
Entity-Controlled Synthetic Text Generation using
Contextual Question and Answering with Pre-trained

Language Models

Karan Aggarwal
Amazon

Seattle, WA
kagg@amazon.com

Henry Jin∗

Harvard University
Cambridge, MA

helinjin@g.harvard.edu

Aitzaz Ahmad
Amazon

Seattle, WA
aitzaza@amazon.com

Abstract

Recent advancements in Natural Language Processing (NLP) algorithms have
resulted in state-of-the-art performance on Named Entity Recognition (NER) tasks.
These algorithms typically require high-quality labeled datasets for training models.
However, training NLP models effectively can suffer from issues such as scarcity
of labeled data, data bias and under-representation, and privacy concerns with
using sensitive data for training. Generating synthetic data to train models is a
promising solution to mitigate these problems. We propose a contextual ques-
tion and answering approach using pre-trained language models to synthetically
generate entity-controlled text. Entity-controlled text generation is then used to
augment small labeled datasets for downstream NER tasks. We evaluate this
proposed method on two publicly available datasets, and measure the quality of
generated texts quantitatively. We find that the model is capable of producing full
text samples with the desired entities appearing in a stochastically controllable way,
while retaining sentence coherence closest to the real world data. Evaluations on
downstream NER tasks show significant improvements in low-labeled data regime,
and in using purely synthetic data for NER to alleviate privacy concerns.

1 Introduction

Many tasks in NLP require large amounts of high-quality labeled data to train sufficiently accurate
and useful models. However, in many domains, such as finance and healthcare, access to labeled
data is often limited. In these domains, annotating data often requires strong domain expertise and
therefore, crowdsourcing of labeled data is infeasible. The cost of annotating data by training an
expert workforce is often too high for feasibility. Even if it were financially feasible to annotate
data, there are concerns with using customer data for training large language models, and potentially
endangering customer privacy.

Recent studies have raised concerns about leakage of training data (potentially sensitive information)
from the trained language models [2, 9, 11]. A small collection of labeled data also runs the risk of
bias creeping in the data and may result in algorithms and models that reflect or even exploit this
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inherent bias. It also degrades the capability of models to generalize since they may have been trained
on a small dataset where certain population groups or patterns were under-represented [19, 28, 27, 7].
These issues demand solutions that can perform well in low-labeled data regimes and can combat
privacy concerns and data bias.

Synthetic data generation presents a promising solution to address the issues outlined above [1, 5].
By generating data synthetically, we can augment small labeled datasets to build a training set
large enough for efficient learning of large models. Synthetic data generation also promotes privacy
by hiding sensitive customer data. Synthetic data generation can also reduce bias in the data by
conditionally generating it in a way that all population groups are sufficiently represented. In
particular, the field of conditional or controlled synthetic text generation has received increased
attention in recent years. Controlled text generation provides the ability to control for traits such
as tone, formality, sentiment, and topic in the generation of a language model [23, 26]. This lends
controlled synthetic text generation as a useful technique for augmenting small or privacy-sensitive
datasets. However, there has been limited work on the topic of entity-controlled synthetic text
generation, i.e., the task of generating coherent text while controlling for the named entities that
appear in the generation [8].

In this paper, we study the problem of entity-controlled synthetic text generation. We propose a
Contextual Question Answering based pre-trained language model that can produce coherent text
which contains specific entity tokens, generated in an order provided by the user. We are motivated
by the need to synthetically augment datasets to improve performance on downstream NER tasks.
Our contributions in this work are as follows. 1) We propose a contextual question and answering
approach using pre-trained language models to generate entity-controllable blocks of text, which can
be chained to produce full training text samples, 2) Our method is capable of generating coherent
texts that beat the baseline methods in grammaticality and distinctness metrics, and 3) Evaluations on
publicly available NER datasets show a significant improvement in performance in low-labeled data
regimes, and for scenarios consisting of purely synthetic training data to promote privacy.

2 Related Work

There has been limited work in the area of entity-controlled text generation. We can group prior
works into: Controlled text generation, data-to-text generation, and entity-controlled text generation.

Controlled text generation These methods have been designed to control certain aspects of
generated text [25, 3, 16] like sentiment [23] or concepts [26]. Furthermore, they have been used in
summarization [20] tasks as well. These methods however, mostly focus on changing one aspect of
the generated text like a topic or sentiment. Our goal is to generate a coherent text based on the set of
entities we want to appear in the text.

Data-to-text generation This is a well studied class of problems where the idea is to convert a
given set of words or structured data from tables into a piece of text. Most popular problem is table
summary generation, also called table-to-text [14, 15, 4] or keyword to text methods [16, 21]. While
similar to our problem, the key difference is that they have a pre-defined set of words that just need
to appear in every generated text while we can have a variable number of entities that appear in
each generated text. For example, table-to-text methods would be given a set of four words per row
belonging to one entity type, while we need to generate any number of entities (even repeated) as
they occur in most real world corpus.

Entity-controlled generation To the best of our knowledge, only Dong et al. [8] have worked on
this problem. They use a two pronged approach to generate text with given entity types and their
mentions. The entity predictor, is used for generating an entity tag, indicating that an entity must be
injected at a particular location in the text. When these tags are generated, the desired entity type
is injected and the second stage using the mention predictor generates the specific entity mention
(word instantiation) that belongs to the entity tag. They use a RNN based sequence-to-sequence
architecture to achieve this. We make a comparison with their method and found that their method
generated repetitive text, and does not generate as realistic text as ours. Additionally, they do not
make a comparison on a downstream task, while we present an analysis on downstream NER task.
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3 Methodology
Our methodology uses a pre-trained language model and a question and answering training approach
to generate blocks of text with desired entity tokens. This approach is able to reliably generate
augmented text samples while retaining sentence coherence. Our method builds off the work of Dong
et al. by training on blocks of text and chaining such blocks to generate text samples. In addition,
we opt to use a pretrained transformer-based language model in place of a recurrent network to take
advantage of the benefits of using finetuned and pre-trained language models. We expect that using
the pre-trained model helps in diversity of the generated text.

3.1 Training

To use the approach of question and answering, we first preprocess our real world training text
samples into blocks, whereby each block is composed of non-entity tags and ends with an entity
token. Every text sample is then decomposed into these blocks of text. In addition to the entity tokens
in the training corpus, an end of text token is also added to the end of every text sample. Therefore, a
full text sample generation consists of chaining generated blocks until a block with an <ENDTEXT>
token appears.

Figure 1: This figure depicts how a text sample with three <B-protein> entities is processed into
blocks that conclude with an entity for training with our Question and Answering approach. An
<ENDTEXT> token always defines the final block of a decomposed text sample.

After decomposing text samples into such blocks, we arrange blocks into the question and answering
format, which consists of three segments: context, question and answer. The context segment provides
preceding text blocks, the question segment prompts the model for the desired token, and the answer
block is the desired generation.

The context section consists of all blocks preceding a particular block belonging to the same text
sample. This was motivated by the need for the model to be aware of the context for a particular
generation. The generation of each block must be a continuation of preceding blocks in order for
sentence level coherence to be maintained. Consequently, training the model on preceding blocks,
provides a signal for the text’s context in order for the generation in the answer segment to be a
seamless continuation of the preceding blocks.

The question segment prompts the model for the desired entity to appear in the next block, and is
therefore the mechanism by which we control for the desired entity token to be generated. Following
the "Question: " tag is a single token representing the desired entity.

The answer segment contains the desired text block to be generated. The final token in this block will
therefore be the same token as in the question segment. With this three segment format, every block
from the corpus represents a training sample for the language model. Figure 2 illustrates this three
segment structure of each training sample.

Figure 2: This figure illustrates the segmentation format of each training sample into the language
model.
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Figure 3: An example for how a training sample is generated for Block 3 of the example text shown
in Figure 1.

3.2 Generation during Inference

At inference time, the language model generates text conditioned on the first two segments of context
and question. To generate the first block of a text, the context segment is blank, while the question
segment contains the desired token to be generated in the first block. The model then completes the
answer segment with a generated block, which is inserted into the context segment for the next block
generation. A full text sample then is produced by concatenating blocks until an <ENDTEXT> token.

3.3 Metrics

To evaluate the model, we quantitatively measure the quality of generation and then measure the
performance on NER task using precision, recall, and F1 scores. We use three generation quality
metrics that have been used in the prior works [8]. Grammaticality [24] measures the grammati-
cality probability evaluated with a Roberta CoLa grammaticality model. Perplexity measures the
‘surprisingness’ of the generated text evaluated on a GPT model [17]. Distinctness [12] measures the
uniqueness of trigrams in the corpus. Rouge-L [13]: One trivial sanity check is regurgitation., i.e., if
the generation model is simply memorizing the training set. Rouge-L score measures the similarity
of the generated text with the training data by calculating the longest common substrings. Ideally, if
the model is not just spitting out the training examples, Rouge-L score should be low.

Table 1: Dataset Statistics: Size of train, validation, test sets and number of entities.
Dataset #Training #Val #Test Avg. #Words #Entities Description

JNLPBA 18606 1938 4259 22.97 5 Biomedical dataset from GENIA corpus [10]
BC5CDR 4561 4582 4798 24.93 2 Biochemical dataset of 1500 PubMed articles containing chemical-disease interactions

4 Experiments

We evaluate our model on two public datasets described in Table 1. We use the following baselines to
compare our method with the following three baselines:

Original Data: Refers to BERT model trained using the real world training data.

Random Swap [22]: We randomly swap entity mentions across the corpus following Vakili et
al. [22], e.g., for the entity ‘B-DNA‘, we replace with another randomly chosen mention of ‘B-DNA‘
in our training data. Since, we are following a similar procedure to instantiate a generated entity post
generation in our model, we use this as a simple baseline. Additionally, it acts as a sanity check during
augmentation, as the training corpus has not changed much except reshuffling of entity mentions.

EntInjection [8]: We use the Entity Injection work by Dong et al [8] as that is the only relevant
work closest to our work.

Please note, while we did not make a comparison with other Seq2Seq models or just a pure GPT-2
based model without our Q&A framework, EntInjection [8] makes thorough comparisons with such
models and showed the generation quality was much worse for those baselines. Using a Q&A
framework as we do or the block-by-block generation approach used by EntInjection, allows for a
longer text generation, unlike pure Seq2Seq models that are unable to do so.
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Table 2: Generation Quality Metrics for the two datasets: Grammaticality, Perplexity, and Distinctness-
3 (tri-gram). Cells with best score are highlighted in blue among the three data generation methods.
(↑): higher the better; (↓): lower the better.

JNPBLA (10%) BC5CDR (10%)

Metric Original Data (Oracle) Random Swap [22] EntInjection [8] Ours Original Data (Oracle) Random Swap [22] EntInjection [8] Ours
Grammaticality(↑) 0.85 0.63 0.32 0.57 0.82 0.15 0.29 0.51
Perplexity(↓) 400.36 605.75 796.5 488.56 388.42 5856.61 1521.3 477.66
Distinctness-3(↑) 0.74 0.82 0.2 0.58 0.72 0.92 0.06 0.59
Rouge-L(↓) 1.0 0.72 0.30 0.20 1.0 0.83 0.26 0.21

4.1 Experimental Settings

We use the training, validation, and testing data splits provided publicly in the datasets on Hugging-
face2. We use the training dataset (and its mentioned subsets) for training both the text generation
models as well as training the downstream NER model. We use BERT [6] for downstream NER
task. We measure the generation quality metrics on the generated text from the training dataset. NER
results are reported on the complete test set for both the datasets.

For our pre-trained language model, we use an instance of OpenAI’s GPT-2 [18]. The model is
trained with the Adam optimizer on a learning rate of 1e-3, one hundred warmup steps, and an epsilon
of 1e-8. The default CrossEntropy loss function is used, and the model is trained for up to 100 epochs.
For the NER task, we train the BERT model for upto 10 epochs with a learning rate of 2e-3. These
parameters were set based on hyper-parameter tuning on the validation set. During generation, we
exactly mimic the entity distribution of training data samples.

5 Results and Discussion

5.1 Generation Quality

Generation quality results are shown in Table 2 measured on Grammaticality, Perplexity, Distinctness-
trigram. We clearly observe that our method is lower on all three metrics against the original dataset,
which is expected as ours is synthetically generated data. However, our method works better than the
baseline EntInjection [8] on all three metrics across both the datasets. Particularly, for the BC5CDR
dataset, we observed that EntInjection tends to generate repetitive text. The correct benchmark is the
random swap as our method inserts the entitities in the same fashion. We observe for the random
swap baseline, distinctness is highest, as expected as we have swapped commonly occurring trigram
entities, while the perplexity and grammaticality are worse than all the methods. This shows that
random swapping affects the lexical meaning of the text. While we also insert randomly chosen
entities in our generated text, these results indicate that our method generates coherent generic text
where semantic meaning of the type of the entity is preserved, unlike other baselines.

Our generated data has one of the lowest Rouge-L scores across the two datasets. Hence, our
generated data is not simply memorizing the training data and is quite different than the original
training data. We can see the huge gap between the generated data through random swapped entities
and our generated data; while the former is practically same as the training data, ours is distinct.
This is quite important for privacy, as this ensures that an adversary would not be able to extract the
original training data trivially from the generated data. Based on these metrics, we can claim that
generated text is semantically closest to the original corpus for all the datasets, while being distinct.

5.2 Named Entity Recognition Task

We took two subsets of the JNLPBA and BC5CDR datasets: 1% and 10% as we found that the
performance on datasets was already saturated at their full sizes as number of samples was enough.
We didn’t find any difference in performance between BERT model trained on the original training
dataset, synthetically generated dataset, and augmented dataset with our generated examples. Hence,
we present the results on first 1% and 10% examples of training datasets to show the comparisons.
We present two settings: (a) w/o augmentation with original training data; and (b) augmentation with
original training data. Idea for (a) is to test for privacy-preserving training, and (b) tests effectiveness
of the generated data for data augmentation purposes. Generated text is same size as the training set.

2https://huggingface.co/
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Table 3: Precision (P), Recall (R), and F1 scores on NER. Dataset is highlighted in gray, cells with
highest and second highest F1 scores for an entity are highlighted in blue and underlined respectively.
∆ is absolute difference in F1 scores of original data and Ours (w/ augmentation).

W/o Augmentation W/ Augmentation
Training
Data

(→) Original Data Random Swap [22] EntInjection [8] Ours Random Swap [22] EntInjection [8] Ours ∆

Entity(↓) P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 F1
JNLPBA (1%) [Training Samples = 186]

B-DNA 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.05 0.08 0.11 0.00 0.01 0.55 0.46 0.51 0.51
B-RNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.03 0.05 0.00 0.00 0.00 0.51 0.25 0.33 0.33
B-cell-line 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.01 0.01 0.00 0.00 0.00 0.39 0.05 0.09 0.09
B-cell-type 0.52 0.39 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.20 0.32 0.45 0.39 0.42 0.39 0.50 0.44 0.62 0.63 0.63 0.18
B-protein 0.43 0.78 0.56 0.35 0.75 0.48 0.00 0.00 0.00 0.46 0.66 0.54 0.48 0.73 0.58 0.41 0.82 0.54 0.62 0.70 0.66 0.10
I-DNA 0.87 0.13 0.23 0.62 0.01 0.02 0.00 0.00 0.00 0.50 0.34 0.40 0.44 0.56 0.49 0.49 0.39 0.43 0.62 0.67 0.65 0.42
I-RNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.17 0.28 0.64 0.40 0.49 0.00 0.00 0.00 0.62 0.55 0.58 0.58
I-cell-line 0.51 0.18 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.13 0.19 0.16 0.02 0.04 0.42 0.08 0.13 -0. 14
I-cell-type 0.69 0.40 0.51 0.59 0.09 0.15 0.00 0.00 0.00 0.53 0.74 0.62 0.60 0.52 0.56 0.63 0.41 0.49 0.62 0.73 0.67 0.14
I-protein 0.44 0.59 0.51 0.34 0.32 0.33 0.00 0.00 0.00 0.50 0.74 0.59 0.62 0.47 0.53 0.46 0.64 0.53 0.67 0.70 0.68 0.16
Macro Avg. 0.45 0.31 0.31 0.26 0.19 0.17 0.07 0.09 0.08 0.41 0.34 0.34 0.47 0.38 0.39 0.33 0.34 0.31 0.60 0.53 0.54 0.23

JNLPBA (10%) [Training Samples = 1860]

B-DNA 0.66 0.75 0.70 0.59 0.27 0.37 0.15 0.04 0.06 0.70 0.60 0.65 0.65 0.76 0.70 0.48 0.46 0.47 0.68 0.75 0.71 0.01
B-RNA 0.60 0.81 0.69 0.21 0.03 0.06 0.00 0.00 0.00 0.67 0.61 0.64 0.65 0.75 0.70 0.50 0.01 0.02 0.63 0.78 0.70 0.01
B-cell-line 0.41 0.70 0.51 0.30 0.26 0.28 0.38 0.03 0.06 0.42 0.51 0.46 0.39 0.70 0.50 0.31 0.08 0.13 0.41 0.67 0.51 0.00
B-cell-type 0.79 0.61 0.69 0.57 0.29 0.39 0.28 0.09 0.14 0.79 0.47 0.59 0.76 0.60 0.67 0.50 0.58 0.54 0.79 0.63 0.70 0.01
B-protein 0.70 0.83 0.76 0.58 0.64 0.61 0.51 0.40 0.45 0.69 0.59 0.64 0.66 0.85 0.74 0.57 0.72 0.64 0.69 0.82 0.75 -0.01
I-DNA 0.73 0.84 0.78 0.65 0.15 0.25 0.17 0.09 0.12 0.66 0.70 0.68 0.73 0.82 0.77 0.54 0.63 0.58 0.72 0.86 0.79 0.01
I-RNA 0.77 0.89 0.82 0.87 0.18 0.29 0.00 0.00 0.00 0.68 0.72 0.70 0.77 0.87 0.81 0.82 0.35 0.49 0.78 0.86 0.81 -0.01
I-cell-line 0.43 0.77 0.55 0.44 0.16 0.23 0.17 0.03 0.05 0.37 0.61 0.46 0.40 0.79 0.53 0.35 0.20 0.25 0.41 0.76 0.53 -0.02
I-cell-type 0.80 0.60 0.69 0.68 0.21 0.32 0.36 0.21 0.27 0.79 0.52 0.63 0.83 0.54 0.66 0.54 0.65 0.59 0.85 0.61 0.71 0.02
I-protein 0.79 0.76 0.77 0.66 0.28 0.39 0.35 0.28 0.31 0.68 0.69 0.69 0.76 0.75 0.76 0.66 0.59 0.62 0.76 0.78 0.77 0.00
Macro Avg. 0.70 0.77 0.72 0.59 0.31 0.37 0.29 0.19 0.21 0.67 0.63 0.64 0.69 0.76 0.71 0.57 0.47 0.48 0.70 0.77 0.72 0.00

BC5CDR (1%) [Training Samples = 45]
Disease-B 0.53 0.01 0.01 0.12 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.21 0.25 0.32 0.09 0.15 0.33 0.34 0.33 0.32
Disease-I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.33 0.01 0.01 0.24 0.03 0.05 0.26 0.04 0.07 0.07
Chemical-B 0.25 0.00 0.00 0.48 0.03 0.05 0.00 0.00 0.00 0.59 0.00 0.01 0.51 0.39 0.44 0.36 0.09 0.15 0.61 0.55 0.58 0.58
Chemical-I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.29 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.22 0.35 0.35
Macro Avg. 0.33 0.20 0.19 0.30 0.21 0.20 0.18 0.20 0.19 0.49 0.26 0.28 0.41 0.32 0.33 0.36 0.24 0.26 0.58 0.42 0.46 0.27

BC5CDR (10%) [Training Samples = 456]
Disease-B 0.71 0.69 0.70 0.48 0.50 0.49 0.31 0.59 0.41 0.70 0.62 0.66 0.56 0.72 0.63 0.62 0.75 0.68 0.71 0.68 0.70 0.00
Disease-I 0.66 0.61 0.63 0.52 0.22 0.30 0.14 0.04 0.06 0.64 0.60 0.62 0.59 0.60 0.60 0.61 0.67 0.64 0.69 0.59 0.64 0.01
Chemical-B 0.79 0.79 0.79 0.59 0.78 0.67 0.63 0.71 0.67 0.81 0.72 0.76 0.79 0.74 0.76 0.74 0.85 0.79 0.83 0.76 0.79 0.00
Chemical-I 0.75 0.60 0.67 0.35 0.65 0.46 0.00 0.00 0.00 0.64 0.71 0.67 0.79 0.50 0.61 0.83 0.51 0.63 0.76 0.63 0.69 0.02
Macro Avg. 0.78 0.73 0.75 0.58 0.62 0.58 0.41 0.46 0.42 0.75 0.73 0.74 0.74 0.70 0.71 0.76 0.75 0.74 0.79 0.73 0.76 0.01

Table 3 shows the results for the two subsets of the two datasets. From the results four things stand
out: 1) Augmenting original data with our synthetically generated data always out-performs a model
trained with the original data; 2) using only synthetically generated data is comparable in performance
to the original data in medium labeled data setting (10%) subsets; 3) our synthetically generated data
outperforms original data in low labeled data setting (1%) subsets; and 4) our synthetically generated
data gives better performance vs two baseline methods: random swap [22] and EntInjection [8].

Our finding that using synthetically generated data can get us a comparable performance to the model
trained on real data has an application in making the models trained for downstream tasks like NER,
privacy preserving as they are not trained on the real data. This makes it difficult for the model to leak
sensitive data [11, 2]. Our results show our method of generation can be quite effective as a data
augmentation method in a low labeled data regime.

5.3 Ablation: Generating more text in low resource setting

In the previous results, we only showed the results by generating synthetic text of the same size
as the training data. Next, we perform an experiment to see if there is further improvement in the
performance as we add more generated text. We take the JNLPBA (1%) dataset, and generate more
text using Random Swap and our method. We observe that the results keep improving as measured by
the Macro Average F1 score, with augmentation going up to 0.70, and without augmentation going to
0.64 vs baseline at 0.31. Note, we only use the entity mentions found in the JNLPBA (1%) dataset to
fill in the entity tags in the generated text. This is more remarkable considering that a model trained
on 10x real data for JNLPBA (10%) has a Macro Average F1 score of 0.72. This evidence shows that
our model is able to generate text that is similar to the real data.

6 Conclusion and Future Work

Synthetic data generation is a promising approach to train large language models in order to deal
with scarcity of labeled data, privacy concerns, and data bias. In this work, we study the problem of
conditional text generation where the conditions are provided as a list of entities that must appear in the
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Figure 4: Macro Average F1 score as we augment more generated data to the JNLPBA (1%) dataset.

text in a manner desired by the user. We propose a contextual question and answering approach using
pre-trained language models that can generate blocks of text conditioned on the desired entities. We
test our generation system on various generation quality metrics as well as on NER tasks. Evaluations
show that our proposed method outperforms baselines in terms of both generation quality and NER
performance. We also achieve comparable performance relying solely on synthetic data, showing that
our proposed architecture can preserve privacy. In future, we will extend this work on more datasets,
and explore cross-domain data generation strategies to generate of out-of-distribution data.
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A Appendix

A.1 Examples of Generated Text

In the section below we shows few examples of generated text by our method and EntInjection [8]
method. Our method generates semantically meaningful examples, while EntInjection generates quite
repetitive examples. Text highlighted in Green marks the entities.

A.1.1 Ours

The examples below seem grammatically correct, as was the observation over the entire generated
corpus. However, as we randomly insert entity mentions after we generated the entity tags, most of
the generated examples are not factual. E.g., DTG is not associated with treatment of blood clotting
as generated in the first example. Our goal was not factual correctness but ensuring that the generated
data preserves the distribution of the training data, which seems to be the case based on generation
metrics and results on NER task.

The efficacy of DTG in the treatment of impaired blood clotting likewise did not appear to be
affected by the rate of administration, although no formal statistical comparisons were made .

The prevalence rate for death was the most important reason for preference, cited by 67 . 3 %
of patients preferring Picloxydine and 54 . 2 % of patients who preferred a p < or = 0 . 001 ) .

The reduction of acetaminophen at 1 and 4 days after gestation not glomeruli with ataxic
movements than control rats .

The aims of this study were to confirm our previous findings in a separate cohort of patients
and to determine the time course of the cardiovascular consequences of stopping sertraline in
the expectation that this might shed light on the mechanisms by which the mechanisms by
Tamoxifen is being a significant reduction of the activity on the drug causes the sodium asso-
ciated with cephalothin sodium associated with povidone - iodine is associated withcocaine
and inhibition with the use of tuberculosis and area in this effect.

MR imaging with quantitative diffusion mapping of E4031 ( 0 . g ), p - choloroaniline ) and
outcome in organ transplant controls, and / L and the development of blood coagulation by a
potential is also more than the development of systolic dysfunction and possibly .

A.1.2 EntInjection [8]

We observed a lot of repetition in the generated text by EntInjection method. This looping behavior is
shown in Example 2 and 3 below. Note, unlike our method, EntInjection has access to the exact same
entity mentions as they appear in the training data, having an inherent advantage with this additional
information.

telithromycin - induced bromo tetrahydropyranyladriamycin pituitary carsinom agitation one
: a longitudinal study of

<unk> : The cardiovascular responses to standing and standing . 4 patients were studied in
the drug . 4 days . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4
. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
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The possibilities that these findings might be the result of non - induced <> is a result of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine oxidase or inhibition of monoamine oxidase or inhibition of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine oxidase or inhibition of monoamine oxidase or inhibition of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine oxidase or inhibition of monoamine oxidase or inhibition of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine oxidase or inhibition of monoamine oxidase or inhibition of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine oxidase or inhibition of monoamine oxidase or inhibition of
monoamine oxidase or inhibition of monoamine oxidase or inhibition of monoamine oxidase
or inhibition of monoamine

In the study was undertaken to the combination of painful , headache , bleed , which was only
induced by epilepticus drug , and bronchitis

Investigation of anti - inflammatory agents are warranted in the caudate nucleus . injection of
Allopurinol injection of bacterial collagenase - induced
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