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Abstract
In breast cancer screening, radiologists make the diagnosis based on images that are

taken from two angles. Inspired by this, we seek to improve the performance of deep neural
networks applied to this task by encouraging the model to use information from both views
of the breast. First, we took a closer look at the training process and observed an imbalance
between learning from the two views. In particular, we observed that layers processing one
of the views have parameters with larger gradients in magnitude, and contribute more to
the overall loss reduction. Next, we tested several methods targeted at utilizing both views
more equally in training. We found that using the same weights to process both views,
or using modality dropout, leads to a boost in performance. Looking forward, our results
indicate improving learning dynamics as a promising avenue for improving utilization of
multiple views in deep neural networks for medical diagnosis.
Keywords: Breast cancer screening, deep neural networks, multimodal learning, multiview
learning.

1. Introduction

Breast cancer screening decreases mortality by enabling early detection of cancer (Autier
et al., 2012). In the screening process using a mammogram, two views of the breast are
taken: bilateral craniocaudal (CC) and mediolateral oblique (MLO) (Figure 1). These two
views capture the breasts from above and from the side, respectively. Using both views in
breast cancer screening has demonstrated to be essential to make an accurate diagnosis (Gur
et al., 2009). In practice, radiologists usually consider a finding more plausible if it is visible
in both views.

Deep neural networks (DNNs) have shown promise in aiding interpretation of breast
cancer screening exams (Kyono et al., 2019; Shen et al., 2020; Schaffter et al., 2020; Geras
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et al., 2019; Wu et al., 2018). However, despite the critical importance of utilizing informa-
tion contained in both views, relatively little attention has been paid to this aspect in deep
learning-based approaches to breast cancer screening. Importantly, it is not self-evident that
DNNs utilize information contained in both views, even when they are designed to process
both CC and MLO views simultaneously, such as the late-fused multiview networks trained
end-to-end and adopted in literature (Wu et al., 2019a; McKinney et al., 2020; Geras et al.,
2017). In a related problem of learning using multimodal data, e.g. speech and sound, it is
a common phenomenon that DNNs fail to utilize information in all modalities (Wang et al.,
2019).

Figure 1: The standard screening mammog-
raphy views. Left: bilateral craniocaudal
(CC), right: mediolateral oblique (MLO).

Inspired by how radiologists read mammo-
gram images, we seek to improve DNNs for
this task by encouraging them to utilize in-
formation in both views. Our first contribu-
tion is a study on the training dynamics of
a multiview network. In particular, we show
that in the multiview network, the parts of the
model operating on the MLO view contribute
more to the overall loss reduction than the
other parts operating on the CC view. Mean-
while, significantly larger gradient norms are
observed for the parameters of the layers only
associated with the MLO view throughout
training. We hypothesize that this causes a
form of overfitting, where the model learns to
rely too strongly on the MLO view.

Our second contribution consists of comparing different methods for utilizing both views,
inspired by the literature on multimodal learning. We observe that two different methods,
including modality dropout (Neverova et al., 2015), improve performance of the above stud-
ied multiview network.

2. Related work

Multimodal learning aims to build models that can process, and relate information from
multiple input modalities (Baltrušaitis et al., 2018). Typical applications include combin-
ing visual and audio signals for content understanding (Neverova et al., 2015), and object
recognition from visual observations of multiple views, sometimes also called multiview learn-
ing (Jia et al., 2019; Su et al., 2015; Wang et al., 2015).

Attempts to utilize multiple views in breast cancer screening with DNNs can be traced
back to Carneiro et al. (2015), who trained models on MLO and CC views separately,
then used the features from the last fully connected layer to train a multinomial logistic
regression model. Motivated by Su et al. (2015), end-to-end trained multiview DNNs were
proposed by Geras et al. (2017). Recently, late-fused multiview DNNs are commonly adopted
in research on breast cancer screening, including experiments with other techniques from
multimodal learning literature, such as pretraining (Carneiro et al., 2017; Kyono et al.,
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2019), weight sharing (McKinney et al., 2020; Wu et al., 2019a) and attention (Shachor
et al., 2019).

Despite the trend of building networks that learn from multiple views jointly end-to-end,
it is not self-evident that multiview DNNs utilize information in both views optimally for
the breast cancer screening task. A recent investigation shows that cancers visible only in
one view are more often seen in the CC view than the MLO view (Korhonen et al., 2019). It
is still not clear how this difference between the two views influences the performance of the
multiview DNNs. As pointed out by Wang et al. (2019), training with multiple modalities
(views) jointly under a single optimization strategy can be sub-optimal when models overfit
and generalize at different rates in learning from different modalities. Wu et al. (2019a)
mentions that a DNN that processes both views of the breast separately outperforms a DNN
that processes them simultaneously. However, in breast cancer screening, radiologists make
decisions by fusing information from both the MLO and the CC view. Motivated by the
importance of using both views in the clinical practice, we delve deeper into understanding
and improving using both views in deep learning for breast cancer screening.

3. Data and task

CC MLO

ResNet-22

FC layer
256->512

FC layer 
256->512

Output layer

Element-wise sum

ResNet-22

GAP GAPGAP

Figure 2: The network architecture
used in the paper. Both views are
processed by a separate ResNet-22
column, global average pooling layer
(shorten as GAP), and finally a fully
connected layer. The two resulting
representations, hcc and hmlo, are
fused (hcc + hmlo) as input to the
output layer, consisting of two bi-
nary classifiers predicting the pres-
ence or absence of malignant and be-
nign findings.

We conducted experiments with a dataset of 229,426
breast cancer exams (1,001,093 images) from 141,472
patients (Wu et al., 2019b). In each exam, there are
images for both left and right breasts. We treat each
breast as an instance and do not differentiate between
left and right breast in training and inference. Across
the entire data set (458,852 breasts), malignant find-
ings were present in 985 breasts (0.21%) and benign
findings in 5,556 breasts (1.22%). All findings were
confirmed by at least one biopsy performed within
120 days of the screening mammogram. Images for
the two views (CC and MLO) of the same breast
share the same label.

The original mammogram images are cropped
into the shape of 2677×1942 pixels for the CC view
and of 2974×1748 pixels for the MLO view, before
being passed as inputs to the model. Besides the
mammogram image, we provide two “heatmaps” as
extra channels in the inputs to the model. These
“heatmaps” are generated by a classifier trained with
small mammogram patches, and are used in the
“image-and-heatmaps” model in Wu et al. (2019a).

We split the data into training, validation, and
test sets. We trained the model for two tasks: pre-
dicting the absence/presence of malignant and benign
findings in the breast. Following Wu et al. (2019a),
we use benign prediction task as an auxiliary task

3



Improving the Ability of Deep Neural Networks to Use Information from Multiple Views

to regularize the model and only consider the perfor-
mance on the malignancy detection task during model selection and evaluation.

4. Experimental setup

We use an architecture similar to what was in Wu et al. (2019a), shown in Figure 2. Each
view is processed by a separate ResNet-22 column1, followed by global average pooling, and
a fully connected layer that maps the 256-dimension vector into a 512-dimension representa-
tion. The two resulting representations (hcc and hmlo) are merged in the end by element-wise
summation as hcc + hmlo. Predictions for benign and malignant tasks are made by the out-
put layer consisting of two independent binary classifiers operating on the above merged
representation. The model is trained end-to-end to minimize the sum of the two cross en-
tropy losses, denoted as L. This is a common practice in multimodal learning called late
fusion (Ngiam et al., 2011; Baltrušaitis et al., 2018). We name this model as “Joint ResNet”
and conduct analysis to understand possible challenges in utilizing multiple views with this
architecture.

The training procedure largely follows Wu et al. (2019a). We downsample the negative
class to balance the distribution in each training epoch. Specifically, samples used in each
training epoch consist of: 1) all exams with followup biopsy records; 2) same number of
exams without any biopsy record, randomly sampled from the training set. We use the
Adam optimizer (Kingma and Ba, 2015) with a minibatch size of four. We use AUC to
measure models’ performance for malignancy prediction. We save the best checkpoint of the
model according to the AUC it achieves on the validation set and report the AUC it reaches
on the test set.

5. What makes using both views of the breast difficult?

Our goal is to improve the ability of our model to utilize information in both views of the
breast. Unfortunately, naive approaches to using multiple views in breast or lung cancer
detection networks tend to work poorly (Wu et al., 2019a; Bertrand et al., 2019). In Wu
et al. (2019a) the best performing model simply averages predictions made based on separate
views. For lung cancer detection, Bertrand et al. (2019) concludes that “using the PA [frontal
posteroanterior] and lateral views jointly doesn’t trivially lead to an increase in performance
but suggest further investigation”.

What makes using both views of the breast difficult? As a first step we must try to
diagnose the problem. We took inspiration from multimodal learning, a closely related
setting where the input to the network consists of two or more modalities (e.g. sound and
speech). Wang et al. (2019) have noticed that multimodal learning is challenging due to
the fact that parts of the network associated with different modalities tend to train with
different speeds. This might lead to a form of overfitting where the output of the network
is determined mostly by one of the modalities.

1. ResNet-22 is a varaint of ResNet (He et al., 2016), proposed in Wu et al. (2019a) to handle high resolution
images specifically.
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(a) CC model (b) MLO model

Figure 3: The training (blue) and the validation AUC (orange) of DNNs using only the CC
view (a), and DNNs using only the MLO view (b). Models using only the MLO view overfit
earlier and achieve worse generalization performance on the validation set. The shaded areas
represent a standard deviation across ten models trained using different learning rates. The
AUC on the training set is lower than the AUC on the validation set because we downsample
negative examples in the training set Experimental setup.

To investigate if a similar phenomenon occurs in our setting, for each of the views (CC
and MLO), we trained two uni-view counterparts of the above multiview model consisting
of the ResNet-22 column, the fully connected layer, and the output layer.

We trained 10 models for each view with learning rates sampled from [10−5, 3× 10−3] at
logarithm scale. Figure 3 shows the learning curves for both groups of models. In general, the
MLO models achieve their best validation AUC earlier than the CC models. Furthermore,
the best performing CC model achieves an AUC of 0.864 on the test set while the AUC
achieved by the MLO model is 0.789.

Related observations were made in Wang et al. (2019) in the context of multimodal
learning. Similarly, our results show that the information contained by the two views is
different in the sense that it leads to different learning speeds and different final performances
of the models.

Ultimately, we are interested in understanding what makes training a model using both
views difficult. To investigate the training of the multiview DNN (see Figure 2), we grouped
parameters of the model into three parts, θshared from the output layer, θCC and θMLO from
each ResNet-22, and the following fully connected layer. We investigated the importance of
each group of weights for the overall training dynamics with two metrics.

First, we studied the Euclidean norms of mini-batch gradients (gradient norm) for θCC

and θMLO, i.e. ‖ ∂L
∂θCC ‖ and ‖ ∂L

∂θMLO ‖, respectively. Gradient norm has been related to
the training speed in the literature. For example, the Adam optimizer (Kingma and Ba,
2015) utilizes gradient norm to regulate the magnitude of the updating steps. In multitask
learning, Chen et al. (2017) use gradient norm to equalize training speed between different
tasks. Figure 4(a) shows that ‖ ∂L

∂θMLO ‖ is larger than ‖ ∂L
∂θCC ‖ for most of training iterations.

This suggests that the MLO column is more important for the overall loss reduction.
To further investigate this we use Loss Change Allocation (LCA) (Lan et al., 2019). LCA

quantifies how much each parameter contributes to the overall loss reduction. Summing the
scalars computed with LCA over all elements of θMLO and θCC , we can compare their
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relative importance for the overall loss reduction. We performed LCA for the first 5 epochs
(we only looked at the early phase of training due to a large computational cost of LCA)
and reported the cumulative loss changes contributed by θCC and θMLO in Figure 4(b).
Analogously to the gradient norm, we observed that loss change contribution measured with
LCA for θMLO is significantly higher than for θCC .

(a) (b)

Figure 4: Figure (a) compares the gradient norms of parameters between the MLO (orange)
and CC (blue) columns. Figure (b) shows contributions to loss change measured using Loss
Change Allocation (LCA) for both sets of parameters. The figures show that the weights
of the MLO column have a larger gradient norm for most of training, and contribute over
50% of the loss reduction in the first 5 epochs. These two observations suggest a form of
overfitting: the output of the model depends too strongly on the MLO view.

To summarize, we observed that when trained separately, a model that uses only the
MLO view trains faster at the beginning and overfits faster. Consistently, we observed a
larger gradient norm and a larger contribution to loss change for the MLO column in the
multiview model. Thus, this training procedure seems to be sub-optimal considering that
when trained separately the CC model achieves better generalization. Assuming similar
observations hold, generally, we hypothesise that the difference in training speed encourages
a form of overfitting where output of the model depends too strongly on only one of the
views, and it is a key factor contributing to the difficulty of using multiple views in deep
neural networks applied to medical diagnosis.

6. Improving utilizing information in both views of the breast

Building on the intuition developed in the previous section, in this section we compare
several methods for improving the ability of the model to utilize information in both views.
We begin by describing the tested methods, which we organise into two groups: model
variants, and regularization techniques. We treat Joint ResNet model shown in Figure 2 as
the baseline.

6.1. Model variants

We tested the following two variants of Joint ResNet.
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Shared ResNet Perhaps the most natural way to encourage using information in both of
the views is to share weights between the MLO and the CC columns. Specifically, we used a
single ResNet operating on MLO and CC view to generate representations for the two fully
connected layers. A related approach was used by McKinney et al. (2020). We will refer to
this model as “Shared ResNet”.

Split ResNet We also tested a similar approach to one used in Wu et al. (2019a) to
process information from the MLO and the CC view. We trained two uni-view models
simultaneously, one for each of the views, with a loss calculated on the averaged output
predictions of the two models. We will refer to this model as “Split ResNet”.

6.2. Regularizers

We tested the following four regularization methods. While most of these methods can be
applied in conjunction with any model, for simplicity we focus on studying the effect of
applying them to the Joint ResNet.

Pretraining A common approach in the multimodal learning literature is to apply the
transfer learning technique (Neverova et al., 2015; Kyono et al., 2019). It consists of two
stages: 1) pretraining, where we train separate models for each of the modalities; 2) fine-
tuning, where we initialize each column in the multiview network with the weights from the
corresponding uni-view model, and further train the multiview network with all modalities.
Here we considered two variants: fine-tuning the entire model, and fine-tuning only the
output layer. We find the latter to perform better and use only this variant in the rest of
the paper. We will refer to this regularizer as “Pretraining”.

Modality Dropout Modality Dropout is a technique developed for multimodal learn-
ing (Neverova et al., 2015). To discourage the model from relying too strongly on one of the
modalities, Neverova et al. (2015) proposes to use a dropout mask such that it completely
masks input coming from one of the modalities. To adapt it to our model, we dropped the
512 dimensional output of each of the two FC layers randomly, before passing it to the fusion
(summation) module. We considered the dropout rate of each view as a hyperparameter
and sample it independently and uniformly from [0, 1) for each view.

Split Learning Rates Inspired by our analysis, we investigated another approach. We
proposed to use separate learning rates for different components of the model to counteract
the differences in training speed between the columns. We will refer to this modification as
“Split Learning Rates”.

More precisely, we split the Joint ResNet in the same way as in the above section (What
makes using both views of the breast difficult?) into three components: θshared, θCC and
θMLO. We sampled numbers independently and set them as learning rates for the resulting
components.

Gradient Blending Finally, we investigated “Gradient blending”, a technique proposed
recently by Wang et al. (2019) for multimodal learning. Based on similar observations to
the one we made in the previous section, they propose to calibrate training speed across
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modalities through a weighted loss of the form

L =
∑
i

wiLi + wjointLjoint,

where Li is the loss of a classifier that only uses input from one input modality, Ljoint is the
loss of a classifier that uses all modalities, and wi and wjoint are scalar weights. Adapting
their approach to our setting we arrive at

L = wccLcc + wmloLmlo + wjointLjoint,

where Ljoint is the original loss used while the other two terms, Lcc,Lmlo, are two additional
losses that we compute by adding two additional heads that read features outputted by the
two ResNet-22 columns. Each head consists of a fully connected layer, and an output layer.

To tune wmlo and wcc we followed a similar procedure to Wang et al. (2019), which is to
estimate the training speed of each model trained separately with each of the modalities as
well as the joint model. Due to the class imbalance in our dataset, we measured the speed of
overfitting and generalization based on cross-entropy loss and AUC, rather than accuracy.
We have included more details in Appendix C.

Other experimental details We trained each model for 100 epochs and three repeti-
tions to regulate the noise introduced by random initialization and randomization in data
sampling. For models in the “Modality Dropout” group, we extended the training to 150
epochs given the slower convergence speeds. For “Pretraining” experiments, in which we
freeze the two ResNets, we shortened the training to 50 epochs.

We conducted a moderate hyperparameter tuning for each group to ensure the fairness
of the comparison. Details on the model selection are presented in the Appendix B.

We reported the test performance of the model which achieved the highest validation
performance (averaged over the three repetitions) within each group. Following Wu et al.
(2019a), during testing we augmented each example 10 times, by sampling the size and the
location of the cropping window, and reported the AUC calculated with the model’s average
prediction of the 10 runs. The overall inference time for a model is about 8.6 hours on a
single NVIDIA Tesla V100 GPU.

6.3. Results

Comparing different architectural changes Table 1 summarizes the results for the
different architectural variations we considered as well as the uni-view models. For each
group, we report the results from a single network (mean and standard deviation across three
repetitions), and from an ensemble of the three repetitions, denoted as “3x ensemble”. We
can draw two main conclusions from these results. First, Split ResNet performs worse than
uni-view model trained on CC views only. It further corroborates that using information in
both views is challenging and not all joint training strategies will lead to a success.

Second, sharing weights between the two ResNet achieves the best AUC of 0.879 com-
pared to the AUC of 0.872 achieved by Joint ResNet. This serves as an additional justifica-
tion for sharing weights between ResNet reading different views (Wu et al., 2019a; McKinney
et al., 2020).
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Table 1: The test AUC of uni-view models
and different model variants.

AUC 3x ensemble

uni-view MLO 0.789 ± 0.010 0.802
uni-view CC 0.864 ± 0.010 0.874
Split ResNet 0.854 ± 0.016 0.866
Joint ResNet 0.872 ± 0.005 0.887
Shared ResNet 0.879 ± 0.003 0.890

Table 2: The test AUC of Joint ResNet mod-
els with different regularization techniques.

AUC 3x ensemble

Joint ResNet 0.872 ± 0.005 0.887
+ Pretraining 0.830 ± 0.012 0.836
+ Split Learning Rates 0.864 ± 0.008 0.878
+ Gradient Blending 0.870 ± 0.014 0.880
+ Modality Dropout 0.876 ± 0.009 0.886

Comparing different regularizers Next, we compared the effect of applying different
regularizers to Joint ResNet. Table 2 summarizes the results. The main observation is that
using Modality Dropout improves the AUC over the baseline. Joint ResNet with Pretraining
generalizes poorly on the test set, showing this is not a helpful technique for at least this
specific dataset.

Table 3: The test AUC of models trained
without heatmaps.

AUC 3x ensemble

Joint ResNet 0.694±0.046 0.692
+ Modality Dropout 0.702±0.065 0.779
Shared ResNet 0.713±0.032 0.728

In summary, among the methods we com-
pared, Shared ResNet and Modality Dropout
improve the performance of the baseline model.
To examine the stability of this observation, we
ran experiments on networks that do not use
heatmaps as input (see Section Data and task).
We compared on this setting Joint ResNet,
Shared ResNet, and Joint ResNet with Modal-
ity Dropout.

Results for models using only the images, without the additional heatmaps as inputs,
are presented in Table 3. We observe that the above conclusions transfer to this setting in
the sense that both identified methods which improve performance over the baseline.

7. Conclusions

In this paper, we first analysed what makes using multiple views difficult and made a con-
nection with the training dynamics. According to gradient norm and LCA, we observed
that training was largely dominated by weights specific to the one of the views (MLO). We
hypothesized that this caused the model to rely too strongly on the MLO view.

Using these insights, we investigated how to better utilize information from both views
of the breast within the training of a multiview network. We ran our experiments on a model
that achieves a performance close to radiologist-level (Wu et al., 2019a). We identified two
methods that boost performance: (1) sharing the weights between the subnetworks applied
to different views, (2) using modality dropout that masks one of the views out with a certain
probability during each training step.

We examined a wide range of techniques adopted in multimodal learning literature,
and perhaps surprisingly many methods (“Pretraining”, “Split learning rates”, and “Gradient
blending”) did not improve the performance. The methods that did boost performance
(sharing weights between the ResNet-22 columns or using modality dropout), led to relatively
modest improvements.
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In summary, while we identified techniques that improved performance of the model,
we conclude that improving the ability of deep neural networks to use information from
multiple views it still a largely open research question. We propose that improving the
training dynamics is a particularly promising direction for the future.
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Appendix A. Detail of experiments for Loss Change Allocation

The LCA framework is computationally expensive to use. We changed the number of samples
in each epoch and estimated the loss change on samples used in the current epoch, rather
than computing for the entire training set. In addition, instead of applying the algorithm
per minibatch, we added a step size of k and estimated the loss change: L(t) − L(θt−k) as
a replacement for L(t) − L(θt−1). In each epoch, we sampled 970 exams from the entire
training set, which is 10% of both positive and negative cases compared with the original
sample size used to form each training epoch. We perform LCA at each 60 iterations of
minibatches. We trained the model with a learning rate of 10−5. Figure 5 shows the overall
loss change and the error stands for the difference between the actual loss change and the
estimated loss change after allocated on each parameter with the algorithm. We recorded
the LCA for approximately six regular training epochs. As we observed, the major loss
change happens at the first few epochs and the contribution of each component, especially
their relative relationship will not change significantly in the following training period.

Figure 5: Error between the actual decrease in loss and the LCA metric for the baseline
model with a learning rate of 10−5.

In Figure 6 and Figure 7 we present gradient norms and LCA recorded when training
the models with different learning rates. When we change learning rates, the trend of
gradient norm changes accordingly, which is consistent with previous observations in the
literature (Jastrzębski et al., 2019). There is always a difference between the gradient norm
of columns on CC and MLO view. MLO column tends to have higher gradient norm at the
early phase. For LCA, column on MLO dominates the contribution to loss change across
the training for all three models with different learning rates.

Appendix B. Experimental details for model selection.

For “Joint ResNet”, “Shared ResNet”, and “Split ResNet”, we sample ten numbers from
[10−5, 10−3] at logarithm scale as learning rates and train ten sets of models, each of three
repetitions varying in random seeds. The learning rates for the best performing set among
the ten are 6.9×10−5, 4.62×10−4, and 4.4×10−5 for “Joint ResNet”, “Shared ResNet”, and
“Split ResNet’, respectively.
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(a) (b)

Figure 6: Gradient norm and LCA when training Joint ResNet with a learning rate of 104.
Figure (a) compares the gradient norm of parameters between the MLO (orange) and CC
(blue) columns. Figure (b) shows Loss Change Allocation (LCA) for parameters in CC and
MLO columns.

(a) (b)

Figure 7: Gradient norm and LCA when training Joint ResNet with a learning rate of
1 × 103. Figure (a) compares the gradient norm of parameters between the MLO (orange)
and CC (blue) columns. Figure (b) shows Loss Change Allocation (LCA) for parameters in
CC and MLO column.

For “Pretraining”, we initialize the model columns with parameters from the correspond-
ing best performing uni-view models. In the fine-tuning stage, we follow the schema for the
above variants and train ten model sets varying in learning rate.

For “Modality Dropout”, we train ten model sets with a learning rate of 1 × 10−5 and
another ten with a learning rate of 1 × 10−4. For each model set (consisting of three
repetitions), we sample numbers uniformly and independently from [0, 1] as the dropout
rates for CC and MLO views. We spend more resources on the search of dropout rates
rather than learning rates to enable us to focus on the unique effect of “Modality Dropout”
as a regularizer on the training dynamic between CC and MLO view.

Under similar intuition, for “Split Learning Rates”, we adopt the following schema. First
we set 1 × 10−5 and 1 × 10−4 as base learning rates, denoted as η, each for ten model
sets. Then we sample, αCC , αMLO, and αshared, independently and uniformly from [−1, 1]
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and obtain learning rates for each model components: ηCC , ηMLO, ηshared = η × 10α
CC
, η ×

10α
MLO

, η×10α
shared . The resulting learning rates lie in the range from 1×10−6 to 1×10−3.

Distributions of the sampled learning rates for each components are presented in Figure 8

shared CC MLO
10 6

10 5

10 4

10 3

Figure 8: Distribution of learning rate for each model components, ηCC , ηMLO, ηshared.

Appendix C. Experiments with Gradient blending

We train two uni-view models and the multiview model following the offline algorithm from
(Wang et al., 2019) with global learning rates of 10−4. We calculate wcc, wmlo and wjoint
based on AUC and loss on the validation set and we average weights for each model over
specific window of epochs (from 0 to 100 epochs or from 90 to 100 epochs) as estimated
weights used in the loss to train the multi-heads model:

L = ŵccLcc + ŵmloLmlo + ŵjointLjoint,

We list the four sets of weights collected in different manner in Table 4. All models
are trained with a fixed learning rate of 10−4 and with three repetitions. Among the 4
models trained with different weights combinations, we report the test performance of the
one achieves the best AUC on validation set, averaged over the three repetitions.

Table 4: Estimated weights for gradient blending.

metric window of epochs ŵjoint, ŵcc, ŵmlo

loss [0, 100] 0.367, 0.300, 0.333
[90, 100] 0.373, 0.286, 0.341

AUC [0, 100] 0.319, 0.398, 0.283
[90, 100] 0.446, 0.498, 0.056

In addition, we conduct an ablation study on the gradient blending algorithm. Except
for estimating the weights on the full validation set, we use 10% of the validation set instead
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and use average weights from 0 to 100 epochs in the gradient blending loss. Besides, we
train one more model with swapped weights on CC and MLO. We also train a model with
equal weights on the three components of the loss. Results are listed in Table 5. We do not
observe significant differences on their performance with the original weights. Surprisingly,
the model trained with equal weights achieves the best AUC.

In addition, we observe high volatility in the weights estimated with this algorithm.
Given the relatively higher fluctuation of the AUC on validation set, it can be hard to use
this method to find representative weights to calibrate the training for our task.

Table 5: Performance of gradient blending models with different weights.

ŵjoint, ŵcc, ŵmlo AUC

equal weights 0.333, 0.333, 0.333 0.870
loss 0.340, 0.325, 0.335 0.853

swapped* 0.340, 0.335, 0.325 0.858
AUC 0.246, 0.122, 0.632 0.868

swapped* 0.246, 0.632, 0.122 0.868
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