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Abstract001

The widespread adoption of large language002
models (LLMs) necessitates reliable methods003
to detect LLM-generated text. We introduce004
SimMark, a robust sentence-level watermark-005
ing algorithm that makes LLM’s outputs trace-006
able without requiring access to model inter-007
nals, making it compatible with both open and008
API-based LLMs. By leveraging the similar-009
ity of semantic sentence embeddings combined010
with rejection sampling to embed detectable sta-011
tistical patterns imperceptible to humans, and012
employing a soft counting mechanism, Sim-013
Mark achieves robustness against paraphras-014
ing attacks. Experimental results demonstrate015
that SimMark sets a new benchmark for robust016
watermarking of LLM-generated content, sur-017
passing prior sentence-level watermarking tech-018
niques in robustness, sampling efficiency, and019
applicability across diverse domains, all while020
maintaining the text quality and fluency.021

1 Introduction022

The advent of deep generative models has made023

it increasingly important to determine whether a024

given text, image, or video was produced by arti-025

ficial intelligence (AI), and recently, researchers026

across various domains have begun tackling this027

challenge (Aaronson and Kirchner, 2022; Fernan-028

dez et al., 2023; Teymoorianfard et al., 2025). In029

particular, LLMs such as GPT-4 (OpenAI et al.,030

2023) can now generate human-like text at scale031

and low cost, enabling powerful applications across032

numerous industries. However, this capability also033

introduces serious risks, including academic plagia-034

rism, disinformation campaigns, and the manipula-035

tion of public opinion. For instance, the use of AI-036

generated content in news articles has raised con-037

cerns about transparency, accountability, and the038

spread of misinformation (Futurism, 2023). More-039

over, reliably detecting LLM-generated content is040

crucial for enforcing copyright protections and en-041

suring accountability (Weidinger et al., 2021).042
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Figure 1: A high-level overview of SimMark detection
algorithm. The input text is divided into individual sen-
tences X1 to XN , which are embedded using a semantic
embedding model. The similarity between consecutive
sentence embeddings is computed. Sentences with simi-
larities within a predefined interval [a, b] are considered
valid, while those outside are invalid. A statistical test
is performed using the count of valid sentences to deter-
mine whether the text is watermarked.

Detecting LLM-generated text poses a unique 043

challenge. These models are explicitly trained to 044

emulate human writing styles, often rendering their 045

outputs indistinguishable from human-authored 046

text. As demonstrated by Kumarage et al. (2023) 047

and Sadasivan et al. (2023), reliably differentiat- 048

ing between human-written and machine-generated 049

text remains an open problem. 050

One promising approach is the use of impercepti- 051

ble statistical signatures, or watermarks, embedded 052

within a text. Watermarking imperceptibly alters 053

text such that it remains natural to human read- 054

ers but enables subsequent detection of its origin 055

(Atallah et al., 2001). Effective watermarking must 056

balance the preservation of the text quality with 057

robustness against adversarial paraphrasing, where 058

attackers modify the text to evade detection (Kr- 059

ishna et al., 2024). Additionally, watermarks must 060

be resistant to spoofing attacks, wherein adversaries 061

craft non-machine-generated text (often malicious) 062

to falsely trigger detectors (Sadasivan et al., 2023). 063

In this paper, we introduce SimMark, a robust 064

sentence-level watermarking algorithm for LLMs 065

based on sentence embedding similarity. SimMark 066
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treats LLMs as black boxes that can be prompted067

to generate sentences given a context. This ap-068

proach makes SimMark compatible with a wide069

range of models, including open-weight LLMs and070

closed-source proprietary models accessible only071

via APIs, as it does not require fine-tuning or ac-072

cess to the models’ internal logits. Access to logits073

is often restricted by API providers due to their074

potential use in distilling LLMs and leaking pro-075

prietary information (Finlayson et al., 2024). Sim-076

Mark leverages embeddings from semantic text077

embedding models to capture semantic relation-078

ships between sentences and embeds detectable079

statistical patterns on sentence similarity through080

rejection sampling. Specifically, rejection sampling081

involves querying the LLM multiple times until the082

similarity between the embeddings of consecutive083

sentences falls within a predefined interval. During084

detection, these patterns are analyzed using a sta-085

tistical test to differentiate between human-written086

and LLM-generated text, as illustrated in Figure 1.087

In summary, our contributions are as follows:088

• We introduce a novel sentence-level water-089

marking algorithm that achieves state-of-the-090

art detection performance while maintaining091

low false positive rates for human-written text.092

• Our approach demonstrates robustness against093

paraphrasing attacks through semantic-level094

watermarking and a soft counting mechanism095

for statistical testing.096

• Compared to existing methods, SimMark pro-097

vides a more practical solution that operates098

without access to LLM logits, offering high-099

quality watermark injection and detection.100

The remainder of this paper is organized as fol-101

lows. Section 2 reviews the background and related102

work on LLM watermarking techniques. Section 3103

outlines our methodology. Section 4 describes our104

experimental setup and presents comparative re-105

sults, while Section 5 concludes the paper.106

2 Background107

2.1 Autoregressive Decoding of LLMs108

An LLM operates over a vocabulary V , a set of109

words or subwords termed as tokens. Let f : V →110

V be an LLM that takes a sequence of tokens111

Ti = {t1, t2, . . . , ti} as input and generates the112

next token ti+1 as its output. To generate ti+1,113

the LLM samples it from the conditional proba-114

bility distribution P (ti+1|Ti) over the vocabulary115

V . After generating ti+1, the updated sequence116

Ti+1 = Ti ∪ {ti+1} is fed back into the model, 117

and the process is repeated iteratively to generate 118

the subsequent tokens. This process of generating 119

one token at a time, given the previously generated 120

tokens, is known as autoregressive decoding. 121

2.2 Token-Level Watermarking 122

Token-level watermarking methods embed a statis- 123

tical signal in the text by manipulating the token 124

sampling process (Aaronson and Kirchner, 2022; 125

Kirchenbauer et al., 2023; Fu et al., 2024). These 126

methods typically alter the probability distribution 127

over V , subtly biasing the selection of certain to- 128

kens to form detectable patterns. 129

KGW introduced by Kirchenbauer et al. (2023), 130

groups V into green and red subsets pseudo- 131

randomly seeded on the previous token before gen- 132

erating each new token. A predefined constant 133

δ > 0 is added to the logits of each token in the 134

green list, increasing their likelihood of being se- 135

lected during the sampling step. At detection, a 136

z-test is applied to the number of tokens from the 137

green list in the text to determine whether the text 138

contains a watermark. This test compares the ob- 139

served proportion of green tokens to the expected 140

proportion under the null hypothesis of no water- 141

mark, providing a statistical measure to detect even 142

subtle biases introduced by the watermark. 143

Detection of such watermarks involves analyzing 144

tokens for statistical signatures that deviate from 145

typical human text. However, token-level water- 146

marks can still be vulnerable to paraphrasing, as 147

rephrasing may disrupt the green and red token lists 148

without altering the overall semantic (Krishna et al., 149

2024). Moreover, since these methods modify the 150

logits, they directly impact the conditional proba- 151

bility distribution over V , potentially degrading the 152

quality of the generated text (Fu et al., 2024). 153

Due to space constraints, additional related 154

work—including token-level methods such as 155

UNIGRAM-WATERMARK (UW) (Zhao et al., 156

2023) and the Semantic Invariant Robust (SIR) wa- 157

termark (Liu et al., 2023), as well as post-hoc wa- 158

termarking techniques—is deferred to Appendix A. 159

2.3 Sentence-Level Watermarking 160

One approach to mitigate the previously mentioned 161

problems is to inject the watermark signal at the 162

sentence level, making it less vulnerable to adver- 163

sarial modifications (Topkara et al., 2006). Con- 164

sider a similar notation for sentence generation us- 165

ing an autoregressive LLM that takes a sequence of 166
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sentences Mi = {X1, X2, . . . , Xi} and generates167

the next sentence Xi+1. The updated sequence of168

sentences Mi+1 = Mi ∪ {Xi+1} is then used to169

generate subsequent sentences iteratively.170

SemStamp by Hou et al. (2024a) employs171

Locality-Sensitive Hashing (LSH) (Indyk and Mot-172

wani, 1998) to pseudo-randomly partition the se-173

mantic space of a embedding model into a set of174

valid and blocked regions, analogous to the green175

and red subsets in KGW. During rejection sampling,176

if the embedding of a newly generated sentence lies177

within the valid regions (determined based on the178

LSH signature of the previous sentence), the sen-179

tence is accepted. Otherwise, a new sentence is180

generated until a valid sentence is produced or the181

retry limit is reached. Similar to KGW, a z-test is182

applied to the number of valid sentences to deter-183

mine whether the text contains a watermark.184

To improve robustness against paraphrasing,185

SemStamp used a contrastive learning approach186

(Hadsell et al., 2006), fine-tuning an embedding187

model such that the embeddings of paraphrased188

sentences remain as close as possible to the original189

sentences. This was achieved by minimizing the190

distance between paraphrased and original embed-191

dings while ensuring unrelated sentences remained192

distinct. They also introduce a margin constraint in193

the rejection sampling process to reject sentences194

whose embeddings lie near the region boundaries.195

k-SemStamp (Hou et al., 2024b) builds upon196

SemStamp and aims to enhance robustness by par-197

titioning the semantic space using k-means cluster-198

ing (Lloyd, 1982) instead of random partitioning.199

They claim that in this way, sentences with sim-200

ilar semantics are more likely to fall within the201

same partition, unlike random partitioning, which202

may place semantically similar sentences into dif-203

ferent partitions, reducing robustness; however, k-204

SemStamp assumes that the LLM generates text205

within a specific domain to apply k-means clus-206

tering effectively (Hou et al., 2024b), limiting its207

applicability in real-world, open-domain scenar-208

ios. The generation and detection procedures of209

k-SemStamp remain similar to the original Sem-210

Stamp. In contrast to token-level algorithms, these211

sentence-level methods do not alter the internals of212

the LLM, therefore it is expected that their output213

to be of higher quality (Hou et al., 2024a,b).214

Our work, similar to SemStamp and k-215

SemStamp, is a sentence-level algorithm; however,216

it injects its watermark signature into the seman-217

tic similarity of consecutive sentences. It achieves218

Algorithm 1 SimMark Generation Pseudo-Code
1: for each generated sentence Xi do
2: Compute embedding ei for Xi using the em-

bedding model.
3: n← 0
4: do
5: Generate sentence Xi+1 using the LLM.
6: Compute embedding ei+1 for Xi+1 using

the embedding model.
7: Optional: Reduce the dimension of ei

and ei+1 using the PCA model.
8: Compute similarity si+1:

si+1 ←

{
ei·ei+1

∥ei∥2·∥ei+1∥2
if cosine similarity,

∥ei − ei+1∥2 if Euclidean distance,

9: n← n+ 1
10: while si+1 /∈ [a, b] and n < Nmax

11: Accept Xi+1 as valid and continue generat-
ing the next sentence.

12: end for

great generalizability across domains by leveraging 219

an off-the-shelf, general-purpose embedding model 220

without fine-tuning. At the same time, it outper- 221

forms these state-of-the-art (SOTA) sentence-level 222

watermarking methods in robustness against para- 223

phrasing while preserving text quality. 224

3 SimMark: A Similarity-Based 225

Watermarking Algorithm 226

3.1 Watermarked Text Generation 227

Similar to SemStamp and k-SemStamp, SimMark 228

utilizes the embedding representations of the sen- 229

tences. To compute the embeddings, in contrast 230

with Hou et al. (2024a,b) that fine-tuned their em- 231

bedder model (which could make it biased toward 232

a specific paraphrasing model or domain), we em- 233

ploy Instructor-Large (Su et al., 2023), a general- 234

purpose embedding model. The flexibility of our 235

method in using any pretrained embedding model 236

enables our approach to be more easily adaptable 237

to different domains. 238

First, we compute the embedding for each sen- 239

tence1. Then, we calculate the cosine similarity (or 240

Euclidean distance) between the embedding of sen- 241

tence i+ 1 and the embedding of sentence i. If the 242

1In our experiments, we passed both the sentence and
“Represent the sentence for cosine similarity:” or “Represent
the sentence for Euclidean distance:” as the instruction to the
Instructor-Large model.
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Figure 2: Overview of SimMark. Top: Generation. For each newly generated sentence (Xi+1), its embedding
(ei+1) is computed using a semantic text embedding model, optionally applying PCA for dimensionality reduction.
The cosine similarity (or Euclidean distance) between ei+1 and the embedding of the previous sentence (ei), denoted
as si+1, is calculated. If si+1 lies within the predefined interval [a, b], the sentence is marked valid and accepted.
Otherwise, rejection sampling generates a new candidate sentence until validity is achieved or the iteration limit
is reached. Once a sentence is accepted, the process repeats for subsequent sentences. Bottom: Detection (+
Paraphrase attack). Paraphrased versions of watermarked sentences are generated (Yi), and their embeddings (e′i)
are computed. The similarity between consecutive sentences in the paraphrased text is evaluated. If paraphrasing
causes the similarity (s′i+1) to fall outside [a, b], it is mismarked as invalid. A soft counting mechanism (via function
c(si+1) instead of a regular counting with a step function in [a, b]) quantifies partial validity based on proximity to
the interval bounds, enabling detection of watermarked text via a soft-z-test even under paraphrase attacks. It should
be noted that soft counting is always applied during detection as we cannot assume prior knowledge of paraphrasing.

computed value lies within a predefined interval,243

sentence i + 1 is considered valid (analogous to244

the green subset in KGW). Otherwise, we prompt245

the LLM to generate a new sentence and repeat246

this procedure until a valid sentence is found or247

the maximum number of iterations is reached (in248

this case, we accept the last generated sentence),249

as shown in Algorithm 1. Optionally, we may ap-250

ply Principal Component Analysis (PCA) method251

to the embeddings to reduce their dimensionality252

before calculating the similarity2. The reason for253

applying PCA is provided in Subsection 3.2. An254

overview of SimMark generation algorithm is de-255

picted in the top part of Figure 2.256

The predefined interval is a hyperparameter cho-257

sen a priori based on the distribution of similari-258

ties between consecutive sentences’ embeddings259

generated by an unwatermarked LLM and human-260

written text. The choice of this hyperparameter is261

critical for the performance of SimMark. First, if262

the interval’s width is too small or its position is far263

from the mean of the similarity distribution, gener-264

2In our experiments, this is the instruction in this case:
“Represent the sentence for PCA:”

ating sentences within this interval can be challeng- 265

ing or even infeasible for the LLM. Conversely, if 266

the interval’s width is large and centered around 267

the mean of the similarity distribution, generating 268

sentences becomes easier, but the false positive 269

(FP) rate (i.e., human-written text misclassified as 270

machine-generated) increases. 271

Furthermore, the choice of interval affects the ro- 272

bustness of SimMark against paraphrasing attacks. 273

When an attacker paraphrases sentences, the sim- 274

ilarities may change and fall outside the interval. 275

Consequently, a larger interval provides greater 276

robustness, as the watermark is less likely to be 277

disrupted by paraphrasing. Therefore, the selection 278

of the interval involves balancing several factors: it 279

must not be too narrow to impede sentence genera- 280

tion while maintaining a low FP rate and adequate 281

robustness against paraphrasing. 282

Finding a “sweet spot,” for the interval depends 283

on the distribution of similarities between consec- 284

utive sentences, which can vary across models. 285

However, identifying such sweet spots is feasible 286

when we analyze the similarity distributions of both 287

human-authored and LLM-generated text (see Ap- 288
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Algorithm 2 SimMark Detection Pseudo-Code
1: Split the input text into sentences excluding

the first sentence (i.e, the prompt): M =
{X2, . . . , XNtotal

}, and set N ← |M |.
2: for each sentence pair (Xi, Xi+1) do
3: Compute embeddings ei for Xi and ei+1 for

Xi+1 using the embedding model.
4: Optional: Reduce the dimensionality of ei

and ei+1 using the PCA model.
5: Compute si+1 ← sim(ei, ei+1).
6: Compute ci+1 according to Eq. (1).
7: end for
8: Soft count of valid sentences: Nvalid_soft ←∑N+1

i=2 ci.
9: Estimate p0 as the area under the human-

written text embeddings similarity distribution
curve within [a, b].

10: Compute zsoft using Eq. (2).
11: if zsoft > β then
12: Reject H0, i.e., text is likely generated by

an LLM watermarked by SimMark.
13: else
14: Accept H0, i.e., text is likely human-written.
15: end if

pendix H for an example of finding a sweet spot).289

3.2 Watermarked Text Detection290

The detection of SimMark follows a similar291

methodology to KGW by employing a z-test for292

hypothesis testing. However, akin to Hou et al.293

(2024a), the detection operates at the sentence level294

rather than the token level. To perform detection,295

we first divide the input text into sentences3 and use296

the same semantic embedding model to compute297

the embeddings for each sentence. If PCA was ap-298

plied during the watermarking process, it must also299

be applied during detection to ensure consistency.300

Next, we compute the similarity (si+1 =301

sim(ei, ei+1)) between consecutive sentences302

(Xi+1 and Xi) and count the number of valid sen-303

tences (Nvalid_soft). A sentence Xi+1 is deemed304

valid if si+1 lies within the predefined interval [a, b].305

However, paraphrasing may alter embeddings sig-306

nificantly, causing the similarity to deviate from the307

desired interval. To mitigate this, we adopt a soft308

counting approach, where a sentence is considered309

partially valid if its similarity is near the interval310

boundaries. Specifically, the soft count of Xi+1,311

denoted as ci+1, is defined as follows:312

3Using sent_tokenize method of NLTK (Bird et al., 2009).

ci+1 = c(si+1) =

{
1 if si+1 ∈ [a, b],

e−K min{|a−si+1|,|b−si+1|} otherwise.
(1) 313

Here, K > 0 is a decay factor controlling the 314

smoothness of the soft counting. A higher K makes 315

the function behave closer to a step function, while 316

a lower K allows for smoother transitions, tolerat- 317

ing minor deviations outside the interval [a, b]. The 318

total number of valid sentences is then computed 319

as Nvalid_soft =
∑

i ci. Refer to Appendix F for 320

an ablation study on how this approach improves 321

robustness against paraphrasing, with only a min- 322

imal impact on performance in non-paraphrased 323

scenarios, by allowing for some degree of error. 324

During our initial experiments, we observed that, 325

contrary to cosine similarity, Euclidean distance 326

is very sensitive to paraphrasing and even a sub- 327

tle change in the sentences would result in a huge 328

difference in the distances of embeddings. We hy- 329

pothesize that Euclidean distance is sensitive to 330

noise in high-dimensional spaces such as the se- 331

mantic space of an embedder. To mitigate this, 332

we propose using PCA: We fit a PCA model on a 333

dataset of human-written texts, to find the principal 334

components of the sentence embeddings, i.e., the 335

components that contribute the most to the semanti- 336

cal representation of the sentences. Then, we apply 337

PCA to reduce embeddings’ dimension. More de- 338

tails on the dimensionality reduction are provided 339

in Section 4 and Appendix G. 340

This approach can make reverse-engineering 341

more difficult, as it would require knowledge of 342

not only the embedder model, but also the PCA 343

setting (e.g., number of components, access to the 344

dataset used for fitting it, etc.). Without all these 345

details, reproducing the similarity distribution be- 346

comes less straightforward. 347

The null hypothesis H0 is defined as follows: 348
H0: The sentences are written by hu- 349

mans, i.e., the text sequence is generated 350

without knowledge of the valid interval 351

in the similarity of sentence embeddings. 352

We calculate the z-statistic for the one-proportion 353

z-test using the sample proportion p =
Nvalid_soft

N , 354

where N is the total number of samples (sentences). 355

Since Nvalid_soft is a soft count of valid sentences, 356

we refer to it as soft-z-score, which is given by 357

zsoft =
p−p0√
p0(1−p0)

N

or alternatively: 358

zsoft =
Nvalid_soft−p0N√

p0(1−p0)N
. (2) 359
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Here, the population proportion p0 represents the360

ratio of valid sentences to all sentences in human-361

written text (i.e., a text with no watermark), which362

is estimated as the area under the similarity distribu-363

tion curve of consecutive human-written sentences364

within the interval [a, b] (Like the one in Figure 7 in365

Appendix H). The value of zsoft can be interpreted366

as a normalized deviation of the number of valid367

sentences Nvalid_soft from its expectation p0N .368

As highlighted in Algorithm 2, the null hypothe-369

sis H0 is rejected if zsoft > β, where β is a thresh-370

old determined empirically by running the detec-371

tion algorithm on human-written text. The thresh-372

old β is selected to maintain a desired FP rate (i.e.,373

minimizing the misclassification of human-written374

text as LLM-generated). Details on the computa-375

tion of β are provided in Appendix I.376

4 Experiments & Results377

Performance of SimMark is evaluated across differ-378

ent datasets and models using the area under the379

receiver operating characteristic curve (ROC-AUC)380

and true positive rate (TP) at fixed FP rates of 1%381

and 5% (TP@1%FP and TP@5%FP). Higher val-382

ues indicate better performance across all metrics4.383

For dimensionality reduction, we fitted a PCA384

model on 8000 samples from the RealNews subset385

of the C4 dataset (Raffel et al., 2020), reducing386

embedding dimensions from 768 to 16. After test-387

ing various principal component counts (ranging388

from 512 to 16), we found 16 to yield the best re-389

sults. During our experiments, we evaluated both390

settings (with and without PCA). Specifically, PCA391

improved robustness against paraphrasing attacks392

when Euclidean distance was used (except on the393

BookSum dataset), but consistently degraded per-394

formance when cosine similarity was employed395

across all datasets. The results of these experiments396

are summarized in Table 5 in Appendix G.397

Across all experiments, the decay factor was398

set to K = 250, as this value provided an op-399

timal trade-off between performance under both400

non-paraphrased and paraphrased conditions (see401

Appendix F for an ablation study on this). The402

threshold β was determined empirically during the403

detection (refer to Appendix I for details) to achieve404

the specified FP rates (1% or 5%). The intervals405

[0.68, 0.76] for cosine similarity and [0.28, 0.36]406

for Euclidean distance with PCA and [0.4, 0.55]407

for Euclidean distance without PCA were found408

4Like (Hou et al., 2024a), all results are from a single run.

to be near-optimal. While the intervals could have 409

been further optimized for each dataset individu- 410

ally, we chose not to do so to show the general 411

performance of our method. 412

4.1 Models and Datasets 413

For our experiments, we used the same fine-tuned 414

version of OPT-1.3B (Zhang et al., 2022) as in 415

Hou et al. (2024a,b)5 to ensure fair comparison. 416

However, we emphasize that our method is model- 417

agnostic and it treats the LLM as a black-box text 418

generator. As such, if the method performs well 419

on one family of models, it is expected to general- 420

ize to others. To support this, we also tested our 421

method on Gemma3-4B model (Team et al., 2025) 422

and observed similar results (see Appendix C). For 423

semantic embedding, we utilized Instructor-Large 424

model6 (Su et al., 2023). Appendix B includes ad- 425

ditional details on the experimental configurations. 426

In our experiments, we used three English 427

datasets: RealNews subset of C47 (Raffel et al., 428

2020), BookSum8 (Kryscinski et al., 2022), and 429

Reddit-TIFU9 (Kim et al., 2019) datasets, as in 430

Hou et al. (2024a,b). Specifically, 1000 samples 431

from each dataset were chosen to analyze the detec- 432

tion performance and the text quality. Each sample 433

was segmented into sentences, with the first sen- 434

tence serving as the prompt to the LLM. 435

We evaluated text quality after applying Sim- 436

Mark using the following metrics: 437

• Perplexity (PPL): Measures how surprising 438

the text is to an oracle LLM10. 439

• Tri-gram Entropy (Ent-3) (Zhang et al., 440

2018): Assesses textual diversity via the en- 441

tropy of the tri-grams distribution. 442

• Semantic Entropy (Sem-Ent) (Han et al., 443

2022): Measures semantic informativeness 444

and diversity of the text. 445

4.2 Paraphrase Attack 446

To evaluate the robustness of SimMark against 447

paraphrase attacks, we tested it using three 448

paraphrasers: I. Pegasus paraphraser11 (Zhang 449

et al., 2020), II. Parrot paraphraser12 (Damodaran, 450

2021), III. GPT-3.5-Turbo (OpenAI, 2022). 451

5Used AbeHou/opt-1.3b-semstamp (1.3B) model.
6Used hkunlp/instructor-large (335M) model.
7Dataset card: allenai/c4 (Validation split)
8Dataset card: kmfoda/booksum (Validation split)
9Dataset card: ctr4si/reddit_tifu (Train split, short subset)

10Used facebook/opt-2.7b following (Hou et al., 2024a,b).
11Used tuner007/pegasus_paraphrase (568M) model.
12Used parrot_paraphraser_on_T5 (220M) model.

6

https://huggingface.co/AbeHou/opt-1.3b-semstamp
https://huggingface.co/hkunlp/instructor-large
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/kmfoda/booksum
https://huggingface.co/datasets/ctr4si/reddit_tifu
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/prithivida/parrot_paraphraser_on_T5


Dataset Algorithm No Paraphrase Pegasus Pegasus-Bigram Parrot Parrot-Bigram GPT3.5 GPT3.5-bigram Avg. Paraphrased
R

ea
lN

ew
s

UW (Zhao et al.) 99.9 / 99.1 / 99.9 98.5 / 85.6 / 95.3 97.9 / 73.5 / 91.7 97.9 / 70.9 / 91.9 97.4 / 62.8 / 89.4 97.4 / 59.1 / 87.9 93.7 / 37.0 / 70.8 97.1 / 64.8 / 87.8
KGW (Kirchenbauer et al.) 99.6 / 98.4 / 98.9 95.9 / 82.1 / 91.0 92.1 / 42.7 / 72.9 88.5 / 31.5 / 55.4 83.0 / 15.0 / 39.9 82.8 / 17.4 / 46.7 75.1 / 5.9 / 26.3 86.2 / 32.4 / 55.4
SIR (Liu et al.) 99.9 / 99.4 / 99.9 94.4 / 79.2 / 85.4 94.1 / 72.6 / 82.6 93.2 / 62.8 / 75.9 95.2 / 66.4 / 80.2 80.2 / 24.7 / 42.7 77.7 / 20.9 / 36.4 89.1 / 54.4 / 67.2
SemStamp (Hou et al.) 99.2 / 93.9 / 97.1 97.8 / 83.7 / 92.0 96.5 / 76.7 / 86.8 93.3 / 56.2 / 75.5 93.1 / 54.4 / 74.0 83.3 / 33.9 / 52.9 82.2 / 31.3 / 48.7 91.0 / 56.0 / 71.6
k-SemStamp (Hou et al.) 99.6 / 98.1 / 98.7 99.5 / 92.7 / 96.5 99.0 / 88.4 / 94.3 97.8 / 78.7 / 89.4 97.5 / 78.3 / 87.3 90.8 / 55.5 / 71.8 88.9 / 50.2 / 66.1 95.6 / 74.0 / 84.2
Cosine-SimMark (Ours) 99.6 / 96.8 / 98.8 99.2 / 90.3 / 98.2 99.1 / 90.3 / 97.9 98.7 / 88.1 / 97.2 98.8 / 87.3 / 97.6 95.7 / 59.7 / 86.7 92.0 / 38.8 / 73.7 97.2 / 75.8 / 91.9
Euclidean-SimMark** (Ours) 99.8 / 98.5 / 99.3 97.2 / 72.3 / 89.1 96.9 / 70.0 / 87.4 95.7 / 60.2 / 82.5 95.7 / 59.1 / 81.5 94.1 / 51.6 / 76.2 88.2 / 29.7 / 53.5 94.6 / 57.2 / 78.4

B
oo

kS
um

UW 100 / 100 / 100 99.5 / 89.8 / 98.5 98.6 / 71.2 / 93.0 98.9 / 79.4 / 94.8 98.6 / 72.1 / 92.9 93.2 / 24.6 / 57.9 86.0 / 9.2 / 30.5 95.8 / 57.7 / 77.9
KGW 99.6 / 99.0 / 99.2 97.3 / 89.7 / 95.3 96.5 / 56.6 / 85.3 94.6 / 42.0 / 75.8 93.1 / 37.4 / 71.2 87.6 / 17.2 / 52.1 77.1 / 4.4 / 27.1 91.0 / 41.2 / 67.8
SIR 100 / 99.8 / 100 93.1 / 79.3 / 85.9 93.7 / 69.9 / 81.5 96.5 / 72.9 / 85.1 97.2 / 76.5 / 88.0 80.9 / 39.9 / 23.6 75.8 / 19.9 / 35.4 89.5 / 59.7 / 66.6
SemStamp 99.6 / 98.3 / 98.8 99.0 / 94.3 / 97.0 98.6 / 90.6 / 95.5 98.3 / 83.0 / 91.5 98.4 / 85.7 / 92.5 89.6 / 45.6 / 62.4 86.2 / 37.4 / 53.8 95.0 / 72.8 / 82.1
k-SemStamp 99.9 / 99.1 / 99.4 99.3 / 94.1 / 97.3 99.1 / 92.5 / 96.9 98.4 / 86.3 / 93.9 98.8 / 88.9 / 94.9 95.6 / 65.7 / 83.0 95.7 / 64.5 / 81.4 97.8 / 81.5 / 91.2
Cosine-SimMark (Ours) 99.8 / 98.8 / 99.5 99.5 / 93.3 / 98.5 99.6 / 94.1 / 98.5 99.3 / 88.5 / 98.0 99.3 / 87.0 / 98.2 97.1 / 62.5 / 86.9 94.5 / 41.6 / 74.2 98.2 / 77.8 / 92.4
Euclidean-SimMark (Ours) 100 / 100 / 100 98.8 / 82.6 / 94.9 98.6 / 80.4 / 93.4 97.9 / 75.3 / 91.1 97.9 / 73.3 / 91.6 99.7 / 94.4 / 98.8 99.5 / 91.9 / 97.6 98.7 / 83.0 / 94.6

R
ed

di
t-

T
IF

U UW 99.9 / 99.5 / 99.8 97.3 / 73.4 / 91.1 94.1 / 48.3 / 77.2 90.6 / 37.1 / 64.0 89.2 / 33.7 / 60.4 86.3 / 26.9 / 52.9 74.3 / 13.2 / 30.0 88.6 / 38.8 / 62.6
KGW 99.3 / 97.5 / 98.1 94.1 / 87.2 / 87.2 91.7 / 67.2 / 67.6 79.5 / 22.8 / 43.3 82.8 / 27.6 / 49.7 84.1 / 27.3 / 50.9 79.8 / 19.3 / 41.3 85.3 / 41.9 / 56.7
SIR 99.6 / 97.2 / 99.7 90.0 / 48.7 / 77.4 90.9 / 33.1 / 71.1 87.1 / 15.0 / 50.9 86.9 / 12.8 / 49.8 91.1 / 15.0 / 61.4 84.3 / 5.5 / 39.1 88.4 / 21.7 / 58.3
SemStamp 99.7 / 97.7 / 98.2 98.4 / 92.8 / 95.4 98.0 / 89.0 / 92.9 90.2 / 56.2 / 70.5 93.9 / 71.8 / 82.3 87.7 / 47.5 / 58.2 87.4 / 43.8 / 55.9 92.6 / 66.9 / 75.9
Cosine-SimMark (Ours) 99.1 / 96.3 / 97.6 98.9 / 94.5 / 96.4 98.7 / 93.6 / 96.1 98.5 / 91.6 / 96.0 98.5 / 91.7 / 95.5 97.8 / 88.4 / 94.7 96.3 / 72.9 / 88.4 98.1 / 88.8 / 94.5
Euclidean-SimMark** (Ours) 99.8 / 98.7 / 99.2 99.0 / 94.7 / 97.6 99.0 / 91.9 / 96.2 97.8 / 75.9 / 89.5 97.7 / 76.4 / 90.4 98.7 / 83.7 / 95.2 96.8 / 65.8 / 87.3 98.2 / 81.4 / 92.7

Table 1: Performance of different algorithms across datasets and paraphrasers, evaluated using ROC-AUC ↑ /
TP@FP=1% ↑ / TP@FP=5% ↑, respectively (↑: higher is better). In each column, bold value indicates the best
performance for a given dataset and metric, while underlined value denotes the second-best. SimMark consistently
outperforms or is on par with other state-of-the-art methods across datasets, paraphrasers, and is the best on average.

Algorithm PPL ↓ Ent-3 ↑ Sem-Ent ↑

No watermark 11.89 11.43 3.10

UW 13.02 11.96 2.90
KGW 14.92 11.32 2.95
SIR 20.34 11.57 3.18
SemStamp 12.89 11.51 3.17
k-SemStamp 11.82 11.48 3.11
Cosine-SimMark (Ours) 12.69 11.50 3.39
Euclidean-SimMark** (Ours) 9.67 11.50 3.28

Table 2: Comparison of the quality of text watermarked
using different algorithms on BookSum dataset (↓:
lower is better, ↑: higher is better). SimMark yields
quality metrics comparable to the no-watermark base-
line, indicating minimal impact on text quality and se-
mantic diversity. In contrast, token-level methods (top
three rows) notably degrade the text quality, especially
in terms of perplexity.

Kirchenbauer et al. (2024) observed that prompting452

models to paraphrase entire texts often results in453

summarized outputs, with the summarization ra-454

tio worsening for longer inputs. To prevent any455

information loss caused by such summarization,456

we adopted a sentence-by-sentence paraphrasing457

scheme, which also ensures our results are com-458

parable to Hou et al. (2024a,b). Refer to Ap-459

pendix K to find the prompts used with GPT-3.5-460

Turbo. The quality of paraphrases was assessed461

using BertScore13 (Zhang* et al., 2020), with all462

settings consistent with Hou et al. (2024a,b). The463

bottom part of Figure 2 demonstrates the para-464

phrase attack and detection phase in more detail.465

We also included the results for the bigram para-466

phrase attack introduced by Hou et al. (2024a),467

with identical settings (25 rephrases for each sen-468

tence when using Pegasus and Parrot, etc.). This469

attack involves generating multiple paraphrases for470

**PCA is applied.
13Used deberta-xlarge-mnli (750M) (He et al., 2021).

each sentence, and choosing the one that increases 471

the likelihood of disrupting statistical signatures 472

embedded in the text, especially for token-level 473

algorithms (Hou et al., 2024a). While this attack 474

significantly impacts most other methods, SimMark 475

demonstrates greater robustness against it. We 476

must highlight that k-SemStamp relies on domain- 477

specific clustering of semantic spaces, making it 478

domain-dependent. In contrast, both SimMark and 479

SemStamp are domain-independent. Still, Sim- 480

Mark outperforms both in almost all cases across 481

various datasets and metrics, further underscoring 482

its universality and robustness. 483

4.3 Robustness to Sentence-Level 484

Perturbations 485

To further evaluate the robustness of our method 486

and its real-world applicability, we introduce more 487

challenging attack scenarios: Paraphrase+Drop At- 488

tack and Paraphrase+Merge Attack. These scenar- 489

ios simulate realistic adversarial editing strategies 490

where a user attempts to remove or merge sentences 491

after paraphrasing, while maintaining fluency. 492

Paraphrase+Drop assumes that an adversary not 493

only paraphrases the text but also drops sentences 494

deemed redundant. This reflects common editing 495

practices, especially since LLMs often produce ver- 496

bose outputs due to imperfect reward modeling 497

(Chiang and Lee, 2024). To simulate this, we first 498

paraphrase the input text and then randomly drop 499

sentences with a specified probability p. Similarly, 500

Paraphrase+Merge is designed to test robustness 501

under more subtle structural changes. After para- 502

phrasing, we replace end-of-sentence punctuations 503

(e.g., ., ?, !) with the word “and” with probability 504

0 < p < 1
2 . In our experiments, we avoid higher 505
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Figure 3: Detection performance under two adver-
sarial settings using RealNews dataset: Left: Para-
phrase+Drop Attack, where random sentences are re-
moved after paraphrasing. SimMark, in almost all pa-
rameter regimes, outperforms other methods under this
attack. Right: Paraphrase+Merge Attack, where sen-
tence boundaries (punctuations) are probabilistically
replaced with “and” to merge sentences. Although Sim-
Mark performs best among sentence-level approaches,
UW remains highly robust due to its token-level nature.

values of p as they result in unnaturally long and506

less fluent sentences. This setup simulates a realis-507

tic scenario where an adversary attempts to merge508

sentences while preserving the overall coherence of509

the text. These combined attacks serve to stress-test510

the resilience of watermarking methods under more511

naturalistic adversarial conditions that go beyond512

simple paraphrasing.513

4.4 Results & Discussion514

We compared the performance of SimMark against515

SOTA watermarking algorithms through extensive516

experiments. Our primary baseline was SemStamp,517

a sentence-level semantic watermarking method.518

We also included k-SemStamp, an improvement519

over SemStamp tailored to specific domains. Re-520

sults for SemStamp, k-SemStamp, KGW and SIR,521

were extracted directly from Hou et al. (2024a,b)14.522

Table 1 presents detection performance pre and523

post paraphrase attacks, while Table 2 provides524

text quality evaluation results. Our algorithm im-525

pacts the text quality minimally while being ef-526

fective and consistently outperforming or match-527

ing other SOTA methods, achieving the highest528

average performance across all paraphrasers and529

datasets. Notably, our method SimMark (domain-530

independent), surpasses the primary baseline, Sem-531

Stamp (domain-independent), and is on par or ex-532

14Despite Hou et al. (2024a,b) releasing their code and data,
we were unable to reproduce their reported results fully. Con-
sequently, there are minor discrepancies between our repro-
duction results (shown in Figure 3 for cases with p = 0) and
those presented in Table 1 (extracted directly from their paper).
Additionally, the results reported in Table 2 (our reproduction)
also show slight differences from their paper, likely due to
hyperparameter details that were not explicitly documented.

ceeds k-SemStamp (domain-dependent). A key 533

aspect to consider is that the fine-tuning of Sem- 534

Stamp and k-SemStamp’s embedding model on 535

text paraphrased by Pegasus likely contributes to 536

their improved robustness against this paraphraser 537

but may introduce bias. Additionally, the results 538

for the Reddit-TIFU dataset were only available 539

for SemStamp and not k-SemStamp, likely due 540

to the dataset’s informal, diverse text style and 541

k-SemStamp’s limitation for text to belong to a 542

specific domain, such as news articles or scientific 543

writings (Hou et al., 2024b). 544

Figure 3 presents the ROC-AUC performance 545

of UW (the best token-level method in our exper- 546

iments), SimMark, k-SemStamp, and SemStamp 547

under Paraphrase+Drop and Paraphrase+Merge 548

attacks, evaluated on the RealNews dataset. Under 549

Paraphrase+Drop, across most parameter regimes, 550

SimMark outperforms all other methods, sustain- 551

ing higher detection performance even as the attack 552

intensity increases. While SimMark shows supe- 553

rior performance among sentence-based methods 554

under Paraphrase+Merge, UW maintains highest 555

robustness because it operates at the token level. 556

Regarding sampling efficiency, for BookSum 557

dataset for instance, SimMark required an aver- 558

age of 7.1 samples per sentence from the LLM, 559

compared to k-SemStamp and SemStamp, which 560

averaged 13.3 and 20.9 samples, respectively (Hou 561

et al., 2024b). This demonstrates that our method 562

not only outperforms these baselines but is also 2-3 563

times more efficient. See Appendix J for further 564

analysis of this (including theoretical estimates). 565

Finally, refer to Appendix E for qualitative exam- 566

ples of SimMark. 567

5 Conclusion 568

In this paper, we introduced SimMark, a similarity- 569

based, robust sentence-level watermarking algo- 570

rithm. Unlike existing approaches, SimMark oper- 571

ates without requiring access to the internals of the 572

model, ensuring compatibility with a wide range of 573

LLMs, including API-only models. By utilizing a 574

pre-trained general-purpose embedding model and 575

integrating a soft counting mechanism, SimMark 576

combines robustness against paraphrasing with ap- 577

plicability to diverse domains. Experimental results 578

show that SimMark outperforms SOTA sentence- 579

level watermarking algorithms in both efficiency 580

and robustness to paraphrasing, representing a step 581

forward in fully semantic watermarking for LLMs. 582
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Limitations583

While SimMark demonstrates outstanding perfor-584

mance, there are still some areas that warrant fur-585

ther exploration:586

Rejection Sampling Overhead. The rejection587

sampling process requires generating multiple can-588

didate sentences until a valid sentence is accepted.589

Although our method is significantly (2-3 times)590

more efficient than prior approaches such as Sem-591

Stamp and k-SemStamp, there is still a notable592

decrease in generation speed due to rejection sam-593

pling. Techniques like batch sampling or paral-594

lel sampling could potentially mitigate this issue,595

though at the expense of higher computational re-596

source usage. Future research should focus on597

optimizing the method to balance efficiency and598

resource requirements.599

Resistance to More Advanced Attacks. While600

SimMark demonstrates robustness against para-601

phrasing attacks, it may not be immune to more602

sophisticated adversarial transformations. In par-603

ticular, detection could become less effective when604

watermarked text is interleaved with or embedded605

within larger body of of unwatermarked content.606

Additionally, although reverse engineering the ex-607

act watermarking rules is non-trivial, an adversary608

may attempt a spoofing attack by approximating609

our setup—for instance, by employing a publicly610

available embedding model or fitting a PCA model611

with publicly available datasets. While such at-612

tempts may not perfectly replicate the original em-613

bedding distribution, they could still pose a threat.614

We leave a thorough investigation into vulnerabil-615

ities and corresponding defences against reverse616

engineering to future work.617

Dependency on Predefined Intervals. In our ex-618

periments, we used consistent predefined intervals619

across all datasets and observed consistently strong620

performance. Notably, we did not observe any not-621

icable degradation in text quality due to this inter-622

val constraint during rejection sampling (as shown623

in Table 2), likely because the constraint applies624

only to consecutive sentences. Nonetheless, slight625

variations in the embeddings similarity distribu-626

tion of LLM-generated text across different models627

may impact watermarking effectiveness. Adaptive628

strategies for setting these intervals dynamically629

(or pseudo-randomly) could not only improve per-630

formance but also make reverse-engineering the631

algorithm more difficult.632

Ethical Considerations15 633

Potential Risks. By enabling robust detection 634

of LLM-generated text, particularly under para- 635

phrasing attacks, SimMark tries to address ethical 636

concerns surrounding the transparency and account- 637

ability of AI-generated content. However, like any 638

watermarking algorithm, there are potential risks, 639

such as falsely implicating human authors or ad- 640

versaries developing more advanced techniques for 641

spoofing attacks or bypassing detection. We ac- 642

knowledge these limitations and advocate for the 643

responsible deployment of such tools in combina- 644

tion with other verification mechanisms to mitigate 645

these risks and ensure ethical, fair deployment. The 646

primary goal of this work is to advance research in 647

watermarking techniques to support the responsible 648

use of LLMs. We believe that the societal impacts 649

and ethical considerations of our work align with 650

those outlined in Weidinger et al. (2021). 651

Use of Models and Datasets. Our research used 652

datasets and pretrained models from the Hugging 653

Face Hub16, a public platform hosting machine 654

learning resources under various licenses. We ad- 655

hered to all license terms and intended usage guide- 656

lines for each artifact, which are documented on 657

their individual Hugging Face model or dataset 658

cards cited in the paper. All resources were used 659

solely for research purposes in accordance with 660

their intended use and respective licenses, with no 661

additional data collection, scraping, or annotation 662

performed by the authors. The datasets employed 663

are publicly available, widely used in prior research, 664

and to the best of our knowledge, free of personally 665

identifiable information or offensive content. Any 666

outputs generated by their method are intended for 667

academic use, not for real-world or commercial 668

applications, and no personal or sensitive data was 669

processed. Any new artifacts we create (e.g., water- 670

marked samples) are intended solely for academic 671

evaluation, and we do not release any derivative 672

data that violates original licensing terms. 673
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Supplemental Materials893

A Aditional Related Work894

A.1 Token-Level Watermarking895

Zhao et al.’s (2023) UNIGRAM-WATERMARK896

(UW) builds upon KGW by fixing the red and green897

lists instead of pseudo-randomly selecting them,898

proving that, compared to KGW, their method is899

more robust to paraphrasing and editing (Zhao900

et al., 2023). However, as outlined by Hou et al.901

(2024a), this algorithm can be reverse-engineered,902

rendering it impractical for high-stakes, real-world903

applications.904

The Semantic Invariant Robust (SIR) watermark905

in Liu et al. (2023) is also similar to KGW but is906

designed to be less sensitive to attacks involving907

synonym replacement or advanced paraphrasing.908

SIR achieves this by altering the LLM logits based909

on the semantics of previously generated tokens,910

using a semantic embedding model to compute se-911

mantic representations and training a model that912

adjusts LLM’s logits based on the semantic embed-913

dings of prior tokens (Liu et al., 2023).914

A.2 Post-hoc Watermarking915

Chang et al.’s (2024) PostMark is a post-hoc water-916

marking algorithm designed to work without access917

to model logits, making it compatible with API-918

only LLMs. It constructs an input-dependent set of919

candidate words using semantic embeddings and920

then prompts another LLM (e.g., GPT-4o) to insert921

these words into the generated text. Detection relies922

on statistical analysis of the inserted words. While923

PostMark’s compatibility with black-box LLMs is924

a strength, the approach is computationally expen-925

sive—watermarking 100 tokens is estimated to cost926

around $1.2 USD (Chang et al., 2024).927

Yang et al. (2023) propose another post-hoc928

method that encodes each word in the text as a929

binary bit via a Bernoulli distribution (p = 0.5),930

embedding the watermark through synonym substi-931

tution: words representing bit 0 are replaced with932

synonyms representing bit 1. Detection is again933

done via statistical testing. However, this method is934

fragile: synonyms are not reliably preserved under935

paraphrasing and often fail to capture subtle con-936

textual meanings, which can noticeably degrade937

text quality and watermark robustness.938

Hao et al. (2025) is a post-hoc watermarking939

technique similar to Yang et al. (2023) that im-940

proves robustness by selecting semantically or syn-941

tactically essential words—those less likely to be 942

altered during paraphrasing—as anchor points for 943

embedding. The method uses paraphrase-based 944

lexical substitution to insert watermarks while pre- 945

serving the original semantics. However, empirical 946

results in Chang et al. (2024) demonstrate that this 947

method is not robust to paraphrasing compared to 948

other methods such as KGW, SemStamp, and Post- 949

Mark. 950

B Experimental Settings 951

In all combinations of the experiments, following 952

Kirchenbauer et al. (2023), sampling from the LLM 953

was performed with a temperature of 0.7 and a rep- 954

etition penalty of 1.05, while the minimum and 955

the maximum number of generated tokens were 956

set to 195 and 205, respectively. The maximum 957

number of rejection sampling iterations was set to 958

100, again to align with the code provided by Hou 959

et al. (2024a,b). However, this setting reflects a 960

trade-off between detection performance and gen- 961

eration speed. Based on our experiments, setting 962

it to 25 achieves strong performance, with higher 963

values offering only marginal improvements (see 964

Appendix D). For token-level watermarking base- 965

lines, in cases where results were not directly ex- 966

tracted from Hou et al. (2024a,b), we employed the 967

open-source MarkLLM watermarking framework 968

(Pan et al., 2024), with their recommended config- 969

urations (γ = 0.5, δ = 2, prefix_length=1, etc.) 970

to run the experiments. 971

The majority of the experiments, including text 972

generation and detection tasks, were conducted on 973

a workstation equipped with an Intel Core i9 pro- 974

cessor, 64GB of RAM, and an Nvidia RTX 3090 975

GPU with 24GB of VRAM. Some of the exper- 976

iments involving bigram paraphrasing were per- 977

formed on compute nodes with an Nvidia V100 978

GPU with 32GB of VRAM. Generating 1000 Sim- 979

Mark-watermarked samples using OPT-1.3B re- 980

quired approximately 8-10 GPU hours on a single 981

RTX 3090. 982

C Additional Experimental Results 983

To demonstrate the model-agnostic nature of Sim- 984

Mark, we applied our algorithm to the recently 985

released Gemma3-4B model1 (Team et al., 2025). 986

We evaluated both Cosine-SimMark and Euclidean- 987

SimMark under different paraphrasing models 988

across the same three datasets as before: RealNews 989

1We employed google/gemma-3-4b (4B) model.
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subset of C4, BookSum, and Reddit-TIFU. The990

effectiveness and robustness of watermarking tech-991

niques can depend heavily on the characteristics of992

the underlying LLM and the nature of the generated993

text. To maintain consistency and reliability across994

experiments, we made the following modifications:995

• Predefined Interval Adjustment: The sen-996

tences’ embedding similarity distribution un-997

der Gemma3-4B differed from those in OPT-998

1.3B, requiring new intervals. We set the pre-999

defined interval to [0.86, 0.90] for cosine sim-1000

ilarity (without PCA), and [0.11, 0.16] for1001

Euclidean distance (with PCA).1002

• Threshold Transferability: In contrast to1003

our earlier experiments—where the detection1004

threshold β was determined per dataset—we1005

fixed β across all datasets in these experi-1006

ments. Specifically, we determined the thresh-1007

old using only non-watermarked data from the1008

BookSum dataset, and then applied it across1009

all three datasets without modification. This1010

approach simulates a more realistic setting1011

where the detector is calibrated on a single1012

corpus but expected to generalize to others.1013

The results demonstrate that our method main-1014

tains high detection performance even under1015

this general configuration.1016

• Longer Generations: Since Gemma3-4B1017

tends to generate longer sentences compared1018

to OPT-1.3B model that we employed earlier,1019

we increased the number of generated tokens1020

from 200 to 300 to ensure a sufficient number1021

of sentences for reliable hypothesis testing.1022

Table 3 reports the detection performance in terms1023

of ROC-AUC ↑ / TP@1%FP ↑ / TP@5%FP ↑,1024

for each setting (↑: higher is better). Across all1025

datasets and paraphrasing scenarios, SimMark re-1026

mains highly effective, with both cosine similarity1027

and Euclidean distance variants maintaining strong1028

ROC-AUC and TP rates. These results affirm that1029

SimMark maintains its performance across differ-1030

ent LLM families (e.g., OPT and Gemma3) and1031

datasets/domains, further validating the general ap-1032

plicability of our proposed algorithm.1033

D Effect of Sampling Budget on Detection1034

Performance1035

To better understand the trade-off between gener-1036

ation speed and detection performance, we ana-1037

lyze the impact of the max_trials hyperparame-1038

ter, which defines the upper limit on the number of1039

rejection sampling iterations during watermark in- 1040

jection. While we set this value to 100 in our main 1041

experiments (to align with prior works of Hou et al. 1042

(2024a,b)), it is important to examine whether such 1043

a large value is necessary. 1044

Figure 4 shows two evaluation metrics—ROC- 1045

AUC ↑ and TP@FP=1% ↑ (↑: higher is better)—on 1046

RealNews dataset for cosine-SimMark and OPT- 1047

1.3B model under different values of max_trials. 1048

As shown in the plots, performance improves sig- 1049

nificantly when increasing max_trials from 5 to 1050

25, but plateaus thereafter. In particular, both ROC- 1051

AUC and TP@FP=1% show diminishing returns 1052

beyond 25 trials, indicating that additional sam- 1053

pling brings little performance gain. 1054

These results suggest that setting max_trials to 1055

25 achieves a good balance between robustness and 1056

efficiency, and using larger values (e.g., 100) is not 1057

strictly necessary in practice. These findings, to- 1058

gether with the average sampling statistics reported 1059

in the main paper (e.g., 7.1 samples per sentence), 1060

highlight SimMark’s ability to balance robustness 1061

with generation speed compared to SemStamp and 1062

k-SemStamp (e.g., 20.9 and 13.3 samples per sen- 1063

tence, respectively). 1064
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Figure 4: Impact of the maximum number of rejec-
tion sampling trials on detection performance. In-
creasing max_trials improves both ROC-AUC ↑ and
TP@1%FP ↑ (↑: higher is better), but the improvement
plateaus around 25. Results are reported on RealNews
dataset using cosine-SimMark and OPT-1.3B model.

E Examples of Watermarked Text 1065

Figures 5 and 6 provide examples of text generated 1066

with and without the SimMark watermark using 1067

OPT-1.3B. These examples illustrate the impercep- 1068

tibility of the watermark to human readers while 1069

enabling robust detection through our proposed al- 1070

gorithm. They also highlight SimMark’s robustness 1071

to paraphrasing while maintaining quality compa- 1072

rable to non-watermarked text. 1073
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Dataset Method No Paraphrase Pegasus Pegasus-Bigram Parrot Parrot-Bigram Avg. Paraphrased
R

N Cosine-SimMark 99.5 / 96.2 / 97.9 93.5 / 57.9 / 75.6 93.0 / 54.9 / 73.9 92.3 / 50.1 / 71.7 92.1 / 49.2 / 72.8 92.7 / 53.0 / 73.5
Euclidean-SimMark** 99.5 / 97.4 / 98.2 93.2 / 65.3 / 79.5 91.8 / 61.8 / 78.5 91.9 / 58.0 / 73.9 91.5 / 58.7 / 72.8 92.1 / 61.0 / 76.2

B
S Cosine-SimMark 99.9 / 99.6 / 99.8 97.7 / 75.8 / 90.5 97.4 / 73.3 / 90.0 97.0 / 67.8 / 87.6 96.9 / 67.7 / 86.7 97.2 / 71.1 / 88.7

Euclidean-SimMark** 99.9 / 99.7 / 99.9 97.6 / 82.0 / 91.4 97.4 / 77.9 / 89.9 97.4 / 78.0 / 91.2 91.5 / 58.7 / 72.8 96.0 / 74.2 / 86.3

T
IF

U Cosine-SimMark 99.8 / 99.1 / 99.5 97.4 / 78.8 / 91.5 97.0 / 76.6 / 89.3 89.4 / 32.8 / 61.7 90.7 / 36.6 / 63.8 93.6 / 56.2 / 76.6
Euclidean-SimMark** 99.6 / 98.8 / 99.1 97.3 / 82.0 / 91.4 96.9 / 81.0 / 90.1 92.2 / 53.6 / 73.9 92.8 / 58.4 / 76.0 94.8 / 68.8 / 82.8

Table 3: Performance of SimMark using Gemma3-4B model across paraphrasers and datasets (RealNews denoted
as RN, BookSum denoted as BS, and Reddit-TIFU denoted as TIFU). Each cell reports AUC ↑ / TP@FP=1% ↑ /
TP@FP=5% ↑ (↑: higher is better). The results demonstrate that SimMark maintains strong performance across
different datasets and paraphrasing conditions, highlighting its robustness and model-agnostic nature.

Non-Watermarked: I’ve always had an interest in colour. I like to paint and colour (9.77e-13). It’s relaxing and it makes you feel good (9.31e-13). But, 

what I haven’t done until now is paint on a piece of paper. I’m going to use different colours on my collages (8.89e-7). Using lots of colours gives a dynamic 

to the pieces (3.57e-14). I can also use a bit of white space to draw the eye (4.85e-6). You can see the other images in this project here (9.47e-9). I used four 

different papers for the collage (3.7e-7). Copying those images onto other pieces of paper gave me a few ideas (1.52e-11). Also, by using white space I was 

able to draw out more details without getting them all in the way (1.02e-7). I like making collages and I think that these are a great way to display them 

(0.005). I wanted to show different aspects of my painting (3.53e-8). I wanted to limit myself to only a few colours but I did want to limit myself to black and 

white (1.3e-7). I really love the colour black (8.24e-7). It always makes me think about nature. I like drawing sketches and I enjoy painting as well. 

𝒛𝒔𝒐𝒇𝒕 = 𝟎. 𝟏𝟒 <  𝟓. 𝟎𝟑𝟑

Cosine-SimMark: I’ve always had an interest in colour. I don’t know why. But I have a couple of tins of it, and that makes me happy. The first piece of art I 

bought was a painting by Japanese artist Kata-Yoko on canvas. It made me feel very happy. That is one of the things I want to do when I retire: to become an 

artist. My mother is still alive. She would be very pleased with all this. I think it is important for a young person to see these people and their work. I am 

always taking pictures of my family. My father is a retired teacher, so he is not around too much these days. But he keeps saying that he wants to watch me 

become an artist. That is really comforting. I want to develop my own style  There is no time like the present. Let’s hope I can make some money doing this. 

I am 60 now. There is no time like the present. I hope I can combine work and pleasure. The other day, I made sketches on paper.  

𝒛𝒔𝒐𝒇𝒕 =  𝟗. 𝟒𝟖 >  𝟓. 𝟎𝟑𝟑

Paraphrased cosine-SimMark: I've always been fascinated by color. I can't explain the reason behind my fascination with color (5.24e-13). But having a 

few cans of it brings me joy (0.15). The initial artwork I purchased was a canvas painting by the Japanese artist Kata-Yoko. It brought me a great sense of 

joy. One of my aspirations for retirement is to pursue a career as an artist. My mother remains living. She would be delighted with all of this. I believe it is 

crucial for a young individual to witness these individuals and their creations. I constantly capture memories of my family through photography (0.01). My 

father, who is a former educator, is not present often these days due to his retirement. However, he continues to express his desire to witness my journey as I 

pursue becoming an artist (0.48). That is truly reassuring. I aspire to cultivate a unique artistic expression. Now is the best time. I hope to be able to earn 

some income from pursuing this passion. I have reached the age of 60 (0.16). Now is the perfect moment. I hope to find a balance between my work and my 

passion. I hope to find a balance between my work and my passion. Recently, I created some drawings on paper. 

𝒛𝒔𝒐𝒇𝒕 = 𝟔. 𝟗𝟒 >  𝟓. 𝟎𝟑𝟑

Figure 5: Example of text generated with and without cosine-SimMark using RealNews dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows non-watermarked text, which fails to produce a significant detection signal (zsoft = 0.14 < 5.033, false
negative). The middle panel demonstrates text generated using SimMark with cosine similarity-based watermarking,
producing a strong detection signal (zsoft = 9.48 > 5.033). The bottom panel shows paraphrased watermarked
text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite semantic alterations (zsoft =
6.94 > 5.033).

F Ablation Study on Soft Count1074

Smoothness Factor K1075

In this section, we analyze the impact of the1076

smoothness factor K on the performance of Sim-1077

Mark. Recall that K controls the degree of smooth-1078

ness in the soft counting mechanism as defined in1079

Eq. (1). A larger K makes the soft counting func-1080

tion behave more like a step function, while smaller1081

values provide smoother transitions between valid1082

and invalid sentences. Table 4 presents the re-1083

sults of this ablation study, conducted on RealNews1084

dataset with Pegasus as the paraphraser. Metrics1085

include ROC-AUC, TP@FP=1%, and TP@FP=5%.1086

**PCA is applied.

Higher values indicate better performance across 1087

all metrics. The results demonstrate the following 1088

trends: 1089

• A smoothness factor of K = 250 provides 1090

a good trade-off, achieving strong perfor- 1091

mance both before and after paraphrasing at- 1092

tacks for both cosine-SimMark and Euclidean- 1093

SimMark. 1094

• For K =∞, corresponding to regular count- 1095

ing with a step function, the performance is 1096

slightly higher in the absence of paraphrasing 1097

but significantly degrades under paraphrasing 1098

attacks, highlighting the benefits of soft count- 1099

ing in adversarial scenarios. 1100

These findings confirm that soft counting loses a 1101
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Non-Watermarked: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith 

Granger. Mrs. Granger is in a very bad temper - she is angry that the children have not been fed, and she threatens to flush them out of the house if they are not let in by 

evening (6.1e-16). She leaves the children alone in the room (9.44e-13). Bagstock is astonished at the woman's anger, but he does not correct her (7.33e-16). She returns 

to her husband's side (3.97e-15). She complains about the children and their squalor (1.04e-20). She then asks the children to fetch some wine (4.88e-11). She threatens 

to call the police if they refuse (6.3e-17). Bagstock is dismayed by her behavior (2.24e-14). He asks her what she wants (1.13e-18). She threatens to call the police again 

if they do not let her see the children (2.62e-17). The children obey her, as does the dog (2.67e-17). The police arrive soon after, but they do not disturb the woman 

(6.06e-15). She leaves, and the others come up to Bagstock (1.29e-10). He tells them that the woman has been brought in by her husband's employer, who is now in 

town to meet with the children (7.74e-13). His name is Mr. B (2.68e-21). 

𝒛𝒔𝒐𝒇𝒕  = −𝟏. 𝟎𝟕 < 𝟒. 𝟏𝟑

Euclidean-SimMark: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith 

Granger. Bagstock and Dombey go to Mrs. Edith's to ask her advice about how to deal with a friend who is a dandy. They meet a dandy named Peter who is a friend of 

Bagstock's. He is a good-looking young man and a good friend of Bagstock's. The other members of the party are also good looking and friendly. Together they make a 

good crew for a good evening. They drink and talk and the conversation is merry. They discuss the parties they have attended and the people they know. They also 

discuss the various people they know in London. They find that everyone knows someone they know in London and they feel that they already know everyone in 

London. They decide to stay in England for a while and make friends with anyone they meet. The narrator comments that the British are in high spirits because they 

have known so many people in a short time. The narrator describes the various people they meet. Some of them turn out to be amorous and others make small talk with 

them. 

𝒛𝒔𝒐𝒇𝒕  =  𝟏𝟑. 𝟎𝟕 > 𝟒. 𝟏𝟑

Paraphrased Euclidean-SimMark: Not long after their arrival, Bagstock and Dombey unexpectedly encounter Mrs. Skewton, whom Bagstock knows, along with her 

daughter Mrs. Edith Granger who is recently widowed. Bagstock and Dombey visit Mrs. Edith seeking guidance on how to handle a fashionable friend. They encounter 

a dandy named Peter who is acquainted with Bagstock. He is an attractive young man who is in good terms with Bagstock. The rest of the guests at the party are 

attractive and amiable (0.001). Together they form a great team for a pleasant night out. They engage in jovial conversation while enjoying their drinks. They talk about 

the social gatherings they have been to and the acquaintances they have made. They also chat about the different acquaintances they have in the city of London. They 

discover that there is a network of connections among the people they know in London, making them feel like they are familiar with everyone in the city. They opt to 

extend their stay in England and befriend whoever crosses their path. The narrator observes that the British are feeling cheerful due to the connections they have rapidly 

made with many individuals. The narrator depicts the assortment of individuals they encounter. Some of the individuals show romantic interests while others engage in 

casual conversations with them. 

𝒛𝒔𝒐𝒇𝒕 =  𝟏𝟏. 𝟗𝟗 >  𝟒. 𝟏𝟑

Figure 6: Example of text generated with and without Euclidean-SimMark using BookSum dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows the non-watermarked text, which fails to produce a significant detection signal (zsoft = −1.07 < 4.13,
false negative). The middle panel demonstrates text generated using SimMark with Euclidean distance-based
watermarking, producing a strong detection signal (zsoft = 13.07 > 4.13). The bottom panel shows paraphrased
watermarked text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite semantic
alterations (zsoft = 11.99 > 4.13).

small amount of performance when no paraphras-1102

ing is applied, but it gains substantial robustness1103

under paraphrasing. For example, TP@FP=1% im-1104

proves by 1.6–2.3% for Pegasus-paraphrased text1105

when K = 250, and the improvement is likely to1106

be even more significant for stronger paraphrasers.1107

G Ablation Study on Impact of PCA1108

Table 5 presents the results of an ablation study1109

investigating the impact of applying PCA to reduce1110

the dimensionality of sentence embeddings across1111

RealNews, BookSum, and Reddit-TIFU datasets.1112

Metrics include ROC-AUC, and TP at fixed FP1113

rates (FP=1% and FP=5%). Higher values indi-1114

cate better performance across all metrics, with1115

PCA applied to embeddings to explore its effect on1116

detection accuracy and robustness.1117

The results reveal that the effect of PCA de-1118

pends on the choice of similarity measure. For1119

Euclidean distance-based SimMark, applying PCA1120

generally improves robustness against paraphras-1121

ing attacks across most datasets, except for the1122

BookSum dataset. This improvement likely arises1123

because reducing dimensionality helps mitigate1124

noise in the embeddings, especially after the para- 1125

phrasing attack. On the other hand, for cosine 1126

similarity-based SimMark, applying PCA reduces 1127

performance across all datasets. This reduction 1128

may be due to PCA altering the embeddings in 1129

a way that disrupts the angular relationships criti- 1130

cal for cosine similarity calculations. These find- 1131

ings highlight the importance of adapting PCA us- 1132

age based on the similarity measure employed to 1133

achieve optimal watermarking performance. 1134

H Finding an Optimal Interval 1135

Figure 7 shows the distribution of distances be- 1136

tween embeddings of consecutive sentences for 1137

both human and LLM-generated text, calculated 1138

on a sample of size 1000 from BookSum dataset 1139

(no PCA applied to the embeddings in this case). A 1140

small but noticeable distribution shift between the 1141

two can be observed. Based on this, the interval 1142

[0.4, 0.55] appears to be a reasonable choice for 1143

SimMark watermarking in this case. It is important 1144

to note that changes to the embedding represen- 1145

tations, such as applying PCA or using a differ- 1146

ent embedding model, will lead to altered distance 1147

15



Count Method K cosine-SimMark Paraphrased cosine-SimMark Euclidean-SimMark Paraphrased Euclidean-SimMark

Soft Count

50 99.0 / 89.2 / 97.2 98.6 / 78.5 / 96.5 99.4 / 91.2 / 98.1 96.9 / 49.3 / 87.9
150 99.6 / 95.7 / 98.8 99.2 / 88.7 / 98.2 99.8 / 97.6 / 99.3 97.3 / 67.8 / 90.4
250 99.7 / 96.9 / 98.8 99.2 / 90.3 / 98.2 99.8 / 98.5 / 99.2 97.2 / 72.3 / 88.9
350 99.7 / 96.9 / 98.9 99.2 / 90.4 / 98.1 99.8 / 98.5 / 99.4 97.2 / 71.1 / 88.9

Regular Count ∞ 99.7 / 97.2 / 99.1 99.1 / 88.7 / 97.6 99.8 / 98.5 / 99.7 97.0 / 70.0 / 88.2

Table 4: Ablation study on the smoothness factor K in soft counting (Eq. (1)) using the RealNews dataset, with
Pegasus as the paraphraser. Metrics reported include ROC-AUC ↑, TP@FP=1% ↑, and TP@FP=5% ↑, from left
to right. The last row (K = ∞) corresponds to regular counting with a step function in the interval [a, b]. A
smoothness factor of K = 250 provides a good balance between performance before and after paraphrase attacks
for both cosine-SimMark and Euclidean-SimMark. Notably, while soft counting slightly reduces performance in the
absence of paraphrasing, it demonstrates enhanced robustness against paraphrasing, yielding an increase across all
metrics for Pegasus paraphraser and potentially larger gains against more advanced paraphrasers.

Dataset Configuration No paraphrase Pegasus

R
ea

lN
ew

s Cosine-SimMark (No PCA) 99.7 / 96.9 / 98.8 99.2 / 90.3 / 98.2
Cosine-SimMark (PCA) 99.6 / 96.9 / 99.1 92.1 / 33.8 / 71.2

Euclidean-SimMark (No PCA) 99.4 / 92.6 / 98.4 90.5 / 19.7 / 58.0
Euclidean-SimMark (PCA) 99.8 / 98.5 / 99.2 97.2 / 72.3 / 88.9

B
oo

kS
um

Cosine-SimMark (No PCA) 99.8 / 98.8 / 99.5 99.5 / 93.3 / 98.5
Cosine-SimMark (PCA) 100 / 99.9 / 99.9 98.7 / 87.3 / 95.1

Euclidean-SimMark (No PCA) 100 / 100 / 100 98.8 / 82.6 / 94.9
Euclidean-SimMark (PCA) 99.9 / 99.3 / 99.5 97.4 / 69.8 / 88.6

R
ed

di
t-

T
IF

U Cosine-SimMark (No PCA) 99.1 / 96.3 / 97.6 98.9 / 94.5 / 96.4
Cosine-SimMark (PCA) 99.7 / 98.8 / 99.3 96.6 / 78.9 / 89.3

Euclidean-SimMark (No PCA) 99.6 / 98.1 / 99.1 96.7 / 72.6 / 90.0
Euclidean-SimMark (PCA) 99.8 / 98.7 / 99.2 99.0 / 94.7 / 97.6

Table 5: Ablation study on the impact of applying PCA
to embeddings across three datasets. Metrics reported
include ROC-AUC ↑, TP@FP=1% ↑, and TP@FP=5%↑,
respectively, from left to right. Higher values indi-
cate better performance across all metrics. For cosine-
SimMark, not applying PCA yields better results, while
for Euclidean-SimMark, applying PCA improves perfor-
mance except on the BookSum dataset.

distributions. Consequently, the interval must be1148

adjusted accordingly to maintain optimal perfor-1149

mance. For instance, if PCA is applied, the inter-1150

val [0.28, 0.36] is suitable. Similarly, if we plot1151

the figure for when cosine similarity is used in-1152

stead of Euclidean distance, intervals [0.81, 0.94]1153

and [0.68, 0.76] are good candidates for cases with1154

and without PCA, respectively. This variability in1155

the distance distributions may also strengthen the1156

algorithm’s resistance to reverse engineering. Se-1157

lecting the optimal interval [a, b] is a critical step in1158

achieving a robust and reliable watermarking with1159

SimMark. In general, selecting an optimal interval1160

involves balancing low FP rates, high TP rates, and1161

robustness against paraphrasing attacks. It is often1162

beneficial to choose intervals toward the tails of the1163

distribution rather than around the mean. Finally,1164

further exploration of dynamic interval selection1165

mechanisms could enhance SimMark’s robustness.1166
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Figure 7: Distribution of Euclidean distances between
embeddings of consecutive sentences for human-written
and LLM-generated text on BookSum dataset, gener-
ated using OPT-1.3B. The figure demonstrates that the
interval [0.4, 0.55] is a reasonable choice for Euclidean-
SimMark in this case, though it is not necessarily the
only viable option.

I Computing Threshold β for soft-z-test 1167

Recall that a text is classified as LLM-generated 1168

when zsoft > β, and as human-written otherwise. 1169

zsoft is the statistic used in the statistical test de- 1170

scribed in Eq. (2). To determine the threshold β 1171

that limits the FP rate to 1% or 5%, we first need 1172

to estimate p0, the probability that the consecutive 1173

embeddings’ similarity or distance falls within the 1174

predefined interval [a, b]. This value of p0 is a key 1175

component in calculating the zsoft, as it represents 1176

the proportion of valid sentences in human-written 1177

text under the given interval. p0 serves as an indica- 1178

tor of how frequently valid sentences are expected 1179

to occur in human-authored text. 1180

To compute p0, we analyze the distribution of 1181

similarities (or distances) using a histogram ap- 1182

proach, such as the one depicted in Figure 7. Specif- 1183

ically, we employ a binning technique to approx- 1184

imate the area under the curve of distribution in 1185

the interval [a, b]. The process involves dividing 1186

the entire range of distances or similarities into a 1187

fixed number of bins—1000 bins in our implemen- 1188
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tation. Each bin represents a small segment of the1189

range, and the histogram is used to calculate the1190

proportion of samples that fall within the interval1191

[a, b].1192
Mathematically, p0 is estimated as:1193

p0 =
Number of samples in bins corresponding to [a, b]

Size of the dataset
,1194

Once p0 is estimated, the detection threshold β1195

is determined by iterating over a range of possi-1196

ble values, typically from -10 to 10, to find the1197

one that results in the desired false positive rate.1198

Specifically, the threshold is chosen such that the1199

proportion of human-written texts misclassified as1200

LLM-generated matches the target FP rate (e.g.,1201

1% or 5%).1202

It is worth noting that the distribution of similar-1203

ities or distances may vary depending on different1204

factors such as embedding model, and similarity1205

measure (e.g., cosine or Euclidean). As a result, p01206

and therefore β are determined programmatically1207

during the detection to ensure reliable performance1208

of the watermarking algorithm.1209

J Analysis of Sampling Efficiency1210

The average number of samples required to gen-1211

erate a valid sentence is influenced by the chosen1212

interval [a, b]. To provide further insights into this1213

relationship, we estimated the area under the curve1214

(AUC) of the embedding similarity distribution for1215

an unwatermarked LLM. For instance, for the in-1216

terval [0.68, 0.76] (for cosine-SimMark), the esti-1217

mated AUC is approximately 0.194.1218

Using the mean of the geometric distribution,1219

which is given by 1
p , where p is the probability1220

of success (in this case, the probability of falling1221

within the interval), this translates to an expected1222

average of 1
0.194 ≈ 5.1 samples per valid sentence.1223

This estimate is on par with the experimental results1224

reported in the main paper. The AUC estimates1225

were computed using the binning technique, as1226

described in Appendix I.1227

This analysis underscores the importance of care-1228

fully selecting the interval [a, b], as narrower inter-1229

vals may increase the number of required samples,1230

leading to reduced sampling efficiency but better1231

performance, while broader intervals may compro-1232

mise the effectiveness of the watermark. By under-1233

standing the interplay between the interval choice1234

and sampling efficiency, we can better optimize1235

SimMark’s performance.1236

K Prompts Used with GPT-3.5-Turbo 1237

Table 6 presents the prompts we used to obtain 1238

paraphrases using GPT-3.5-Turbo (accessed via 1239

OpenAI API2) for both regular paraphrasing and 1240

more aggressive bigram paraphrasing attacks3. By 1241

using the same prompts as Hou et al. (2024a), we 1242

ensured that our results were directly comparable 1243

to those extracted from their paper, maintaining 1244

consistency in evaluation methodology.

Prompt for Regular Attack
Previous context: {context} \n Current
sentence to paraphrase: {sent}

Prompt for Bigram Attack
Previous context: {context} \n Paraphrase
in {num_beams} different ways and return a
numbered list: {sent}

Table 6: Prompts used to generate paraphrases with
GPT-3.5-Turbo for regular and bigram attacks. These
are the same prompts used by Hou et al. (2024a) for
consistent and comparable evaluation. Here, sent repre-
sents the target sentence to rephrase, context includes
all preceding sentences, and num_beams specifies the
number of paraphrases generated for the bigram attack.
A higher num_beams value indicates a more aggressive
attack. Following Hou et al. (2024a), we set it to 10 to
have 10 rephrases of each sentence.

1245

2https://platform.openai.com/docs/api-reference
3Used “gpt-3.5-turbo-16k” model.
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