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Abstract

The widespread adoption of large language
models (LLMs) necessitates reliable methods
to detect LLM-generated text. We introduce
SimMark, a robust sentence-level watermark-
ing algorithm that makes LLM’s outputs trace-
able without requiring access to model inter-
nals, making it compatible with both open and
API-based LLMs. By leveraging the similar-
ity of semantic sentence embeddings combined
with rejection sampling to embed detectable sta-
tistical patterns imperceptible to humans, and
employing a soft counting mechanism, Sim-
Mark achieves robustness against paraphras-
ing attacks. Experimental results demonstrate
that SimMark sets a new benchmark for robust
watermarking of LLM-generated content, sur-
passing prior sentence-level watermarking tech-
niques in robustness, sampling efficiency, and
applicability across diverse domains, all while
maintaining the text quality and fluency.

1 Introduction

The advent of deep generative models has made
it increasingly important to determine whether a
given text, image, or video was produced by arti-
ficial intelligence (Al), and recently, researchers
across various domains have begun tackling this
challenge (Aaronson and Kirchner, 2022; Fernan-
dez et al., 2023; Teymoorianfard et al., 2025). In
particular, LLMs such as GPT-4 (OpenAl et al.,
2023) can now generate human-like text at scale
and low cost, enabling powerful applications across
numerous industries. However, this capability also
introduces serious risks, including academic plagia-
rism, disinformation campaigns, and the manipula-
tion of public opinion. For instance, the use of Al-
generated content in news articles has raised con-
cerns about transparency, accountability, and the
spread of misinformation (Futurism, 2023). More-
over, reliably detecting LLLM-generated content is
crucial for enforcing copyright protections and en-
suring accountability (Weidinger et al., 2021).
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Figure 1: A high-level overview of SimMark detection
algorithm. The input text is divided into individual sen-
tences X3 to Xy, which are embedded using a semantic
embedding model. The similarity between consecutive
sentence embeddings is computed. Sentences with simi-
larities within a predefined interval [a, b] are considered
valid, while those outside are invalid. A statistical test
is performed using the count of valid sentences to deter-
mine whether the text is watermarked.

Detecting LLLM-generated text poses a unique
challenge. These models are explicitly trained to
emulate human writing styles, often rendering their
outputs indistinguishable from human-authored
text. As demonstrated by Kumarage et al. (2023)
and Sadasivan et al. (2023), reliably differentiat-
ing between human-written and machine-generated
text remains an open problem.

One promising approach is the use of impercepti-
ble statistical signatures, or watermarks, embedded
within a text. Watermarking imperceptibly alters
text such that it remains natural to human read-
ers but enables subsequent detection of its origin
(Atallah et al., 2001). Effective watermarking must
balance the preservation of the text quality with
robustness against adversarial paraphrasing, where
attackers modify the text to evade detection (Kr-
ishna et al., 2024). Additionally, watermarks must
be resistant to spoofing attacks, wherein adversaries
craft non-machine-generated text (often malicious)
to falsely trigger detectors (Sadasivan et al., 2023).

In this paper, we introduce SimMark, a robust
sentence-level watermarking algorithm for LLMs
based on sentence embedding similarity. SimMark



treats LL.Ms as black boxes that can be prompted
to generate sentences given a context. This ap-
proach makes SimMark compatible with a wide
range of models, including open-weight LLLMs and
closed-source proprietary models accessible only
via APIs, as it does not require fine-tuning or ac-
cess to the models’ internal logits. Access to logits
is often restricted by API providers due to their
potential use in distilling LLMs and leaking pro-
prietary information (Finlayson et al., 2024). Sim-
Mark leverages embeddings from semantic text
embedding models to capture semantic relation-
ships between sentences and embeds detectable
statistical patterns on sentence similarity through
rejection sampling. Specifically, rejection sampling
involves querying the LLM multiple times until the
similarity between the embeddings of consecutive
sentences falls within a predefined interval. During
detection, these patterns are analyzed using a sta-
tistical test to differentiate between human-written
and LLM-generated text, as illustrated in Figure 1.

In summary, our contributions are as follows:

* We introduce a novel sentence-level water-
marking algorithm that achieves state-of-the-
art detection performance while maintaining
low false positive rates for human-written text.

* Our approach demonstrates robustness against
paraphrasing attacks through semantic-level
watermarking and a soft counting mechanism
for statistical testing.

* Compared to existing methods, SimMark pro-
vides a more practical solution that operates
without access to LLM logits, offering high-
quality watermark injection and detection.

The remainder of this paper is organized as fol-

lows. Section 2 reviews the background and related
work on LLM watermarking techniques. Section 3
outlines our methodology. Section 4 describes our
experimental setup and presents comparative re-
sults, while Section 5 concludes the paper.

2 Background
2.1 Autoregressive Decoding of LL.Ms

An LLM operates over a vocabulary V, a set of
words or subwords termed as fokens. Let f : V —
V be an LLM that takes a sequence of tokens
T; = {ti,ta,...,t;} as input and generates the
next token ¢;41 as its output. To generate ¢;, 1,
the LLM samples it from the conditional proba-
bility distribution P(t;41|7;) over the vocabulary
V. After generating ¢, 1, the updated sequence

Tiy1 = T; U {tiy1} is fed back into the model,
and the process is repeated iteratively to generate
the subsequent tokens. This process of generating
one token at a time, given the previously generated
tokens, is known as autoregressive decoding.

2.2 Token-Level Watermarking

Token-level watermarking methods embed a statis-
tical signal in the text by manipulating the token
sampling process (Aaronson and Kirchner, 2022;
Kirchenbauer et al., 2023; Fu et al., 2024). These
methods typically alter the probability distribution
over V, subtly biasing the selection of certain to-
kens to form detectable patterns.

KGW introduced by Kirchenbauer et al. (2023),
groups V into green and red subsets pseudo-
randomly seeded on the previous token before gen-
erating each new token. A predefined constant
6 > 0 is added to the logits of each token in the
green list, increasing their likelihood of being se-
lected during the sampling step. At detection, a
z-test is applied to the number of tokens from the
green list in the text to determine whether the text
contains a watermark. This test compares the ob-
served proportion of green tokens to the expected
proportion under the null hypothesis of no water-
mark, providing a statistical measure to detect even
subtle biases introduced by the watermark.

Detection of such watermarks involves analyzing
tokens for statistical signatures that deviate from
typical human text. However, token-level water-
marks can still be vulnerable to paraphrasing, as
rephrasing may disrupt the green and red token lists
without altering the overall semantic (Krishna et al.,
2024). Moreover, since these methods modify the
logits, they directly impact the conditional proba-
bility distribution over V, potentially degrading the
quality of the generated text (Fu et al., 2024).

Due to space constraints, additional related
work—including token-level methods such as
UNIGRAM-WATERMARK (UW) (Zhao et al.,
2023) and the Semantic Invariant Robust (SIR) wa-
termark (Liu et al., 2023), as well as post-hoc wa-
termarking techniques—is deferred to Appendix A.

2.3 Sentence-Level Watermarking

One approach to mitigate the previously mentioned
problems is to inject the watermark signal at the
sentence level, making it less vulnerable to adver-
sarial modifications (Topkara et al., 2006). Con-
sider a similar notation for sentence generation us-
ing an autoregressive LLM that takes a sequence of



sentences M; = { X1, Xo, ..., X;} and generates
the next sentence X;;1. The updated sequence of
sentences M; 11 = M; U {X;;1} is then used to
generate subsequent sentences iteratively.

SemStamp by Hou et al. (2024a) employs
Locality-Sensitive Hashing (LSH) (Indyk and Mot-
wani, 1998) to pseudo-randomly partition the se-
mantic space of a embedding model into a set of
valid and blocked regions, analogous to the green
and red subsets in KGW. During rejection sampling,
if the embedding of a newly generated sentence lies
within the valid regions (determined based on the
LSH signature of the previous sentence), the sen-
tence is accepted. Otherwise, a new sentence is
generated until a valid sentence is produced or the
retry limit is reached. Similar to KGW, a z-test is
applied to the number of valid sentences to deter-
mine whether the text contains a watermark.

To improve robustness against paraphrasing,
SemStamp used a contrastive learning approach
(Hadsell et al., 2006), fine-tuning an embedding
model such that the embeddings of paraphrased
sentences remain as close as possible to the original
sentences. This was achieved by minimizing the
distance between paraphrased and original embed-
dings while ensuring unrelated sentences remained
distinct. They also introduce a margin constraint in
the rejection sampling process to reject sentences
whose embeddings lie near the region boundaries.

k-SemStamp (Hou et al., 2024b) builds upon
SemStamp and aims to enhance robustness by par-
titioning the semantic space using k-means cluster-
ing (Lloyd, 1982) instead of random partitioning.
They claim that in this way, sentences with sim-
ilar semantics are more likely to fall within the
same partition, unlike random partitioning, which
may place semantically similar sentences into dif-
ferent partitions, reducing robustness; however, k-
SemStamp assumes that the LLM generates text
within a specific domain to apply k-means clus-
tering effectively (Hou et al., 2024b), limiting its
applicability in real-world, open-domain scenar-
i0s. The generation and detection procedures of
k-SemStamp remain similar to the original Sem-
Stamp. In contrast to token-level algorithms, these
sentence-level methods do not alter the internals of
the LLM, therefore it is expected that their output
to be of higher quality (Hou et al., 2024a,b).

Our work, similar to SemStamp and k-
SemStamp, is a sentence-level algorithm; however,
it injects its watermark signature into the seman-
tic similarity of consecutive sentences. It achieves

Algorithm 1 SimMark Generation Pseudo-Code

1: for each generated sentence X; do
Compute embedding e; for X; using the em-

bedding model.
33 n<+0
4: do
5: Generate sentence X; 1 using the LLM.
6: Compute embedding e;4; for X, using
the embedding model.
7: Optional: Reduce the dimension of e;
and e; 1 using the PCA model.
8: Compute similarity s;41:
{ % if cosine similarity,
Sit1 ¢ dprlie . .
|le; — ei+1]]2  if Euclidean distance,
9: n<n+1

10:  while s;11¢ [a,b] and n < Npax

11:  Accept X;41 as valid and continue generat-
ing the next sentence.

12: end for

great generalizability across domains by leveraging
an off-the-shelf, general-purpose embedding model
without fine-tuning. At the same time, it outper-
forms these state-of-the-art (SOTA) sentence-level
watermarking methods in robustness against para-
phrasing while preserving text quality.

3 SimMark: A Similarity-Based
Watermarking Algorithm

3.1 Watermarked Text Generation

Similar to SemStamp and k-SemStamp, SimMark
utilizes the embedding representations of the sen-
tences. To compute the embeddings, in contrast
with Hou et al. (2024a,b) that fine-tuned their em-
bedder model (which could make it biased toward
a specific paraphrasing model or domain), we em-
ploy Instructor-Large (Su et al., 2023), a general-
purpose embedding model. The flexibility of our
method in using any pretrained embedding model
enables our approach to be more easily adaptable
to different domains.

First, we compute the embedding for each sen-
tence'. Then, we calculate the cosine similarity (or
Euclidean distance) between the embedding of sen-
tence ¢ + 1 and the embedding of sentence . If the

'In our experiments, we passed both the sentence and

“Represent the sentence for cosine similarity:” or “Represent

the sentence for Euclidean distance:” as the instruction to the
Instructor-Large model.
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Figure 2: Overview of SimMark. Top: Generation. For each newly generated sentence (X, 1), its embedding
(e;+1) is computed using a semantic text embedding model, optionally applying PCA for dimensionality reduction.
The cosine similarity (or Euclidean distance) between e;1 and the embedding of the previous sentence (e;), denoted
as s;41, is calculated. If s, lies within the predefined interval [a, b], the sentence is marked valid and accepted.
Otherwise, rejection sampling generates a new candidate sentence until validity is achieved or the iteration limit
is reached. Once a sentence is accepted, the process repeats for subsequent sentences. Bottom: Detection (+
Paraphrase attack). Paraphrased versions of watermarked sentences are generated (Y;), and their embeddings (e})
are computed. The similarity between consecutive sentences in the paraphrased text is evaluated. If paraphrasing
causes the similarity (s ;) to fall outside [a, b], it is mismarked as invalid. A soft counting mechanism (via function
¢(s;+1) instead of a regular counting with a step function in [a, b]) quantifies partial validity based on proximity to
the interval bounds, enabling detection of watermarked text via a soft-z-test even under paraphrase attacks. It should
be noted that soft counting is always applied during detection as we cannot assume prior knowledge of paraphrasing.

computed value lies within a predefined interval,
sentence ¢ + 1 is considered valid (analogous to
the green subset in KGW). Otherwise, we prompt
the LLM to generate a new sentence and repeat
this procedure until a valid sentence is found or
the maximum number of iterations is reached (in
this case, we accept the last generated sentence),
as shown in Algorithm 1. Optionally, we may ap-
ply Principal Component Analysis (PCA) method
to the embeddings to reduce their dimensionality
before calculating the similarity®. The reason for
applying PCA is provided in Subsection 3.2. An
overview of SimMark generation algorithm is de-
picted in the top part of Figure 2.

The predefined interval is a hyperparameter cho-
sen a priori based on the distribution of similari-
ties between consecutive sentences’ embeddings
generated by an unwatermarked LLM and human-
written text. The choice of this hyperparameter is
critical for the performance of SimMark. First, if
the interval’s width is too small or its position is far
from the mean of the similarity distribution, gener-

’In our experiments, this is the instruction in this case:
“Represent the sentence for PCA:”

ating sentences within this interval can be challeng-
ing or even infeasible for the LLM. Conversely, if
the interval’s width is large and centered around
the mean of the similarity distribution, generating
sentences becomes easier, but the false positive
(FP) rate (i.e., human-written text misclassified as
machine-generated) increases.

Furthermore, the choice of interval affects the ro-
bustness of SimMark against paraphrasing attacks.
When an attacker paraphrases sentences, the sim-
ilarities may change and fall outside the interval.
Consequently, a larger interval provides greater
robustness, as the watermark is less likely to be
disrupted by paraphrasing. Therefore, the selection
of the interval involves balancing several factors: it
must not be too narrow to impede sentence genera-
tion while maintaining a low FP rate and adequate
robustness against paraphrasing.

Finding a “sweet spot,” for the interval depends
on the distribution of similarities between consec-
utive sentences, which can vary across models.
However, identifying such sweet spots is feasible
when we analyze the similarity distributions of both
human-authored and LLM-generated text (see Ap-



Algorithm 2 SimMark Detection Pseudo-Code

1: Split the input text into sentences excluding
the first sentence (i.e, the prompt): M =
{X2,..., XN, }-and set N « |M].

2: for each sentence pair (X;, X;11) do
Compute embeddings e; for X; and e; 41 for
X1 using the embedding model.

4:  Optional: Reduce the dimensionality of e;

and e; 4 using the PCA model.
Compute s;4+1 < sim(e;, ej+1).
Compute c; 11 according to Eq. (1).

end for

Soft count of valid sentences: Nyalid_soft
N+1

Dimy Cie

9: Estimate py as the area under the human-
written text embeddings similarity distribution

curve within [a, b].

10: Compute zg.g using Eq. (2).

11: if ziop > [ then

12:  Reject Hy, i.e., text is likely generated by

an LLM watermarked by SimMark.

13: else

14:  Accept Hy, i.e., text is likely human-written.

15: end if

pendix H for an example of finding a sweet spot).

3.2 Watermarked Text Detection

The detection of SimMark follows a similar
methodology to KGW by employing a z-test for
hypothesis testing. However, akin to Hou et al.
(2024a), the detection operates at the sentence level
rather than the token level. To perform detection,
we first divide the input text into sentences® and use
the same semantic embedding model to compute
the embeddings for each sentence. If PCA was ap-
plied during the watermarking process, it must also
be applied during detection to ensure consistency.

Next, we compute the similarity (s;41 =
sim(e;,e;+1)) between consecutive sentences
(X;41 and X;) and count the number of valid sen-
tences (Nyalid soft)- A sentence X;11 is deemed
valid if s;41 lies within the predefined interval [a, b].
However, paraphrasing may alter embeddings sig-
nificantly, causing the similarity to deviate from the
desired interval. To mitigate this, we adopt a soft
counting approach, where a sentence is considered
partially valid if its similarity is near the interval
boundaries. Specifically, the soft count of X1,
denoted as c¢;41, is defined as follows:

3Using sent_tokenize method of NLTK (Bird et al., 2009).

1 if Si+1 € [(1‘1)],
Cit1 = c(sit1) = {eKman{a,s-,-,+1|,|bs,,+l|)

otherwise.
€]
Here, K > 0 is a decay factor controlling the
smoothness of the soft counting. A higher K makes
the function behave closer to a step function, while
a lower K allows for smoother transitions, tolerat-
ing minor deviations outside the interval [a, b]. The
total number of valid sentences is then computed
as Nyalid soft = »_; ¢i- Refer to Appendix F for
an ablation study on how this approach improves
robustness against paraphrasing, with only a min-
imal impact on performance in non-paraphrased
scenarios, by allowing for some degree of error.

During our initial experiments, we observed that,
contrary to cosine similarity, Euclidean distance
is very sensitive to paraphrasing and even a sub-
tle change in the sentences would result in a huge
difference in the distances of embeddings. We hy-
pothesize that Euclidean distance is sensitive to
noise in high-dimensional spaces such as the se-
mantic space of an embedder. To mitigate this,
we propose using PCA: We fit a PCA model on a
dataset of human-written texts, to find the principal
components of the sentence embeddings, i.e., the
components that contribute the most to the semanti-
cal representation of the sentences. Then, we apply
PCA to reduce embeddings’ dimension. More de-
tails on the dimensionality reduction are provided
in Section 4 and Appendix G.

This approach can make reverse-engineering
more difficult, as it would require knowledge of
not only the embedder model, but also the PCA
setting (e.g., number of components, access to the
dataset used for fitting it, etc.). Without all these
details, reproducing the similarity distribution be-
comes less straightforward.

The null hypothesis Hy is defined as follows:
Hy: The sentences are written by hu-

mans, i.e., the text sequence is generated
without knowledge of the valid interval
in the similarity of sentence embeddings.

We calculate the z-statistic for the one-proportion
: : _ Nvalid soft
z-test using the sample proportion p = N,
where [V is the total number of samples (sentences).
Since Nyalid_soft 1S a soft count of valid sentences,

we refer to it as soft-z-score, which is given by

— __b=po : .
Zsoft = \/m or alternatively:
2o(1=ro)
Nuyalid_soft—poN
Zsoft = £Vvalid_soft —P0IV (2)

po(1—po)N



Here, the population proportion pg represents the
ratio of valid sentences to all sentences in human-
written text (i.e., a text with no watermark), which
is estimated as the area under the similarity distribu-
tion curve of consecutive human-written sentences
within the interval [a, b] (Like the one in Figure 7 in
Appendix H). The value of zy.¢ can be interpreted
as a normalized deviation of the number of valid
sentences Nyalid_soft from its expectation pgN.

As highlighted in Algorithm 2, the null hypothe-
sis Hy is rejected if 2,7, > 3, where 3 is a thresh-
old determined empirically by running the detec-
tion algorithm on human-written text. The thresh-
old (3 is selected to maintain a desired FP rate (i.e.,
minimizing the misclassification of human-written
text as LLM-generated). Details on the computa-
tion of § are provided in Appendix I.

4 Experiments & Results

Performance of SimMark is evaluated across differ-
ent datasets and models using the area under the
receiver operating characteristic curve (ROC-AUC)
and true positive rate (TP) at fixed FP rates of 1%
and 5% (TP@1%FP and TP@5%FP). Higher val-
ues indicate better performance across all metrics®.

For dimensionality reduction, we fitted a PCA
model on 8000 samples from the RealNews subset
of the C4 dataset (Raffel et al., 2020), reducing
embedding dimensions from 768 to 16. After test-
ing various principal component counts (ranging
from 512 to 16), we found 16 to yield the best re-
sults. During our experiments, we evaluated both
settings (with and without PCA). Specifically, PCA
improved robustness against paraphrasing attacks
when Euclidean distance was used (except on the
BookSum dataset), but consistently degraded per-
formance when cosine similarity was employed
across all datasets. The results of these experiments
are summarized in Table 5 in Appendix G.

Across all experiments, the decay factor was
set to ' = 250, as this value provided an op-
timal trade-off between performance under both
non-paraphrased and paraphrased conditions (see
Appendix F for an ablation study on this). The
threshold S was determined empirically during the
detection (refer to Appendix I for details) to achieve
the specified FP rates (1% or 5%). The intervals
[0.68,0.76] for cosine similarity and [0.28,0.36]
for Euclidean distance with PCA and [0.4, 0.55]
for Euclidean distance without PCA were found

“Like (Hou et al., 2024a), all results are from a single run.

to be near-optimal. While the intervals could have
been further optimized for each dataset individu-
ally, we chose not to do so to show the general
performance of our method.

4.1 Models and Datasets

For our experiments, we used the same fine-tuned
version of OPT-1.3B (Zhang et al., 2022) as in
Hou et al. (2024a,b)’ to ensure fair comparison.
However, we emphasize that our method is model-
agnostic and it treats the LLM as a black-box text
generator. As such, if the method performs well
on one family of models, it is expected to general-
ize to others. To support this, we also tested our
method on Gemma3-4B model (Team et al., 2025)
and observed similar results (see Appendix C). For
semantic embedding, we utilized Instructor-Large
model® (Su et al., 2023). Appendix B includes ad-
ditional details on the experimental configurations.
In our experiments, we used three English
datasets: RealNews subset of C4’ (Raffel et al.,
2020), BookSum® (Kryscinski et al., 2022), and
Reddit-TIFU? (Kim et al., 2019) datasets, as in
Hou et al. (2024a,b). Specifically, 1000 samples
from each dataset were chosen to analyze the detec-
tion performance and the text quality. Each sample
was segmented into sentences, with the first sen-
tence serving as the prompt to the LLM.

We evaluated text quality after applying Sim-
Mark using the following metrics:

* Perplexity (PPL): Measures how surprising
the text is to an oracle LLM'°.

e Tri-gram Entropy (Ent-3) (Zhang et al,,
2018): Assesses textual diversity via the en-
tropy of the tri-grams distribution.

* Semantic Entropy (Sem-Ent) (Han et al.,
2022): Measures semantic informativeness
and diversity of the text.

4.2 Paraphrase Attack

To evaluate the robustness of SimMark against
paraphrase attacks, we tested it using three
paraphrasers: . Pegasus paraphraser'! (Zhang
et al., 2020), I1. Parrot paraphraser12 (Damodaran,
2021), III. GPT-3.5-Turbo (OpenAl, 2022).

>Used AbeHou/opt-1.3b-semstamp (1.3B) model.

®Used hkunlp/instructor-large (335M) model.

"Dataset card: allenai/c4 (Validation split)

8Dataset card: kmfoda/booksum (Validation split)
Dataset card: ctrdsi/reddit_tifu (Train split, short subset)
10Used facebook/opt-2.7b following (Hou et al., 2024a,b).
""Used tuner007/pegasus_paraphrase (568M) model.
2Used parrot_paraphraser_on_T5 (220M) model.


https://huggingface.co/AbeHou/opt-1.3b-semstamp
https://huggingface.co/hkunlp/instructor-large
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/kmfoda/booksum
https://huggingface.co/datasets/ctr4si/reddit_tifu
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/prithivida/parrot_paraphraser_on_T5

Dataset

Algorithm

No Paraphrase |

Pegasus

Pegasus-Bigram

Parrot

Parrot-Bigram

GPT3.5

GPT3.5-bigram

Avg. Paraphrased

RealNews

UW (Zhao et al.)

KGW (Kirchenbauer et al.)
SIR (Liu et al.)

SemStamp (Hou et al.)
k-SemStamp (Hou et al.)
Cosine-SimMark (Ours)
Euclidean-SimMark™* (Ours)

99.9/99.1/99.9
99.6/98.4/98.9
99.9/99.4/99.9
99.2/93.9/97.1
99.6/98.1/98.7
99.6/96.8/98.8
99.8/98.5/99.3

98.5/85.6/95.3
95.9/82.1/91.0
94.4/79.2/854
97.8/83.7/92.0
99.5/92.7/96.5
99.2/90.3/98.2
97.2/72.3189.1

97.9/73.5/91.7
92.1/42.7/72.9
94.1/72.6/82.6
96.5/76.7/86.8
99.0/88.4/94.3
99.1/90.3/97.9
96.9/70.0/87.4

97.9/70.9/91.9
88.5/31.5/55.4
932/62.8/75.9
93.3/56.2/75.5
97.8/78.7/89.4
98.7/88.1/97.2
95.7/60.2/82.5

97.4/62.8/89.4
83.0/15.0/39.9
95.2/66.4/80.2
93.1/54.4/74.0
97.5/78.3/87.3
98.8/87.3/97.6
95.7/59.1/81.5

97.4/59.1/87.9
82.8/17.4/46.7
80.2/24.7/42.7
83.3/33.9/52.9
90.8/55.5/71.8
95.7/59.7/86.7
94.1/51.6/76.2

93.7/37.0/70.8
75.1/59/263
77.7120.9/36.4
822/31.3/48.7
88.9/50.2/66.1
92.0/38.8/73.7
88.2/29.7/53.5

97.1/64.8/87.8
86.2/32.4/55.4
89.1/54.4/672
91.0/56.0/71.6
95.6/74.0/84.2
97.2/75.8/91.9
94.6/57.2/78.4

BookSum

uw

KGW

SIR

SemStamp

k-SemStamp
Cosine-SimMark (Ours)
Euclidean-SimMark (Ours)

100/ 100/ 100
99.6/99.0/99.2
100/99.8 /100
99.6/98.3/98.8
99.9/99.1/99.4
99.8/98.8/99.5
100/100 / 100

99.5/89.8/98.5
97.3/89.7/95.3
93.1/79.3/85.9
99.0/94.3/97.0
99.3/94.1/97.3
99.5/93.3/98.5
98.8/82.6/94.9

98.6/71.2/93.0
96.5/56.6/85.3
93.7/69.9/81.5
98.6/90.6/95.5
99.1/92.5/96.9
99.6/94.1/98.5
98.6/80.4/93.4

98.9/79.4/94.8
94.6/42.0/75.8
96.5/72.9/85.1
98.3/83.0/91.5
98.4/86.3/93.9
99.3/88.5/98.0
97.9/753/91.1

98.6/72.1/92.9
93.1/37.4/712
97.2/76.5/88.0
98.4/85.7/925
98.8/88.9/94.9
99.3/87.0/98.2
97.9/733/91.6

93.2/24.6/57.9
87.6/17.2/52.1
80.9/39.9/23.6
89.6/45.6/62.4
95.6/65.7/83.0
97.1/62.5/86.9
99.7/94.4/98.8

86.0/9.2/30.5

77.114.4727.1
75.8/19.9/354
86.2/37.4/53.8
957/64.5/81.4
94.5/41.6/74.2
99.5/91.9/97.6

95.8/57.7/71.9
91.0/41.2/67.8
89.5/59.7/66.6
95.0/72.8/82.1
97.8/81.5/912
98.2/77.8/92.4
98.7/83.0/94.6

Reddit-TIFU

uw

KGW

SIR

SemStamp

Cosine-SimMark (Ours)
Euclidean-SimMark™* (Ours)

99.9/99.5/99.8
99.3/97.5/98.1
99.6/97.2199.7
99.7/97.7/98.2
99.1/96.3/97.6
99.8/98.7/99.2

97.3/73.4/91.1
94.1/87.2187.2
90.0/48.7/77.4
98.4/92.8/95.4
98.9/94.5/96.4

99.0/94.7/97.6

94.1/483/772
91.7/67.2/67.6
90.9/33.1/71.1
98.0/89.0/92.9
98.7/93.6/96.1
99.0/91.9/96.2

90.6/37.1/64.0
79.5/22.8/433
87.1/15.0/50.9
90.2/56.2/70.5
98.5/91.6/96.0
97.8/75.9/89.5

89.2/33.7/60.4
82.8/27.6/49.7
86.9/12.8/49.8
93.9/71.8/82.3
98.5/91.7/95.5
97.7/76.4190.4

86.3/26.9/52.9
84.1/27.3/50.9
91.1/15.0/61.4
87.7/47.5/582
97.8/88.4/94.7
98.7/83.7/95.2

74.3/13.2/30.0
79.8/19.3/41.3
84.3/5.5/39.1
87.4/43.8/559
963/72.9/88.4
96.8/65.8/87.3

88.6/38.8/62.6
85.3/41.9/56.7
88.4/21.7/583
92.6/66.9/75.9
98.1/88.8/94.5
98.2/81.4/92.7

Table 1: Performance of different algorithms across datasets and paraphrasers, evaluated using ROC-AUC 1/
TP@FP=1% 1/ TP@FP=5% T, respectively (7: higher is better). In each column, bold value indicates the best
performance for a given dataset and metric, while underlined value denotes the second-best. SimMark consistently
outperforms or is on par with other state-of-the-art methods across datasets, paraphrasers, and is the best on average.

Algorithm PPL| Ent31 Sem-Ent?
No watermark 11.89 11.43 3.10
uw 13.02 11.96 2.90
KGW 14.92 11.32 2.95
SIR 20.34 11.57 3.18
SemStamp 12.89 11.51 3.17
k-SemStamp 11.82 11.48 3.11
Cosine-SimMark (Ours) 12.69 11.50 3.39
Euclidean-SimMark** (Ours) 9.67 11.50 3.28

Table 2: Comparison of the quality of text watermarked
using different algorithms on BookSum dataset ({:
lower is better, 1: higher is better). SimMark yields
quality metrics comparable to the no-watermark base-
line, indicating minimal impact on text quality and se-
mantic diversity. In contrast, token-level methods (top
three rows) notably degrade the text quality, especially
in terms of perplexity.

Kirchenbauer et al. (2024) observed that prompting
models to paraphrase entire texts often results in
summarized outputs, with the summarization ra-
tio worsening for longer inputs. To prevent any
information loss caused by such summarization,
we adopted a sentence-by-sentence paraphrasing
scheme, which also ensures our results are com-
parable to Hou et al. (2024a,b). Refer to Ap-
pendix K to find the prompts used with GPT-3.5-
Turbo. The quality of paraphrases was assessed
using BertScore!? (Zhang* et al., 2020), with all
settings consistent with Hou et al. (2024a,b). The
bottom part of Figure 2 demonstrates the para-
phrase attack and detection phase in more detail.
We also included the results for the bigram para-
phrase attack introduced by Hou et al. (2024a),
with identical settings (25 rephrases for each sen-
tence when using Pegasus and Parrot, etc.). This
attack involves generating multiple paraphrases for

“PCA is applied.
3Used deberta-xlarge-mnli (750M) (He et al., 2021).

each sentence, and choosing the one that increases
the likelihood of disrupting statistical signatures
embedded in the text, especially for token-level
algorithms (Hou et al., 2024a). While this attack
significantly impacts most other methods, SimMark
demonstrates greater robustness against it. We
must highlight that k-SemStamp relies on domain-
specific clustering of semantic spaces, making it
domain-dependent. In contrast, both SimMark and
SemStamp are domain-independent. Still, Sim-
Mark outperforms both in almost all cases across
various datasets and metrics, further underscoring
its universality and robustness.

4.3 Robustness to Sentence-Level
Perturbations

To further evaluate the robustness of our method
and its real-world applicability, we introduce more
challenging attack scenarios: Paraphrase+Drop At-
tack and Paraphrase+Merge Attack. These scenar-
ios simulate realistic adversarial editing strategies
where a user attempts to remove or merge sentences
after paraphrasing, while maintaining fluency.
Paraphrase+Drop assumes that an adversary not
only paraphrases the text but also drops sentences
deemed redundant. This reflects common editing
practices, especially since LLMs often produce ver-
bose outputs due to imperfect reward modeling
(Chiang and Lee, 2024). To simulate this, we first
paraphrase the input text and then randomly drop
sentences with a specified probability p. Similarly,
Paraphrase+Merge is designed to test robustness
under more subtle structural changes. After para-
phrasing, we replace end-of-sentence punctuations
(e.g., ., ?, 1) with the word “and” with probability
0<p< % In our experiments, we avoid higher


https://huggingface.co/microsoft/deberta-xlarge-mnli
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Figure 3: Detection performance under two adver-
sarial settings using RealNews dataset: Left: Para-
phrase+Drop Attack, where random sentences are re-
moved after paraphrasing. SimMark, in almost all pa-
rameter regimes, outperforms other methods under this
attack. Right: Paraphrase+Merge Attack, where sen-
tence boundaries (punctuations) are probabilistically
replaced with “and” to merge sentences. Although Sim-
Mark performs best among sentence-level approaches,
UW remains highly robust due to its token-level nature.

values of p as they result in unnaturally long and
less fluent sentences. This setup simulates a realis-
tic scenario where an adversary attempts to merge
sentences while preserving the overall coherence of
the text. These combined attacks serve to stress-test
the resilience of watermarking methods under more
naturalistic adversarial conditions that go beyond
simple paraphrasing.

4.4 Results & Discussion

We compared the performance of SimMark against
SOTA watermarking algorithms through extensive
experiments. Our primary baseline was SemStamp,
a sentence-level semantic watermarking method.
We also included k-SemStamp, an improvement
over SemStamp tailored to specific domains. Re-
sults for SemStamp, k-SemStamp, KGW and SIR,
were extracted directly from Hou et al. (2024a,b)14.

Table 1 presents detection performance pre and
post paraphrase attacks, while Table 2 provides
text quality evaluation results. Our algorithm im-
pacts the text quality minimally while being ef-
fective and consistently outperforming or match-
ing other SOTA methods, achieving the highest
average performance across all paraphrasers and
datasets. Notably, our method SimMark (domain-
independent), surpasses the primary baseline, Sem-
Stamp (domain-independent), and is on par or ex-

14Df:spite Hou et al. (2024a,b) releasing their code and data,
we were unable to reproduce their reported results fully. Con-
sequently, there are minor discrepancies between our repro-
duction results (shown in Figure 3 for cases with p = 0) and
those presented in Table 1 (extracted directly from their paper).
Additionally, the results reported in Table 2 (our reproduction)
also show slight differences from their paper, likely due to
hyperparameter details that were not explicitly documented.

ceeds k-SemStamp (domain-dependent). A key
aspect to consider is that the fine-tuning of Sem-
Stamp and k-SemStamp’s embedding model on
text paraphrased by Pegasus likely contributes to
their improved robustness against this paraphraser
but may introduce bias. Additionally, the results
for the Reddit-TIFU dataset were only available
for SemStamp and not k-SemStamp, likely due
to the dataset’s informal, diverse text style and
k-SemStamp’s limitation for text to belong to a
specific domain, such as news articles or scientific
writings (Hou et al., 2024b).

Figure 3 presents the ROC-AUC performance
of UW (the best token-level method in our exper-
iments), SimMark, k-SemStamp, and SemStamp
under Paraphrase+Drop and Paraphrase+Merge
attacks, evaluated on the RealNews dataset. Under
Paraphrase+Drop, across most parameter regimes,
SimMark outperforms all other methods, sustain-
ing higher detection performance even as the attack
intensity increases. While SimMark shows supe-
rior performance among sentence-based methods
under Paraphrase+Merge, UW maintains highest
robustness because it operates at the token level.

Regarding sampling efficiency, for BookSum
dataset for instance, SimMark required an aver-
age of 7.1 samples per sentence from the LLM,
compared to k-SemStamp and SemStamp, which
averaged 13.3 and 20.9 samples, respectively (Hou
et al., 2024b). This demonstrates that our method
not only outperforms these baselines but is also 2-3
times more efficient. See Appendix J for further
analysis of this (including theoretical estimates).
Finally, refer to Appendix E for qualitative exam-
ples of SimMark.

5 Conclusion

In this paper, we introduced SimMark, a similarity-
based, robust sentence-level watermarking algo-
rithm. Unlike existing approaches, SimMark oper-
ates without requiring access to the internals of the
model, ensuring compatibility with a wide range of
LLM:s, including API-only models. By utilizing a
pre-trained general-purpose embedding model and
integrating a soft counting mechanism, SimMark
combines robustness against paraphrasing with ap-
plicability to diverse domains. Experimental results
show that SimMark outperforms SOTA sentence-
level watermarking algorithms in both efficiency
and robustness to paraphrasing, representing a step
forward in fully semantic watermarking for LLMs.



Limitations

While SimMark demonstrates outstanding perfor-
mance, there are still some areas that warrant fur-
ther exploration:

Rejection Sampling Overhead. The rejection
sampling process requires generating multiple can-
didate sentences until a valid sentence is accepted.
Although our method is significantly (2-3 times)
more efficient than prior approaches such as Sem-
Stamp and k-SemStamp, there is still a notable
decrease in generation speed due to rejection sam-
pling. Techniques like batch sampling or paral-
lel sampling could potentially mitigate this issue,
though at the expense of higher computational re-
source usage. Future research should focus on
optimizing the method to balance efficiency and
resource requirements.

Resistance to More Advanced Attacks. While
SimMark demonstrates robustness against para-
phrasing attacks, it may not be immune to more
sophisticated adversarial transformations. In par-
ticular, detection could become less effective when
watermarked text is interleaved with or embedded
within larger body of of unwatermarked content.
Additionally, although reverse engineering the ex-
act watermarking rules is non-trivial, an adversary
may attempt a spoofing attack by approximating
our setup—for instance, by employing a publicly
available embedding model or fitting a PCA model
with publicly available datasets. While such at-
tempts may not perfectly replicate the original em-
bedding distribution, they could still pose a threat.
We leave a thorough investigation into vulnerabil-
ities and corresponding defences against reverse
engineering to future work.

Dependency on Predefined Intervals. In our ex-
periments, we used consistent predefined intervals
across all datasets and observed consistently strong
performance. Notably, we did not observe any not-
icable degradation in text quality due to this inter-
val constraint during rejection sampling (as shown
in Table 2), likely because the constraint applies
only to consecutive sentences. Nonetheless, slight
variations in the embeddings similarity distribu-
tion of LLM-generated text across different models
may impact watermarking effectiveness. Adaptive
strategies for setting these intervals dynamically
(or pseudo-randomly) could not only improve per-
formance but also make reverse-engineering the
algorithm more difficult.

Ethical Considerations'’

Potential Risks. By enabling robust detection
of LLM-generated text, particularly under para-
phrasing attacks, SimMark tries to address ethical
concerns surrounding the transparency and account-
ability of Al-generated content. However, like any
watermarking algorithm, there are potential risks,
such as falsely implicating human authors or ad-
versaries developing more advanced techniques for
spoofing attacks or bypassing detection. We ac-
knowledge these limitations and advocate for the
responsible deployment of such tools in combina-
tion with other verification mechanisms to mitigate
these risks and ensure ethical, fair deployment. The
primary goal of this work is to advance research in
watermarking techniques to support the responsible
use of LLMs. We believe that the societal impacts
and ethical considerations of our work align with
those outlined in Weidinger et al. (2021).

Use of Models and Datasets. Our research used
datasets and pretrained models from the Hugging
Face Hub'6, a public platform hosting machine
learning resources under various licenses. We ad-
hered to all license terms and intended usage guide-
lines for each artifact, which are documented on
their individual Hugging Face model or dataset
cards cited in the paper. All resources were used
solely for research purposes in accordance with
their intended use and respective licenses, with no
additional data collection, scraping, or annotation
performed by the authors. The datasets employed
are publicly available, widely used in prior research,
and to the best of our knowledge, free of personally
identifiable information or offensive content. Any
outputs generated by their method are intended for
academic use, not for real-world or commercial
applications, and no personal or sensitive data was
processed. Any new artifacts we create (e.g., water-
marked samples) are intended solely for academic
evaluation, and we do not release any derivative
data that violates original licensing terms.
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Supplemental Materials
A Aditional Related Work

A.1 Token-Level Watermarking

Zhao et al.’s (2023) UNIGRAM-WATERMARK
(UW) builds upon KGW by fixing the red and green
lists instead of pseudo-randomly selecting them,
proving that, compared to KGW, their method is
more robust to paraphrasing and editing (Zhao
et al., 2023). However, as outlined by Hou et al.
(2024a), this algorithm can be reverse-engineered,
rendering it impractical for high-stakes, real-world
applications.

The Semantic Invariant Robust (SIR) watermark
in Liu et al. (2023) is also similar to KGW but is
designed to be less sensitive to attacks involving
synonym replacement or advanced paraphrasing.
SIR achieves this by altering the LLM logits based
on the semantics of previously generated tokens,
using a semantic embedding model to compute se-
mantic representations and training a model that
adjusts LLM’s logits based on the semantic embed-
dings of prior tokens (Liu et al., 2023).

A.2 Post-hoc Watermarking

Chang et al.’s (2024) PostMark is a post-hoc water-
marking algorithm designed to work without access
to model logits, making it compatible with API-
only LLMs. It constructs an input-dependent set of
candidate words using semantic embeddings and
then prompts another LLM (e.g., GPT-40) to insert
these words into the generated text. Detection relies
on statistical analysis of the inserted words. While
PostMark’s compatibility with black-box LLMs is
a strength, the approach is computationally expen-
sive—watermarking 100 tokens is estimated to cost
around $1.2 USD (Chang et al., 2024).

Yang et al. (2023) propose another post-hoc
method that encodes each word in the text as a
binary bit via a Bernoulli distribution (p = 0.5),
embedding the watermark through synonym substi-
tution: words representing bit O are replaced with
synonyms representing bit 1. Detection is again
done via statistical testing. However, this method is
fragile: synonyms are not reliably preserved under
paraphrasing and often fail to capture subtle con-
textual meanings, which can noticeably degrade
text quality and watermark robustness.

Hao et al. (2025) is a post-hoc watermarking
technique similar to Yang et al. (2023) that im-
proves robustness by selecting semantically or syn-
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tactically essential words—those less likely to be
altered during paraphrasing—as anchor points for
embedding. The method uses paraphrase-based
lexical substitution to insert watermarks while pre-
serving the original semantics. However, empirical
results in Chang et al. (2024) demonstrate that this
method is not robust to paraphrasing compared to
other methods such as KGW, SemStamp, and Post-
Mark.

B Experimental Settings

In all combinations of the experiments, following
Kirchenbauer et al. (2023), sampling from the LLM
was performed with a temperature of 0.7 and a rep-
etition penalty of 1.05, while the minimum and
the maximum number of generated tokens were
set to 195 and 205, respectively. The maximum
number of rejection sampling iterations was set to
100, again to align with the code provided by Hou
et al. (2024a,b). However, this setting reflects a
trade-off between detection performance and gen-
eration speed. Based on our experiments, setting
it to 25 achieves strong performance, with higher
values offering only marginal improvements (see
Appendix D). For token-level watermarking base-
lines, in cases where results were not directly ex-
tracted from Hou et al. (2024a,b), we employed the
open-source MarkLLM watermarking framework
(Pan et al., 2024), with their recommended config-
urations (v = 0.5,0 = 2, prefix_length=1, etc.)
to run the experiments.

The majority of the experiments, including text
generation and detection tasks, were conducted on
a workstation equipped with an Intel Core 19 pro-
cessor, 64GB of RAM, and an Nvidia RTX 3090
GPU with 24GB of VRAM. Some of the exper-
iments involving bigram paraphrasing were per-
formed on compute nodes with an Nvidia V100
GPU with 32GB of VRAM. Generating 1000 Sim-
Mark-watermarked samples using OPT-1.3B re-
quired approximately 8-10 GPU hours on a single
RTX 3090.

C Additional Experimental Results

To demonstrate the model-agnostic nature of Sim-
Mark, we applied our algorithm to the recently
released Gemma3-4B model' (Team et al., 2025).
We evaluated both Cosine-SimMark and Euclidean-
SimMark under different paraphrasing models
across the same three datasets as before: RealNews

'We employed google/gemma-3-4b (4B) model.


https://huggingface.co/google/gemma-3-4b-pt

subset of C4, BookSum, and Reddit-TIFU. The
effectiveness and robustness of watermarking tech-
niques can depend heavily on the characteristics of
the underlying LLM and the nature of the generated
text. To maintain consistency and reliability across
experiments, we made the following modifications:

¢ Predefined Interval Adjustment: The sen-
tences’ embedding similarity distribution un-
der Gemma3-4B differed from those in OPT-
1.3B, requiring new intervals. We set the pre-
defined interval to [0.86, 0.90] for cosine sim-
ilarity (without PCA), and [0.11, 0.16] for
Euclidean distance (with PCA).

Threshold Transferability: In contrast to
our earlier experiments—where the detection
threshold 3 was determined per dataset—we
fixed 5 across all datasets in these experi-
ments. Specifically, we determined the thresh-
old using only non-watermarked data from the
BookSum dataset, and then applied it across
all three datasets without modification. This
approach simulates a more realistic setting
where the detector is calibrated on a single
corpus but expected to generalize to others.
The results demonstrate that our method main-
tains high detection performance even under
this general configuration.

Longer Generations: Since Gemma3-4B
tends to generate longer sentences compared
to OPT-1.3B model that we employed earlier,
we increased the number of generated tokens
from 200 to 300 to ensure a sufficient number
of sentences for reliable hypothesis testing.

Table 3 reports the detection performance in terms
of ROC-AUC 1/ TP@1%FP 1 / TP@5%FP T,
for each setting (7: higher is better). Across all
datasets and paraphrasing scenarios, SimMark re-
mains highly effective, with both cosine similarity
and Euclidean distance variants maintaining strong
ROC-AUC and TP rates. These results affirm that
SimMark maintains its performance across differ-
ent LL.M families (e.g., OPT and Gemma3) and
datasets/domains, further validating the general ap-
plicability of our proposed algorithm.

D Effect of Sampling Budget on Detection
Performance

To better understand the trade-off between gener-
ation speed and detection performance, we ana-
lyze the impact of the max_trials hyperparame-
ter, which defines the upper limit on the number of
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rejection sampling iterations during watermark in-
jection. While we set this value to 100 in our main
experiments (to align with prior works of Hou et al.
(2024a,b)), it is important to examine whether such
a large value is necessary.

Figure 4 shows two evaluation metrics—ROC-
AUC 7T and TP@FP=1% 1 (7: higher is better)—on
RealNews dataset for cosine-SimMark and OPT-
1.3B model under different values of max_trials.
As shown in the plots, performance improves sig-
nificantly when increasing max_trials from 5 to
25, but plateaus thereafter. In particular, both ROC-
AUC and TP@FP=1% show diminishing returns
beyond 25 trials, indicating that additional sam-
pling brings little performance gain.

These results suggest that setting max_trials to
25 achieves a good balance between robustness and
efficiency, and using larger values (e.g., 100) is not
strictly necessary in practice. These findings, to-
gether with the average sampling statistics reported
in the main paper (e.g., 7.1 samples per sentence),
highlight SimMark’s ability to balance robustness
with generation speed compared to SemStamp and
k-SemStamp (e.g., 20.9 and 13.3 samples per sen-
tence, respectively).

ROC-AUC vs. Max Trials TP@FP=1% vs. Max Trials

ROC-AUC (%)

Figure 4: Impact of the maximum number of rejec-
tion sampling trials on detection performance. In-
creasing max_trials improves both ROC-AUC 1 and
TP@1%FP 1 (1: higher is better), but the improvement
plateaus around 25. Results are reported on RealNews
dataset using cosine-SimMark and OPT-1.3B model.

E Examples of Watermarked Text

Figures 5 and 6 provide examples of text generated
with and without the SimMark watermark using
OPT-1.3B. These examples illustrate the impercep-
tibility of the watermark to human readers while
enabling robust detection through our proposed al-
gorithm. They also highlight SimMark’s robustness
to paraphrasing while maintaining quality compa-
rable to non-watermarked text.



Pegasus-Bigram

Parrot

Parrot-Bigram

Avg. Paraphrased

93.0/54.9/73.9
91.8/61.8/78.5

92.3/50.1/71.7
91.9/58.0/73.9

92.1/49.2/72.8
91.5/58.7/72.8

92.7/53.0/73.5
92.1/61.0/76.2

97.4/73.37/90.0
97.4/71.9/89.9

97.0/67.8/817.6
97.4/78.0/91.2

96.9/67.7/86.7
91.5/58.7/72.8

97.2/71.1/88.7
96.0/74.2/86.3

97.0/76.6/89.3
96.9/81.0/90.1

89.4/32.8/61.7
922/53.6/73.9

90.7/36.6/63.8
92.8/58.4/76.0

93.6/56.2/76.6
94.8/68.8/82.8

Dataset Method No Paraphrase ‘ Pegasus
z, Cosine-SimMark 99.5/96.2/97.9 | 93.5/57.9/75.6
F Euclidean-SimMark™  99.5/97.4/98.2 | 93.2/65.3/79.5
) Cosine-SimMark 99.9/99.6/99.8 | 97.7/75.8/90.5
M Euclidean-SimMark™  99.9/99.7/99.9 | 97.6/82.0/91.4
E Cosine-SimMark 99.8/99.1/99.5 | 97.4/78.8/91.5
= Euclidean-SimMark™  99.6/98.8/99.1 | 97.3/82.0/91.4

Table 3: Performance of SimMark using Gemma3-4B model across paraphrasers and datasets (RealNews denoted
as RN, BookSum denoted as BS, and Reddit-TIFU denoted as TIFU). Each cell reports AUC 1/ TP@FP=1% 1/
TP@FP=5% 1 (1: higher is better). The results demonstrate that SimMark maintains strong performance across
different datasets and paraphrasing conditions, highlighting its robustness and model-agnostic nature.

Non-Watermarked: I’ve always had an interest in colour. | like to paint and colour (9.77e-13). It’s relaxing and it makes you feel good (9.31e-13). But,
what | haven’t done until now is paint on a piece of paper. I’'m going to use different colours on my collages (8.89e-7). Using lots of colours gives a dynamic
to the pieces (3.57e-14). | can also use a bit of white space to draw the eye (4.85e-6). You can see the other images in this project here (9.47e-9). | used four
different papers for the collage (3.7e-7). Copying those images onto other pieces of paper gave me a few ideas (1.52e-11). Also, by using white space | was
able to draw out more details without getting them all in the way (1.02e-7). | like making collages and I think that these are a great way to display them
(0.005). | wanted to show different aspects of my painting (3.53e-8). | wanted to limit myself to only a few colours but I did want to limit myself to black and
white (1.3e-7). | really love the colour black (8.24e-7). It always makes me think about nature. | like drawing sketches and | enjoy painting as well.
Zsope = 0.14 < 5.033

Cosine-SimMark: /’ve always had an interest in colour. | don’t know why. But | have a couple of tins of it, and that makes me happy. The first piece of art |
bought was a painting by Japanese artist Kata-Yoko on canvas. It made me feel very happy. That is one of the things | want to do when I retire: to become an
artist. My mother is still alive. She would be very pleased with all this. I think it is important for a young person to see these people and their work. | am
always taking pictures of my family. My father is a retired teacher, so he is not around too much these days. But he keeps saying that he wants to watch me
become an artist. That is really comforting. | want to develop my own style There is no time like the present. Let’s hope | can make some money doing this.
1 am 60 now. There is no time like the present. I hope I can combine work and pleasure. The other day, | made sketches on paper.

Zeopr = 9.48 > 5.033 té

Paraphrased cosine-SimMark: I've always been fascinated by color. | can't explain the reason behind my fascination with color (5.24e-13). But having a
few cans of it brings me joy (0.15). The initial artwork | purchased was a canvas painting by the Japanese artist Kata-Yoko. It brought me a great sense of
joy. One of my aspirations for retirement is to pursue a career as an artist. My mother remains living. She would be delighted with all of this. I believe it is
crucial for a young individual to witness these individuals and their creations. | constantly capture memories of my family through photography (0.01). My
father, who is a former educator, is not present often these days due to his retirement. However, he continues to express his desire to witness my journey as |
pursue becoming an artist (0.48). That is truly reassuring. | aspire to cultivate a unique artistic expression. Now is the best time. | hope to be able to earn
some income from pursuing this passion. | have reached the age of 60 (0.16). Now is the perfect moment. | hope to find a balance between my work and my
passion. | hope to find a balance between my work and my passion. Recently, | created some drawings on paper.
Zoopt = 6.94 > 5.033
an

Figure 5: Example of text generated with and without cosine-SimMark using RealNews dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows non-watermarked text, which fails to produce a significant detection signal (zst = 0.14 < 5.033, false
negative). The middle panel demonstrates text generated using SimMark with cosine similarity-based watermarking,
producing a strong detection signal (zg5 = 9.48 > 5.033). The bottom panel shows paraphrased watermarked
text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite semantic alterations (zgot =
6.94 > 5.033).

F Ablation Study on Soft Count
Smoothness Factor X

Higher values indicate better performance across
all metrics. The results demonstrate the following

trends:
In this section, we analyze the impact of the

smoothness factor K on the performance of Sim-
Mark. Recall that K controls the degree of smooth-
ness in the soft counting mechanism as defined in
Eq. (1). A larger K makes the soft counting func-
tion behave more like a step function, while smaller
values provide smoother transitions between valid
and invalid sentences.  Table 4 presents the re-
sults of this ablation study, conducted on RealNews
dataset with Pegasus as the paraphraser. Metrics
include ROC-AUC, TP@FP=1%, and TP @FP=5%.

* A smoothness factor of K = 250 provides
a good trade-off, achieving strong perfor-
mance both before and after paraphrasing at-
tacks for both cosine-SimMark and Euclidean-
SimMark.

* For K = oo, corresponding to regular count-
ing with a step function, the performance is
slightly higher in the absence of paraphrasing
but significantly degrades under paraphrasing
attacks, highlighting the benefits of soft count-
ing in adversarial scenarios.

**PCA is applied. These findings confirm that soft counting loses a
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Non-Watermarked: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith
Granger. Mrs. Granger is in a very bad temper - she is angry that the children have not been fed, and she threatens to flush them out of the house if they are not let in by
evening (6.1e-16). She leaves the children alone in the room (9.44e-13). Bagstock is astonished at the woman's anger, but he does not correct her (7.33e-16). She returns
to her husband's side (3.97e-15). She complains about the children and their squalor (1.04e-20). She then asks the children to fetch some wine (4.88e-11). She threatens
to call the police if they refuse (6.3e-17). Bagstock is dismayed by her behavior (2.24e-14). He asks her what she wants (1.13e-18). She threatens to call the police again
if they do not let her see the children (2.62e-17). The children obey her, as does the dog (2.67e-17). The police arrive soon after, but they do not disturb the woman
(6.06e-15). She leaves, and the others come up to Bagstock (1.29e-10). He tells them that the woman has been brought in by her husband's employer, who is now in
town to meet with the children (7.74e-13). His name is Mr. B (2.68e-21).

Zgopr = —1.07 < 4.13 @

Euclidean-SimMark: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith
Granger. Bagstock and Dombey go to Mrs. Edith's to ask her advice about how to deal with a friend who is a dandy. They meet a dandy named Peter who is a friend of
Bagstock's. He is a good-looking young man and a good friend of Bagstock's. The other members of the party are also good looking and friendly. Together they make a
good crew for a good evening. They drink and talk and the conversation is merry. They discuss the parties they have attended and the people they know. They also
discuss the various people they know in London. They find that everyone knows someone they know in London and they feel that they already know everyone in
London. They decide to stay in England for a while and make friends with anyone they meet. The narrator comments that the British are in high spirits because they
have known so many people in a short time. The narrator describes the various people they meet. Some of them turn out to be amorous and others make small talk with
them.

F
Zoope = 13.07 >4.13 ‘@&

Paraphrased Euclidean-SimMark: Not long after their arrival, Bagstock and Dombey unexpectedly encounter Mrs. Skewton, whom Bagstock knows, along with her
daughter Mrs. Edith Granger who is recently widowed. Bagstock and Dombey visit Mrs. Edith seeking guidance on how to handle a fashionable friend. They encounter
a dandy named Peter who is acquainted with Bagstock. He is an attractive young man who is in good terms with Bagstock. The rest of the guests at the party are
attractive and amiable (0.001). Together they form a great team for a pleasant night out. They engage in jovial conversation while enjoying their drinks. They talk about
the social gatherings they have been to and the acquaintances they have made. They also chat about the different acquaintances they have in the city of London. They
discover that there is a network of connections among the people they know in London, making them feel like they are familiar with everyone in the city. They opt to
extend their stay in England and befriend whoever crosses their path. The narrator observes that the British are feeling cheerful due to the connections they have rapidly
made with many individuals. The narrator depicts the assortment of individuals they encounter. Some of the individuals show romantic interests while others engage in

casual conversations with them.

&
Zeope = 11.99 > 4.13 ‘B

Figure 6: Example of text generated with and without Euclidean-SimMark using BookSum dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows the non-watermarked text, which fails to produce a significant detection signal (2ot = —1.07 < 4.13,
false negative). The middle panel demonstrates text generated using SimMark with Euclidean distance-based
watermarking, producing a strong detection signal (zsof = 13.07 > 4.13). The bottom panel shows paraphrased
watermarked text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite semantic

alterations (zgoi = 11.99 > 4.13).

small amount of performance when no paraphras-
ing is applied, but it gains substantial robustness
under paraphrasing. For example, TP@FP=1% im-
proves by 1.6-2.3% for Pegasus-paraphrased text
when K = 250, and the improvement is likely to
be even more significant for stronger paraphrasers.

G Ablation Study on Impact of PCA

Table 5 presents the results of an ablation study
investigating the impact of applying PCA to reduce
the dimensionality of sentence embeddings across
RealNews, BookSum, and Reddit-TIFU datasets.
Metrics include ROC-AUC, and TP at fixed FP
rates (FP=1% and FP=5%). Higher values indi-
cate better performance across all metrics, with
PCA applied to embeddings to explore its effect on
detection accuracy and robustness.

The results reveal that the effect of PCA de-
pends on the choice of similarity measure. For
Euclidean distance-based SimMark, applying PCA
generally improves robustness against paraphras-
ing attacks across most datasets, except for the
BookSum dataset. This improvement likely arises
because reducing dimensionality helps mitigate
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noise in the embeddings, especially after the para-
phrasing attack. On the other hand, for cosine
similarity-based SimMark, applying PCA reduces
performance across all datasets. This reduction
may be due to PCA altering the embeddings in
a way that disrupts the angular relationships criti-
cal for cosine similarity calculations. These find-
ings highlight the importance of adapting PCA us-
age based on the similarity measure employed to
achieve optimal watermarking performance.

H Finding an Optimal Interval

Figure 7 shows the distribution of distances be-
tween embeddings of consecutive sentences for
both human and LLM-generated text, calculated
on a sample of size 1000 from BookSum dataset
(no PCA applied to the embeddings in this case). A
small but noticeable distribution shift between the
two can be observed. Based on this, the interval
[0.4,0.55] appears to be a reasonable choice for
SimMark watermarking in this case. It is important
to note that changes to the embedding represen-
tations, such as applying PCA or using a differ-
ent embedding model, will lead to altered distance



Count Method K

cosine-SimMark Paraphrased cosine-SimMark

Euclidean-SimMark Paraphrased Euclidean-SimMark

50 99.0/89.2/97.2 98.6/78.5/96.5 99.4/91.2/98.1 96.9/49.3/87.9
Soft Count 150 99.6/95.7/98.8 99.2/88.7/98.2 99.8/97.6/99.3 97.3/67.8/90.4
ot foun 250 99.7/96.9/98.8 99.2/90.3 / 98.2 99.8/98.5/99.2 97.2/72.3/88.9

350 99.7/96.9/98.9 99.2/90.4/98.1 99.8/98.5/99.4 97.2/71.1/88.9
Regular Count oo 99.7/97.2/99.1 99.1/88.7/97.6 | 99.8/98.5/99.7 97.0/70.0/88.2

Table 4: Ablation study on the smoothness factor K in soft counting (Eq. (1)) using the RealNews dataset, with
Pegasus as the paraphraser. Metrics reported include ROC-AUC 1, TP@FP=1% 1, and TP@FP=5% 1, from left
to right. The last row (K = o0) corresponds to regular counting with a step function in the interval [a,b]. A
smoothness factor of K = 250 provides a good balance between performance before and after paraphrase attacks
for both cosine-SimMark and Euclidean-SimMark. Notably, while soft counting slightly reduces performance in the
absence of paraphrasing, it demonstrates enhanced robustness against paraphrasing, yielding an increase across all
metrics for Pegasus paraphraser and potentially larger gains against more advanced paraphrasers.

Dataset  Configuration No paraphrase Pegasus

2 Cosine-SimMark (No PCA) 99.7/96.9/98.8 99.2/90.3/98.2
2 Cosine-SimMark (PCA) 99.6/96.9/99.1 92.1/33.8/71.2
i Euclidean-SimMark (No PCA)  99.4/92.6/98.4 90.5/19.7/58.0
~ Euclidean-SimMark (PCA) 99.8/98.5/99.2 97.2/72.3/88.9
= Cosine-SimMark (No PCA) 99.8/98.8/99.5 99.5/93.3/98.5
a Cosine-SimMark (PCA) 100/99.9/99.9 98.7/87.3/95.1
2

2 Euclidean-SimMark (No PCA) 100/100/100 98.8/82.6/94.9
< Euclidean-SimMark (PCA) 99.9/99.3/99.5 97.4/69.8/88.6
a Cosine-SimMark (No PCA) 99.1/96.3/97.6 98.9/94.5/96.4
= Cosine-SimMark (PCA) 99.7/98.8/99.3 96.6/78.9/89.3
§ Euclidean-SimMark (No PCA)  99.6/98.1/99.1  96.7/72.6/90.0
g Euclidean-SimMark (PCA) 99.8/98.7/99.2 99.0/94.7/97.6

Table 5: Ablation study on the impact of applying PCA
to embeddings across three datasets. Metrics reported
include ROC-AUC 1, TP@FP=1% 1, and TP@FP=5%1,
respectively, from left to right. Higher values indi-
cate better performance across all metrics. For cosine-
SimMark, not applying PCA yields better results, while
for Euclidean-SimMark, applying PCA improves perfor-
mance except on the BookSum dataset.

distributions. Consequently, the interval must be
adjusted accordingly to maintain optimal perfor-
mance. For instance, if PCA is applied, the inter-
val [0.28,0.36] is suitable. Similarly, if we plot
the figure for when cosine similarity is used in-
stead of Euclidean distance, intervals [0.81,0.94]
and [0.68, 0.76] are good candidates for cases with
and without PCA, respectively. This variability in
the distance distributions may also strengthen the
algorithm’s resistance to reverse engineering. Se-
lecting the optimal interval [a, ] is a critical step in
achieving a robust and reliable watermarking with
SimMark. In general, selecting an optimal interval
involves balancing low FP rates, high TP rates, and
robustness against paraphrasing attacks. It is often
beneficial to choose intervals toward the tails of the
distribution rather than around the mean. Finally,
further exploration of dynamic interval selection
mechanisms could enhance SimMark’s robustness.
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Euclidean Distance Between Embeddings of Consecutive Sentences

Figure 7: Distribution of Euclidean distances between
embeddings of consecutive sentences for

and LLM-generated text on BookSum dataset, gener-
ated using OPT-1.3B. The figure demonstrates that the
interval [0.4,0.55] is a reasonable choice for Euclidean-
SimMark in this case, though it is not necessarily the
only viable option.

I Computing Threshold j for soft-z-test

Recall that a text is classified as LLM-generated
when z,,;; > /3, and as human-written otherwise.
Zsoft 18 the statistic used in the statistical test de-
scribed in Eq. (2). To determine the threshold
that limits the FP rate to 1% or 5%, we first need
to estimate pg, the probability that the consecutive
embeddings’ similarity or distance falls within the
predefined interval [a, b]. This value of py is a key
component in calculating the zg, as it represents
the proportion of valid sentences in human-written
text under the given interval. pg serves as an indica-
tor of how frequently valid sentences are expected
to occur in human-authored text.

To compute py, we analyze the distribution of
similarities (or distances) using a histogram ap-
proach, such as the one depicted in Figure 7. Specif-
ically, we employ a binning technique to approx-
imate the area under the curve of distribution in
the interval [a, b]. The process involves dividing
the entire range of distances or similarities into a
fixed number of bins—1000 bins in our implemen-



tation. Each bin represents a small segment of the
range, and the histogram is used to calculate the
proportion of samples that fall within the interval
[a, b].

Mathematically, pg is estimated as:

Number of samples in bins corresponding to [a, b]
Size of the dataset

po = ;

Once py is estimated, the detection threshold 3
is determined by iterating over a range of possi-
ble values, typically from -10 to 10, to find the
one that results in the desired false positive rate.
Specifically, the threshold is chosen such that the
proportion of human-written texts misclassified as
LLM-generated matches the target FP rate (e.g.,
1% or 5%).

It is worth noting that the distribution of similar-
ities or distances may vary depending on different
factors such as embedding model, and similarity
measure (e.g., cosine or Euclidean). As a result, pg
and therefore (3 are determined programmatically
during the detection to ensure reliable performance
of the watermarking algorithm.

J Analysis of Sampling Efficiency

The average number of samples required to gen-
erate a valid sentence is influenced by the chosen
interval [a, b]. To provide further insights into this
relationship, we estimated the area under the curve
(AUC) of the embedding similarity distribution for
an unwatermarked LLM. For instance, for the in-
terval [0.68,0.76] (for cosine-SimMark), the esti-
mated AUC is approximately 0.194.

Using the mean of the geometric distribution,
which is given by ]%, where p is the probability
of success (in this case, the probability of falling
within the interval), this translates to an expected
average of ﬁ ~ 5.1 samples per valid sentence.
This estimate is on par with the experimental results
reported in the main paper. The AUC estimates
were computed using the binning technique, as
described in Appendix I.

This analysis underscores the importance of care-
fully selecting the interval [a, b], as narrower inter-
vals may increase the number of required samples,
leading to reduced sampling efficiency but better
performance, while broader intervals may compro-
mise the effectiveness of the watermark. By under-
standing the interplay between the interval choice
and sampling efficiency, we can better optimize
SimMark’s performance.
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K Prompts Used with GPT-3.5-Turbo

Table 6 presents the prompts we used to obtain
paraphrases using GPT-3.5-Turbo (accessed via
OpenAl API?) for both regular paraphrasing and
more aggressive bigram paraphrasing attacks’. By
using the same prompts as Hou et al. (2024a), we
ensured that our results were directly comparable
to those extracted from their paper, maintaining
consistency in evaluation methodology.

Prompt for Regular Attack
Previous context: {context} \n
sentence to paraphrase: {sent}

Prompt for Bigram Attack
Previous context: {context} \n Paraphrase
in {num_beams} different ways and return a
numbered list: {sent}

Current

Table 6: Prompts used to generate paraphrases with
GPT-3.5-Turbo for regular and bigram attacks. These
are the same prompts used by Hou et al. (2024a) for
consistent and comparable evaluation. Here, sent repre-
sents the target sentence to rephrase, context includes
all preceding sentences, and num_beams specifies the
number of paraphrases generated for the bigram attack.
A higher num_beams value indicates a more aggressive
attack. Following Hou et al. (2024a), we set it to 10 to
have 10 rephrases of each sentence.

*https://platform.openai.com/docs/api-reference
3Used “gpt-3.5-turbo-16k” model.


https://platform.openai.com/docs/api-reference

	Introduction
	Background
	Autoregressive Decoding of LLMs
	Token-Level Watermarking
	Sentence-Level Watermarking

	SimMark: A Similarity-Based Watermarking Algorithm
	Watermarked Text Generation
	Watermarked Text Detection

	Experiments & Results
	Models and Datasets
	Paraphrase Attack
	Robustness to Sentence-Level Perturbations
	Results & Discussion

	Conclusion
	Aditional Related Work
	Token-Level Watermarking
	Post-hoc Watermarking

	Experimental Settings
	Additional Experimental Results
	Effect of Sampling Budget on Detection Performance
	Examples of Watermarked Text
	Ablation Study on Soft Count Smoothness Factor K
	Ablation Study on Impact of PCA
	Finding an Optimal Interval
	Computing Threshold   for soft-z-test
	Analysis of Sampling Efficiency
	Prompts Used with GPT-3.5-Turbo

