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Abstract

The Theory of Mind (ToM) ability in multi-agent systems is crucial for coordinat-
ing cooperation and understanding communication. ToM involves the capacity to
reason about the mental states of other agents, encompassing their beliefs, desires,
intentions, and more. However, in modeling ToM, many existing works rely on
assumptions like rationality, which may not hold true in real-world scenarios. To
tackle this issue, we leverage the sequence modeling capability of Transformers in
the offline setting. In this paper, we (i) introduce the multi-agent decision trans-
former (MADT) for agent modeling and demonstrate its generalization ability
with new partners. Additionally, we (ii) propose a framework to enhance online
reinforcement learning (RL) policies with ToM modeling using MADT. We evalu-
ate our approach in the Overcooked-AI environment and illustrate its satisfactory
generalization ability, even with limited data.1

1 Introduction

Understanding and reasoning about the mental states of other agents are fundamental abilities for
human interaction. Even without explicit communication or a shared set of common knowledge, we
can infer others’ intentions, beliefs, and desires from their actions [11]. In multi-agent cooperation
scenarios, this capability, often referred to as theory-of-mind (ToM), becomes crucial for task
completion when confronted with challenges such as asymmetric information and uncoordinated
goals [26, 25].

To model ToM effectively, a key aspect is the modeling of teammates and opponents. One approach
involves assuming that agents are rational and utilize a utility function to approximate their behaviors
[10, 30]. However, this assumption may not be applicable to diverse agents with different preferences.
For instance, in a cooperative cooking game, an agent might prioritize serving a dish over cooking it,
leading to incorrect utility function estimation. Another approach is learning from data, as seen in
works such as [19, 29, 8, 12], but these methods often lack cooperation and generalization abilities.

Recent advancements in sequence modeling, particularly in natural language processing (NLP) with
large models like GPT-4 [15], have demonstrated surprising effectiveness. In reinforcement learning
(RL) settings, these techniques open new possibilities for offline RL, aiming to learn from a fixed
dataset without direct interaction with the environment. A notable method is the Decision Transformer

1See our code at https://github.com/namespacebilibili/ToMDT.
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(DT) [5], which exhibits strong performance and generalization across tasks with provided trajectory
data.

We posit that the sequence modeling ability of Transformers [27] is suitable for modeling teammates
or opponents in multi-agent systems, without relying on assumptions or shared knowledge. In
this study, we evaluate the capabilities of the multi-agent decision transformer in the well-known
Overcooked-AI environment—a cooperative cooking game where two agents collaborate to serve
dishes to customers [3]. This task, requiring coordinated actions and goals, serves as a robust testbed
for ToM modeling.

Our contributions are twofold:

• We introduce the Decision Transformer in multi-agent settings and demonstrate its general-
ization ability with new partners.

• To harness the sequence modeling capability of DT while mitigating its limitations, we
propose a framework to enhance online RL policies with ToM modeling using MADT.
This framework is compatible with any RL algorithm with value function estimation and
can be easily extended to other tasks. This framework highlights a promising direction for
combining offline and online RL methods in multi-agent settings.

The subsequent sections will address the following questions:

• Why do we prefer DT over other models for imitation learning?

• What architecture of DT is suitable for modeling ToM?

• How can DT be modified and integrated with online RL policy?

2 Preliminaries and Related Work

Multi-Agent Reinforcement Learning The problem of multi-agent reinforcement learning can
be formulated as a Multi-Agent Markov Decision Process (MMDP), represented by the tuple
⟨S,A,R, T, n, γ⟩, where S is the state space of n agents: S1 × S2 × · · · × Sn → S . Ai denotes the
action space of agent i, T : S ×A → S is the transition function, and R : S ×A → R is the reward
function. The goal of each agent is to maximize the long-term reward

∑
t γ

trt, where γ is the dis-
counting factor, and rit ∈ R is the reward of agent i at timestep t. Various works have been proposed
to address this problem, and a comprehensive formulation and review can be found in [35, 7, 38, 16].
In this work, our focus is primarily on the cooperative setting with implicit communication.

Offline Reinforcement Learning Offline RL is an RL paradigm aiming to learn from static and
previously collected data without interacting with the environment [18]. According to the taxonomy
in [18], there are mainly three types of offline RL methods: (i) learning a dynamics model, (ii)
learning a trajectory distribution, and (iii) directly learning a model-free policy. Our work falls into
the second category. Offline MARL remains a relatively unexplored area due to its high complexity.
For instance, Yang et al. [34] focus on alleviating the extrapolation error, Pan et al. [17] aim to avoid
falling into bad optima, and Wang and Zhan [28] attempt to utilize the underlying decomposable
problem structure for offline modeling.

Decision Transformers Transformers have exhibited remarkable capabilities to generalize across
a diverse range of tasks, spanning language modeling and text generation to image synthesis and
representation learning. Leveraging the Transformer’s ability, Decision Transformer (DT) [5] was
introduced to model an RL problem as a sequence prediction problem and has outperformed previous
offline RL methods in various environments. Trajectories τ are represented in the format:

τ = {R̂1, s1, a1, R̂2, s2, a2 · · · , R̂T , sT , aT },

where R̂T represents the returns-to-go at timestep t, i.e., R̂t =
∑T

t′=t rt′ . DT predicts at in an
auto-regressive manner for the current action but does not predict the future state or returns-to-
go. Numerous works propose algorithms and architectures building upon DT, such as Prompt DT
[31], Online DT [37], Waypoint DT [1], and others. Nevertheless, DT faces challenges, including
suboptimal data and a lack of stitching ability. In [32], DT is combined with Q-learning to address
this issue. In multi-agent settings, Meng et al. [13] introduced DT to multi-agent settings, proposing
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Figure 1: The above model is the architecture of MADT. Returns-to-go, actions of all agents, and states are fed
into a GPT-2 architecture as tokens to autoregressively predict actions and returns-to-go. It can be viewed as a
ToM policy. To combine with online RL policy, we modify the returns-to-go with the value function estimation
and use the RL policy as a prior for the ToM policy.

a novel architecture of multi-agent decision transformer (MADT). Their trajectory formulation is
τi = {s1, oi1, ai1, s2, oi2, ai2, · · · , sT , oiT , aiT }, where oit is the individual observation of agent i at
timestep t. However, they do not explicitly model other agents’ behaviors, and the absence of returns-
to-go information makes it no different from imitation learning. In our work, we present a different
MADT architecture from [13], demonstrating that predicting returns-to-go makes it more suitable to
combine with online RL policy.

Theory of Mind Modeling Theory of Mind has been extensively studied in psychology and
cognitive science, revealing that even 6-month-old infants can understand others’ intentions and
beliefs from their actions. Formally, ToM has been modeled as a Bayesian inference problem
(Bayesian ToM, BToM) [2], i.e.,

P (m|a) ∝ P (a|m)P (m), (1)
where m denotes the mental state of the other agent, and a refers to its actions. The posterior
probability P (m|a) in Eq. (1) is highly relevant to opponent/teammate modeling in multi-agent
systems. Two main approaches are employed to model other agents: one leverages the rationality
assumption, and the other learns from data or interactions. The first approach assumes that other
agents act to maximize their utility function, expressed as:

P (a|m) ∝ exp {βU(a,m)} . (2)
Under this assumption, Lim et al. [10], Wu et al. [30] use BToM for subgoal coordination and test
their capability with human partners. However, this assumption cannot be universally applied to all
types of agents, and the utility function needs to be hand-crafted or learned via RL or other methods.
The second approach, as seen in Rabinowitz et al. [19], utilizes meta-learning to predict the agent’s
behavior using the current trajectory. Unlike our work, it cannot model a general theory of mind and
lacks interaction ability. Wen et al. [29], He et al. [8], Lowe et al. [12] model other agents in online
approaches, which cannot be applied to ad-hoc agents. Our work draws inspiration from [33] but
avoids explicitly learning the transition function due to the high dimensionality of the state space and
considers long horizons.

3 Multi-Agent Decision Transformer for First-order ToM Modeling

Here, we aim to build a first-order Theory of Mind (ToM) model for multi-agent systems, focusing
on modeling other agents and predicting how an action taken by us will affect the behavior of the
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other agent. As depicted in Fig. 1, the model predicts the action distribution of other agents at each
timestep given the past trajectory. For simplicity, we initially consider a two-agent setting, but the
model can be easily extended to more agents.

3.1 MADT Architecture

For the ToM modeling problem, we choose the architecture of the decision transformer as the upper
part of Fig. 1, which differs from [13]. Our architecture is based on GPT-2 [20], predicting the next
token autoregressively given past tokens. The causal transformer encodes agent i’s current trajectory
τ ti at timestep t and generates output tokens according to our needs. The trajectory formulation
satisfies the lowest need of ToM modeling, with R̂ conditioning action generation. We predict R̂ to
guide the ToM policy, which will be discussed in the next section. For state tokens, we deprecate
the global shared state in Multi-Agent Reinforcement Learning (MARL) and use the individual
observation si for simplicity. We feed the action tokens of all agents into the model. Agent i’s own
action ai is predicted for a Decision Transformer (DT) policy. Predicting other agents’ actions a−i

t+1

is equivalent to modeling transition probability T (sit+1|τ ti , ait+1) as in [33]. Formally, the trajectory
of agent i is given by:

τ ti = {R̂1, s
i
1, a

i
1, a

−i
1 , R̂2, s

i
2, a

i
2, a

−i
2 , · · · , R̂t, s

i
t, a

i
t, a

−i
t }.

To embed these tokens, we use embedding matrices for ai and a−i and a linear layer for R̂ and
si. For positional encoding, we use the timestep encoding method described in [14] and add a role
embedding to distinguish different agents.

3.2 MADT Training

In the training process, the learning objective is to reconstruct trajectories in the offline datasets in a
supervised manner. The trajectory is masked to predict the token at timestep t only using the previous
history. Mathematically, the autoregressive prediction process is defined as:

R̂t+1 ∼ pR(R̂t+1|τ ti ), ait+1 ∼ pai
(ait+1|τ ti , R̂t+1, s

i
t+1), a

−i
t+1 ∼ pa−i

(a−i
t+1|τ ti , R̂t+1, s

i
t+1). (3)

The prediction targets include ai, a−i, and R̂, and the loss function is defined as:

L = αLai + βLa−i + ηLR. (4)

We employ cross-entropy loss for action prediction and mean squared error for returns-to-go pre-
diction. The hyperparameters α, β, η are used to balance the loss of different targets (details in
Appendix A.1).

4 Combining MADT with Online RL Policy

Though MADT demonstrates good performance, it still has limitations. As stated in [32], DT lacks
the ability to stitch trajectories of suboptimal data, while online RL algorithms do not have the same
limitation. In this section, we propose a framework to combine MADT with online RL policy to
leverage their advantages and mitigate drawbacks. Any online RL algorithm with value function
estimation can be used in our framework.

4.1 MADT as a ToM Policy

Inspired by [33], the ToM policy can be expressed as

πToM(ait|τ it−1, V̂t, s
i
t) ∝ exp

 1

β

∑
a−i
t

pa−i(a
−i
t |τ t−1

i , V̂t, s
i
t)

∑
R̂t+1

pR(R̂t+1|τ ti )[V̂t − (1− γ)R̂t+1]

 .

(5)

To address the issue of suboptimal data, which may lead to negative value estimation in our ex-
periments, we modify the returns-to-go with the value function estimation at each timestep, i.e.,
V̂t = max{R̂t, V (sit)}, similar to [32]. V (sit) is given by a trained RL policy, and we relabel the
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returns-to-go each timestep. In the above equation, pa−i(a
−i
t |τ t−1

i , V̂t, s
i
t) is the first-order ToM

modeling term. To avoid the need for obtaining st+1
i as in [33], we use the predicted return-to-go

R̂t+1, which estimates the value of the next state, since V (st+1) = Eπ[R̂t+1]. Eq. (7) is an estimation
of Q(sti, a

t
i), because

Q(sti, a
t
i) = r(sti, a

t
i) + γ

∑
st+1
i

V π(st+1
i )

≈ R̂t − R̂t+1 + γR̂t+1 = R̂t − (1− γ)R̂t+1.

(6)

β controls the temperature of the Boltzmann distribution, meaning πToM becomes deterministic as
β → 0 and random as β → ∞. To calculate the ToM policy, methods like Monte Carlo sampling can
be used, but for our experiments, we use the greedy policy for a−i

t and only sample R̂t+1 once. For
the choice of γ and β, we do ablation tests and report the best hyperparameters in Appendix A.1.

4.2 Using RL Policy as a Prior

Online RL algorithms like self-play can hardly coordinate with new partners [3], while decision
transformers seldom outperform the best offline data. To leverage their advantages and mitigate
drawbacks, we combine them as follows:

π(ait|τ it−1, V̂t, s
i
t) ∝ πRL(a

i
t|τ it−1, s

i
t) · πToM(ait|τ it−1, V̂t, s

i
t). (7)

The reason why we use the product of the two policies can be seen in [33] similarly. Here πRL
can be considered a prior Pr(ait|τ it−1, s

i
t) and πToM is equivalent to Pr(best reward|ait, τ it−1, s

i
t) by

definition. Combining them together we get the posterior probability:

Pr(ait|best reward, τ it−1, s
i
t) ∝ Pr(ait|τ it−1, s

i
t) · Pr(best reward|ait, τ it−1, s

i
t), (8)

which means the action distribution to get best reward in the long run. It is worth noting that the
intuition here is similar to the usage of return-to-go in DT, which is to guide the policy to the optimal
trajectory.

5 Experiments

In this section, we perform experiments to evaluate the performance of MADT and our framework.
First, we test the teammate modeling ability of MADT comparing with the imitation learning model in
[3]. Second, we test the performance of imitation learning, MADT, RL algorithm and the combination
framework paired with a human proxy model.

5.1 Environment and Dataset

We set up our experiments in the Overcooked-AI environment [3]. It is a cooperative cooking game
that requires two agents to work together to serve dishes to customers. The environment has been
considered a good testbed for multi-agent cooperation and ad-hoc teammate modeling [30, 4, 9, 6, 21].
It contains 5 layouts and the details can be found in Appendix A.1.

We adopt the dataset provided by [3] which contains 126 trajectories as training data and 45 trajecto-
ries as test data for 5 minigames. It should be noticed that the data amount is very small in comparison
to the datasets used in [5, 13, 14] and the trajectories are not optimal.2

5.2 Testing Teammate Modeling Ability of MADT

Though some works argue that transformer is not crucial for sequence modeling task [24], we argue
that the capacity of transformer is important for generalization ability to new partners. We choose
the behavior cloning model (BC model) in [3] but train it on the whole dataset. It should be noted
that the MADT model is trained on the entire dataset. According to [3], a human proxy model can
be obtained by imitation learning on the testing human data. The prediction accuracy of the human
proxy model’s behavior can be used to evaluate the ToM modeling ability of the model. For each

2This can be seen by the dataset-building code in our codebase.
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Figure 2: Prediction accuracies of the human proxy model (HP)’s behavior paired with MADT and BC model
for 5 seeds.The hashed bars show the results when the roles of the two agents are swapped.Due to the poor
performance of the BC model, whose prediction outputs are always STAY, we show the masked results which
mask the STAY action.
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Figure 3: Average rewards of agents paired with the human proxy model, with standard error over 5 runs.

minigame, we separately pair the human proxy model with the MADT and BC model, and report the
prediction accuracy in Fig. 2. Even though the BC model’s prediction accuracy is higher, we find
this is due to the fact that the BC model acts poorly paired with the human proxy model, thus always
predicting the action STAY, which can be seen in Fig. 3. We mask the STAY action and calculate the
remaining accuracy.

The results show that for unmasked actions, MADT has a higher prediction accuracy than the BC
model when paired with new partners, demonstrating its capability for sequence modeling. Though
in some layouts the prediction accuracy of MADT is relatively low, we argue this is owned to the fact
that the actions are equivalent in most cases.

5.3 Testing the Combination Framework

To test the performance of our framework, we pair it again with the human proxy model and compare
it with the BC model, MADT, PPO [23] and MEP [36]. MEP is a population-based training method to
avoid distributional shift when paired with unencountered partners. The PPO algorithm is trained in
self-play as the RL algorithm according to [3]. Following the settings in [3], we count the cumulative
rewards over 400 timesteps in all the 5 layouts.

The results can be seen in Fig. 3. In CRAMPED ROOM, ASYMMETRIC ADVANTAGES, and COORDI-
NATION RINGS, our framework (ToM+HP) outperforms the other baselines except for MEP. For the
first order of agent pairs, we find that the performance of our method outperforms all the baselines on
CRAMPED ROOM and ASYMMETRIC ADVANTAGES. And in particular, we find the results of our
framework perform significantly better than the baselines on ASYMMETRIC ADVANTAGES which
is a challenging layout for agents in asymmetric roles. In this layout, MADT outperforms the PPO
algorithm, which may help explain the significant improvement of our framework. However, our
framework performs badly on the counter circuit layout and even the DT model performs better than
our framework. This is potentially due to the poor performance of self-play PPO on this layout, which
can be seen in Fig. 3.

6
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Overall, our framework demonstrates quite satisfying results with ad-hoc teammates compared to the
baselines.

6 Discussion and Conclusion

In this work, we introduce multi-agent decision transformer (MADT) for first-order ToM modeling
and propose a framework to combine it with an online RL policy. In the Overcooked-AI environment,
we show that MADT has better opponent modeling ability than the LSTM-based BC model. We also
show that our framework can improve the performance of the online RL policy and MADT.

Due to the limited time and computational resources, we only test our method in the Overcooked-AI
environment paired with the human proxy model. While these initial results are quite promising,
further evaluation is needed to fully demonstrate the capabilities of our proposed approach.

For future work, we plan to test our method in other complex multi-agent environments such as
StarCraft [22], which provides a large dataset for training and evaluation. Testing in additional
environments will allow us to better analyze the generalization ability of MADT across different
tasks and teammates.

Furthermore, experiments with a wider variety of agent types beyond the human proxy model would
be valuable, including both artificial agents with different capabilities and behaviors as well as studies
with real human teammates. Human experiments are especially important to truly validate the benefits
of MADT’s teammate modeling for human-AI cooperation.

In addition, we currently only demonstrate first-order ToM modeling in MADT using implicit mental
state representation. Incorporating more advanced hierarchical ToM frameworks that model higher-
order recursive reasoning is a promising direction for enabling deeper multi-agent coordination. There
remain many exciting opportunities to build upon this work to create more flexible, generalizable
multi-agent learning techniques. We look forward to pursuing these extensions in future research.
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A Appendix

A.1 Implementation Details

The Overcooked-AI environment contains 5 minigames with the following names: cramped room,
asymmetric advantages, coordination rings, forced coordination, and counter circuit. The action space
for each agent consists of: UP, DOWN, LEFT, RIGHT, STAY, INTERACTION. For the state space, we
use the self-centered representation provided by the environment, which is a 96-dimensional vector.
The high dimensionality of the state space makes modeling the transition function challenging.

For the multi-agent decision transformer, we utilize the GPT-2 architecture [20]. The action tokens
are encoded by embedding matrices, while the returns-to-go and state tokens are encoded by linear
layers. The prediction heads are linear layers. The detailed model hyperparameters are provided
in Table 1. For the training process, we use a weighted cross-entropy loss for action prediction to
account for the imbalance in the action distribution. The weights are calculated by counting the
number of each action ai in the training data, with the weight of each action being #(ai)

max#(ai)
. The

training hyperparameters are shown in Table 2. The definitions of α, β, η can be found in Equation 4.

We use the same settings as [3] for the human proxy model and RL algorithm. For our combination
framework, we choose the discounting factor γ = 0.9 and temperature values β = [2, 2, 2, 1, 1] for
the corresponding minigames after performing ablation experiments.

Table 1: Model hyperparameters of MADT.

Hyperparameter Value

Embedding size 128
Number of layers of GPT-2 3
Number of heads of GPT-2 1
Max Episode Length 1250
Context Length 10
Residual Dropout 0.1
Attention Dropout 0.1

s

Table 2: Training hyperparameters of MADT.

Hyperparameter Value

Batch Size 256
Learning Rate 5e− 4
Weight Decay 0.01
Number of Epochs 20
α, β, η [30, 30, 1]

A.2 Contributions

All authors contributed significantly throughout all stages of this research, including active discussion
and collaboration. For the foundational work, Zhancun and Xizhi jointly led the literature review,
topic selection, method proposal, and experiment design. Zhancun focused on implementing the
codebase and conducting the experiments, while Xizhi proposed ideas on refining the method and
experiments. For the paper writing, Zhancun wrote the initial draft, then Xizhi thoroughly polished
the full paper. The authors worked closely together in an integrated way on all aspects of the research,
each leveraging their distinct perspectives and strengths to push this challenging problem forward.
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