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Abstract

Wide neural networks are biased towards learning certain functions, influencing both the
rate of convergence of gradient descent (GD) and the functions that are reachable with GD
in finite training time. As such, there is a great need for methods that can modify this
bias according to the task at hand. To that end, we introduce Modified Spectrum Kernels
(MSKs), a novel family of constructed kernels that can be used to approximate kernels with
desired eigenvalues for which no closed form is known. We leverage the duality between wide
neural networks and Neural Tangent Kernels and propose a preconditioned gradient descent
method, which alters the trajectory of GD. As a result, this allows for a polynomial and, in
some cases, exponential training speedup without changing the final solution. Our method is
both computationally efficient and simple to implement.

1 Introduction

Recent years have seen remarkable advances in understanding the inductive bias of neural networks. Deep
neural networks are biased toward learning certain types of functions. On the one hand, this bias may have a
positive effect by inducing an implicit form of regularization. But on the other hand, it also implies that
networks may perform poorly when the target function is not well aligned with this bias.

A series of works showed that when the width of a neural network tends to infinity (and with a certain
initialization and small learning rate), training a network with GD converges to a kernel regression solution
with a kernel called the Neural Tangent Kernel (NTK) (Jacot et al.l |2018; [Lee et al.l |2019; |Allen-Zhu et al.,
2019; |Chizat et al., |2019). Subsequent work showed that the inductive bias of wide neural networks can
be characterized by the spectral decomposition of NTK (Arora et al., |2019a; |Basri et al.l |2019; [Yang &
Salman, [2019). Following this characterization, we will use the term spectral bias of neural networks to refer
to the inductive bias induced by their corresponding NTK spectrum. Specifically, it has been observed both
theoretically and empirically that for a wide neural network, learning an eigen-direction of the NTK with
GD requires a number of iterations that is inversely proportional to the corresponding eigenvalue (Bowman
& Montufar] 2022} Fridovich-Keil et al. 2021 [Xu et al.,|2022). Thus, if this spectral bias can be modified,
it could lead to accelerated network training of certain target functions. Typically, the eigenvalue of NTK
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decays at least at a polynomial rate, implying that many eigen-directions cannot be learned in polynomial
time with gradient descent (Ma & Belkin, |2017). As such, modifying the spectral bias of a neural network is
necessary to enable a feasible learning time, allowing learning target functions that are not well aligned with
the top eigen-directions of NTK. This prompts the following motivating question:

Is it possible to manipulate the spectral bias of neural networks?

The spectrum of a kernel also determines the prediction function when using kernel ridge regression. Therefore,
we introduce a family of kernel manipulations that enables generating a wide range of new kernels with
nearly arbitrary spectra. These manipulations do not require explicitly working in feature space and are,
therefore, computationally efficient. We leverage this technique to design a kernel-based preconditioner that
significantly modifies the linear training dynamics of wide neural networks with GD. This preconditioner
modifies the spectral bias of the network so that the convergence speed is no longer tied to the NTK but
rather to a kernel of our choice. This yields a polynomial or even exponential speedup (depending on the
decay rate of the spectrum of the NTK) in the convergence time of GD. We subsequently show that the
proposed accelerated convergence does not alter the network’s prediction at convergence on test points.

In sum, our main contributions are:

1. We introduce Modified Spectrum Kernels (MSK’s), which enable approximating the kernel matrix
for many kernels for which a closed form is unknown (Section [3)).

2. We introduce preconditioned gradient descent and prove its convergence for wide neural networks

(Section [4.1)).

3. We prove that our method is consistent, meaning that the preconditioning does not change the final
network prediction on test points (Section |4.2)).

4. We provide an algorithm that enables a wide range of spectral bias manipulations, yielding a
significant convergence speedup for training wide neural networks. We finally demonstrate this
acceleration on synthetic data (Section {4.3]).

2 Preliminaries and Background

We consider positive definite kernels k : X x X — R defined over a compact metric space X endowed with a

finite Borel measure y. Given such k, its corresponding (linear) integral operator Ly, : L7(X) — L2 (X) is
defined as

Li(f)(x) = / k(x, 2) f (2)du(z).

zZEX

This is a compact, positive self-adjoint operator that therefore has an eigen-decomposition of the form

Li(f) =D Xilf @),

i>0

where the inner product (), is with respect to Li(z’\f ), and A;, ®; are the eigenvalues and eigenfunctions of
the integral operator satisfying

L (®;) = N D;.
According to Mercer’s Theorem, k can be written using the eigen-decomposition of the integral operator as

k(x,2) =Y \i®i(x)0i(z), x,z€X. (1)

icl

Furthermore, each such kernel is associated with a unique Reproducing Kernel Hilbert Space (RKHS)
Hi C LfL(X ) (which we denote by H when the kernel is clear by context), consisting of functions of the
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2
form f(x) = > ,c; @i ®i(x) whose RKHS norm is finite, i.e., ||fll3 = > ;c; % < 0o. The latter condition
restricts the set of functions in an RKHS, allowing only functions that are sufficiently smooth in accordance
to the asymptotic decay of A\;. For any positive definite kernel there exists a feature map ¢ : X — H s.t
k(x,z) = (¢(x),p(2z))3. As such, we may occasionally call the RKHS # the feature space of k.

Given training data X = {x1,...,X,}, X; € X, corresponding labels {y;}";, v; € R, and a regularization
parameter v > 0, the problem of Kernel Ridge Regression (KRR) is formulated as

n

: 2

i) — Yi . 2

%12¢=1<f(X) ya)” + Il (2)

The solution satisfies f(x) = kL (K + 1)~ 'y, where the entries of kx € R" are Tk(x,x;), K is the n x n
kernel matrix with K;; = %k(xi,xj), and y = (y1, ..., yn)T.

3 Modified Spectrum Kernels

Our aim in this section is to describe and analyze the construction of novel kernels for which no closed form
is known. The novel kernels are constructed by directly manipulating the kernel matrix of existing kernels,
which are easy to compute. The theory in this section refers to arbitrary kernels, and the connection to NTK
and wide neural networks is deferred to Sec. [

Definition 3.1. Modified Spectrum Kernel (MSK). Let k(x,z) := Y po; M@ (x)P(2z) be a Mercer
kernel with eigenvalues \; and eigenfunction ®;(-) and g : R — R a function which is non-negative and
L-Lipschitz. The Modified Spectrum Kernel (w.r.t. k) is defined as ky(x,2z) := Y ;o g(A) Pr(x)Pi(2).

The MSK has the same eigenfunctions as the source kernel k, while its eigenvalues are modified by g. Clearly,
constructing a closed-form solution to the modified kernel is rarely possible. However, it is possible to
approximate the modified kernel efficiently under certain conditions, given the values of the original kernel k,
as proved in Theorem (3.2

Theorem 3.2. Let g, k,k, be as in Def. and assume that Vx € X, |®;(x)| < M. Let K, K, be the
corresponding kernel matrices on i.1.d samples X1, .., X, € X. Define the kernel matriz K, = VDVT where
V = (v1, .., vy) with v; the i’th eigenvector of K and D is a diagonal matriz with D;; = g(j\l) where \; is the
i’th eigenvalue of K. Then, for n — oo

a.s.

[ = K| . =50,
where a.s. stands for almost surely.

We next provide a proof sketch. The full proof is given in Appendix For an eigenfunction ® of k(x, z), we let
O(X) := (®(x1),...,P(x,))T € R" be the evaluation of the eigenfunctions on the data. By the definition of
the kernels it can be shown that K = Y727 | A @5 (X)Px(X)T, and similarly, K, = > po; g(Ag) Pr(X)Pr(X)T.
Since f(g is composed of the eigenvectors of K with the eigenvalues g(\), we would like to show that the
eigenvalues of K, are close to g(\;) and that the eigenvectors of K are close to those of K. It is already
known that the eigenvalues of a kernel matrix converge to those of its integral operator (with the suitable
normalization) (Rosasco et al., [2010), and as such, we know that the eigenvalues of K ¢ should be close to
those of K. The challenge is that the eigenvectors v do not have to be close to ®4(X), the evaluations of
the eigenfunctions on the data (for example when there is an eigenvalue of multiplicity greater than 1). This
means that the eigenvectors of K ¢ can be very different from those of K,;. We work around this by showing
that for large n, the eigenvectors of K corresponding to an eigenvalue A\, are related to an eigenfunction ®; as

Y (VTe(X))? —

v:Kv=Agv

1 if ®; is an eigenfunction of A
n—oo |0 else

This allows us to show that the norm between the eigenspaces of K, and K, tends to 0.
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Kernel Construction with MSKs. Generating new kernels from existing ones is a long-standing problem
in kernel theory (Saitoh & Sawano, 2016). The classical kernel theory uses arithmetic operations such as
addition and multiplication of kernels to generate new kernels with unique RKHSs. Recent papers provided
tools to building data dependent kernels based on training points (Simon, [2022; Sindhwani et al.l [2005;
Tonescu et al.l [2017) . Nevertheless, there are still many kernels for which a closed form is unknown.

MSKs allow extending existing RKHS theory by computing new kernels with predetermined Mercer de-
composition even when a closed form is unknown and, specifically, solve KRR with these new kernels.
Suppose we would like to solve the problem of KRR as defined in . Let k(x,2z) = > o Me®r(x)Pi(z) and
ky(x,2z) = > 72, 9(Ak)@r(x)®Pi(z) be two Mercer kernels where k(x,z) has a known closed form, whereas
ky(x,z) does not. Assuming we obtain i.i.d. samples of training points X1, ..,x,, and a test point x, we can
build f{g (as in Theorem using the n + 1 points x1, .., X,,x. Then, by a continuity argument, Theorem
guarantees that the predictor f*(x) = [Kg]nJrl,l;n([Kg}l;n’l;n + 1)ty converges to the KRR prediction
with the kernel k,, where [ - |.. corresponds to the sub-matrix induced by the specified indices.

4 Provable NTK Based Preconditioning for Neural Networks

In this section, we develop and analyze a preconditioning scheme for accelerating the convergence rate of
gradient descent in the training phase of neural networks while minimizing the Mean Squares Error (MSE)
loss. The acceleration is achieved by manipulating the spectrum of the NTK, overcoming the spectral bias
of neural networks. We begin by explaining how the convergence rate of neural networks is related to the
spectrum of the NTK. Then, we introduce a preconditioning scheme for wide neural networks and prove that
it attains a global optimum. We further prove that in the infinite width limit and when training the network
to completion, preconditioned and standard gradient descent converge to the same global minimizer.

We consider a fully connected neural network parameterized as follows:

g () = x

(l)(x) W )(X)—f—b(l)eRdz7 l:17L
gV (x) = P(f(l(x)>eRdl, =1L
fx,w)=f L+1)(x) — W+ -g(L)(x) 4y,

where w € RP is the set of all the network parameters. We select a simple architecture and note that our
results can easily be extended to many other architectures. We denote by m the width of the network and
assume that dy = ds = .. = d, = m. The activation function is denoted by p and the following quantities
lp(0)], 1|0l o> and sup,_, [p'(x) — p'(z")|/|z — 2’| should be finite. The initialization follows the standard
NTK parametrization (Lee et al., 2020a)) (see more details in Appendix [A]).

We denote the vector of labels for all the data points (yi1,...,yn) by y € R™ and the vector of network
predictions f(x;, w) by f(X,w) € R™. The residual at time ¢ is ry := f(X, w;) —y. Letting £ be the squared
error loss, L(w¢) = 3 |re]|?, a gradient descent iteration for optimizing w € RP is given by

Wi — Wy = —nVwLl(wWy) = =V f(X, Wt)Trt> (3)

where 7 is the learning rate, and V f(X, w;) € R"*P is the Jacobian of the network.

The empirical NTK matrix at time ¢, K; € R"*" and the NTK matrix, K € R"*"  are defined as

Ko =T f (X, W)V S (X, wi) (@
K =lim;, ;o Ko. (5)

We assume that Apin(K) > 0. A simple case where this condition is satisfied is whenever X' = S41 and p
grows non-polynomially (e.g ReLU) Jacot et al| (2018), and also various other settings as given by Oymak &
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Soltanolkotabil (2020); Wang & Zhu| (2021); Nguyen et al. (2021); Montanari & Zhong| (2022); Barzilai &

Shamir| (2023)).

|Arora et al.| (2019a)) showed that for a wide neural network with ReLU activation, small initialization, and
a small learning rate, it holds that for every € > 0, the residual at time t evolves with the following linear
dynamics

n

rel| = [|(T = nK)'y|| £e= | > (1 —=nr)2(vTy)? £, (6)
i=1

where {A;}7; and {v;}? ; respectively are the eigenvalues and eigenvectors of the NTK matrix K.

Eq. @ reveals the relation between the inductive bias of neural networks and the spectrum of the NTK
matrix (Basri et all |2020b). Specifically, to learn an eigen-direction v; of a target function within accuracy
d > 0, it is required that (1 —n\;)* < § +e. When the learning rate is sufficiently small to imply convergence,
0<n< /\%, the number of iterations needed is

t>—log(d+€)/nri=0 (i\\l) :
3

The eigenvalues and eigenvectors of K depend on the data distribution and are not yet fully characterized
for arbitrary distributions (e.g., Basri et al.| (2020a))). In the case of a fully connected network with ReLU
activation and with data points distributed uniformly on the sphere S¥~1, the eigenvectors are discretizations
of the spherical harmonics and the eigenvalues asymptotically decay as \; ~ k~%, where k is the frequency
(Basri et al., [2020b} Bietti & Bach) [2020)). In this scenario, learning a high-frequency eigenvector with gradient
descent is computationally prohibitive, even for a low-dimension sphere. With other activation functions, the
asymptotic decay of the eigenvalues might be even exponential (Murray et al.| [2022)), yielding an infeasible
computational learning cost for learning high frequency target functions.

4.1 Preconditioned Gradient Descent

To accelerate the convergence of standard gradient descent , we propose a preconditioned gradient descent
(PGD). The update rule of our PGD is given by

Wit1 = Wg — nvwf(Xv Wt)TSI‘u (7)

where S € R™*" is a preconditioning matrix that satisfies S > 0.

Standard preconditioning techniques multiply the network’s gradient from the left by a p X p matrix (where p
is the number of parameters in the network, usually huge). In contrast, our preconditioner multiplies the
network’s gradient from the right by an n x n matrix, reducing the cost per iteration from p? to n?. This is
significant since in the over-parameterized case n < p.

We next derive the linear dynamics of the form of @ for PGD. One of the key properties of PGD, is that
carefully choosing S allows modifying the dynamics of gradient descent almost arbitrarily.

Theorem 4.1. Suppose assumptions are satisfied. Let ng,d0,€ > 0, S € R™"™ such that S > 0 and
no < x— (KS)JQFA ®S) Then, there exists N € N such that for every m > N, the following holds with
probability at least 1 — &g over random initialization when applying preconditioned GD with learning rate
1= "10/m

re = (I —mKS)y &),
where [|€]|, < €.

Recall that we assume K > 0 and S > 0, so while KS is not necessarily positive definite or symmetric, it has
positive real eigenvalues. As such, the term — 05 S)i pw—e is positive and defines the maximal feasible

L3

learning rate. The formal proof of Theorem is given in Appendix [A] and here we give some key points
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of the proof. The proof relies on Lemma which shows that PGD finds a global minimum in which the
weights are close to their initial values. In particular, for any iteration ¢, K;S ~ KyS ~ KS. Based on the
results of Lemma Theorem carefully bounds the distance £(¢) between r; and the linear dynamics
(I —noKS)y.

Lemma 4.2. Suppose assumptions are satisfied. For 6y > 0, Amm(KS)iAmam(KS) > 19 and S such that
S =0, there exist C >0, N € N and k > 1, such that for every m > N, the following holds with probability
at least 1 — 09 over random initialization. When applying preconditioned gradient descent as in with
learning rate n = ng/m

t
1wl < (1= 2g) €

t _
2.3y ws = wiall, < F%m=1/2

>\7nin

3. sup, ||(Ko — K;) S| < $°Cm~1/2,

where \pin 15 the minimal eigenvalue of KS.

The full proof of Lemma [£.2]is given in Appendix [A]

Theorem [£.1] implies that the dynamics of preconditioned gradient descent are characterized by K S instead
of K. In particular, if K.S is symmetric, PGD follows the dynamics

n

[rell = |(T = nES)'y| £e= | > (1—nh)2(3Ty)? +e, (8)

i=1

where now, in contrast to @, 5\1-, ¥; are the eigenvalues and eigenvectors of K.S. The role of the preconditioner
S is to reduce the condition number of K, i.e., improving the worst-case convergence rate. Moreover, it can be
chosen to accelerate the convergence rate in directions corresponding to any eigenvector of the NTK matrix.

The results of |Zhang et al| (2019)) and |Cai et al.| (2019)) can be viewed as a special case of . Specifically,
these works characterize the convergence of an approximate second-order method (Gauss-Newton) when
applied to a wide, two-layer network. In this case, the update rule is of the form

Wil — Wi = —nF(wy) 'V L(wy),

with F' being the Fisher information matrix associated with the network’s predictive distribution. Their
derivation leads to similar convergence results as shown in but is limited to the case of S = K; !. For
sufficiently wide networks, K; is very close to K (in spectral norm). Thus, taking S = K ! suffices for
achieving the same convergence rates as if S = K, !, Furthermore, our method requires computing the
preconditioning matrix only once and is therefore more efficient. In fact, Figure [I] demonstrates that taking
S = K~ leads to an even faster convergence.

We show in Sec. how S can be chosen to reduce by a polynomial (or even exponential) factor the number
of iterations required to converge in the directions corresponding to small eigenvalues of K. This is highly
beneficial when the projections of the target function on the eigenvectors of K, (¥7y) are relatively large
in directions corresponding to small eigenvalues. For example, for image reconstruction or rendering, this
equates to learning more efficiently the fine details, which correspond to high frequencies in the image (Tancik
et al) 2020). Another example arises in Physics Informed Neural Networks (PINN), which were shown to
suffer significantly from the slow convergence rate in the directions corresponding to small eigenvalues (Wang
et al., 2022).

4.2 Convergence Analysis

In this section, we characterize the resulting prediction function of the network on unseen test points and show
that PGD generates a consistent prediction function in the following sense. At convergence, the prediction
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function of a network trained with PGD is close to the prediction function of a network trained with standard
GD.

We start by defining a preconditioned loss, Lg(f, w), which modifies the standard MSE loss

2

Ls(f.w) = 5 |2 w) )| )

where S > 0 is the preconditioning matrix. An iteration of standard GD w.r.t Lg(f, w) yields
wip1 — Wi = —nVwLs(f,we) = —nVw f(X, Wt)TSI'ta (10)

which is equivalent to a PGD iteration @ with the standard MSE loss. This has two implications. First, it
implies that PGD can easily be implemented by simply modifying the loss function. Second, it enables us to
analyze the prediction function generated by PGD.

Specifically, given an initialization wo € R?, let ¢(x) := V f(x, wq) and h(x,w') := (W', ¢(x)). For simplicity,
we denote h(X,w') := (h(x1,W'), ..., h(x,, w'))T € R™.

The minimizer of the kernel ridge regression objective with respect to the preconditioned loss is defined as

. 1 2 1 2
w = argergi’n 3 HSI/Q(h(Xv w') — Y)H2 + 57 W[l (11)

and the minimizer of a kernel ridge regression with respect to the standard MSE loss is defined as

*% . 1 2 1 2
w5 = argmin 5 (WX, W) —y)ll5 + 37 w5 - (12)
w’'eRP

We denote by w* and w** the limits of w’ and w}*, respectively, when v — 0. In Lemma we show
that the two minimizers are equal, which means that the preconditioned loss does not change the prediction

function in kernel regression.

For a given learning rate 7 and loss Lg, h can be optimized through gradient descent with respect to the loss
Lg via the iterations

wy=0 ;  wiy=w,—nVLs(hW)) (13)
We show in Lemma [£.3] that this iterative procedure yields a prediction function that remains close to the

neural network prediction throughout PGD.
Lemma 4.3. 1. Let wo € RP and ¢(x) := V f(x,wyq), it holds that w* = w**.

2. Let 69 > 0, € > 0, a test point x € R and T > 0 number of iteration. Under the conditions of
Theorem IN € N s.t Vm > N, it holds with probability at least 1 — &g that

‘h(X7 W/T) - f(X’WT>| <€
where w' is as in and f is optimized with PGD.

The full proof of Lemma can be found in Appendix Point (1) is proved by deriving w in closed form,
e, wl =731 ajo(x;), with

o = (Ko+7S™ )7 y.
This serves as a generalization of the standard kernel ridge regression solution, which is obtained by substituting
S = I. Therefore, using the preconditioned loss yields a corresponding change of the regularization. When
taking v — 0, the solution becomes equivalent to that of the standard kernel ridge regression problem.

Point (2) states that in the limit of infinite width, the value of f(-, wr) at a test point is very close to h(-, w/.).
We note that as Lg is convex, h(x, w/) approaches h(x, w*) for sufficiently large 7.

By combining these two points we obtain that, with sufficiently many iterations and large width, f well
approximates the solution of the standard kernel ridge regression problem, and thus of the standard non-
preconditioned gradient descent on the network itself (Lee et al., [2019).
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Algorithm 1 Preconditioned Gradient descent

Require: Xy, f(x,w), K, ¢,¢(-), wo
Decompose K < VT DV
Define S < I — Zle (1 - %) Vvl
t+0
while ||r;|| > € do
Wil ¢ Wi — Vw f(X, wy)T Sty
t—t+1
end while

4.3 An Algorithm for Modifying the Spectral Bias

In light of Theorem 1.1} S can be chosen to mitigate any negative effect arising from NTK. Specifically, we can
modify the spectral bias of neural networks in a way that enables them to efficiently learn the eigen-directions
of the NTK that correspond to small eigenvalues. To this end, we use a MSK based precondition, as outlined
in the PGD algorithm

First, given the NTK matrix K of size n X n, we construct a pre-conditioner from K by applying a spectral
decomposition, obtaining the top k + 1 eigenvalues and eigenvectors. We denote the top k + 1 eigenvalues
by A1 > ... > A > Agy1 > 0, and their corresponding eigenvectors by vy, ..., vk, vigy1. The proposed
pre-conditioner is of the form
k
S=1-% (1 -
i=1

It can be readily observed that S and K share the same eigenvectors, and as long as g(A;) > 0 then S > 0
and its eigenvalues given in descending order are:

TR GG
R e ol

g(/\);i)> vivi. (14)

Since S and K share the same eigenvectors, it holds that the eigenvalues of KS are

[9(A1), - 9(OAR)s Ak 1y Ak 2, o5 An]-

The connection between the proposed preconditioner and Theorem [3.2] can now be clearly seen, as the product
K S yields a MSK matrix, and therefore approximates a kernel that shares the same eigenfunctions of k and
its eigenvalues are modified by g (where for A > Ap11 we let g(A\) = \). Together with Theorem the
dynamics of the neural network are controlled by this modified kernel, and as such we obtain a way to alter
the spectral bias of neural networks. From Eq. , we obtain the following corollary, stating that the top
k + 1 eigenvectors v; of K can be learnt in O(1) time.

Corollary 4.4. Let g(A\;) = Apt1, 1 <i <k, and S be given by (making the top k + 1 eigenvalues of
K S equal to each other). Under the conditions of Theorem by picking the learning rate n = m,
IN € N s.t Vm > N, it holds with probability at least 1 — &y that for every i < k+1, v; can be learnt (up to

e error) in O(1) time (number of iterations).

This starkly contrasts the typical spectral bias of neural networks, under which for large ¢, learning v;
may be infeasible in polynomial time. For example, when the activation function p is tanh, Murray et al.
(2022) showed that A\ = O (k*dﬂ/ze’ﬂ). Applying (), vanilla GD requires O (kd+1/2e‘/g) iterations to

converge, exponentially slower in & compared to PGD.

Another natural choice for g, is given some 4 > 0, to let g(\) := A+4 and k = n, implying that K.S = K +41.
Thus, we obtain a direct correspondence between PGD with such a choice of g, and regularized kernel
regression. Such a choice of g may help prevent overfitting, even without early stopping. This is demonstrated
in Figure [2|
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Figure 1: Numerical validation. Top: The number of iterations required to learn different Fourier components as a
function of frequency. Standard SGD is shown in blue, and (stochastic) PGD with a preconditioner derived from the
NTK matrix K and the empirical NTK K respectively are shown in green and orange. Bottom: Training curves with
four different frequencies (k = 5,7,10,12). The graphs show the MSE loss as a function of iteration number with
stochastic GD and PGD.

The NTK matrix may be ill-conditioned with the smallest eigenvalues very close to 0. This issue is magnified
by the fact that some approximation may be needed when computing the NTK for arbitrary architectures
[Novak et al. (2022); Mohamadi et al.| (2023]). However, a small k can help avoid numerical instabilities in the
preconditioner by only modifying sufficiently large eigenvalues. Furthermore, since only the top k eigenvalues
and eigenvectors need to be calculated, choosing a small k£ allows for a more efficient calculation of S. By
contrast, choosing k = n implies that S = K~!. We leave the choice of k, the number of modified eigenvalues,
to the practitioners, but in general, one should think of k as providing a trade-off between the worst-case rate
of convergence, and computational stability and efficiency.

Although our method involves computing the preconditioner, it still results in more efficient optimization in
the over-parameterized regime. To see this, we note that for L > 2, if the width m of every layer is at least
~ n4 for some ¢ > 0, then the number of parameters of a fully-connected network is Q(n?). This implies

that the worst-case number of operations for GD to converge is w (#?K)) where A, (K) is the minimal

eigenvalue of K. For a fully connected ReLU network, upper bounds on Apin(K) decay polynomially in n
(Barzilai & Shamir| 2023), implying that the complexity is w(n??!). Under the most general assumptions,
[Song & Yang| (2019) achieved g = 4. In this case, we have a clear computational advantage since inverting
K or calculating its eigenvalues costs O(n?). Nevertheless, under stricter assumptions, smaller widths than
g = 4 may suffice, but our method is still more efficient even for linear width (¢ = 1). Our method is also
significantly more efficient than a standard preconditioner matrix whose size is quadratic in the number
of parameters. Furthermore, our preconditioner needs to be computed only once, so its computational
complexity is unrelated to the number of iterations needed to converge, which as already discussed, can be
exponential. Lastly, in practice, one may choose k, the number of eigenvalues to modify, to be small, leading
to further speedups.

Experiments. We validated our results numerically by tracking the speed of convergence for a neural network
both with and without a preconditioner. We generated inputs from a uniform distribution on the circle,
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Variance of MSKs with Laplace Kernel
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Figure 2: The effect of various MSKs on overfitting to noise. Choosing an MSK with a slower eigenvalue
decay helps prevent overfitting. Starting from a Laplace kernel, for each choice of g, we perform unregularized
kernel regression (with v = 0) using an MSK as defined in The target function is identically 0, with i.i.d
Gaussian noise added to the training set (y; ~ N(0,1)). The z axis denotes the number of samples, and y
axis the MSE on the test set (for which the target is 0).

x; ~ U(S'). With each input we associated a target value y; by taking a Fourier component of frequency
k (we repeated this experiment with different values of k), i.e., if x; = (cos(f),sin(6))? then y; = sin(kf).
Note that under the uniform distribution on the circle, the Fourier components are the eigenfunctions of
the integral operator of NTK for fully connected networks (Basri et all [2019). We then trained a fully
connected network to regress the target function. For efficiency, we trained the network with stochastic
gradient descent (SGD). The preconditioner S is chosen to be either I,, (no preconditioning), K~! (inverse
NTK matrix), or K, ! (inverse empirical NTK matrix). Figure [1| shows that without preconditioning, the
number of standard GD iterations is roughly quadratic in the frequency of the target function and quickly
reaches the iteration limit. In contrast, using preconditioners based on either K or K; boosts the convergence,
yielding a near-constant number of iterations, irrespective of the frequency of the target function. It can
be seen that without preconditioning, the number of standard GD iterations is roughly quadratic in the
frequency of the target function and quickly reaches the iteration limit. In contrast, using preconditioners
based on either K or K; boosts the convergence, yielding a near constant number of iterations, irrespective
of the frequency of the target function. The lower panel in Figure [I] also shows a convergence plot for a few
different functions.

Furthermore, we analyze the variance of kernel regression under different choices of MSKs in Figure 2] The
error of kernel regression is often decomposed into a bias and variance term, where the variance is the error
when training on labels given by a constant 0 target function with noise added to the training set (Tsigler
& Bartlett) |2023). In our experiment, starting from a Laplace kernel, for each choice of g, we perform
unregularized kernel regression (with v = 0) using an MSK as defined in We take inputs drawn uniformly
from S? and y; ~ N(0,1). The y axis depicts the MSE over a test set of 1000 samples (where the test set
target labels are 0), averaged over 25 trials. Various works suggest that a slower eigenvalue decay helps
induce an implicit regularization in the kernel, helping it to avoid overfitting (Mallinar et al., |2022; [Tsigler &
Bartlett, [2023). We can observe this phenomenon in Figure [2| where the MSKs with a slower eigenvalue
decay achieve a smaller variance.

5 Related Works

A long string of works established the connection between kernel regression and neural networks. Early
works considered a Bayesian inference setting for neural networks, showing that randomly initialized networks
are equivalent to Gaussian processes (Williams| [1997; [Neal, |2012)). In this direction, |Cho & Saul (2009)
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introduced the Arc-cosine kernel, while Daniely et al. (2016]) studied general compositional kernels and its
relation to neural networks. Recently, a family of kernels called the Neural Tangent Kernels (NTK) was
introduced (Jacot et all |2018; |Allen-Zhu et al.| [2019; |Arora et al.| [2019b). These papers proved that training
an over-paramterized neural network is equivalent to using gradient decent to solve kernel regression with
NTK. Follow-up works defined analogous kernels for residual networks (Huang et al.l |2020), convolutional
networks (Arora et al., 2019b; |Li et al., 2019), and other standard architectures 2020)).

Subsequent work used the NTK theory to characterize the spectral bias of neural networks. ;
[Basri et al.| (2019); |Cao et al|(2019); Bietti & Bach| (2020); Xu et al.| (2019) have studied the eigenfunctions
and eigenvalues of NTK under the uniform distribution and further showed that fully connected neural
networks learn low-frequency functions faster than higher-frequency ones. |Basri et al.| (2020a)) further derived
the eigenfunctions of NTK with non-uniform data distribution. [Yang & Salman| (2019); Misiakiewicz &/
analyzed the eigenvalues of NTK over the Boolean cube. More recent studies investigated this
bias with other network architectures, including fully-connected ResNets (Belfer et al.| [2021} Tirer et al.
2022)), convolutional networks (Geifman et al., [2022; |Cagnetta et al., 2022} Xiao, 2022)), and convolutional
ResNets (Barzilai et al., 2022)). (Murray et al [2022) characterized the spectrum of NTK using its power
series expansion.

Preconditioning is a widely used approach to accelerating convex optimization problems. A preconditioner
is typically constructed using the inverse of the Hessian or its approximation (Nocedal & Wright|, [1999) to
improve the condition number of the problem. Recent works tried to improve the condition number of kernel
ridge regression. Ma & Belkin| (2017); Ma et al.| (2018)) suggested using a left preconditioner in conjunction
with Richardson iterations. Another line of work analyzed the speed of convergence of an approximate second
order method for two-layer neural networks (Zhang et al.| [2019; (Cai et al.| [2019). They showed that natural
gradient descent improves convergence in a factor proportional to the condition number of the NTK Gram
matrix.

Several studies aim to construct preconditioners for neural networks. (Carlson et al.| (2015)) built a diagonal
preconditioner based on Adagrad and RMSProp updates. Other heuristic precondtioiners use layer-wise
adaptive learning rates (You et al., [2017;2019)). In this line of work, it is worth mentioning 2020b),
who used the convergence results of |Arora et al.| (2019b]) to incorporate leverage score sampling into training
neural networks. [Amari et al| (2020)) studied the generalization of overparameterized ridgeless regression
under a general class of preconditioners via the bias-variance trade-off.

Past studies explored the concept of data-dependent kernels. suggested using the posterior
of the target function to produce a new type of data-dependent kernel. [Sindhwani et al.| (2005) studied
a wide class of kernel modifications conditioned on the training data and explored their RKHS.
extended this method to build a new class of kernels defined by multiplying the random feature
approximation with a weighted covariance matrix. [Kennedy et al.| (2013) constructed a new family of kernels
for a variety of data distributions using the Spherical Harmonic functions on the 2-Sphere.

6 Conclusion

In this work we addressed the problem of manipulating the spectral bias of neural networks. We formulated
a unique preconditioning scheme which enables manipulating the speed of convergence of gradient descent
in each eigen-direction of the NTK. This preconditioning scheme can be efficiently implemented by a slight
modification to the loss function. Furthermore, for sufficient training time and width, we showed that the
predictor obtained by standard GD is approximately the same as that of PGD. We also showed how to
construct novel kernels with nearly arbitrary eigenvalues through the use of kernel spectrum manipulations.
Our theory is supported by experiments on synthetic data. In future work we plan to explore other forms of
spectral manipulations and apply our method in real-world scenarios.
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A Convergence of PGD

In this section we prove Theorem [{.I] We begin with assumptions and notations for the proof. The
assumptions follows those of [Lee et al.| (2019):

1. The width of the hidden layers are identical and equal to m
2. The analytic NTK K is full rank with A, (K) > 0.
n

3. The training set {x;,y;}"; is contained in some compact set.

4. The activation function p satisfies
|p(0)|7 leHooa Sup:r;éx"pl(x) - ,0/(96/)|/|:E — $I| < 0

The network parametrization is as follows

Wwhgl=Y(x) 4 bV e R, =1
:p(ﬂ”(x))GRdl, l=1,...L
_ f(LJrl)(X) _ W(L+1) .g(L) (X) + b(L+1)

.L

P

The network parameters w include W&EHD W) WO where W € Rédxdi-1 p) ¢ Rhix1 py(L+1) ¢
R1>de L+ € R, p is the activation function. The network parameters are initialized with A/(0, Z—f) for
¢p = 1/ (E.unr0,1)[p(2)?]), except for the biases {b(), ... b p(L+1} which are initialized with A'(0,c,).
We further set at the last layer ¢, = v for a small constant v.

For the ease of notation we use the following short-hands:

flwi) = f(X,w) €R" (15)
r, = f(X,w;) — Y €R" (16)
J(wy) = Vf(X, wy) € R™P (17)

The empirical and analytical NTK is defined as

1

Kt : EJ(Wt)J(Wt)T

K = limpy Ko

Since f(X,wq) converge in distribution to gaussian process with zero mean, we denote by Ry the constant
such that with probability at least (1 — §p) over the random initialization

[rel| < Ro (18)

Likewise we have that with the same probability || f(X, wq)|| < vCy for a constant Cj.
Finally, our PGD updates are
Wip1 = wy —nJ(wy) T Sry (19)

We let Amin := Amin(KS). Our proofs are carried out for a fixed preconditioner S which does not depend on
t. However, the same proofs would hold for S; which changes with ¢, if one makes the additional assumption
that ||S¢||» is uniformly bounded for all £. Of course, if S is fixed, then S| is finite and thus trivially
bounded. This is used in Lemma [A.1] and we will make its use clear.

The bounded dataset of Assumption [3|is used for simplicity in two places and can in both cases, be weakened.
The assumption is first used to ensure that the kernel has a Mercer decomposition, as in Eq. . Weaker
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assumptions (which are slightly more complicated) can be used in this case (Steinwart & Scovell |2012). For
example, one has a Mercer decomposition if X is a Hausdorff space (any metric space suffices), the kernel
function is continuous, u is a probability measure, and the function h(x) := k(x,z) has finite L2 norm.
The boundedness assumption is also used to bound f at initialization. However, even for many unbounded
distributions, f can be bounded with high probability. As such, both requirements are satisfied by many
unbounded distributions, such as Gaussians, and our statements can thus be naturally extended to many
such unbounded distributions.

Lemma A.1. There is a k > 0 such that for every C > 0, with high probability over random initialization
the following holds Yw,w € B(wy, C’mfl/?)_-

1. 7= (J(w) = J(W))S||p < & |lw — W]

2.

LISl < #

Proof. Using sub-multiplicativity of the Frobenius norm,

% (I (w) — J(%)S] 5
g% 1T (w) = T | 1S5

<W S| Iw = || = k[lw - w|

where (1 is given by Lemma (1) of |Lee et al., (2019) and & := & ||:S|| , which is constant since ||S|| - is bounded.
The second part of the theorem can be shown using the same two arguments. O

Lemma A.2. (Lemma fmm the paper) For §y > 0, Amm(KS)f-Amam(KS) > 1o and S such that S > 0,
there exist C' > 0, N € N and k > 1, such that for every m > N, the following holds with probability at least
1 — dg over random initialization. When applying preconditioned gradient descent as in with learning rate
1= 10/mM

t
1elly < (1-22) €

t _
2. Zj:l [w; —wi—ally < 21/

Amin

3. supy ||(Ko — K;) S| < $5°Cm1/2,

min

where A\pin 18 the minimal eigenvalue of K S.

Proof. We begin by proving parts (1) and (2) in the theorem with x defined by Lemma We do that by

induction where the base case for ¢t = 0 is clear. For ¢t > 0 we have that

nO)\min ¢
3

1/2

Wi =l < 9176801, el < (1- Rosnom™

Implying that

IN

t—1 t—1 j
Amin \” _ 3KR
> lwyir = w5l < Ropmgm /23 (1 - Mman )7 200,02
j=0 3=0

Which concludes part (2) of the theorem.
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For part (1) we use the mean value theorem to get that

[resrll = o1 —re + 1|
= | J (%) (Wig1 = We) + 1| = || (W) T (wi) " Sty + 14|

<[ =nJ (%) T (wi) S|, [l
)\min k
< | =0 (W) J(wi)" S, <1 - 7703) Ry

where W, is some point on the line between w;; and w;. It remains to show that with probability at least
(1 —00/2) it holds that

)\min
11— J (%) T (wi) 7S], < (1 - ’703>

We show that by observing that S doesn’t change the convergence in probability so KyS — K S as in [Yang
(2019), therefore we can choose large enough m such that

)\mi
|KS — Kos]|» < 25

Therefore we get

|7 = nJ (W) J(wi)" 5],
<N = noK S|y + 1m0 (K = Ko)Sly + 1 [[(J(wWo) I (wo)" = J(W:)J (w)) S|,

< (1 N 10 Amin + Qnoﬁzmm—lﬂ <1-— M
3 Amin 3
which concludes part (1).
For part (3) we verify that using Lemma
1
(Ko = Ki)Sllp = — [|(J(wo) T (wo)" = J(wi)T (we) ") S| - (20)
1
< — ([T (wo)Slly [| T (wo)™ = T(w2) || . + 1 (w2) = T (wo)lly [|T(w2) S| ) (21)
3
< 262 [[wo — wy|, < Mm*/z’ (22)
O

Next we prove the preconditioned dynamics given in [1]

Theorem A.3. (Theorem from the paper) Let 69 > 0, Amm(KS)JQrAmm(KS) >, €>0 and S such that
S = 0. Then, there exists N € N such that for every m > N, the following holds with probability at least
1 — 9 over random initialization when applying preconditioned gradient descent with learning rate n = n9/m

ry = (I —noKS)'y ££(1),

where [|€]|, < €.

Proof. By using the mean value theorem we have that

T =T + 1 — 1 = J(W)(Wepr — Wy) +1¢
= = J (W) J (W) TSty + 10 = (1= (we)J (wi)T S)re —n(J (W) = T (wi)) ] (we) " Sy
=T — K S)ry — no((Ky — K)S)r — n(J (W) — J(wy))J (we) " Sty

e(t)
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where (1) is by the gradient descent definition and (2) is by K; definition.
Now applying the theorem inductively we get

t
o1 = (I —nmoKS)'ro+ Y (I —noKS)e(t—i)

i=1

(1)

Next we bound the norm of €(t) = no(K; — K)St; —n(J(W) — J(w;))J(w;)? Sr;. For term A we have
A B

[0 (K = K)Srifly < no([| (K = Ko) S|, + 1(Ko = K)S|o,) el

65>R Amin€ 65>R EAmin)
<(1) 0 —-1/2 min _ 0 —1/2 main'/0
- 1o ( )\mzn " * 2]%0 )RO >\min " * 2

where (1) follows from Lemma [4.2] and the fact that K¢S — K.S in probability [Yang| (2019). So (1) holds
when m is sufficiently large.

For term B we have that
I (%) = (W) T (we) S| < 22 |1 (5) = T (w0l 1 (w2) S
< LY T(W) = Tl 17(We) Sl Ieelly <O mo® [ = wel| Ro
KRy
\/TTL
where (1) is by Lemma [A 1] and (2) it by Lemma Therefore we have

<@ ok | W1 — wel| Ry < (23)

re = (I —nKS)'y +£(t)

where

t

> (I —noKS)'e(t —i) + (I - nKS)" f(X,wo)

=1

1E@I =

t

<|[>_( =noKS)’

=1

ngﬁsR% + 6"{?’-RO 6>\min770

i Ty Ty ) T IT - aES) (X wo)|

(

op

t

<(’r]g‘%dR8 + 6H3R0 eA mvn'r]O Z
N \/m )‘min\r 2 =1

7]0>\mm (1 - no/\min)tVCO

773/€3R(?j n 6K3 Ry n 6)\min770) 1
\Vm )\mzn\/ 2 WO/\min
2,.3p3 3
ngr° R 6k° Ro ‘
+ ( - nOAmzn) VCO
V m mzn \/

So by choosing m to be large enough and v < ﬁ we conclude the theorem. O

S ( + (1 - nOAmin)tVCO

=¢/2 4+

B Convergence Analysis

Under the settings of Sec. 2] we here prove the following lemma.
Lemma B.1. (Lemmafmm the paper)

1. Let wog € R? and ¢(x) := Vf(x,wy), it holds that w* = w**
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2. Let 69 > 0, ng < Amm(KS)iAmaI(KS) ,e>0, z€R? be a test point, T > 0 number of iterations and
S such that S = 0. Then there exists N € N such that for every m > N, the following holds with
probability at least 1 — §y over random initialization of wy when applying preconditioned gradient
descent to both f and h with learning rate n = ng/m

‘h(X, W/T) - f(X7WT>| <€
where W' is as in .

Proof. For point (1), applying lemma with the kernel k(x,z) = (¢(x), #(x)) (and kernel matrix Kj)
yields h(-,w*) = 71, a7 (6(x), 6(x,)) with

o = (Ko +787) 'y,

which uniquely determines that w* = >""" | af¢(x;).

When v — 0 this becomes the same minimizer as of the standard kernel ridge regression problem with

L(w) = % IIf (X, w)— yHg (or equivalently, substituting S = T).

Point (2) is proved in lemma O

Lemma B.2. Let k(x,z) = (¢(x), ¢(2)) be any kernel and [K);; = Lk(x;,x;) be its kernel matriz. Given

2
S =0, let Ls(f) =3 HS% (f(X) - y)HQ—F% Hf||§_t (where v > 0 is some regularization term). Then the unique
minimizer f* = argminy L(w) takes the from f*(x) = > 1 af{(p(x), d(x;)) with

o = (K—i—'yS_l)_ly

Proof. The Representer Theorem (Scholkopt et al., [2001) states that any minimizer of the kernel ridge
regression problem f* = argminy Lg(f) is of the form f*(x) = >0 | af{(d(x), p(x;)).

Then f*(X) can be written as Ka* and Hf*||§_[ = o*TKa*. So we can equivalently solve for:

. in - HSL(K )HQ+7 TR
G = arg min — 2 o — — [0
& Jekn 2 Y, T3 :

where K;; = ((¢(x;), ¢(x;)). Now opening up the norm we get:
o = arg m(in % (aTKTS’Ka —a'KTSy —yT'SKa + yTSy) + %aTKoz.
Then as K, S are symmetric, and y Sy doesn’t depend on « the above simplifies to:
o = arg Hgn %ozTKTSKa —oTKTSy + %aTKoz
= arg min %aT (KSK +vK)a — o' K Sy.
Now deriving with respect to a and setting to 0 we obtain:
0=(KSK++7K)a—-KSy=KS((K++v5 ") a-y).
As K > 0 and S > 0 it must hold that:

0=(K+vySa-y.

Since the loss is convex, a* = (K + S _1)_1 y is the unique minimizer. 0O
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Lemma B.3. For ég > 0, Amm(KS)JQr/\maI(KS) >0 ,€>0, zR? be a test point, T > 0 number of
iterations and S such that S >~ 0, there exists N € N such that for every m > N, the following holds with
probability at least 1 — &g over random initialization of wo when applying preconditioned gradient descent to
both f and h with learning rate n = no/m

[(wr, VI (x,wo)) — f(x, wr)| <€
where w' is as in (13).
Proof. Let x,y be some data point and its label, which are not necessarily in the train set. Denote by

¥, = f(x,w;) —y, and J(w) = Vf(x,w). We define a linearized model f“"(x,w!}) = f(x,wo) + J(wo)W/
where w} is as in . In particular, note that f'"(x,wj) = f(x, wp).

Let h(x,w) = (w, Vf(x,wp)). By the triangle inequality,
|A(x, W) = f(x, wr)| < [ (x, W) = f(x, wr)| + | (x, wo)l

The weights of the last layer are initialized A/(0, v) with some constant v which we may choose. Thus, by taking
small enough v, |f(x, wo)| < § with the desired probablhty Notice that #" — #, = flin(x, w}) — f(x, w;)
and as such, it remains to bhOW that [P} —fp| < %

By the mean value theorem, there exists some W s.t
f‘t+1 — f‘t = j(W)(Wt+1 — Wt)
=W —nJ(W)J(w)" Sty = —nJ(we)J (W) Sty — (T (W) — J(we))J (w,)T St
=) _poKo(x, X)Sry — 1o (K (%, X) — Ko(x, X))S)ry — n(J(W) — J(wy))J(wy) T Sr,

e(x,t)

where (1) is by the gradient descent definition and (2) is by K; definition.

Thus, taking a telescopic series we get that for every ¢,

-1 T-1
Br="To+ Y Fip1 — =T —no Y (Ko(x, X)Sr; + e(x,1))
i=0 =0

Now for the linear model, by definition of our PGD updates we have
Wi — wy = = (wy) TSy = —J (wo) T Sry"
and by definition of the linearized model,
P, W) = F1 (e, wy) = (%, wo) + J (wo) (W) — (f(x,wo) + J (wo)w})
=J(Wo) (W1 — wi) = —1J (Wo)J (wo) T Sry™"
= — 7’]0K0(X, X)Srff”

And so .
R, — % = Ko x, X) St
Thus, taking a telescopic series we get that for every ¢,

T-1

~lm _ ~lm + § :~lzn _ ~im _ f,lm — § :KO < X)S lin
i=0

=lin

Now we can compare between the linearized and non linearized versions. Since 3" = Ty we have

T-1
B — Fp = —noKo(x, X)S (Z i — ) (Z e(x,i))

=0
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Notice that rl® = (I —19KyS)'rg. Theorem combined with choosing v sufficiently small, states that
r; = (I —noKS)'rg + £(i) with ||&]] — 0. Analogously, one could also show r; = (I — 99KoS)rg ££(i) b
m—o0

replacing K in the proof with Ko. As such, for every i < T, |[r}™ — ;|| < [|£(3)|| with [|&] — 0. Now by
m—00
Cauchey Shwartz and the triangle inequality we get:

I'{}n — rT’ < ||T]0K0(X X SH (Z Hrlln rzH +

T-1
=0

=0
T-1 T-1
= [lnoKo(x, X)S|| <Z [1€( II> 1) _elx
1=0 1=0
< .
ImoKo(x, X)S| T max [16(0)]| + 7| max_ e(x,)|-

Now each £(i) tends to 0 as m tends to infinity. So there exists some Ny € N st for all m > N,
maxo<i<r—1 [[£(9)]] < TR sy S0 that the entire left hand side is at most §

It remains to bound |maxo<;<r—1 €(x,)|. Fix some ¢ to be the argmax. Recalling the definition of €(x, )
and using the fact that r; is bounded by Lemma it suffices to bound (Ky(x,X) — K¢(x,X)S and
(J(W) = J(we))J (we)")S.

1(Ko(x, X) = Ki(x, X)S| p = % [(J (wo)J (wo) " — J (@, we) T (we) ") S|

L (T wo) T (wo) T — (o) (we) + (T (wo) I (w) " — T(w) J(w) S|,

IN

% (17 Gwo)l, [(7(wo)™ = T(we) S| + [T (wo) = T(wa)[, || (we)" S]] )

6K3R
<262 wo — Wil < S —2m 2

)
min

where the last inequality holds since Lemma holds analogously for .J and using Lemma [4.2|for |[wo — w||,.

(J(W) — J(w))J (w¢)T)S can be similarly be bound by applying by Lemma [A.1] analogously to (23)). As such
there is some N; s.t the entire right hand side is at most 5.

Taking N = max{Ny, N; } completes the proof. O

C Consistency of Spectral Engineering

Theorem C.1. (Theorem from the paper) Let k(x,z) = Y po, M®@p(x)Pp(z) and ky(x,z) =
e 9(\e) @ (x) Py (z) be two Mercer kernels with non-zero eigenvalues {\;},{g(\;)} and eigenfunctions
{®;} such that Vx € X,|®;(x)| < M. Assuming g is L Lipchitz. Let K, K, be the corresponding kernel
matrices on i.i.d samples X1, ..,x, € X. Define the kernel matriz K'g =VDVT where V = (V1 .oy Vi) with v;

the i’th eigenvector of K and D is a diagonal matriz with D;; = g(j\l) where \; is the i'th etgenvalue of K.
Then, for n — o0

1Ky = Kyl =5 0

where a.s. stands for almost surely.

Proof. From the Mercer decomposition of k, we have that

Ky=>" g(\)®(X)®](X)
k=1
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where @ (X) (1), .., Pr(z,))T € R™. We also define

R
K3 =" g() k(X)) (X)
k=1

o0

KM= Z 9(e)Pi(X)PE (X)
k=R

Let vy, .., v, be the eigenvectors of K (and therefore of Rg) and fix R > 0. Then we have

18y = Koll o < 1Ky = K5 o+ G o = 1G]+ | DAy = G vs, (R = G vs)

J=1

:|‘KSI>RHF+ Z<g(:\j)vj _Kg;SRVj,g(:\j)Vj —KgSRVj>

=[5+ | S (90002 = 2008 vy, K5 vg) + (K5 g, K5 g) )

:HK;R”F

n

R R
+ Z g(\j)? —29();) Zg(Ak)(VJT‘I’k(X))Q + Z 9A)gA) (VI @4(X) (v ®y(X)) Py (X) Ty (X)
k=1

j=1 k=1

Since ®1, ®o, ... are orthonormal, and ®;(x1),.., ®;(x,,) are i.i.d, by the law of large numbers it holds that
D) (X)T®(X) — E®; @y, = &;5, therefore, the last term converges a.s to

[N

n R R
1555+ | 2 (9(%—)2 —29(8) > 9O (V] Bu(X))? + 3 g M) (v <I>k<X>>2)

j=1 k=1 k=1

Next we use [Braun| (2005])[Theorem 4.10 and Equation 4.15] to get that

i(VzT‘I)(X))Q N 1 if ® is an eigenfunction of A
= 0 else
Which implies that
R
Zg()\k) (V] Pr(X))? = 69 Ak)
k=1

. Therefore we get that

R n
1 = Kol < 1 = K5+ 1555 = | D_(9C) = 9())? + > () + | K77,
i=1 =R

Finally, from the Lipchitzness, Y7, (9(A;) — g(A;))? < L2325 (A, — A;)? so by applying [Rosasco et al.
(2010) (Proposition 10) we get

R n
D (90) =90 + > g() + (165 F (| = (155 7] +
i=1 i=R
Observing that HK;RHF +\/ YR 9(A\j)? = k00 0 give us the desired result. O
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