
Under review as a conference paper at ICLR 2024

GENETIC ALGORITHM FOR CURRICULUM DESIGN IN
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

As the deployment of autonomous agents increases in real life, there is an increased
interest in extending their usage to competitive environments populated by other
robots. Self-play in Reinforcement Learning (RL) allows agents to explore and
learn competitive strategies. However, the complex dynamics of multi-agent
RL interactions introduce instability in training and susceptibility to overfitting.
Several game-theoretic approaches address the latter by generating approximate
Nash equilibrium strategies to train against. The challenge of learning a policy
in a complex and unstable multi-agent environment, the former, is not yet well
addressed. This paper aims to address this issue by using a curriculum learning
approach. We introduce curriculum design by a genetic algorithm to the multi-
agent domain to more efficiently learn a policy that performs well and is stable at
Nash equilibrium. Empirical studies show that our approach outperforms several
strong baselines across various competitive two-player benchmarks in continuous
control settings.

1 INTRODUCTION

Competitive multi-agent reinforcement learning has attracted attention for its potential in real-world
applications such as gaming, robotics, sports, finance, and cybersecurity, where agents compete
against each other. In Reinforcement Learning (RL), self-play helps agents become competitive by
exploring and discovering new strategies on their own. Although this kind of training should ideally
produce an agent capable of performing well across various scenarios and against different opponents,
self-play agents often achieve suboptimal outcomes. The complex dynamics of multi-agent training
make it easy for the agent to settle into a local minimum. Agents tend to exploit specific weaknesses
in the opponent’s policy observed during training rather than striving for the global optimum. This
leads to a slow rate of convergence throughout the training and a migrating policy problem in the
later phases of the training.

One way to mitigate the issue of a migrating policy is to train against a population of opponent
policies to avoid overfitting to a single opponent policy (Heinrich et al., 2015; Heinrich & Silver,
2016; Vinyals et al., 2019). Various game theoretic approaches (Lanctot et al., 2017; Smith et al.,
2020; Feng et al., 2021) use approximate Nash strategy opponents to maintain theoretical stability
near the equilibrium. A Nash equilibrium (Nash Jr, 1950) is the point where none of the players can
improve their strategies (represented as a mixture of policies) to improve their outcome. Training
against an approximate Nash strategy ensures stability once reached. However, such works often do
not address the challenge of navigating towards the Nash equilibrium in a highly unstable training
environment caused by complex multi-agent interactions.

In a single-agent RL domain, one way to stabilize and enhance the rate of convergence is to use
curriculum learning (Asada et al., 1996; Karpathy & Van De Panne, 2012; Held et al., 2018; Florensa
et al., 2017; 2018; Narvekar & Stone, 2019a; Fournier et al.; Matiisen et al., 2019). By gradually
introducing similar tasks around the boundaries of the agent’s performance with the highest learning
potential, curriculum learning has shown faster convergence to a better solution.

Inspired by these findings, we focus on utilizing curriculum learning for a game-theoretic setup.
During training, our curriculum generator will generate scenarios and opponents just outside the
boundary of the agent’s expertise. Over time, those opponents will evolve toward the Nash equilibrium.
We identify three algorithmic innovations that lead to our improved performance: The use of 1)

1

Under review as a conference paper at ICLR 2024

population-wide genetic operations (crossover) rather than simple modifications of the replay buffer
(random sampling / mutation); 2) regret to tailor the difficulty level of genetically generated scenario,
and 3) continuously optimized open-loop opponents to stabilize early learning. We include an ablation
study to highlight the effects of our assumptions and design features. Figure 1 shows the overall
structure of our algorithm.

Figure 1: Overview of our proposed approach: During training, the ego student agent is trained
against a scenario describing the choice of opponent, action script for the blind agent, and the choice
of environment parameters. Our curriculum keeps a record of regret and win/lose/tie outcomes for
each scenario. Based on the performance of the scenarios in the previous population, our curriculum
generator uses a genetic algorithm to generate a new population of scenarios to be used to train the
agent for an epoch at each fixed interval of steps.

2 RELATED WORKS

Game Theoretic Approach to Self-Play

Training an RL agent in a competitive environment requires an opponent to train against. Unlike
using expert demonstrations (Chen et al., 2021) or rule-based opponents (Burgin & Sidor, 1988),
self-play (Tesauro et al., 1995; Silver et al., 2018) provides a unique opportunity. As the ego agent
improves and explores various parts of the game, the opponents’ proficiency and understanding of
the game also improve, enabling agents to discover new competitive behaviors autonomously.

However, some drawbacks of self-play includes 1) the instability of training against an opponent
that is changing over time (Garnelo et al., 2021) and 2) a tendency to overfit to a spefic opponent
rather than learning a policy that generalizes across various opponents and situations. While some
approaches addresse this challenges with expert supervision (Won et al., 2021), this can be costly.

The approach commonly employed in self-play, as proposed in Fictitious Self-Play (FSP) (Brown,
1951; Leslie & Collins, 2006; Heinrich et al., 2015), involves training against a population of policies
by saving thecheckpoints of the ego policy during training. Expanding on these findings, game
theoretic approaches like Policy Space Response Oracle (PSRO) (Lanctot et al., 2017; Vinyals et al.,
2019; Berner et al., 2019) utilize Nash equilibrium (Nash Jr, 1950), a stable point in a multi-agent
game where no player can update itself to improve the outcome. PSRO calculates an approximate
Nash strategy to determine the mixture of checkpoints to load as opponents. However, finding an
approximate Nash strategy can be computationally costly. Moreover, the difficulty of learning a
policy with complex multi-agent dynamics is still not well addressed. While some approaches explore
ensemble learning to split the learning task (Smith et al., 2021) (Smith et al., 2020), they are mostly
limited to simple problems with discrete action spaces.

Curricular Reinforcement Learning

In the single-agent domain, addressing the challenge of learning a difficult task is often tackled
through Curricular RL. Curricular RL suggests that rather than training the agent directly on a

2

Under review as a conference paper at ICLR 2024

challenging task, it should first be exposed to simpler tasks or scenarios and progressively introduced
to slightly more complex but similar ones to learn faster. (Florensa et al., 2018; 2017; Narvekar &
Stone, 2019b; Ivanovic et al., 2019; Klink et al., 2020; Portelas et al., 2020; Dennis et al., 2020).

Curriculum optimization can be done in various ways, such as Bayesian Optimization (Paul et al.,
2019) or teacher agents (Du et al., 2022). Some works (Wang et al., 2019; 2020) explored how to
use genetic operations for curricular RL. By generating scenarios similar to the scenarios that taught
the agent well, genetic operations can continuously generate candidates of scenarios that will teach
an agent well.

While most curricular RL approaches using genetic algorithms rely on mutations, which make small
alterations to a scenario’s encoding, Genetic Curriculum (GC) (Song & Schneider, 2022) investigated
the use of population-wide genetic operations, such as crossover, in curriculum generation. Crossover
involves merging encoding sequences across a population of scenarios, facilitating the transfer of skills
within the curriculum by enhancing simlarity among the scenarios. However, GC is computationally
intensive due to the evaluation steps necessary for curriculum generation. Additionally, GC lacks a
true means to regulate difficulty.

Regret is often used in curricular RL to regulate difficulty. Quantifying the gap between optimal
and actual performance of an agent, regret provides a valuable measure of the agent’s improvement
potential. Showing success in various single-agent domains Jiang et al. (2021a); Parker-Holder et al.
(2022), regret has been expanded to do curriculum learning in multi-agent setup by Multi-Agent
Environment Design Strategist for Open-Ended Learning (MAESTRO) (Samvelyan et al., 2023).
While MAESTRO also introduced optimizing both environmental parameters and choice of opponents
to guarantee robustness, it is limited due to using domain randomization to discover new scenarios.
Studies in GC Song & Schneider (2022) suggests that this can lead to suboptimum performance. As
randomly generated scenarios will not be similar to each other as ones generated via population-wide
genetic operations such as crossover, transferring skills between scenarios will be difficult, leading to
a slower learning process.

Open-Loop Opponents for Multi-Agent Self-Play

Self-play often grapples with instability, particularly at the outset of training when the opponent is
not sufficiently trained to make meaningful actions in the game. While some approaches incorporate
hand-crafted opponents (Vinyals et al., 2019) or agents trained via imitation learning from expert
data (Won et al., 2021), such supervision can be expensive to prepare.

One approach to providing remove expert supervision for an opponent agent is by utilizing a No-OP
agent (Team et al., 2023), which takes no actions. However, these agents cannot generate complex
responses and are impractical in environments where action is essential to remain in the game. For
instance, a walking robot will fall if there’s no torque in the joints. Plane with no control input will
eventually crash by losing speed and altitude due to drag.

3 APPROACH

This section covers our approach for using population-wide genetic operations with regret-based
difficulty regulation and continuously optimized open-loop opponents to help agent perform well in a
competitive multi-agent environment.

3.1 PRELIMINARIES

A RL problem setup is typically represented as a tuple in a Markov decision process: [S,A, P, r, γ],
where S is the state space of a problem, A is the action space, P is the transition dynamics, r
is the return of a state-action, and γ ∈ [0, 1) is the temporal discount factor. The agent’s policy,
π(a | s), maps states s ∈ S to actions a ∈ A. The utility of a policy π is the expected return,
J(π) = Eat ∼ π

∑
tγtr(st, at). During training, an RL algorithm optimizes the policy with respect

to the data it collected about the reward and state dynamics.

In our multi-agent setup, we consider that the utility of a policy is also dependent on the opponent’s
policy πopp and the environment ψ, denoted as J(π, πopp, ψ). At each epoch consisting of a fixed
number of time steps, we save the current version of our ego agent and add it to the library of

3

Under review as a conference paper at ICLR 2024

possible opponents to choose from, indexed by the integer πopp. We descript the environment with
environmental parameters, ψ. We define a scenario ξ as an opponent policy - environment pair:
ξ = {πopp, ψ}.

To avoid overfitting to a single policy, we train our agent against a population of opponent policies.
Therefore, we design our curriculum generator to optimize both πopp and ψ when generating a
curriculum.

Following this approach, we attempt to generate a curriculum consisting of a population of a fixed
number of scenarios, Ξtrain = ξ0, ξ1, ..., ξn, where optimizing the ego policy π with respect to the
curriculum Ξtrain will result in a policy with the behaviors we desire.

π∗ = max
π

J(π,Ξtrain) (1)

3.2 PROBLEM FORMULATION

Following a game-theoretic approach, we set our curriculum generator to define the mixture of
opponents to play against. To run our optimizer, we need to define what we would like to minimize.

We reformulate the game as a zero-sum game G(π, ξ) where G(π, ξ) = 1 if π wins, G(π, ξ) = 0
if it was a tie, and G(π, ξ) = −1 if loses. The opponent πopp and the environment parameters ψ
are determined by the curriculum’s scenario ξ. The solution for a finite zero-sum 2 player game is
minmax;

G∗ = min
Ξ

max
π

G(π,Ξ) (2)

Therefore, a population-based curriculum generator should generate a population Ξ that minimizes
G(π,Ξ)

3.3 GENETIC ALGORITHM FOR CURRICULUM GENERATION

Figure 2: Visualization Crossover and
Mutation Operations. Crossover is per-
formed by replacing encoded segments
between two parent scenarios. Muta-
tion is performed by changing a encoded
segment of a parent with a random se-
quence.

We utilize a genetic algorithm as our curriculum gener-
ator. Genetic algorithms are well-suited for generating
curricula due to their ability to produce scenarios that in-
herently similar each other, and their flexibility in scenario
encoding during training.

At the beginning of the training, we randomly initialize Ξ.
π is trained on the Ξ for an epoch and records whether it
has won or lost or tied, along with the approximate regret
estimated by positive value loss (Jiang et al., 2021a;b).

We then harvest ξs and use crossover and mutation (see
Figure 2) to create an offspring population consisting of
sequences of ξ similar to the ones harvested. Crossover
occurs when we take a random segment from one parent
scenario encoding and swap it with a random segment
from another parent scenario encoding. Mutation is when
we select a random segment from a parent scenario encod-
ing and swap it with a segment from a randomly generated scenario encoding. Since our aim is to
minimize G(π,Ξ), the fitness function (representing the likelihood of a ξ being harvested, denoted as
p(ξ) for parents for crossover) is set as p(ξ) ∝ (1−G(π, ξ)). Detailed operations for crossover and
mutation can be found in Appendix A.4.1.

Scenarios ξs generated by the genetic algorithm will inherently be similar to each other, aiding in the
transfer of skills and consequently a faster rate of convergence when used as a curriculum. However,
a genetic algorithm alone cannot directly regulate the difficulty level of the generated scenarios. This
is where regret comes into play. As regret measures the information potential of a scenario [?],
aiming for high-regret scenarios allows us to regulate the difficulty level by sampling scenarios where
π has the biggest room for improvement. Therefore, we set p(ξ) ∝ δ(ξ)(1−G(π, ξ)).

4

Under review as a conference paper at ICLR 2024

3.4 BLIND AGENT AND SCENARIO SPACE

Algorithm 1 GEnetic Multi-agent Self-play (GEMS)
1: Initialize Policy π
2: #Select Curriculum Size and Mutation Rate
3: Input Mtrain, pµ
4: #Initialize Curriculum of size Mtrain

5: Initialize Curriculum Ξtrain

6: while True do outcome = [] regrets = []
7: #Train π with Ξtrain by exploring scenario ξ
8: for ξ in Ξtrain do
9: u, δ = Train(π, ξ)

10: outcome.append(u)
11: regrets.append(δ)
12: end for
13: #Harvest Examples
14: Ξseed, utility = harvest(Ξtrain,outcome,rewards)
15: #Generate New Curriculum
16: Ξtrain = crossover(Ξseed,Mtrain,utility)
17: Ξtrain = mutation(Ξtrain, pµ)
18: end while

Most approaches in multi-agent self-play re-
quire means to avoid overfitting to local min-
ima as RL opponents are often susceptible
to adversarial attacks. Instead of searching
for the global optimum, the student agent
will often exploit the adversarial weakness
of the opponent by visiting states where the
specific opponent policy is noisy and has
failed to generalize and perform well. We
compensate for this effect by introducing a
Blind Agent, denoted as π∅, which cannot
be exploited in this manner.

Instead of encoding the opponent as an in-
dex on which checkpoint to load, π∅ =
{(t0, a0), (t1, a1), (t2, a2).....} encodes the
opponent as a list of non-fixed lengths de-
scribing which actions to take in an open-
loop fashion. For example, at timestep
t1 < t < t2, the opponent takes action a1.

Blind Agents, running in an open loop with-
out state observation, cannot be exploited
like RL opponents. This prevents ego agent overfitting by avoiding confusing actions to exploit
a specific opponent policy. Instead, it encourages learning a general policy resilient to opponent
weaknesses. As genetic algorithms can optimize sequences of non-fixed length, π∅ is generated and
evolved during training without expert supervision. Incorporating all these features, we encode a
scenario as ξ = {iπ, π∅, ψ}
iπ is an integer representing the i-th checkpoint to load as the opponent πopp. If iπ = 0, it indicates
that no agent will be loaded, and instead, a Blind Agent π∅ will be used as the opponent. ψ denotes
which environment parameters to load. It’s important to note that whether it is used or not, the
encoding for the Blind Agent π∅ is always present in a scenario ξ. This ensures that the optimization
and the memory about a Blind Agent π∅ are not lost during the genetic operations and can always be
brought back if needed throughout the training Algorithm 1 shows the pseudocode of our proposed
algorithm, GEMS.

4 EXPERIMENTS

4.1 BENCHMARKS

We include three benchmarks with varying complexity and game dynamics to showcase our algo-
rithm’s performance against diverse baselines across different problems. Further environment details
can be found in Appendix A.1

Pong is a 2-player, continuous-action space version similar to Atari Pong (Brockman et al., 2016).
In this game, each player controls a paddle on the left and right, attempting to hit the ball towards
the opponent’s side to win. The scenario describes which player controls which side and the initial
velocity of the ball. This is the simplest of all environments, as each paddle can only move in 1-D
space (up and down) and the ball’s horizontal speed is fixed, simplifying the physics and making it
relatively easy to learn. Therefore, this environment primarily emphasizes the game-theoretic aspect
of the approaches compared to other benchmarks.

Volley is based on (Hardmaru, 2020). Each player controls an avatar controlled continuous action
input to move in left, right, and jumping. The objective is to bounce the ball to land on the other
side of the map across the net. The scenario specifies the player’s side and the initial ball velocity.
This environment is more complex to learn than Pong due to the the presence of gravitational pull
and elastic collision physics, elements absent in Pong. This complexity demands a stronger focus on
acquiring proficient skills through curricular learning.

5

Under review as a conference paper at ICLR 2024

Figure 3: Screenshot of Benchmarks
used in this paper, Pong, Volley, and
ACM (aircraft trajectories are marked
in blue and red)

ACM is a simulated dogfighting environment. In this
setting, each player commands an airplane in 3D space,
aiming to position its nose toward the opponent without
crashing to the ground. The scenario describes the posi-
tions, postures, and velocities of the spawning airplanes.
Among the three benchmarks, this environment is the
most complex. The aircraft operate in 3D space with
direct control over aerodynamic surfaces, devoid of stabil-
ity assistance. The physics are simulated using JSBSim
(Berndt, 2004), a high-fidelity simulator widely adopted
in autonomous aircraft and aircraft controls research due
to its accurate aerodynamic modeling (Pope et al., 2021).
Consequently, a successful baseline should guide agents
in solving challenges within this intricate environment.
Additionally, since the game’s objective is to maneuver
and position the ego plane in relation to the opponent, the
scenario—encoding spawn locations and orientations of
the planes—significantly influences the game’s outcome.

4.2 BASELINE ALGORITHMS

We choose PSRO as one of the baselines for comparison. While numerous algorithms have emerged
from PSRO, including parallel approaches like Rectified PSRO (Balduzzi et al., 2019) and Pipeline
PSRO (McAleer et al., 2020), or those aiming to find meta-solutions minimizing exploitability
such as Anytime PSRO (McAleer et al., 2022), these approaches are fundamentally based on
PSRO’s framework. They all share the underlying structure of generating Nash strategy opponents
without considering ego agent’s performance to present the tasks in a gradual, easy to learn fashion.
Therefore, we utilize PSRO as a characteristic example to highlight the limitation of this assumption.
While PSRO necessitates additional steps to evaluate each policy in order to run the meta-solver
during training, we report performance without considering the extra evaluation steps that PSRO
requires. We believe that presenting PSRO’s performance without factoring in these additional steps
provides a comprehensive comparison, not only against PSRO itself but also against newer subsequent
algorithms such as XDO (McAleer et al., 2021) and NAC (Feng et al., 2021), which aim to reduce
the computational cost associated with policy evaluation.

We include GC (Song & Schneider, 2022) as a comparison against approaches that uses a genetic
algorithm to generate a curriculum. We include SPDL (Klink et al., 2020) to compare our approach
against algorithms controlling environment parameters and actively regulating difficulty levels during
curriculum generation. For fairness in multi-agent domain, GC and SPDL are running with Fictitious
Self-Play (FSP) (Heinrich et al., 2015),labeled GC+FSP and SPDL+FSP, where the curriculum
generator can choose opponents from saved checkpoints. While there are other single-agent curricula
RL that regulate difficulty level, such as using regret, we decide to use an approach more relevant
to multi-agent domain by including MAESTRO (Samvelyan et al., 2023). MAESTRO represents
a stat a state-of-the-art approach optimizing environment-opponent choices in multi-agent domain
using regret to regulate difficulty level of the scenarios. Finally, we include FSP as a baseline
comparison for simple population-based multi-agent RL. FSP loads environmental parameters by
domain randomization. For all algorithms, we use a publicly available implementation of Soft Actor
Critic (SAC) (Haarnoja et al., 2018; createmind, 2019) as the base strategy explorer.

4.3 EVALUATION AND HYPERPARAMETERS

To evaluate each method, we train with 10 random seeds for Pong and Volley, and 5 for ACM and
Race benchmarks. Each seed took 5-15 days to complete. Complex environments like ACM required
more time, while computationally intensive algorithms like PONG also had longer run times.

Exploitability analysis isn’t feasible in complex environments (Liu et al., 2021), so we measure
performance by having agents play against 5 baselines and our GEMS. We play 200 games with
random environment parameters per 10x10 pair (5x5 for ACM) of seeds to report the model’s
performance.

6

Under review as a conference paper at ICLR 2024

Pong Volley ACM
FSP 59±3 : 1±0 : 39±3 40±2 : 5±1 : 55±1 37±3 : 49±1 : 14±2
PSRO 56±3 : 1±0 : 42±3 40±2 : 5±1 : 55±1 35±3 : 51±1 : 14±2
GC+FSP 58±4 : 1±0 : 42±4 46±2 : 7±2 : 47±1 23±5 : 34±3 : 43±3
SPDL+FSP 31±3 : 0±0 : 69±3 47±2 : 24±2 : 28±0 28±6 : 43±4 : 29±3
MAESTRO 21±3 : 0±0 : 79±3 42±2 : 6±1 : 52±0 10±3 : 23±3 : 67±2
GEMS (Ours) 72±3 : 3±1 : 25±2 48±2 : 24±2 : 28±0 41±2 : 52±3 : 8±1

Table 1: Mean Win:Tie:Lose Ratio (%) of Algorithms against Baseline Algorithms and Ours. Highest
Win Rate and Lowest Lose Rate in Bold

For the training curve, we save model checkpoints at every 5e5 timesteps and had them play Round
Robin. Each agent playe 400 games per 10x10 pair (5x5 for ACM) among the seeds for evaluation.

We also conduct an ablation study on our approach to validate our design choices. The ablated
versions run with 5 seeds and evaluate against fully trained versions of the baselines for the training
curve and overall performance.

While PSRO, GC, and SPDL use additional simulation steps for curriculum generation, we report
results based on the steps each agent took during exploration for the ease of comparison. ACM was
trained up to 7e6 steps, while the other benchmarks were trained up to 4e6 steps. Implementation
details and hyperparameter tuning results can be found in Appendix A.1.

5 RESULTS

5.1 CROSSPLAY RESULTS

Figure 4: Training Curve with Round Robin Results

Table 1 shows the summary of crossplay results, and the training curves are shown in Figure 4.
Our algorithm achieves the highest win rate and lowest lose rate against all benchmarks across all
baselines. For full results, refer to Appendix A.6.

Compared to its performance in the Pong benchmark, PSRO does not fare well in relatively more
complex benchmarks like Volley or ACM. In Pong, where the players only move in a 1D space, the
game is relatively simple, and the game theoretical setup significantly affects the overall performance.
However, in the case of Volley, where the players move in a 2D space, and ACM, where the players
move in a 3D space, having a curricular setup that assists in learning has a more pronounced effect,
leading to PSRO being less effective.

For example, GC+FSP and SPDL+FSP are curricular setups without a equilibrium stability guarantee.
While SPDL+FSP outperforms FSP in Volley, which is complex enough to benefit from a curricular
setup, SPDL+FSP performs poorly in Pong, where the environment is too simple to benefit from such
a setup. GC+FSP does better than SPDL+FSP in PONG thanks to its robustness guarantee, but like
SPDL+FSP, it suffers in ACM where the baselines were not designed for multi-agent interactions like
our method. We will further emphasize these features in the ablation study.

7

Under review as a conference paper at ICLR 2024

While MAESTRO performs comparable to FSP in Volley, it does not perform well in other bench-
marks. The limitation of relying on random exploration versus a full genetic algorithm for curriculum
generation has been reported in GC (Song & Schneider, 2022), and we report that this limitation
extends to the multi-agent setup in our ablation study.

5.2 EVOLUTION OF GENERATED CURRICULUM

Figure 5: Evolution of Scenarios Generated by Ours. Each dot marks the position of red and blue
aircraft at 1-second intervals. The color of the markers starts from black to blue for student aircraft
and black to red for the opponent aircraft.

To illustrate the evolution of the curriculum, we present characteristic examples of curricula generated
by our approach in Figure 5. We sampled scenarios used to train the algorithm at 1e6, 3e6, and 7e6
steps. At the beginning of the training, when the ego agent is not yet well-trained, our algorithm
utilizes Blind Agents to generate opponents with useful demonstrations. In this scenario, it sets
the opponent to spawn close and circle around the ego agent, allowing the ego agent to practice
basic tracking maneuvers. As the training progresses, our algorithm actively samples scenarios with
interesting learning points, such as the scenario in which the agents start flying away from each other.
Thanks to these gradual steps, by the end of the training, the agent can explore much more complex
situations and opponents. More detailed visualizations, including other baselines, can be found in
Figure 7 in the appendix.

5.3 ABLATION STUDY

Figure 6: Training Curve For Ablation
Study

We conducted an ablation study on our proposed method to
empirically demonstrate the effects of our design choices.
In the NoRegret experiment, we excluded the regret term
(σ) when calculating the fitness function to observe how
effectively regret regulates the difficulty level of scenar-
ios during training. In the NoGenetic experiment, we
employed the approach of MAESTRO (Samvelyan et al.,
2023) instead of using a genetic algorithm to generate
a scenario population. Scenarios were individually se-
lected from a replay buffer, and new scenarios were added
through random search, deviating from the batch gener-
ation of a genetic algorithm. In the NoCrossover exper-
iment, we disabled the crossover function of the genetic
algorithm, relying solely on mutation for scenario search.
In the NoBlind experiment, we disabled the option to use
a Blind Agent During Training. Lastly, in the NoVIC
experiment, we disabled the fitness function from utilizing
G(π, ψ), focusing solely on maximizing regret.

Overall, we observe that NoRegret initially follows a training curve similar to that of GEMS but
reaches a plateau earlier than our proposed GEMS. This suggests that during the early stages of
training, the regulation of scenario difficulty is influenced by the improving proficiency of both the
opponent agent and the ego agent. However, as the opponent population approaches convergence,
regret emerges as a useful means to regulate the curriculum’s difficulty level towards approaching

8

Under review as a conference paper at ICLR 2024

the equilibrium. Nevertheless, the impact of regret on training is not as pronounced as that of other
design features in GEMS.

ACM
MAESTRO -226.845±25.332
GEMS 139.080±32.768
NoRegret 128.416±14.724
NoGenetic -234.64±9.595
NoCrossover 75.808±21.963
NoVIC -218.267±16.605
NoBlind -213.751±16.907
No-OP -243.172±8.521

Volley
MAESTRO -0.094±0.053
GEMS 0.194±0.058
NoGenetic -0.131±0.013

Pong
MAESTRO -0.578±0.142
GEMS 0.466±0.121
NoGenetic -0.552±0.046

Table 2: Mean Return of the Abla-
tion Study

One of the critical features of our curriculum generation is
the use of genetic operations. As highlighted in GC (Song &
Schneider, 2022), in a single-agent setup, random exploration
to find difficult scenarios can be less effective than randomly
sampling scenarios, regardless of their quality. The Genetic
Algorithm not only excels at searching for scenarios but also
promotes similarity between scenarios, aiding in task gener-
ation. This effect is observed to extend into the multi-agent
domain. Even relying on mutation alone, as demonstrated in
NoCrossover, proves to be more effective than the random ex-
ploration seen in NoGenetic. The value of the genetic structure
is further evident in other benchmarks, as shown by the results
of NoGenetic in the Volley and Pong environments.

However, GEMS incorporates certain features not present in
GC that prove beneficial in the multi-agent domain, notably
the inclusion of the Blind Agent. Without utilizing the Blind
Agent, effective exploration becomes challenging for the agent,
hindering its ability to escape trivial solutions, especially when
the opponent lacks the necessary proficiency to solve the game.
As a result of this instability at the outset, NoBlind does not
exhibit efficient learning.

Similarly, we observe that the No-OP (no action) approach
does not serve as a substitute for the Blind Agent. In the ACM
environment, an uncontrolled aircraft will inevitably reach a low-energy state, leading to a crash
landing. While an aircraft’s aerodynamic stability can sustain level flight for a certain duration,
this is contingent on adequate airspeed and altitude. However, the aircraft will still gradually lose
kinetic and potential energy due to drag. The Blind Agent circumvents this issue by enabling a more
sophisticated list of action sequences, optimized by the curriculum generator.

Finally, we observe that NoVic, which corresponds to our multi-agent stability with respect to Nash
equilibrium, plays a crucial role in learning. While NoVic still utilizes the regret function to guide
exploration, this alone is insufficient to solve the multi-agent exploration problem.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose utilizing curricular learning through a genetic algorithm to enhance and
stabilize learning in a game-theoretic approach within a multi-agent environment. By employing
a genetic algorithm to search for and optimize a population of scenarios for use as a curriculum,
we enable an RL agent to reach a better solution faster. Additionally, we introduce the concept of
an open-loop agent optimized by the curriculum generator to stabilize the training, especially at
the initial stages where the competence of the self-play opponent may not be sufficient to generate
valuable training experiences. Through empirical evidence, we demonstrate the effectiveness of our
approach against various baselines in several benchmarks. Furthermore, we conduct an ablation study
to validate our design choices.

These findings open up several intriguing research directions. One such direction involves scaling
up the number of players from 2 to N. Additionally, although our approach is not confined to
strictly competitive settings, the empirical studies in this paper focused on such scenarios. It would
be interesting to investigate how our approach fares in collaborative-competitive settings. These
scenarios could include highway lane merging, where agents are not engaged in a zero-sum game, or
team sports, where distributed AI systems must collaborate to compete against an opposing group of
AI agents.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Purposive behavior acquisi-
tion for a real robot by vision-based reinforcement learning. Machine learning, 23(2-3):279–303,
1996.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Jon Berndt. Jsbsim: An open source flight dynamics model in c++. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, pp. 4923, 2004.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

George W Brown. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation, 13(1):
374, 1951.

George H Burgin and LB Sidor. Rule-based air combat simulation. Technical report, 1988.

Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learning to drive from a world on rails. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15590–15599,
2021.

createmind. Deep reinforcement learning. https://github.com/createamind/DRL/
tree/master/spinup/envs/BipedalWalkerHardcore, 2019.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Yuqing Du, Pieter Abbeel, and Aditya Grover. It takes four to tango: Multiagent selfplay for automatic
curriculum generation. arXiv preprint arXiv:2202.10608, 2022.

Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen, Jun Wang, and
Yaodong Yang. Neural auto-curricula in two-player zero-sum games. Advances in Neural Informa-
tion Processing Systems, 34:3504–3517, 2021.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

Pierre Fournier, Mohamed Chetouani, Pierre-Yves Oudeyer, and Olivier Sigaud. Accuracy-based
curriculum learning in deep reinforcement learning.

Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gauthier Gidel,
Hado van Hasselt, and David Balduzzi. Pick your battles: Interaction graphs as population-level
objectives for strategic diversity. arXiv preprint arXiv:2110.04041, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. 2018.

Hardmaru. Slimevolleygym. https://github.com/hardmaru/slimevolleygym, 2020.

10

https://github.com/createamind/DRL/tree/master/spinup/envs/BipedalWalkerHardcore
https://github.com/createamind/DRL/tree/master/spinup/envs/BipedalWalkerHardcore
https://github.com/hardmaru/slimevolleygym

Under review as a conference paper at ICLR 2024

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. 2016.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
International conference on machine learning, pp. 805–813. PMLR, 2015.

David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. 2018.

Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, and Marco Pavone. Barc: Backward
reachability curriculum for robotic reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 15–21. IEEE, 2019.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021b.

Andrej Karpathy and Michiel Van De Panne. Curriculum learning for motor skills. In Canadian
Conference on Artificial Intelligence, pp. 325–330. Springer, 2012.

Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Self-paced deep reinforcement learning.
In NeurIPS, 2020.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing systems, 30, 2017.

David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and Economic
Behavior, 56(2):285–298, 2006.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yaodong Yang, Yujing Hu, Yingfeng Chen, Changjie Fan,
and Zhipeng Hu. Unifying behavioral and response diversity for open-ended learning in zero-sum
games. arXiv preprint arXiv:2106.04958, 2021.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. IEEE transactions on neural networks and learning systems, 2019.

Stephen McAleer, John B Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: A scalable approach for
finding approximate nash equilibria in large games. Advances in neural information processing
systems, 33:20238–20248, 2020.

Stephen McAleer, John B Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. Xdo: A double oracle
algorithm for extensive-form games. Advances in Neural Information Processing Systems, 34:
23128–23139, 2021.

Stephen McAleer, Kevin Wang, John B Lanier, Marc Lanctot, Pierre Baldi, Tuomas Sandholm, and
Roy Fox. Anytime psro for two-player zero-sum games. 2022.

Nicolas Minorsky. Directional stability of automatically steered bodies. Journal of the American
Society for Naval Engineers, 34(2):280–309, 1922.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 25–33, 2019a.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 25–33. International Foundation for Autonomous Agents and Multiagent Systems, 2019b.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

11

Under review as a conference paper at ICLR 2024

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pp. 17473–17498. PMLR, 2022.

Supratik Paul, Michael A Osborne, and Shimon Whiteson. Fingerprint policy optimisation for robust
reinforcement learning. In International Conference on Machine Learning, pp. 5082–5091. PMLR,
2019.

Adrian P Pope, Jaime S Ide, Daria Mićović, Henry Diaz, David Rosenbluth, Lee Ritholtz, Jason C
Twedt, Thayne T Walker, Kevin Alcedo, and Daniel Javorsek. Hierarchical reinforcement learning
for air-to-air combat. In 2021 international conference on unmanned aircraft systems (ICUAS), pp.
275–284. IEEE, 2021.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

Mikayel Samvelyan, Akbir Khan, Michael Dennis, Minqi Jiang, Jack Parker-Holder, Jakob Foerster,
Roberta Raileanu, and Tim Rocktäschel. Maestro: Open-ended environment design for multi-agent
reinforcement learning. arXiv preprint arXiv:2303.03376, 2023.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Max Olan Smith, Thomas Anthony, Yongzhao Wang, and Michael P Wellman. Learning to play
against any mixture of opponents. arXiv preprint arXiv:2009.14180, 2020.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Iterative empirical game solving via
single policy best response. arXiv preprint arXiv:2106.01901, 2021.

Yeeho Song and Jeff Schneider. Robust reinforcement learning via genetic curriculum. In 2022
International Conference on Robotics and Automation (ICRA), 2022.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58–68, 1995.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 142–151, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International Conference on Machine Learning, pp. 9940–9951.
PMLR, 2020.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. Control strategies for physically simulated
characters performing two-player competitive sports. ACM Transactions on Graphics (TOG), 40
(4):1–11, 2021.

A APPENDIX

A.1 ENVIRONMENT DETAILS

This section will discuss the details of the benchmark environments used in this paper.

12

Under review as a conference paper at ICLR 2024

A.1.1 PONG

Environment Overview

Pong is a game similar to the one described in (Brockman et al., 2016). In this game, there are two
paddles, each located at the left and right edges of the map. Each agent controls a paddle capable of
1D movement. At the start of the game, a ball spawns at the center of the map with a certain velocity.
The ball will bounce if it comes in contact with the top edge, the bottom edge, or any of the paddles.
An agent wins the game if the ball passes through the opposite edge of the map.

To play the game, each agent observes the position and velocity of the ball, as well as the location of
each paddle. The action space is 1-D. If the value is positive, the agent’s paddle will move up at a
constant speed, and vice versa if negative. An agent receives a reward of +1 if they win and -1 if they
lose. If neither player manages to win the game after 300 steps, it is considered a tie with a reward of
0.

Environment Encoding

The original environment calls the random number generator four times to reset a game. Subsequently,
we encode the environment with four values. One value determines whether the ego agent will be
playing the left or right paddle. The other three control the initial velocity of the ball. One value
determines whether the ball will be moving up or down, another controls the magnitude of the ball’s
velocity vector in the up-down axis, and the last one determines whether the ball will be traveling left
or right. The magnitude of the ball’s velocity in the left-right axis remains constant throughout the
game.

A.1.2 VOLLEY

Environment Overview

Volley is an environment based on the concept presented in (Hardmaru, 2020), where two agents
engage in a 2D volleyball game. This presents a more intricate update compared to Pong, as both
players can move in a 2D space instead of the 1D movement of paddles. Additionally, the ball’s
horizontal speed can vary along with its vertical speed. At the start of the game, the ball spawns at the
center of the map above the net, which divides the map into two halves. The ball will bounce upon
contact with any of the players or any edges except for the bottom. Each of the agents can redirect the
ball by hitting it with the avatar they control. The ball follows a simple physics model, being subject
to gravity and simple elastic collision mechanics. An agent wins the game by successfully landing
the ball on the other side of the map.

To play the game, each agent observes the position and velocity of the ball, the ego agent, and
the other agent. Each agent has a 2-D continuous action space, dictating the desired vertical and
horizontal velocity of the avatar in the game. While the avatar can move at the desired velocity in
the horizontal axis, it can only be launched upward with a desired velocity if it is on the ground.
Otherwise, it will move along the surface or be in free fall due to gravity. An agent receives a reward
of +1 if they win and -1 if they lose. If neither player manages to win the game after 300 steps, it is
considered a tie, and both players receive a reward of 0.

Environment Encoding

The Volley environment is expressed in three values. The first two values are continuous (-1,1) and
defines the initial velocity of the ball. The third value is discrete 0,1 and defines whether the ego
agent is controlling the avatar on the left or the right.

A.1.3 ACM

Environment Overview

ACM is a simulated dogfight environment. This is more complex than the previous 2 benchmarks as
agents in ACM will moving in 3D space with realistic physics simulation. At the start of the game,
two aircraft spawn in air at certain orientation and a velocity vector with respect to the nose heading.
The agent wins the game by pointing its nose at the opponent while avoid getting pointed by the
opponents nose. There’s also penalty involved with crashing to the ground.

13

Under review as a conference paper at ICLR 2024

To play the game, each agent observes the position, orientation, and velocity of the ego and the
opponent agents. Each agent has 4-D continuous action space with direct control over the aicraft’s
elevator, aileron, rudder, and throttle. The physics is simulated by JSBSim (Berndt, 2004), a high-
fidelity simulator often used in autonomous aircraft research. The aerodynamics model for ACM is
based on a Boeing F-15D, capable of flying two times faster than the speed of sound.

To win the game, the agent should have its nose pointed less than 5 degrees off the opponent aircraft
while flying at less than 2,000 ft away from the opponent. The agent can also win the game if the
opponent aircraft fly below the hard deck of 500 ft. The agent wins the game if either of these
conditions are met, and loses if the opponent achieves either of the conditions. If both aircraft
achieves either of these conditions at the same time, it’s a tie. If none of the conditions are met by
neither of the agents for 300 seconds, it’s considered a tie. Agent receives penalty of -300 for crashing
into the ground, 150 for pointing the nose towards the target, and 100 if the opponent crashed to the
ground. To help with training, there’s a small dense reward for getting closer to pointing the nose
towards the opponent.

Environment Encoding

The ACM environment is expressed in 14 continuous values. They define the initial conditions of the
game, which are the position, orientation, and airspeed of each aircraft.

A.2 IMPLEMENTATION DETAILS

This section covers the implementation details regarding the training procedures of each baseline for
reproducibility purposes.

A.2.1 TRAINING HARDWARE

To train the models, we used 88-core Intel Xeon Gold 6238 CPU at 2.10 GHz. Training models took
from 5 ∼ 15 days. Lighter benchmarks, like Pong took 5 days, while heavier benchmarks such as
ACM took 15 days. This is due to the computation load of the JSBsim which provides high fidelity
aerodynamics simulation.

A.2.2 TUNING RL ALGORITHM

Tuning Procedures

To ensure that hyperparameters do not favor one baseline over another, they were tuned for the RL
policy explorer in a single-agent setup against hand-coded opponents. For Pong and Volley, the
opponents were hand-coded to chase the estimated impact point of the ball, with a PID controller
providing the action inputs (Minorsky, 1922). In the case of ACM, a simple PID autopilot was
employed to control the opponent aircraft’s speed, heading, and altitude. The combination of network
structure and hyperparameters that performed the best in these single-agent setups was selected for
use in our baseline experiments.

Network Structure

To train our RL algorithm, we experimented with various network structures, varying the depth of the
hidden layers from 1 to 4 layers and the width from 64 to 512. Our findings revealed that the optimal
architecture for all the benchmarks consists of hidden layers composed of two fully-connected layers,
each with a size of 256. We utilized ReLU activation between the hidden layers and concluded
with the last layer having an output dimension equivalent to the action dimension, followed by tanh
activation.

A.2.3 RL HYPERPARAMETERS

We conducted limited grid search to hyperparameters for our RL algorithm. For learning rate we
tried values of {3e-5, 1e-4, 3e-4, 1e-3}. For initial exploration steps, we tried 0, 1000, 10000. For
discount ratio γ, we tried {0.95, 0.98, 0.999}. For batch size, we tried {64, 256, 512}. For update
every, we tried {1, 32, 100}. For Replay size, we tried {1e6, 3e6}. As a balance between perfomance
and computational cost, we ran each seeds on 3 seeds. Table 3 shows the selected hyperparameters
we used for the main experiments.

14

Under review as a conference paper at ICLR 2024

Pong Volley ACM
Start Steps 10000 10000 10000
Learning Rate 3e-4 3e-4 3e-4
γ 0.98 0.98 0.98
α auto auto auto
Batch Size 256 256 512
Replay Size 1e6 1e6 1e6
Update Every 1 1 1

Table 3: Selected Hyperparameters for RL Algorithm

Pong Volley ACM
PSF
Checkpoint Interval 10000 10000 10000

PSRO
Match Times 30 30 10

GC
Evaluation Set Size 200 200 300
Curriculum Size 200 200 300

SPDL
Penalty Proportion 1 1 0.1
Offset 20 20 20

MAESTRO
Co-Player Exploration Coefficient 0.1 0.1 0.1
Curriculum Buffer Size 1000 1000 1000

Table 4: Selected Hyperparameters for Baselines

A.3 BASELINE HYPERPARAMETER TUNING

To tune the hyperparameters, we trained the models using the following settings. Since it is challeng-
ing to tune the hyperparameters by conducting a round-robin across all hyperparameter settings used
for different baselines, each setting was evaluated against the same hand-crafted opponents used for
tuning the RL hyperparameters. Striking a balance between performance and computational cost, we
ran each configuration with 3 seeds. Table 4 presents the selected hyperparameters used for the main
experiments.

We tested the following hyperparameter values in a limited grid search. For adding checkpoints, we
tested saving a copy of the agents’ policies at every {10000, 30000} exploration step. We used the
same interval of steps as the interval in which curriculum is generated for the algorithms that generate
one at every epoch. For measuring performance between each checkpoint on random environment
parameters to approximate the Nash Equilibrium in PSRO, we tried {10,30} evaluations per pair.
As for the hyperparameters of the GC, we tried sizes of {200,300} for the size of the population
of scenarios evaluated for whether being solved or not solved. We also tried sizes of {200,300}
for the sizes of the generated curriculum and mutation rates of {0.1,1}. For SPDL, we tried values
of {0,10,20} for offset and {0.1,0.3,1} for penalty proportion. For MAESTRO, we tried co-player
exploration coefficients of {0.05,0.1} and curriculum buffer sizes of {500,1000}. For GEMS, we
copied the hyperparameters from the GC in terms of the size of the curriculum and mutation rate.
This was done to make comparisons between different algorithms easier by removing the effect of
different hyperparameters during genetic operations.

15

Under review as a conference paper at ICLR 2024

A.4 CROSSOVER

A.4.1 CROSSOVER OPERATIONS

For a sampled parent scenarios m,n, the corresponding encoding would look like;

m = {iπ, π∅, ψ} = {m0,m1} = {m0,0,m0,1...m0,x,m1,0,m1,1...m1,y} (3)

n = {iπ, π∅, ψ} = {n0, n1} = {n0,0, n0,1...n0,x, n1,0, n1,1...n1,z} (4)

mo encodes the choice of opponent to load iπ and the environment parameters ψ while mo represents
the encoding of the Blind Agent π∅ .In this section, x corresponds to the length of environment
encoding for m. y and z in this section corresponds to the length of Blind Agent π∅ encoding for m
and n. If using the same environment, x will not be different between the scenarios whereas y and z
will vary depending on the encoded environment.

A crossover is performed by swamping a section from one parent with a section from another parent.
In this set, this would be done by finding three split points. Using a uniform distribution, we sample
three integer values η0 ∈ {0, 1, 2, ..x}, η1 ∈ {0, 1, 2, ..y}, η2 ∈ {0, 1, 2, ..z}
From this, we would generate two child scenarios p,q as follows;

p = {m0,0...m0,η0
, n0,η0+1...n0,x,m1,0...m1,eta1

, n1,eta2+1...n1,z} (5)

q = {n0,0...n0,η0 ,m0,η0+1...m0,x, n1,0...n1,eta2 ,m1,eta1+1...n1,y} (6)

For the special cases such as η0 = 0, x or η1 = 0, y, or η2 = 0, z, we would be inherting the segment
without dividing it. For example, if η0 = 0, then p0 = n0,q0 = m0 and so on.

To perform a mutation on a sampled scenario, we would first perform a crossover between the
scenario and a randomly generated scenario and return one of the child scenarios as the mutated
scenario. The mutation rate controls the probability of each scenario undergoing mutation.

A.5 SAMPLING PARENTS

In this paper, we have defined the probability of sampling scenarios as parents as the following;

p(ξ) ∝ δ(ξ)(1−G(π, ξ)) (7)

In practice, we would be using the normalized form as follows;

p(ξi) =
δ(ξi)(1−G(πi, ξi))

Σδ(ξ)(1−G(π, ξ))
(8)

If
∑
δ(ξ)0, we would simple use regret-only version as follows;

p(ξi) =
(1−G(πi, ξi))

Σ(1−G(π, ξ))
(9)

A.6 FULL PERFORMANCE RESULTS OF THE TRAINED ALGORITHMS

In this section, we include the full results of our experiments. Table 5 shows the mean return of each
algorithm against each other, while Table 6 includes the detailed results of each pair.

A.7 EVOLUTION OF CURRICULUM

Figure 7 includes characteristic examples of the scenarios generated and used as curriculum for each
algorithms.

16

Under review as a conference paper at ICLR 2024

Pong Volley ACM
FSP 0.197 ± 0.158 -0.143 ± 0.061 94.498 ± 49.686

PSRO 0.141 ± 0.154 -0.145 ± 0.058 83.274 ± 51.499
GC+FSP 0.159 ± 0.179 -0.004 ± 0.07 -124.304 ± 44.356

SPDL+FSP -0.386 ± 0.144 0.192 ± 0.058 -97.987 ± 51.969
MAESTRO -0.578 ± 0.142 -0.094 ± 0.053 -226.845 ± 25.332

GEMS (Ours) 0.466 ± 0.121 0.194 ± 0.058 139.080 ± 32.768

Table 5: Mean Return of Algorithms against Baseline Algorithms and Ours. Highest Mean Return in
Bold

17

Under review as a conference paper at ICLR 2024

Table 6: Detailed Win:Tie:Lose Ratio(%) of Each Algorithm Against Others

A
gent

vsFSP
vsPSR

O
vsG

C
+FSP

vsSPD
L

+FSP
vsM

A
E

ST
R

O
vsG

E
M

S
(O

urs)

Pong
FSP

49±
1

:2±
0

:49±
1

PSR
O

42±
1

:1±
0

:57±
1

49±
1

:3±
0

:49±
0

G
C

+FSP
48±

1
:1±

0
:51±

1
50±

1
:0±

0
:49±

1
50±

1
:0±

0
:50±

1
SPD

L
+FSP

22±
0

:0±
0

:78±
0

22±
1

:1±
0

:78±
1

19±
0

:0±
0

:80±
0

50±
0

:0±
0

:50±
0

M
A

E
ST

R
O

9±
0

:0±
0

:91±
0

13±
1

:0±
0

:87±
1

8±
0

:0±
0

:92±
0

40±
0

:0±
0

:60±
0

50±
0

:0±
0

:50±
0

G
E

M
S

(O
urs)

66±
1

:4±
0

:30±
0

63±
1

:4±
0

:33±
1

73±
1

:2±
0

:25±
1

89±
0

:1±
0

:11±
0

94±
0

:0±
0

:6±
0

47±
1

:7±
0

:47±
1

Volley
FSP

50±
0

:0±
0

:50±
0

PSR
O

50±
0

:0±
0

:50±
0

50±
0

:0±
0

:50±
0

G
C

+FSP
58±

0
:0±

0
:42±

0
59±

0
:0±

0
:41±

0
49±

0
:2±

0
:49±

0
SPD

L
+FSP

59±
0

:16±
0

:25±
0

59±
0

:15±
0

:26±
0

51±
0

:21±
0

:29±
0

30±
0

:41±
0

:30±
0

M
A

E
ST

R
O

51±
0

:0±
0

:49±
0

52±
0

:0±
0

:48±
0

46±
0

:0±
0

:54±
0

29±
0

:15±
0

:56±
0

50±
0

:0±
0

:50±
0

G
E

M
S

(O
urs)

61±
0

:13±
0

:26±
0

58±
0

:17±
0

:25±
0

52±
0

:19±
0

:29±
0

31±
0

:37±
0

:31±
0

54±
0

:20±
0

:27±
0

31±
0

:38±
0

:31±
0

A
C

M
FSP

25±
0

:49±
0

:25±
0

PSR
O

20±
0

:54±
0

:26±
0

22±
0

:55±
0

:22±
0

G
C

+FSP
3±

0
:48±

0
:49±

0
3±

0
:50±

0
:47±

1
38±

2
:23±

1
:38±

2
SPD

L
+FSP

2±
0

:48±
0

:50±
0

2±
0

:49±
0

:49±
0

63±
2

:23±
1

:15±
1

8±
0

:84±
0

:8±
0

M
A

E
ST

R
O

1±
0

:39±
0

:60±
0

1±
0

:39±
0

:60±
0

10±
1

:13±
1

:78±
1

2±
0

:5±
0

:93±
0

47±
1

:6±
0

:47±
1

G
E

M
S

(O
urs)

32±
0

:56±
0

:14±
0

35±
0

:55±
0

:12±
0

50±
0

:48±
0

:2±
0

48±
0

:50±
0

:1±
0

62±
0

:37±
0

:1±
0

18±
0

:64±
1

:18±
0

18

Under review as a conference paper at ICLR 2024

Figure 7: Each dot marks the position of the red and blue aircraft at 1-second intervals. The color
of the markers transitions from black to blue for the student aircraft and from black to red for the
opponent aircraft. It’s important to note that at the start of the training, only our algorithm is capable
of presenting scenarios and opponents that provide interesting data points instead of simply crashing
to the ground. While SPDL+FSP somewhat succeeds in finding scenarios that do not end in a crash, it
optimizes scenarios without considering opponent policy and simply finds trivial cases where agents
are flying in circles.

19

	Introduction
	Related Works
	Approach
	Preliminaries
	Problem Formulation
	Genetic Algorithm for Curriculum Generation
	Blind Agent and Scenario Space

	Experiments
	Benchmarks
	Baseline Algorithms
	Evaluation and Hyperparameters

	Results
	Crossplay Results
	Evolution of Generated Curriculum
	Ablation Study

	Conclusion and Future Work
	Appendix
	Environment Details
	Pong
	Volley
	ACM

	Implementation Details
	Training Hardware
	Tuning RL Algorithm
	RL Hyperparameters

	Baseline Hyperparameter Tuning
	Crossover
	Crossover operations

	Sampling Parents
	Full Performance Results of the Trained Algorithms
	Evolution of Curriculum

