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Abstract

Understanding the mechanisms behind Large001
Language Models (LLMs) is crucial for de-002
signing better models and strategies. While re-003
cent studies have yielded valuable insights into004
the mechanisms of textual LLMs, the mecha-005
nisms of Multi-modal Large Language Models006
(MLLMs) remain underexplored. In this pa-007
per, we apply mechanistic interpretability meth-008
ods to analyze the visual question answering009
(VQA) mechanisms in an MLLM, Llava. We010
compare the mechanisms between VQA and011
textual QA (TQA) in color answering tasks012
and find that: a) VQA exhibits a mechanism013
similar to the in-context learning mechanism014
observed in TQA; b) the visual features exhibit015
significant interpretability when projecting the016
visual embeddings into the embedding space;017
and c) Llava enhances the existing capabilities018
of the corresponding textual LLM Vicuna dur-019
ing visual instruction tuning. Based on these020
findings, we develop an interpretability tool to021
help users and researchers identify important022
visual locations for final predictions, aiding in023
the understanding of visual hallucination. Our024
method demonstrates faster and more effective025
results compared to existing interpretability ap-026
proaches. Our code will be available on Github.027

1 Introduction028

Large Language Models (LLMs) (Brown, 2020;029

Ouyang et al., 2022; Touvron et al., 2023) have030

achieved remarkable results in numerous tasks031

(Xiao et al., 2023; Tan et al., 2023; Deng et al.,032

2023). However, the underlying mechanisms are033

not yet well understood. This lack of clarity poses034

a significant challenge for researchers attempting035

to address issues such as hallucination (Yao et al.,036

2023), toxicity (Gehman et al., 2020), and bias037

(Kotek et al., 2023) in LLMs. Therefore, under-038

standing the mechanisms of LLMs has become an039

increasingly important area of research. Recently,040

efforts have been made to explore the mechanisms041

behind different LLM capabilities, including fac- 042

tual knowledge (Meng et al., 2022; Geva et al., 043

2023), in-context learning (Wang et al., 2023; Wei 044

et al., 2023), and arithmetic (Stolfo et al., 2023). 045
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Figure 1: (a) Mechanism of TQA in Vicuna. (b) Mecha-
nism of VQA in Llava.

Although numerous studies have explored the 046

mechanisms of LLMs, they have mainly focused 047

on textual LLMs, often overlooking multi-modal 048

LLMs (MLLMs). It has been demonstrated that fea- 049

tures from different modalities, such as images and 050

audio, can significantly enhance the core abilities 051

of LLMs (Zhang et al., 2024). Therefore, inves- 052

tigating the mechanisms of MLLMs is essential. 053

In this paper, we examine the mechanism of VQA 054

in an Multimodal LLM, Llava (Liu et al., 2024b), 055

which is fine-tuned from the existing textual LLM, 056
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Vicuna (Chiang et al., 2023). Our study seeks to057

address three key questions: a) What is the relation-058

ship between the mechanisms of VQA and TQA?059

b) Are the visual features interpretable under tex-060

tual LLM’s interpretability analysis method? c)061

How does Llava acquire its VQA ability during062

visual instruction tuning?063

We investigate the color answering task in VQA,064

as color is a key feature in images, making it an065

ideal starting point for VQA analysis. We collect066

animal photos from the COCO dataset (Lin et al.,067

2014), each with an animal and its correct color,068

and pose the question, ‘What is the color of the069

[animal]?’ For TQA, we generate textual context070

for each photo, e.g., ‘Dog is brown. Q: What is071

the color of the dog? A:’, with the correct answer072

being ‘brown.’ We explore the TQA mechanism in073

Vicuna using the interpretability method of Yu and074

Ananiadou (2024a), as shown in Figure 1(a). In075

shallow layers, the color position (‘brown’) extracts076

animal features (‘dog’). In deeper layers, attention077

heads capture color features, and the query-key ma-078

trices measure the similarity between the question079

about the animal and the color position, increasing080

the probability of ‘brown’ as the answer. When the081

question aligns with the textual context, the color082

position receives a high attention score, leading to083

a large log probability increase for ‘brown’.084

Next, we investigate the mechanism of VQA085

in Llava, starting by using log probability increase086

scores to identify the most important image regions,087

which we find to be the image patches related to088

the animals (as shown in Figure 2). We then apply089

similar methods used to analyze the value-output090

matrices and the query-key matrices for these key091

output vectors. Our analysis reveals that the VQA092

mechanism is similar to that of TQA: the value-093

output matrices extract color information, while094

the query-key matrices compute the similarity be-095

tween the question content and the animal features.096

Furthermore, we analyze the visual features by097

projecting them into the embedding space (Dar098

et al., 2022), discovering that the visual embed-099

dings exhibit significant interpretability regarding100

colors and animals, indicating that these embed-101

dings already contain essential information about102

both. Based on these findings, we conclude the103

VQA mechanism shown in Figure 1(b). The visual104

embeddings store information about animals and105

colors, which is then transferred to deeper layers106

via the positions’ residual streams. In the deep107

layers’ attention heads, the value-output matrices 108

extract color features, while the query-key matri- 109

ces calculate the similarity between the question 110

and the animal features. Finally, we compare the 111

most important heads across vicuna TQA and Llava 112

VQA, finding that the important attention heads are 113

similar in all scenarios. This result suggests that 114

Llava enhances Vicuna’s existing abilities during 115

visual instruction tuning. 116

Q: What is the color of the dog? A: brown

input image log prob increase avg attn score

Figure 2: Identifying important image patches for final
predictions. mid: log prob increase; right: attn score.

According to these findings, we propose an inter- 117

pretability tool for users and researchers to under- 118

stand the important image patches that influence 119

final predictions in Llava’s VQA (Figure 6), which 120

is helpful for understanding visual hallucination. 121

Existing studies typically rely on causal explana- 122

tions (Rohekar et al., 2024) or average attention 123

scores (Stan et al., 2024) to locate important visual 124

features. However, causal explanation methods 125

require much computational cost, and average at- 126

tention scores lack strong interpretability. Compar- 127

atively, our method computes the log probability 128

increase at each position to identify the important 129

locations in visual features, achieving much lower 130

computational cost than causal explanations and 131

much better interpretability than average attention. 132

Overall, our contributions are as follows: 133

1) We investigate the mechanism of TQA in Vi- 134

cuna and VQA in Llava, finding that the visual 135

embeddings are interpretable when projected into 136

embedding space. We show that the mechanisms of 137

VQA and TQA are similar, and that Llava enhances 138

Vicuna’s existing capabilities during visual tuning. 139

2) Based on this mechanism analysis, we design 140

an interpretability tool to identify key locations for 141

final predictions, which is valuable for understand- 142

ing visual hallucinations. Compared to previous 143

methods, our approach provides better interpretabil- 144

ity and lower computational cost, making it suitable 145

for real-time interpretations. 146
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2 Mechanism Explorations of TQA and147

VQA148

We investigate the mechanism of TQA and VQA.149

We introduce the background in Section 2.1, fol-150

lowed by an exploration of the mechanisms of TQA151

(Section 2.2) and VQA (Section 2.3). Finally, we152

compare the important attention heads before and153

after visual instruction tuning in Section 2.4, to154

explore how Llava obtains its VQA ability.155

2.1 Background156

Inference pass of decoder-only LLMs. Except157

the visual encoder and the projection matrix, Llava158

and Vicuna has the same decoder-only LLM archi-159

tecture as Llava is a fine-tuned model of Vicuna.160

So we start from introducing the inference pass161

of decoder-only LLM with textual inputs. Given162

X = [x1, x2, ..., xT ] with T tokens, the model pre-163

dicts an output distribution Y over B tokens in164

vocabulary V . Every token xi (at position i) is165

transformed into a word embedding hi0 ∈ Rd by166

embedding matrix E ∈ RB×d. After that, the word167

embeddings are sent into L+ 1 (0th− Lth) trans-168

former layers, where each transformer layer’s out-169

put hli (layer l, position i) is the sum of previous170

layer’s output hl−1
i , this layer’s multi-head self-171

attention (MHSA) layer output Al
i, and this layer’s172

feed-forward network layer (FFN) output F l
i :173

hli = hl−1
i +Al

i + F l
i (1)174

To compute the final distribution Y , the final layer’s175

output at last position hLT is multiplied with the176

unembedding matrix Eu ∈ RB×d and a softmax177

function over all B tokens:178

Y = softmax(Euh
L
T ) (2)179

As hLT is the sum of the last position’s layer outputs180

and previous studies (Olsson et al., 2022; Wang181

et al., 2023) find that attention layers play the182

largest roles for in-context learning, we focus on183

the last position T ’s attention outputs. Each layer’s184

MHSA output is computed by the weighted sum of185

different vectors:186

Al
T =

H∑
j=1

olj,T (3)187

188

olj,T =
T∑

p=1

αl
j,T,p ·Ol

jV
l
j h

l−1
p (4)189

190
αl
j,T,p = softmax(Ql

jh
l−1
T ·K l

jh
l−1
p ) (5) 191

where olj,T is the head output in head j, layer l. 192

αl
j,T,p is the attention score at position p, head j, 193

layer l, computed by a softmax function over all po- 194

sitions’ query-key inner products (Ql
jh

l−1
T ·K l

jh
l−1
pp , 195

pp from 1 to T ). V l
j and Ol

j are the value and out- 196

put matrices in head j, layer l. Generally, Al
T 197

can be regarded as the weighted sum of H × T 198

value-output vectors over H heads and T positions, 199

where Ol
jV

l
j h

l−1
p is the value-output vector and 200

αl
j,T,p is its weight (attention score). 201

Identifying important heads and important po- 202

sitions. To explore the mechanism of in-context 203

learning, Yu and Ananiadou (2024a) identify the 204

important heads for the final prediction token b 205

using causal interventions and log probability in- 206

crease Sl
j of each head output olj,T : 207

Sl
j = log(p(b|olj,T + hl−l

T ))− log(p(b|hl−1
T )) (6) 208

If Sl
j is large, it indicates that the head output olj,T 209

contains important information about the final to- 210

ken b. Also, this importance score can be used 211

to identify the important positions in this head by 212

replacing olj,T with every position’s weighted value- 213

output vector αl
j,T,p ·Ol

jV
l
j h

l−1
p . They also design 214

logit minus M to evaluate the information storage 215

of oj,T for two different tokens b1 and b2. 216

M = log(p(b1|oj,T ))− log(p(b2|oj,T )) (7) 217

Interpretability analysis: projecting vectors in 218

unembedding space. Geva et al. (2022) and Dar 219

et al. (2022) find that many vectors are interpretable 220

when projecting into the unembedding space Eu 221

by multiplying Eu with the vectors. For instance, 222

EU l
j,T is the projection of olj,T . 223

EU l
j,T = softmax(Euo

l
j,T ) (8) 224

Yu and Ananiadou (2024a) use this method to ana- 225

lyze the weighted value-output vectors in different 226

positions and find that if Sl
j is large for token b, b 227

usually ranks top in the projection EU l
j,T . 228

2.2 Mechanism Exploration of TQA 229

In this section, we explore the mechanism of TQA 230

in Vicuna. We analyze 1,000 color-answering sen- 231

tences of the form ‘[animal] is [color]. Q: What 232

is the color of [animal]? A:’. These sentences 233
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are derived from 1,000 images sampled from the234

COCO dataset (Lin et al., 2014). For VQA, the in-235

put consists of an image and the question ‘Q: What236

is the color of [animal]? A:’. The only difference237

between VQA and TQA is that, in the case of TQA,238

the image is ‘translated’ into a textual context.239

Inspired by previous studies (Olsson et al., 2022;240

Yu and Ananiadou, 2024a), we conclude the mech-241

anism shown in Figure 1(a) for TQA: In shallow242

layers, the color position extracts the animal infor-243

mation, while the last position encodes the ques-244

tion information. In deep layers’ attention heads,245

the value-output matrices extract color information246

from the color position, and the query-key matrices247

compute the similarity between the last position’s248

question features and the color position’s animal249

features. When the question and the textual con-250

text refer to the same animal, the similarity score251

is high, leading to an increased probability of the252

color token in the final prediction’s distribution.253

We identify the most important heads and ad-254

dress four key questions: a) Does the color posi-255

tion play the largest role in predicting the color256

token? b) Do the value-output matrices extract257

the color features from the color position? c)258

Does the color position extract the animal fea-259

tures from the textual context? d) Does the last260

position encode the animal features in the ques-261

tion? To explore these questions, we design two262

comparison sentences S1: ‘[animal1] is [color].263

Q: What is the color of [animal]? A:’ and S2:264

‘[animal] is [color]. Q: What is the color of [ani-265

mal1]? A:’, where [animal1] represents a different266

animal. We refer to the original sentence ‘[animal]267

is [color]. Q: What is the color of [animal]? A:’268

as S0 and the comparison sentences as S1 and S2.269

The results are shown in Figure 3.270

Evidence a). We calculate the proportion of the271

log probability increase at the color position rela-272

tive to the total log probability increase across all273

positions. The proportion score is 99.82%, indicat-274

ing that the color position plays the most significant275

role in predicting the final color token.276

Evidence b). We compute the Mean Reciprocal277

Rank (MRR) of the color token when projecting278

the color position’s weighted value-output vector279

(Eq.4) into the unembedding space (Eq.6), yielding280

an MRR score of 0.463 (equal to ranking 2.16). In281

comparison, a random color’s MRR score is 0.002,282

as illustrated in Figure 3(left). The logit difference283

(Eq.7) between the correct color and a random color284

Figure 3: Analysis of color position’s information stor-
age in Vicuna TQA. (left) Color position value-output
vector’s information storage for correct color/random
color. (mid) Color position layer input vector’s informa-
tion storage for correct animal/random animal. (right)
Color position’s attention score when the question has
the same/different animal with the textual context.

at the color position is 2.56. These results confirm 285

that the value-output matrices effectively extract 286

the color features from the color position. 287

Evidence c). Following Dar et al. (2022), we 288

project the color position’s layer input vector hl−1
p 289

into the unembedding space and calculate the MRR 290

score for the animal tokens [animal] and [animal1]. 291

In S0, the MRR for [animal] is 0.756, while for [an- 292

imal1], it is 0.001, as shown in Figure 3(mid). The 293

logit difference between [animal] and [animal1] 294

at the color position is 0.32. In S1, the MRR for 295

[animal] is 0.002, the MRR for [animal1] is 0.715, 296

and the logit difference between [animal1] and [an- 297

imal] is 1.70. These results demonstrate that the 298

layer input vector at the color position, particularly 299

in the most important attention heads, effectively 300

encodes the animal features present in its context. 301

Evidence d). We calculate the attention scores 302

at the color position for S0, S1, and S2, as queried 303

by the last position. The average attention scores 304

are 0.768, 0.268, and 0.279 for S0, S1, and S2, 305

respectively. When the question involves the same 306

animal as the textual context, the attention score at 307

the color position is high. However, when the ani- 308

mals differ, the attention score drops significantly, 309

as shown in Figure 3(right). This drop in attention 310

scores indicates that the last position encodes the 311

question’s animal features. 312

Conclusion. Based on the experimental results, 313

we conclude: In shallow layers, the color position 314

extracts the animal features from the textual con- 315

text (evidence c), while the last position encodes 316

the question features (evidence d). In deep layers’ 317

attention heads, the value-output matrices extract 318
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the color features from the color position (evidence319

b), and the query-key matrices compute the sim-320

ilarity score between the color position’s animal321

features and the last position’s question features322

(evidence d). When the question references the323

same animal as the textual context, the attention324

score is significantly high, resulting in the color325

position’s weighted value-output vector containing326

substantial color information (evidence a), which327

is crucial for accurately predicting the color token.328

2.3 Mechanism Exploration of VQA329

In this section, we aim to explore the mechanism330

of VQA in Llava. For VQA, we identify the most331

important heads and address the following ques-332

tions: a) What are the most important positions333

for predicting the correct color? b) Do the value-334

output matrices play a similar role as in TQA?335

c) Do the query-key matrices play a similar role336

as in TQA? The results are shown in Figure 4.

Figure 4: Analysis of top20 important positions’ infor-
mation in Llava VQA. (left) Top20 position value-output
vectors’ information storage for correct color/random
color. (mid) Top20 position layer input vectors’ informa-
tion storage for correct animal/random animal. (right)
Top20 positions’ sum attention score when the question
has the same/different animal with the image.

337
Evidence a). We calculate the log probability in-338

crease for all positions and visualize these increases339

as heat maps overlaid on the corresponding images,340

similar to Figure 2. After randomly sampling 200341

cases and analyzing the heat maps on a case-by-342

case basis, we observe that the positions with the343

largest log probability increases are those corre-344

sponding to image patches related to the animals.345

Take Figure 2 as an example. When the question is346

‘What is the color of the dog?’, the image patches347

related to the dog’s head exhibit the largest log348

probability increase. This indicates that the identi-349

fied image patches contain crucial information for350

predicting the correct color, demonstrating strong 351

interpretability. This observation inspired the de- 352

sign of an interpretability tool in Section 3, which 353

helps explain why the model arrives at its final pre- 354

dictions. In contrast, the average attention score 355

across all heads typically does not offer the same 356

level of interpretability. Additional examples are 357

provided in Appendix A. 358

Evidence b). After identifying the most impor- 359

tant positions, we analyze whether the value-output 360

matrices extract the color features from the top 361

20 important positions using a method similar to 362

that used in TQA. When projecting the weighted 363

value-output vector from the color position into the 364

unembedding space, the MRR score for the cor- 365

rect color is 0.719 (equivalent to a ranking of 1.4) 366

and the random color’s MRR is 0.017, as shown in 367

Figure 4(left). The logit difference between the cor- 368

rect color and a random color is 0.09. These results 369

indicate that the value-output matrices effectively 370

extract the color features from the top 20 important 371

positions for the predicted color. 372

Evidence c) and d). We project the layer inputs 373

of the top 20 important positions into unembed- 374

ding space and compute the MRR and logit differ- 375

ences between the correct animal and a different 376

animal. The correct animal’s MRR score is 0.318, 377

while the other animal’s MRR score is 0.0004, as 378

shown in Figure 4(mid). The logit difference is 379

1.53, confirming that the important heads’ layer in- 380

puts contain crucial information about the animals. 381

Furthermore, when the animal in the question is 382

replaced with another animal, the attention score at 383

the top 20 positions drops significantly from 0.807 384

to 0.564 (see Figure 4 right), indicating that the last 385

position encodes information about the question. 386

Similarity between VQA and TQA. Our find- 387

ings indicate that the mechanisms underlying VQA 388

and TQA in deep layers are strikingly similar. In 389

both cases, the layer inputs at key positions (the 390

color position in TQA and the animal patch posi- 391

tions in VQA) contain essential information about 392

the animal and color. The value-output matrices are 393

responsible for extracting color information, while 394

the query-key matrices compute the similarity of 395

the animal information between these important 396

positions and the last position. When the atten- 397

tion score is high, more of the color information 398

from these positions is transferred to the last po- 399

sition, which, in turn, increases the likelihood of 400

accurately predicting the color token. 401
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Evidence e). A key difference between VQA402

and TQA lies in the input embeddings at the 0th403

layer. Vicuna uses only word embeddings, while404

Llava combines image and word embeddings. In405

Vicuna, the color and animal positions encode re-406

spective information, with the color token ranking407

first when projected into the embedding matrix E.408

To analyze visual embeddings, we projected the top409

20 positions into E and computed MRR scores. For410

the correct color versus a random color, the MRR411

was 0.455 versus 0.013, and for the correct animal412

versus a random animal, 0.076 versus 0.0003. At413

random positions, the MRR scores for the correct414

color and animal were 0.003 and 0.004, respec-415

tively. These results suggest the top 20 positions416

encode significant information about the correct417

animal and color, while random positions do not.418

19_15: 8.6%, 18_31: 7.3%, 20_27: 7.3%, 24_15: 6.3%, 22_27: 5.6%, 
19_6: 5.0%, 22_17: 4.9%, 15_19: 4.7% , 24_3: 3.4%, 18_16: 3.1%

(a)

19_6: 19.4%, 22_17: 9.4%, 15_19: 6.9%, 18_31: 4.7%, 20_27: 4.2%, 
22_27: 3.4%, 19_15: 2.7%, 16_5: 2.6% , 20_20: 2.5%, 21_26: 2.0%

(b)

Figure 5: Important heads in Vicuna (a) and Llava (b).

Results on other questions. To examine 419

whether the mechanism applies to other questions, 420

we replace the original question, ‘What is the color 421

of the [animal]?’, with ‘What is the animal in this 422

picture?’ for comparison. Our findings show that 423

the mechanisms are similar. Analysis of the iden- 424

tified important image patches reveals that these 425

patches are closely associated with the animals. 426

The sum of attention scores on the animal patches 427

is 0.74, indicating that a substantial amount of infor- 428

mation is extracted from these patches. Several ex- 429

amples are provided in Appendix A, and additional 430

examples can be explored using the interpretability 431

tool introduced in Section 3. 432

Conclusion. Based on the experimental results, 433

we conclude the mechanism of VQA illustrated in 434

Figure 1(a). The visual embeddings generated by 435

the projection matrix and the CLIP visual encoder 436

already contain information about the animal and 437

the color (evidence e). This information is propa- 438

gated through the positions’ residual streams into 439

the deep layers. In the deep layers’ attention heads, 440

the value-output matrices extract color information 441

(evidence b), while the query-key matrices com- 442

pute the similarity between the animal information 443

and the question information at the last position 444

(evidence c and d). When the similarity is high, 445

the color information related to the animal in the 446

question is more effectively transferred to the last 447

position, thereby increasing the probability of cor- 448

rectly predicting the color token. 449

2.4 Llava’s Visual Instruction Tuning 450

Enhances Existing Abilities of Vicuna 451

In this section, we investigate how Llava acquires 452

its VQA capabilities for color prediction. Build- 453

ing on our previous analysis, which highlighted 454

the significant role of deep-layer attention heads 455

in storing VQA abilities, we examine how the im- 456

portant heads evolve after visual instruction tuning. 457

We compute the normalized importance scores for 458

all heads and sort these scores for Vicuna TQA 459

and Llava VQA. Figure 5 displays the importance 460

of all 1,024 heads. The horizontal axis represents 461

the layer number, while the vertical axis denotes 462

the head number. The color intensity indicates the 463

importance of each head, with darker colors sig- 464

nifying greater importance. Additionally, we list 465

the top 10 heads for comparison, where a label 466

like 19_15 refers to the 15th head in the 19th layer. 467

19.4% is this head’s logit importance. 468
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When comparing Llava VQA with Vicuna TQA,469

we observe that 7 out of the top 10 attention heads470

are identical. All the top 7 heads in Llava also471

appear in the top 10 heads in Vicuna, while the472

remaining 3 heads rank within the top 20 in the473

other model. A significant difference is the sharp474

increase in the importance of head 19_6 (layer 19,475

head 6), which rises from 5.0% to 19.4%. This sug-476

gests that the importance of heads in Llava VQA477

is more concentrated compared to Vicuna TQA.478

Based on these results, we conclude that: a) The479

important heads remain largely consistent between480

Llava VQA and Vicuna TQA. b) While the most481

crucial heads are generally similar between Llava482

VQA and Vicuna TQA, some heads, such as 19_6,483

become significantly more critical for VQA. c) Vi-484

sual instruction tuning enhances the existing color-485

predicting ability of Vicuna’s heads.486

Overall, we explore the mechanism of TQA in487

Vicuna in Section 2.2 and that of VQA in Llava in488

Section 2.3. We find the mechanism of VQA and489

TQA is similar in the deep layers’ attention heads.490

Furthermore, we analyze the projections of visual491

embeddings in the embedding matrix and find the492

visual embeddings already contain the information493

about the animals and the colors. Finally, we com-494

pared the most important heads in Vicuna TQA495

and Llava VQA, and find that Llava enhances the496

existing heads’ color predicting ability in Vicuna497

during visual instruction tuning.498

3 Interpretability Tool for VQA499

In this section, we present our interpretability tool500

for identifying the key image patches that influence501

the final predictions.502

Interface of the interpretability tool. The in-503

terface is illustrated in Figure 6, developed using504

Gradio (Gradio, 2024). On the left side of the505

screen, users can upload an image and input a ques-506

tion. On the right side, the first box displays the507

prediction token, while the second box highlights508

the top 10 important heads related to the prediction.509

The third box shows the cropped image (the ac-510

tual input to Llava) along with the important image511

patches identified by log probability increase and512

average attention scores. Each image is divided513

into 24 x 24 image patches, with lighter areas indi-514

cating a larger score in log probability or attention.515

Although the visualization appears small within516

the interface, a button allows users to enlarge the517

images, resembling the images in Figure 2.518

Figure 6: Interface of the interpretability tool. Left:
image/question. Right: answer/visualization.

Advantage 1: low computational cost. The 519

first advantage of our method is its low computa- 520

tional cost compared to causal explanations (Ro- 521

hekar et al., 2024). Causal explanations typically 522

require intervening on each image patch and calcu- 523

lating the impact on the final prediction, necessi- 524

tating 24 x 24 + 1 inference computations. In con- 525

trast, our method only requires a single inference 526

computation, with the internal vectors generated 527

during the model’s inference, resulting in minimal 528

additional computation. With our approach, all 529

computations can be completed within 2 seconds 530

with one A100 GPU, offering a promising pathway 531

for real-time explanations. 532

Advantage 2: good interpretability. Average 533

attention score (Stan et al., 2024) across all atten- 534

tion heads is a widely used method for visual ex- 535

planation. However, we have observed that this 536

approach does not always provide reasonable ex- 537

planations. For example, in Figure 2, when asked 538

the question, ‘What is the color of the dog?’, the av- 539

erage attention score is higher on the pillow rather 540

than on the dog itself. This suggests that the av- 541

erage attention score may fail to pinpoint the true 542

reason behind the final prediction. In contrast, our 543

method can accurately identify the important im- 544

age patches related to the dog. The interpretability 545

of these patches, identified by the log probability 546

increase score, is grounded in the analysis from 547

Section 2, offering a more reliable and robust un- 548

derstanding. More examples demonstrating this 549

trend are provided in Appendix A. 550

Advantage 3: understanding visual hallucina- 551

tion. Hallucination in vision-language models is 552

a significant issue that has been extensively stud- 553

ied (Li et al., 2023; Zhou et al., 2023; Bai et al., 554

2024; Liu et al., 2024a). Understanding the precise 555

cause of visual hallucination is crucial. For exam- 556

ple, Figure 7 illustrates a hallucination case from 557

7



input image log prob increase avg attn score

Figure 7: Understanding visual hallucination. Q: What
is the color of the left bottle? A: Red

Huang et al. (2024). When asked, ‘What is the558

color of the left bottle?’, Llava incorrectly answers559

‘Red’. The exact cause of the hallucination is un-560

clear—whether the model misunderstood the word561

‘left’ and provided the color of the right bottle, or if562

it simply returned the wrong color for the left bottle.563

Our method’s interpretation clarifies that the model564

focuses on the bottom of the left bottle, revealing565

that the hallucination stems from the model fail-566

ing to consider enough relevant image patches for567

the color, rather than from a misunderstanding of568

‘left’ and ‘right’. Furthermore, our interpretability569

method can be applied to questions beyond color570

identification, as provided in Appendix A.571

4 Related Works572

4.1 Understanding Textual LLMs573

Causal intervention (Vig et al., 2020) is a com-574

mon method for identifying important modules in575

LLMs (Zhang and Nanda, 2023; Makelov et al.,576

2023), by computing the change of the final pre-577

diction when intervening the module. Meng et al.578

(2022) find the medium FFN layers in GPT2 store579

important parameters for knowledge. Stolfo et al.580

(2023) find similar stages in arithmetic tasks. Wang581

et al. (2022) proposes activation patching method,582

using another sentence’s hidden states to replace583

the original sentence.584

A serious of studies (Merullo et al., 2023;585

Lieberum et al., 2023) focus on constructing the586

internal circuit in transformers from input to out-587

put, taking the attention heads and FFN layers as588

basic units. Elhage et al. (2021) and Olsson et al.589

(2022) find that the induction heads are helpful for590

predictions like [A][B] ... [A] => [B]. Hanna et al.591

(2024) explore how GPT2 computes greater-than592

algorithm. Gould et al. (2023) find the succes-593

sor heads help predict the next number like Mon-594

day => Tuesday. Wang et al. (2022) study how595

GPT2 performs the indirect object identification596

task. Prakash et al. (2024) investigate the circuit597

after fine-tuning and find fine-tuning enhances ex- 598

isting mechanisms. Conmy et al. (2023) propose a 599

method to construct the circuits automatically. 600

Another type of works aim to explore the neu- 601

rons’ interpretability (Dai et al., 2021; Sajjad et al., 602

2022; Nanda et al., 2023; Gurnee et al., 2023). 603

Geva et al. (2022) find that FFN neurons are inter- 604

pretable when projecting into unembedding space. 605

Dar et al. (2022) observe that other vectors are 606

also interpretable in the unembedding space. Yu 607

and Ananiadou (2024b) calculate log probability in- 608

crease and inner products to identify the important 609

neurons related to the final predictions. 610

4.2 Understanding Multimodal LLMs 611

Compared with textual LLMs, only a few stud- 612

ies have investigated the mechanisms of MLLMs. 613

Stan et al. (2024) design an interpretability tool 614

for vision-language models using average atten- 615

tion, relevancy map and causal interpretation. Basu 616

et al. (2024) apply causal intervention methods to 617

understand the information storage and transfer in 618

MLLMs. Tong et al. (2024) study the shortcom- 619

ings of the visual encoder CLIP. Gandelsman et al. 620

(2023) explore the interpretability of CLIP. 621

5 Conclusion 622

In this paper, we utilize mechanistic interpretabil- 623

ity methods to investigate the mechanism of VQA 624

in Llava. We find that the mechanism of VQA in 625

Llava is similar to that of TQA in Vicuna. The 626

visual embeddings encode the information of the 627

animals and the colors, and the last position en- 628

codes the information of the question in shallow 629

layers. In deep layers’ attention heads, the value- 630

output matrices extract the color information from 631

the visual embeddings, and the query-key matrices 632

compute the similarity between the last position’s 633

question features and the visual positions’ animal 634

features, controlling the probability of the final pre- 635

diction. Moreover, we find that Llava enhances 636

existing abilities of Vicuna during visual instruc- 637

tion tuning. Based on this analysis, we design an 638

interpretability tool for locating the important im- 639

age patches related to the final prediction, which 640

has low computational cost, better interpretability 641

and can be utilized for understanding visual halluci- 642

nation. Overall, our method and analysis is helpful 643

for understanding the mechanism of VQA, paving 644

the way for future studies. 645
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6 Limitations646

One limitation of our work is that our experiments647

are conducted exclusively between Vicuna and648

Llava. Another limitation is that our work relies on649

existing interpretability methods in textual LLMs.650

Nevertheless, we consider the applicability of our651

methods to MLLMs to be an important and note-652

worthy finding. Additionally, as the mechanism653

of vision instruction tuning has not yet been thor-654

oughly studied, our work offers insights that may655

inspire further exploration in this area.656
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A Appendix A: Example Images’882

Interpretability883

We provide more examples (Figure 8-15) to verify884

the usage of our interpretability tool. Our method885

is not only suitable for identifying the important886

image patches about color questions, but also for887

other questions. The questions are listed in the888

titles of the following images, where the answers889

are marked as bold. In each figure, the left picture890

is the input image, the mid picture is the visual-891

ization of our method, and the right picture is the892

visualization of average attention score.893

Figure 8: Q: What is the color of the cat? A: The color
of the cat is white

Figure 9: Q: What is the color of the pillow? A: The
color of the pillow is orange

Figure 10: Q: What is the left animal? A: The left
animal is a dog

Figure 11: Q: What is the right animal? A: The right
animal is a cat

Figure 12: Q: What is in the painting? A: The painting
features a woman

Figure 13: Q: What is in the painting? A: The painting
features a dog

Figure 14: Q: What is in the picture? A: The picture
features a pier

Figure 15: Q: What is the table made of? A: The table
is made of glass
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