

ci(

i−1∏
j=k

γj)
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Proof. The main idea is that we can use the upper bound on dl, dl−1, . . . , dk+1 to find the upper
bound of dk. First, we start with dl−1

dl−1 ≤ γl−1dl + cl−1

≤ γl−1cl + cl−1.

Next, we continue with dl−2,

dl−2 ≤ γl−2dl−1 + cl−2

≤ γl−2(γl−1cl + cl−1) + cl−2.

= clγl−1γl−2 + cl−1γl−2 + cl−2

and so on. With this idea, we can show by induction that

dk ≤
l∑

i=k

ci(

i−1∏
j=k

γj).

We sum these inequalities up to have the lemma.

Lemma 7. For x1, x2, . . . , xl that satisfies the following inequalities,

akxk − bk−1xk−1 ≤ dk

for 1 ≤ k ≤ l, when ak, bk, dk are positive constant. We have

xk ≤ 1

ak
(

k∑
i=1

di(

k−1∏
j=i

δj)) +
a1
ak

(

k−1∏
j=1

δj)x0

when

δj =
bj
aj

Proof. We divide both side of the inequality by ak, for each 1 ≤ k ≤ l, we have

xk ≤ bk−1

ak
xk−1 +

dk
ak

.

We can recursively apply this inequality,

xk ≤ bk−1

ak
(
bk−2

ak−1
xk−2 +

dk−1

ak−1
) +

dk
ak

.

=
1

ak
(
bk−1

ak−1
bk−2xk−2 +

bk−1

ak−1
dk−1 + dk)

=
1

ak
(δk−1bk−2xk−2 + δk−1dk−1 + dk)

≤ 1

ak
(δk−1bk−2(

bk−3

ak−2
xk−3 +

dk−2

ak−2
) + δk−1dk−1 + dk)

≤ 1

ak
(δk−1δk−2bk−3xk−3 + δk−1δk−2dk−2 + δk−1dk−1 + dk)

≤ . . .

≤ 1

ak
(

k∑
i=1

di(

k−1∏
j=i

δj)) +
a1
ak

(

k−1∏
j=1

δj)x0

Now, we are ready to derive the error bound of LPA.
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Theorem 3. Let f∗ be the optimal solution of the optimization problem of Equation 1, the error of
f∗ in each neighborhood is given by

Ek ≤ 1

ak
(

k∑
i=1

di(

k−1∏
j=i

δj))

when

δj =
bj
aj

, dk =

l∑
i=k

ci(

i−1∏
j=k

γj)

and

ck =
sk + µ|Nk|αk

Cin(k) + µ|Nk|
, γk =

Cout(k)

Cin(k) + µ|Nk|
.

Under assumption 1, we have

Ek ≤ O(

k∑
i=1

di)

Proof. From corollary 1, 2 we have

(akEk − bk−1Ek−1) ≤
Cout(k)

Cin(k) + µ|Nk|
(ak+1Ek+1 − bkEk) +

sk + µ|Nk|αk

Cin(k) + µ|Nk|

and

(alEl − bl−1El−1) ≤
sl + µ|Nl|αl

Cin(l) + µ|Nl|
.

Let

dk = akEk − bk−1Ek−1, ck =
sk + µ|Nk|αk

Cin(k) + µ|Nk|
, γk =

Cout(k)

Cin(k) + µ|Nk|

By lemma 6, we have

akEk − bk−1Ek−1 = dk ≤
l∑

i=k

ci(

i−1∏
j=k

γj).

By lemma 7, we have

Ek ≤ 1

ak
(

k∑
i=1

di(

k−1∏
j=i

δj)) +
a1
ak

(

k−1∏
j=1

δj)E0

=
1

ak
(

k∑
i=1

di(

k−1∏
j=i

δj))

when

δj =
bj
aj

.

The last equality is true because the error E0 = 0. With the assumption 1, bk
ak

= O(1), we have

Ek ≤ O(

k∑
i=1

di)
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C SPECTRAL BOUND

The following is the original version of the spectral generalization bound found in Belkin & Niyogi
(2004), where they assume that we can have repeated labeled points (at most u times).

Theorem 4. (Generalization performance of graph regularization) Let f be the optimal solution of
Equation 2, n ≥ 4 be the number of randomly sampled labeled points from some distribution where
each vertex occurs no more than u times, together with values y1, . . . , yn, |yi| ≤ M . Let λ1 be the
second smallest eigenvalue of the Laplacian matrix of G. Assuming that ∀x |f(x)| ≤ K, we have
with probability 1− δ, (conditional on the multiplicity being no greater than t),

|Rn(f)−R(f)| ≤ β +

√
2 log(2/δ)

n

(
nβ + (K +M)2

)
where

β =
3η2

√
un

(λ1 − ηu)2
+

4ηM

λ1 − ηu

We can set u = 1,M = 1,K = 1 to achieve the simplified version (Theorem 2).

D DONGLE NODES

We can change a label propagation problem with multiple initial predictions into a standard label
propagation by augmenting a graph with dongle nodes (Zhu et al., 2003). Without loss of generality,
we assume that each initial prediction has 3 possible outputs hj : X → {∅, 0, 1} for j = 1, . . . , k.
However, this method also works for a general case when hj : X → [0, 1]. We augment the original
graph G with the following nodes and edges,

1. For each weak labeler hj , we add 2 nodes to the graph G with vertices vn+m+j , vn+m+k+j .
This represents a prediction of class 0 or 1 from the weak labeler j.

2. For each xi that hj(xi) = 0, we draw a weighted edge between vi (the corresponding vertex
of xi) and vn+m+j with weight αj(xi).

3. For each xi that hj(xi) = 1, we draw a weighted edge between vi (the corresponding vertex
of xi) and vn+m+k+j with weight αj(xi).

4. For each xi that hj(xi) = ∅, we do not draw any edge.

Let G′ be the new graph with a weighted adjacency matrix (w′
ij) then solving the objective of

Equation 3 is equivalent to solving

min
f∈Rn+m+2k

n+m+2k∑
i=1

n+m+2k∑
j=1

w′
ij(fi − fj)

2 (5)

such that

1. fi = yi for i ≤ n.

2. fi = 0 for n+m+ 1 ≤ i ≤ n+m+ k.

3. fi = 1 for n+m+ k + 1 ≤ i ≤ n+m+ 2k.

We see initial predictions as dongle nodes and encode the parameter αj(xi) as a weight of an edge
connecting the corresponding dongle node of predictor j to the node of xi. With a direct calculation,
we can see that the objective of Equation 5 is the same as the original objective,

n+m∑
i=1

n+m∑
j=1

wij(fi − fj)
2 +

n+m∑
i=1

k∑
j=1

(fi − hj(xi))
2αj(xi)

such that fi = yi for i ≤ n. With this procedure, we add 2k nodes and at most (n+m)k edges to G.
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E CONNECTION BETWEEN LPA WITH MULTIPLE AND SINGLE INITIAL
PREDICTIONS

We analyze the closed form solution of the optimization objective of Equation 3. By differentiating
with respect to fi, we know that the optimal solution f∗

i satisfies the following

n+m∑
j=1

2wij(f
∗
i − f∗

j ) +

k∑
j=1

2(f∗
i − hj(xi))αj(xi) = 0

f∗
i =

∑n+m
j=1 wijf

∗
j +

∑k
j=1 αj(xi)hj(xi)∑n+m

j=1 wij +
∑k

j=1 αj(xi)

From Lemma 1, recall that the optimal solution of LPA with an initial prediction (objective of
Equation 1) is given by

f∗
i =

∑
j wijf

∗
j + µh(xi)∑

j wij + µ

We can see that if we set

h(xi) =

∑k
j=1 αj(xi)hj(xi)∑k

j=1 αj(xi)
, µ(xi) =

k∑
j=1

αj(xi),

the solution LPA with multiple initial predictions is equivalent to LPA with the initial prediction h,
which could be seen as a weighted average prediction. The objective is given by

min
f∈Rn+m

1

2
(
∑
i,j

wij(fi − fj)
2 +

n+m∑
i=1

µ(xi)(fi − h(xi))
2) s.t. fi = yi for i ≤ n.

We note that now the parameter µ is now depends on each instance xi. When we have

k∑
j=1

αj(xi) = µ

is a constant for all xi then we will have the same setting as in the objective of Equation 1. However,
our analysis still works in this case when µ(xi) is not a constant.

E.1 DIFFERENCE BETWEEN LPA+WL AND LPAD(A)

We note that LPAD (A) uses Snorkel to estimated accuracies αj . From above, LPAD (A) is equivalent
to LPA with an initial prediction

h(xi) =

∑k
j=1 αjhj(xi)∑k

j=1 αj

, µ(xi) =

k∑
j=1

αj .

We observe that h is exactly the prior information for LPA+WL. However, the key difference is that for
LPA + WL, we have a fixed µ for all data points, while in LPAD(A), the value µ(xi) depends on xi. To
illustrate this, we consider 2 scenarios. First, we assume that we have 3 weak labelers h1, h2, and h3,
all with estimated accuracy 0.8. We consider a point x1 with h1(x1) = 1, h2(x1) = 1, h3(x1) = 1
and x2 with h1(x2) = 1, h2(x2) = ∅, h3(x2) = ∅, where ∅ is abstention. We can observe that

1. h(x1) = h(x2) = 1

2. µ(x1) = 2.4, µ(x2) = 0.8

Here in LPA + WL, x1, x2 have the same prior information and regularization parameter µ. In
LPAD(A), we put much more weight on the regularization parameter µ(x1) than µ(x2). This is
intuitive as we should be more confident about our prior information when a higher number of weak
labelers agree.
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F METHODS FOR SELECTING ALPHA

F.1 BOOSTING APPROACH

From boosting literature (Freund & Schapire, 1997), given many weak learners hj : X → {0, 1} for
j = 1, 2, . . . , k, an optimal way to combine these weak learner (corresponding to an exponential loss
upper bound) is a weighted average

h =

∑k
j=1 αjhj∑k
j=1 αj

, αj = ln(
P(hj(x) = y)

1− P(hj(x) = y)
),

Instead of accuracy, we could set αj in this fashion suggested by the boosting literature. We show that
this value of αj minimizes the upper bound on the error |f∗

i − yi|. Recall that the optimal solution of
Equation 3 satisfies

f∗
i =

∑n+m
j=1 wijf

∗
j +

∑k
j=1 αj(xi)hj(xi)∑n+m

j=1 wij +
∑k

j=1 αj(xi)

We can bound the error of a point i, |f∗
i − yi| by the error of its neighbor |f∗

j − yj |. Observe that

f∗
i − yi =

∑n+m
j=1 wijf

∗
j +

∑k
j=1 αj(xi)hj(xi)∑n+m

j=1 wij +
∑k

j=1 αj(xi)
− yi

f∗
i − yi =

∑n+m
j=1 wij(f

∗
j − yj + yj − yi) +

∑k
j=1 αj(xi)(hj(xi)− yi)∑n+m

j=1 wij +
∑k

j=1 αj(xi)

|f∗
i − yi| ≤

∑n+m
j=1 wij |f∗

j − yj |+
∑n+m

j=1 wij |yj − yi|+ |
∑k

j=1 αj(xi)(hj(xi)− yi)|∑n+m
j=1 wij +

∑k
j=1 αj(xi)

..

The first term represents errors of neighbor points |f∗
j − yj | and the second term represents the

smoothness of the true labels on the graph G and the third term represents the accuracy of the
weighted prediction. We can improve the upper bound by selecting appropriate value of αj(xi) and
wij to minimize

|
∑k

j=1 αj(xi)(hj(xi)− yi)∑k
j=1 αj(xi)

| ≥ |
∑k

j=1 αj(xi)(hj(xi)− yi)∑n+m
j=1 wij +

∑k
j=1 αj(xi)

|.

Consider the following lemma,

Lemma 8. Given k classifier hi : X → {−1, 1} for i = 1, . . . , k. Let h(x) =
∑k

i=1 αihi(x) be
the weighted average among the classifiers. Assume that the prediction of hi(x) are independent
between different i . The optimal αi that minimize the risk when the loss is exponential loss of h(x),

L(h, x, y) = exp(−yh(x))

is given by

αi =
1

2
ln(

P(hi(x) = y)

1− P(hi(x) = y)
)

Proof. The risk is given by
E(L(h, x, y)) = E(exp(−yh(x)))

= E(exp(−y

k∑
i=1

αihi(x)))

=

k∏
i=1

E(exp(−yαihi(x)))

=

k∏
i=1

pi exp(−αi) + (1− pi) exp(αi)
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when pi = P(hi(x) = y). It is sufficient to choose αi that maximize

pi exp(−αi) + (1− pi) exp(αi).

Differentiate with respect to αi and set to zero, we have

−pi exp(−αi) + (1− pi) exp(αi) = 0

(1− pi) exp(αi) = pi exp(−αi)

exp(2αi) =
pi

1− pi

αi =
1

2
ln(

pi
1− pi

)

Note that exponential loss is an upper bound of our hinge loss and Lemma 8 suggests that to minimize
the exponential loss upper bound, we should set

αi =
1

2
ln(

pi
1− pi

)

F.2 HETEROSCEDASTIC REGRESSION

Recall that we model
hj ∼ N (y, σ(x)2)

so that we can write

hj(xi) = y(xi) + σj(xi)ε

when ε ∼ N (0, 1). We want to regress σ(x). Rearraging we have,

hj(xi)− y(xi) = σj(xi)ε

(hj(xi)− y(xi))
2 = σj(xi)

2ε2

log((hj(xi)− y(xi))
2) = log(σj(xi)

2) + log(ε2)

On labeled data, we can regress a function gj(xi) to match log((hj(xi)− y(xi))
2) then we set

αj(xi) =
1

exp(gj(xi))
.

G ADDITIONAL EXPERIMENTAL DETAILS

We use the default splits from the WRENCH benchmark (Zhang et al., 2021) for each of our binary
classification dataset. This benchmark has a Apache-2.0 license. For each text classification dataset
(Youtube, SMS, CDR), we use pretrained BERT embeddings (Kenton & Toutanova, 2019). For our
image classification tasks (Basketball), we use pretrained ResNet embeddings (He et al., 2016a). For
each task, we balance the datasets and randomly sample 100 labeled datapoints. We balance the
datasets to make sure that the overall sample of labeled data contains roughly the same amount of
points from each class.

We use cluster compute resources to produce our empirical results. We use a single GPU (NVIDIA
GeForce RTX 2080Ti) to run our methods and each of the baselines.

G.1 WEAK LABEL SOURCES

We use the standard weak labels contained within the WRENCH benchmark (Zhang et al., 2021).
These are standard in programmatic weak supervision literature and primarily consist of simple
hand-engineered rules. For example, on the YouTube dataset (or a spam classification task), examples
of weak labels are functions that check for the presence of words in a sentence (Figure 4). We defer
interested readers to the benchmark (Zhang et al., 2021) and other papers in weak supervision (Ratner
et al., 2017) for more details.
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Figure 4: Examples of weak labels on the YouTube dataset

G.2 HYPERPARAMETER OPTIMIZATION

We perform hyperparameter optimization of all methods, selecting the best set of parameters on the
validation set. We optimize over the following parameters for all methods’ endmodels:

• learning rate: [0.01, 0.001, 0.0001]

• number of epochs: [20, 30, 40, 50]

• weight decay: [0, 0.01, 0.001]

In each experiment, we have a fixed batch size of 100 and a fixed architecture of a 2 layer neural
network with a hidden dimension of 64 and a ReLU activation function. For all graph-based methods,
we have an additional parameter t ∈ [1, 2, 5, 10, 100]. t controls the average degree of nodes in
G. Let N be the number of nodes in G, we use the value t

N and as our threshold percentile for
our euclidean distance threshold graph. In essence, we add an edge between two points when the
Euclidean distance between them is less than the t

N -th percentile of all N2 pairwise distances. The
motivation for this is that N node corresponds to N2 edges, so adding t

N edges leads to a resulting
graph with average degree t.

For our GCN baseline, we construct a graph G in the same manner as all other LPA-based methods.
The GCN architecture is a 2 layer neural network with hidden dimension of 16 and ReLU activations.
Consequently, we train an endmodel on the pseudolabeled data, which is the same architecture as
all other methods. For our Liger + L baseline, we optimizer over a fixed threshold value for their
cosine similarity as some k for each weak labeler. We note that this baseline is highly sensitive to the
value of k; for BERT embeddings, we select values of k ∈ [0.995, 0.9975, 1] as points are much less
distinguished in the embedding space in comparison the larger foundation models (GPT-3, CLIP) in
the original paper (Chen et al., 2022). We use 2 clusters for all tasks.

H COMPLETE VERSION OF TABLES

We present our results for both training/pseudolabel performance (Table 3) and test/endmodel
performance (Table 4) in more detail and with additional comparisons.

In our pseudolabel performance table, we provide the Non-Abstain accuracy (i.e, only considering
accuracy on points on which the model makes a vote). We define abstaining as having a maximum
logit (across either class) that is within ϵ = 0.001 of 0.5. We observe a fundamental tradeoff:
balancing high accuracy and little coverage against lower accuracy and higher coverage. We also
observe that LPA performs well locally on regions connected to labeled points with non-abstain
accuracy close to 100 percents, but has low overall coverage.

For our endmodel results, we additionally compare against a fully supervised approach that uses all
of the training data and their labels. We remark that some datasets in the WRENCH benchmark have
noisy labels, leading to imperfect fully supervised performance. For example, we also add evaluations
on the Tennis dataset, which only achieves 88% fully supervised performance, and all methods seem
to match this performance. We also add some additional variations of our dongle-based approach. We
add a comparison to a boosting (Appendix F.1) to determine α, which we refer to as LPAD (B). We
also compare against a method that uses the unosberved ground truth accuracies for α (LPAD (O))
and another method that sets α = 1, ∀x (LPAD (1)). We note that LPAD (O) is an unfair comparison
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YouTube SMS CDR

Method Acc Cov NA Acc Acc Cov NA Acc Acc Cov NA Acc

Snorkel + L 75.96 ± 0.13 89.75 ± 0.08 78.93 ± 0.14 70.40 ± 0.34 48.31 ± 0.52 92.20 ± 0.29 70.64 ± 0.12 92.41 ± 0.11 72.33 ± 0.15
LPA 55.98 ± 0.08 11.97 ± 0.16 100.00 ± 0.00 54.71 ± 0.01 9.42 ± 0.03 100.00 ± 0.00 50.79 ± 0.00 1.58 ± 0.00 100.00 ± 0.00
Liger + L 81.06 ± 0.47 99.98 ± 0.01 81.07 ± 0.47 78.62 ± 0.23 96.01 ± 0.20 79.81 ± 0.18 50.56 ± 0.13 81.79 ± 10.72 50.98 ± 0.46

LPA + WL 76.02 ± 0.12 89.81 ± 0.08 78.97 ± 0.14 70.75 ± 0.35 49.03 ± 0.52 92.32 ± 0.29 70.64 ± 0.12 92.41 ± 0.11 72.33 ± 0.15
LPAD (A) 84.03 ± 0.15 89.81 ± 0.08 87.89 ± 0.16 70.80 ± 0.26 49.00 ± 0.51 92.45 ± 0.10 72.87 ± 0.08 91.66 ± 0.49 74.95 ± 0.17
LPAD (P) 89.52 ± 0.13 89.75 ± 0.08 94.03 ± 0.11 70.98 ± 0.27 49.03 ± 0.52 92.79 ± 0.13 71.91 ± 0.25 92.22 ± 0.11 73.75 ± 0.25

LPAD (B) 75.87 ± 0.14 89.81 ± 0.08 78.80 ± 0.16 70.83 ± 0.24 48.93 ± 0.05 92.58 ± 0.16 70.40 ± 0.08 91.64 ± 0.50 72.27 ± 0.13
LPAD (O) 89.36 ± 0.08 89.81 ± 0.08 93.8 ± 0.10 71.52 ± 0.30 49.00 ± 0.51 93.91 ± 0.19 73.91 ± 0.07 92.23 ± 0.09 75.93 ± 0.09
LPAD (1) 83.11 ± 0.07 76.97 ± 0.11 93.03 ± 0.07 70.88 ± 0.26 48.64 ± 0.51 92.93 ± 0.09 71.39 ± 0.07 75.00 ± 0.11 78.52 ± 0.09

Basketball Tennis

Method Acc Cov NA Acc Acc Cov NA Acc

Snorkel + L 69.09 ± 0.02 100.00 ± 0.0 69.09 ± 0.02 86.10 ± 0.06 100.00 ± 0.0 86.10 ± 0.06
LPA 62.16 ± 0.02 25.82 ± 0.05 97.12 ± 0.17 70.60 ± 0.29 52.61 ± 0.34 89.16 ± 0.44
Liger + L 59.06 ± 2.53 55.83 ± 9.88 65.21 ± 1.17 83.60 ± 1.34 100.00 ± 0.00 83.60 ± 1.34

LPA + WL 74.09 ± 0.30 99.94 ± 0.04 74.11 ± 0.30 86.91 ± 0.14 99.87 ± 0.03 86.96 ± 0.15
LPAD (A) 69.75 ± 0.33 99.95 ± 0.03 69.76 ± 0.33 87.15 ± 0.05 99.94 ± 0.03 87.17 ± 0.06
LPAD (P) 82.46 ± 0.19 90.42 ± 0.32 85.89 ± 0.19 87.69 ± 0.11 99.98 ± 0.01 87.70 ± 0.12

LPAD (B) 74.26 ± 0.30 99.95 ± 0.02 74.28 ± 0.30 87.20 ± 0.08 99.97 ± 0.01 87.21 ± 0.08
LPAD (O) 74.02 ± 0.33 99.99 ± 0.01 74.03 ± 0.33 87.23 ± 0.09 100.00 ± 0.00 87.23 ± 0.09
LPAD (1) 75.87 ± 0.20 69.97 ± 0.23 86.97 ± 0.24 87.46 ± 0.17 99.38 ± 0.04 87.70 ± 0.17

Table 3: We report accuracy, coverage, and non-abstaining accuracy (NA Acc) of the baselines and
our variants of LPA on the training data (i.e, pseudolabel statistics), when averaged over 5 seeds.

Method Youtube SMS Basketball CDR Tennis

Snorkel + L 87.44 ± 0.47 96.24 ± 0.32 82.08 ± 0.83 68.03 ± 0.28 88.51 ± 0.04
FS + L 87.76 ± 0.51 94.84 ± 0.43 70.23 ± 1.20 67.70 ± 0.29 88.56 ± 0.02
CLL 88.56 ± 0.80 94.56 ± 0.73 77.02 ± 3.96 68.52 ± 0.58 88.78 ± 0.13
LPA 82.00 ± 1.37 94.32 ± 0.45 78.71 ± 2.41 67.41 ± 0.82 83.35 ± 3.30
GCN 84.16 ± 0.95 94.32 ± 1.02 61.34 ± 1.16 65.42 ± 1.00 88.63 ± 0.14
Liger + L 88.72 ± 0.58 96.08 ± 0.38 80.98 ± 1.71 67.33 ± 0.18 86.43 ± 0.87

LPA + WL 88.32 ± 0.50 96.80 ± 0.36 83.13 ± 1.43 67.61 ± 0.19 88.51 ± 0.04
LPAD (A) 90.32 ± 0.43 96.32 ± 0.52 83.06 ± 0.74 68.13 ± 0.74 88.56 ± 0.02
LPAD (P) 87.84 ± 0.53 96.64 ± 0.39 82.01 ± 2.96 68.97 ± 0.51 88.60 ± 0.04

LPAD (B) 88.64 ± 0.37 96.56 ± 0.33 76.58 ± 2.20 67.01 ± 0.43 88.56 ± 0.02
LPAD (O) 90.16 ± 0.50 96.40 ± 0.50 81.10 ± 1.43 69.06 ± 0.59 88.58 ± 0.02
LPAD (1) 83.20 ± 1.15 94.32 ± 0.35 78.61 ± 1.95 67.76 ± 0.21 88.43 ± 0.16
Fully Supervised 89.92 ± 1.45 98.04 ± 0.38 86.04 ± 2.02 73.71 ± 0.85 88.43 ± 1.06

Table 4: We report accuracy on test data for training an endmodel on pseudolabeled training data,
when averaged over 5 seeds. We bold baselines when they outperform both of our methods. We bold
our methods when they outperform all baselines.

to all other methods as it accesses ground truth accuracies that other methods do not use; we add this
comparison to describe the best potential performance of LPAD.

I HYPERPARAMETER ABLATION

We provide an ablation study on hyperparameter t. We report accuracy on the test data of an endmodel
that is trained on pseudolabels from baselines and our methods with particular values of t to determine
the construction of G. We observe that all graph-based methods are sensitive to the choice of t, which
controls the sparsity of edges in the (Euclidean) graph G. We remark that this finding is intuitive
as most graph-based semi-supervised algorithms leverage properties of this graph to achieve better
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performance. We can see a common trend among all methods where when t is large, the end-model
accuracy tends to decrease. We note that Snorkel + L does not leverage any graph information, but
we still add it here for comparison.

YouTube

Method t = 1 t = 2 t = 5 t = 10 t = 100

Snorkel + L 87.04 ± 0.47 85.44 ± 0.9 86.4 ± 0.78 86.4 ± 0.78 87.04 ± 0.47
LPA 79.76 ± 1.99 81.6 ± 1.15 82.0 ± 1.37 82.64 ± 1.62 75.68 ± 1.51

LPA + WL 86.24 ± 0.75 86.56 ± 0.81 86.16 ± 0.71 88.32 ± 0.5 83.12 ± 1.2
LPAD (A) 89.12 ± 0.5 88.96 ± 1.04 89.04 ± 0.68 90.32 ± 0.43 84.0 ± 0.54
LPAD (B) 87.2 ± 0.55 86.24 ± 1.22 87.12 ± 0.69 88.64 ± 0.37 83.84 ± 0.27
LPAD (P) 87.76 ± 0.79 87.84 ± 0.53 89.2 ± 0.31 89.92 ± 0.53 82.8 ± 1.03

Table 5: We report accuracy on test data for training an endmodel on pseudolabeled training data
from various label propagation methods when using different hyperparameter t and averaged over 5
seeds.

SMS

Method t = 1 t = 2 t = 5 t = 10 t = 100

Snorkel + L 95.04 ± 0.46 96.08 ± 0.48 96.24 ± 0.32 96.24 ± 0.32 95.04 ± 0.46
LPA 94.32 ± 0.45 94.52 ± 0.26 95.24 ± 0.38 92.2 ± 1.08 80.76 ± 3.51

LPA + WL 94.88 ± 0.67 96.44 ± 0.26 96.8 ± 0.36 95.36 ± 0.6 85.12 ± 3.82
LPAD (A) 95.6 ± 0.28 96.8 ± 0.33 96.32 ± 0.52 95.96 ± 0.41 86.12 ± 4.27
LPAD (B) 96.04 ± 0.19 96.68 ± 0.32 96.56 ± 0.33 96.12 ± 0.34 82.64 ± 4.36
LPAD (P) 95.8 ± 0.46 95.64 ± 0.36 96.64 ± 0.39 96.16 ± 0.48 84.32 ± 2.82

Table 6: We report accuracy on test data for training an endmodel on pseudolabeled training data
from various label propagation methods when using different hyperparameter t and averaged over 5
seeds.

CDR

Method t = 1 t = 2 t = 5 t = 10 t = 100

Snorkel + L 67.87 ± 0.25 68.03 ± 0.28 68.24 ± 0.72 68.24 ± 0.72 67.87 ± 0.25
LPA 67.01 ± 0.82 65.17 ± 1.09 63.19 ± 1.18 59.33 ± 1.8 44.39 ± 2.69

LPA + WL 67.87 ± 0.25 67.61 ± 0.19 67.16 ± 0.84 65.8 ± 0.82 49.66 ± 1.8
LPAD (A) 68.13 ± 0.74 67.68 ± 1.1 68.65 ± 0.53 67.56 ± 0.38 61.28 ± 3.21
LPAD (B) 66.44 ± 1.23 67.01 ± 0.43 65.98 ± 0.92 66.26 ± 1.15 54.06 ± 2.78
LPAD (P) 68.97 ± 0.51 67.27 ± 1.05 65.48 ± 0.36 64.93 ± 1.8 58.34 ± 3.71

Table 7: We report accuracy on test data for training an endmodel on pseudolabeled training data
from various label propagation methods when using different hyperparameter t and averaged over 5
seeds.
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Basketball

Method t = 1 t = 2 t = 5 t = 10 t = 100

Snorkel + L 81.62 ± 1.07 83.62 ± 0.8 82.08 ± 0.83 82.08 ± 0.83 81.62 ± 1.07
LPA 75.56 ± 0.55 79.36 ± 1.49 75.12 ± 1.26 78.71 ± 2.41 66.02 ± 1.19

LPA + WL 83.13 ± 1.43 80.87 ± 0.64 79.95 ± 1.56 80.11 ± 1.75 73.45 ± 1.09
LPAD (A) 80.44 ± 0.83 78.9 ± 1.53 81.64 ± 1.35 83.06 ± 0.75 74.83 ± 1.49
LPAD (B) 75.81 ± 3.47 72.75 ± 2.11 76.58 ± 2.2 78.0 ± 4.34 69.36 ± 1.03
LPAD (P) 82.01 ± 2.96 74.6 ± 2.05 73.31 ± 5.25 68.71 ± 4.41 67.18 ± 3.64

Table 8: We report accuracy on test data for training an endmodel on pseudolabeled training data
from various label propagation methods when using different hyperparameter t and averaged over 5
seeds.
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