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ABSTRACT

In many machine learning applications, the most relevant items for a particular
query should be efficiently extracted. The relevance function is usually an expensive
similarity model making the exhaustive search infeasible. A typical solution to this
problem is to train another model that separately embeds queries and items to a
vector space, where similarity is defined via the dot product or cosine similarity.
This allows one to search the most relevant objects through fast approximate nearest
neighbors search at the cost of some reduction in quality. To compensate for this
reduction, the found candidates are re-ranked by the expensive similarity model.
In this paper, we investigate an alternative approach that utilizes the relevances of
the expensive model to make relevance-based embeddings (RBE). The idea is to
describe each query (item) by its relevance for a set of support items (queries) and
use these new representations to obtain query (item) embeddings. We theoretically
prove that relevance-based embeddings are powerful enough to approximate any
complex similarity model (under mild conditions). An important ingredient of RBE
is the choice of support items. We investigate several strategies and demonstrate
that significant improvements can be obtained compared to random choice. Our
experiments on diverse datasets illustrate the power of relevance-based embeddings.

1 INTRODUCTION

Finding the most relevant element (item) i to a query q among a large set of candidates I is a key task
for a wide range of machine learning problems, for example, information retrieval, recommender
systems, question-answering systems, or search engines. In such problems, the final score (relevance)
is often predicted by a pairwise function R : I × Q → R, where Q is a query space and R
approximates some ground truth relevance such as click probability, time spent or something else.
Depending on the task, the relevance function R can utilize query attributes (e.g., the text of the query
or a set of numerical features describing the user, such as age, time spent on the service, etc.), item
attributes, or attributes describing the query-item pair (e.g., statistics based on counts of each query
term in the document in information retrieval tasks).

The problem of relevance retrieval for a query q can be written as argmaxi∈I R(i, q). For practical
applications, it is usually required to return not one but K best items (for directly displaying to the
user or further re-ranking). Most recommender systems are characterized by a large size of the item
space I (millions to hundreds of millions), so an exhaustive search is not feasible. This problem is
often solved by training an auxiliary model R̃, called a Siamese, two-tower, or dual encoder (DE), in
which late binding is used: R̃(i, q) = S(FI(i), FQ(q)), where FI : I → Rd, FQ : Q→ Rd, and S
is some lightweight similarity measure, usually dot product or cosine similarity.

While a lot of effort has been put into developing dual-encoder models, the cross-encoder (CE) ones
are generally more powerful (Wu et al., 2019; Yadav et al., 2022). Moreover, as mentioned above,
in practice it is typical to also have features that describe a query-item pair: e.g., counts of query
terms in the document (information retrieval), information about previous user-item interactions
(recommender systems), and so on. Such features cannot be used by dual encoders.

In a recent paper, Yadav et al. (2022) suggested an alternative approach: to approximate the relevance
of a given query to all the items using the relevance of this query to a fixed set of randomly chosen
support items. In more detail, the authors apply the matrix factorization to the query-item relevance
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matrix to represent it as a product of its submatrix containing only a few columns (relevances to
support items) and some other, explicitly computable.

Motivated by the above-mentioned work, we propose and analyze the concept of relevance-based
embeddings (RBE). The main idea is to describe users by their relevance to some pre-selected support
items and describe items by their relevance to some support users. Then, such representations can be
used in various ways: as in Yadav et al. (2022), they can be multiplied by a certain matrix to obtain
relevance approximations, or they can be passed into a neural network to potentially obtain better
approximations (trained for a desired loss), or they can be additionally combined with the original
node features to get even more powerful embeddings.

We theoretically prove the power of relevance-based embeddings. Namely, we show that (under mild
conditions) they are informative enough to approximate any continuous similarity function. In partic-
ular, when the similarity function utilizes pairwise features, dual encoders based on the individual
user and item features inevitably lose this information; however, relevance-based representations
contain this information and thus can approximate the desired function.

From a practical perspective, an important aspect of our approach is how to properly choose support
elements. Previous studies (Morozov & Babenko, 2019; Yadav et al., 2022) sampled them uniformly
at random, while we show that there is significant room for improvement. We investigate different
options: from simple heuristics (e.g., popular or diverse elements) to methods directly optimizing
the relevance approximation quality. Surprisingly, even very simple strategies like clustering the
elements and choosing the cluster centers as support items already give significant improvements that
can be further improved by more advanced and theoretically justified strategies.

To evaluate the performance of RBE, we conduct experiments on textual and recommendation
datasets. We compare our approach with dual encoders and with Yadav et al. (2022) and get an
average improvement of 33% over this baseline for various datasets (from 8% to 69%, see Table 2).

2 RELATED WORK

In this section, we discuss research areas and representative papers related to our study.

Relevance retrieval problem is widespread in the context of building information retrieval sys-
tems (Kowalski, 2007), such as text search engines (Huang et al., 2013), image search (Gordo
et al., 2016), entertainment recommender systems (Covington et al., 2016), question answering sys-
tems (Karpukhin et al., 2020), e-commerce systems (Yu et al., 2018), and other practical applications.

Usually, such problems are solved by learning query and item embeddings into a certain space and
then searching for approximate nearest elements in this space, followed by rearrangement using a
heavier ranker. In particular, Covington et al. (2016); Huang et al. (2013) explicitly use this approach,
offering two-tower models (a.k.a. dual encoders). Note that there are simple alternatives to dual
encoders that use, e.g., BM25 scores applicable to texts (Logeswaran et al., 2019; Zhang & Stratos,
2021) or other cheaper or more expensive alternatives (Humeau et al., 2019; Luan et al., 2021).
However, there is usually trading-off complexity for quality.

It is also worth mentioning the works trying to facilitate the training of the dual encoder through
distilling a heavier ranker model (Wu et al., 2019; Hofstätter et al., 2020; Lu et al., 2020; Qu et al.,
2020; Liu et al., 2021). Although these works aim at simplifying the learning of light ranking using
the heavy one, they differ from our approach in two aspects. First, distillation means that there are
still two heavy (comparable in orders of magnitude of trainable parameters) models. Second, this
approach requires two different complex model architectures that can be a significant disadvantage
for, e.g., recommender systems with a wide variety of image/textual/statistical/sequential features.

As for the nearest neighbors search in a common query-item space, a wide variety of algorithms
exist, including locality-sensitive hashing (LSH) (Indyk & Motwani, 1998; Andoni & Indyk, 2008),
partition trees (Bentley, 1975; Dasgupta & Freund, 2008; Dasgupta & Sinha, 2013), and similarity
graphs (Navarro, 2002). LSH-based and tree-based methods provide strong theoretical guarantees,
however, it has been shown that graph-based methods usually perform better (Malkov & Yashunin,
2018; Aumüller et al., 2020), which explains their widespread use in practical applications.
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Another research direction is methods that combine nearest neighbors search with heavy ranker
calls (Morozov & Babenko, 2019; Chen et al., 2022) instead of separately embedding queries and
items in a common space where the search for the nearest items can be efficiently performed. Such
methods show better quality in comparison with separate embeddings, however, their practical
application may be limited due to a significant change in the structure of the search index. In
particular, in practice, microservices with neural networks and microservices with document indexes
are different services, which allows for increasing GPU utilization on the one hand and using
specialized (including sharded) solutions with a large amount of memory on the other. Therefore, in
this paper, we focus on the basic scenario with a separate investment in space and a separate search
for the nearest elements in it.

A recent paper by Yadav et al. (2022) is the most relevant for our research. The idea is to apply
the matrix factorization to the query-item relevance matrix in order to represent it as a product
of its submatrix containing only a few columns (relevances for random support items) and some
other, explicitly computable. Despite the simplicity of the idea and implementation, the authors
have shown in detail the superiority of their algorithm over more complex approaches, such as dual
encoders. Our work is motivated by this study: we show that the approach of Yadav et al. (2022) has
theoretical guarantees and suggest several improvements that significantly boost the performance.
As an enhancement of the original approach, in another paper, Yadav et al. (2023) proposed the
idea of selecting support items per each query independently, but the time complexity of each query
processing becomes linear in the number of elements, which makes the approach infeasible in most
practical applications. On the contrary, our support items selection is performed in the pre-processing
stage and does not increase the query time.

Finally, the most recent article (Yadav et al., 2024) proposes an alternative solution to the problem.
Their AXN algorithm dynamically learns the difference between the DE and CE (or other query-
document embeddings) predictions for each query independently (at the query time). Learning the
difference is carried out through iteratively choosing a set of anchor (supporting) elements, calculating
CE scores for them, and learning linear regression with embeddings of these elements as features
and CE scores as targets. Some disadvantages of this method are: 1) it requires previously trained
embeddings of queries and documents; 2) it has increased query processing time due to the need for
iterative refining of all item relevances for each query. For completeness of our study, we use the
AXN algorithm as one of our baselines.

3 RELEVANCE-BASED EMBEDDINGS

In general, the information (attributes) used to calculate the ground-truth item-to-query relevances
R(i, q) can be divided into three types: depending only on the query q, only on the item i, and on
both of them. The key problem when constructing separate embeddings of items and queries in
the common space (that can be used for searching for the nearest elements) is the inability to use
information that depends on both query and item, which lowers the quality of relevance search.

To address the above-mentioned issue, we introduce relevance-based representations that describe
each query by its relevance to a pre-selected set of items and, vice-versa, each item by its relevance to
a pre-selected set of queries. We prove that, under certain conditions, any relevance function can be
well estimated using only such individual vectors.

3.1 PRELIMINARIES

Let Q and I be compact topological spaces of queries and items, respectively. Assume that we are
given a relevance function R : I × Q → R. In practice, R is our relevance model which may be
computationally expensive and rely on pairwise features.

Let SI ⊂ I and SQ ⊂ Q be some finite ordered sets of support items and support queries:
SI = {i1, . . . , im}, SQ = {q1, . . . , qn}. Let R(i, SQ) be a relevance vector of the item i w.r.t. the
set of support queries SQ: R(i, SQ) = (R(i, q1), . . . , R(i, qn)). Similarly, R(SI , q) is a relevance
vector of the query q w.r.t. the set of support items SI : R(SI , q) = (R(i1, q), . . . , R(im, q)). By
R(SI , SQ) we denote a relevance matrix composed in a similar way.
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3.2 CUR APPROXIMATION

Relevance vectors can be utilized in different ways and one of the possible approaches is to use
the CUR decomposition (this approach was used by Yadav et al. (2022)). Using our notation, the
relevance for a query q is approximated as:

R̃(I, q) := ⟨R(I, SQ)× pinv(R(SI , SQ)), R(SI , q) ⟩, (1)

where pinv(X) is the pseudo-inverse matrix of X . As support queries, Yadav et al. (2022) take the
set of train queries: SQ = Qtrain ⊂ Q.

Regarding the computational complexity, we note that the CUR approximation requires computing
the matrix R(I,Qtrain) which takes O(M · |SQ|) = (M · |Qtrain|) CE calls, where M is the total
number of items in a database, which can be infeasible for large databases.

Our first theoretical result provides guarantees for the CUR approximation (1). Namely, we show
that its regularized version approximates the true relevance arbitrarily precisely in L2. Formally,
let pinvλ(A) = (ATA+ λE)−1AT with E being the identity matrix. Then, the regularized CUR
approximation CURλ is defined by (1) with pinvλ instead of pinv. For CURλ, we prove the following
result (see Appendix A.3 for the proof).
Theorem 3.1. Suppose that I and Q are equipped with the structure of a measure space and the
integral of R4(i, q) over I×Q is finite. Then, the CURλ approximation of R can be chosen arbitrarily
close to the true R in L2(I ×Q) provided enough uniformly sampled support items and queries and
sufficiently small λ.

Our result gives theoretical support for the good performance of the CUR decomposition demonstrated
in Yadav et al. (2022). In the next section, we show that stronger theoretical guarantees can be provided
if we allow transforming query and item vectors into more powerful embeddings.

3.3 RELEVANCE-BASED EMBEDDINGS

In this section, we propose extending the CUR-based approximation by allowing transformations of
relevance vectors, e.g., with a neural architecture. With such embeddings, we prove a stronger result:
that any continuous relevance function can be uniformly approximated.

We say that a function on I is a relevance-based embedding if it has a representation of the form
eI(i) = fI(R(i, SQ), θI) where SQ is a set of support queries and fI is some ML-architecture with
parameters θI which parametrizes a mapping Rn → Rd. Analogously, eQ(q) = fQ(R(SI , q), θQ) is
a relevance-based embedding of the query q.

The following theorem holds (the proof can be found in Appendix A.1 and the guarantees for the
RBE approach on a sphere are discussed in Appendix A.2).
Theorem 3.2. Let I and Q be compact topological spaces, and R : I × Q → R be a continuous
function. Then, R can be uniformly approximated up to an arbitrarily small absolute error by a
function R̃(i, q):

R̃(i, q) = ⟨ fI(R(i, SQ), θI), fQ(R(SI , q), θQ) ⟩, (2)
where SI ∈ I and SQ ∈ Q are some finite sets of support items and queries and fI , fQ are neural
architectures with the universal approximation property (e.g., MLPs).

Figure 1: RBE visualization: support queries are
red, support items are yellow; test queries are blue,
and their relevance scores for the support items are
used to approximate the remaining values

Note that compared to Theorem 3.1, this theo-
rem has weaker requirements and stronger con-
vergence. Trainable embeddings allow us to
soften the requirements (R can be any contin-
uous function) and prove uniform convergence
instead of L2 convergence).

This theorem shows that the true relevance func-
tion can be uniformly approximated with arbi-
trary precision by some functions of the rele-
vance vectors. Our relevance-based framework
is visualized in Figure 1. Note that the CUR
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approximation discussed in Section 3.2 fits our framework with θI := pinv(R(SI , SQ)) and
fI(R(i, SQ), θI) := R(i, SQ)× θI , fQ(R(SI , q), θQ) := R(SI , q). Extending the CUR approxima-
tion to arbitrary embeddings allows us to obtain even stronger approximation guarantees. Moreover,
such trainable embeddings are more flexible as they can adapt to a particular quality function one
aims to optimize.

Regarding the computation complexity, the pre-processing step requires O(M · |SQ|) + N com-
putations of CE, where N is the size of the training set (this part is similar to the training of dual
encoders). An advantage of RBE is that we may have a significantly smaller set of support queries
|SQ| ≪ |Qtrain|, while still utilizing the remaining queries for training the mappings fQ and fI .
Also, the number of CE computations can be further reduced to just O(N) if we replace the trans-
formation fI(R(i, SQ), θI) with trainable embeddings of items θI(i) ∈ Rd, see Section 3.5 for the
discussion.

To sum up, the main outcome of our analysis is that even though the relevance function R(·, ·) is
arbitrary (and, in particular, can rely on pairwise features only available for query-item pairs), it can
be well approximated by relevance-based embeddings of individual users and items. This is a clear
advantage of RBE over conventional dual-encoder models.

3.4 SELECTING SUPPORT ITEMS

Let us revise the statement of Theorem 3.2. The theorem states that there exist such sets SQ, SI that
the relevance function R could be effectively approximated by separated embedders fI , fQ. In the
related works (Morozov & Babenko, 2019; Yadav et al., 2022), this selection is random, implicitly
assuming that the elements are in some sense equivalent. However, for example, when building a
recommender service, the popularity of different objects has a strongly skewed distribution, which is
why more information is known about a small set of highly popular items than about a large set of
unpopular ones. Thus, it is natural to assume that the choice of support items may have a significant
effect on performance. We investigate this direction and compare several approaches from simple
heuristics to more complex ones optimizing the approximation quality.

Simple heuristics Our heuristic strategies include:

• Random Support items are chosen uniformly at random (Morozov & Babenko, 2019;
Yadav et al., 2022). For better reproducibility, we also present the results of using the first
|SI | items as support ones, assuming that the order of queries is pseudorandom.

• Popular As mentioned above, a recommender service usually has a small set of very
popular elements that many users interact with. As a result, a lot of information can be
collected from these interactions thus making the popular elements more informative. Since
it is not always possible to get popularity explicitly, we consider the following surrogate:
choose the objects with the highest average relevance for the training set.

• Clusters centers When it comes to the allocation of a representative subset of vectors, it is
reasonable to consider the allocation of clusters. We consider various clustering algorithms
and select the cluster centers as support elements. The number of clusters is set to the
number of required support elements.

• Most diverse This strategy is a greedy algorithm maximizing the minimum distance
between the support elements. We first choose the element furthest from the center (by
Euclidean distance) and then, at each step, an element is selected whose minimum distance
to the current support elements is maximal.

The approaches that require item representations can be applied to their relevance vectors.

l2-greedy approach Let us now discuss a more theoretically justified approach that we call l2-
greedy. It aims at selecting the key elements that allow for a better approximation of the relevance
matrix R(i, q). In this strategy, we greedily select items so that the MSE error of the CUR approxi-
mation (Mahoney & Drineas, 2009) is minimized for the train queries.1

1We use the CUR approximation here since it optimizes the MSE error and is deterministically defined as
in (1). In contrast, while the RBE approximation is more flexible, it requires fitting fI and fQ before estimating
the approximation quality for each choice of the support queries and items.
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We note that the CUR approximation replaces every item with a linear combination of support items
so that the MSE between the true relevances and their CUR approximations on the train set of queries
is minimized (see Appendix A.3 for more details). Our goal is to optimize the overall MSE for all
items, which is:∑

i

∥R(i, SQ)
T −R(SI , SQ)

T × pinv(R(SI , SQ)
T )×R(i, SQ)

T ∥22. (3)

We minimize this expression over all possible choices of SI , |SI | = m. We propose a greedy
approach in which support items are selected one by one optimizing (3) at each step. Due to space
constraints, the implementation details are placed in Appendix B.

Computation complexity In their default implementation, support items selection strategies popu-
lar, cluster centers, most diverse, and l2-greedy require computing the relevance scores of all items
to support queries that can be done in O(M · n). If this is infeasible, one can use downsampling to
reduce the number of candidates for support items. Our preliminary experiments (see Appendix E)
show that even significant downsampling gives reasonable performance of the obtained support items.
Moreover, for heuristic approaches, instead of the relevance vectors, one can use cheaper embeddings
(e.g., the original feature vectors) when they are available. Moreover, for cluster centers, there can
be predefined clusters in data. For instance, in recommender services, it is typical that items are
annotated with their categories that can be used as clusters without any additional cost.

3.5 ADDITIONAL PRACTICAL CONSIDERATIONS

Dynamic set of items We note that relevance-based embeddings can naturally handle scenarios
where the set of items frequently changes. The embeddings fI(R(i, SQ), θI) can be easily calculated
for the new items without the need of re-training the embedding model fI (similarly to feature-based
dual encoders). On the other hand, if the set of items I is finite or changes not so frequently (e.g.,
the set of movies currently available in a recommender service), the transformation fI(R(i, SQ), θI)
can be replaced with trainable embeddings θI(i) ∈ Rd. In contrast to items, the query set Q cannot
be assumed to be finite: queries can be represented by texts of unlimited length or characterized by
real-valued features.

Improving approximation quality As discussed above, it is natural to assume the heavy ranker R
to be the most expensive part in terms of computational complexity. Thus, during the calculation
of R̃, we are mainly limited by the sizes of the support sets SQ and SI . In contrast, calculating fQ,
fI , or the dot product between them is assumed to be significantly cheaper. Thus, fQ and fI may
embed the relevance vectors in a higher-dimensional space. In particular, this may help to eliminate
the disadvantages of the dot product, in comparison with other (Shevkunov & Prokhorenkova, 2021)
ways of measuring the distances or similarities between objects.

While relevance-based embeddings have theoretical guarantees, they hold in the limit, when the
sets of support queries and items are sufficiently large. In practice, to improve the approximation
performance and reduce the number of CE calls per query, the mapping fQ (or fI ) could be extended
by enriching it with the features of the original query (or item).

Scalability The cost of the pre-processing and the ways to scale it are discussed in Section 3. At the
inference, we need to compute the query representation, which requires m relevance computations.
Then, the inference is similar to dual encoders: the item representations are pre-calculated and placed
in the Approximate Nearest Neighbours index like HNSW (Malkov & Yashunin, 2018), which takes
the embedding of the query as input. These m additional computations are taken into account in our
experiments: when comparing with dual encoders, we reduce the final re-ranking budget by m.

Other applications Although the goal of RBEs is to approximate the relevance function, relevance
vectors can also be considered good general representations. Thus, their application is not limited to
relevance predictions, as shown below in Appendix D.2.
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4 EXPERIMENTAL SETUP

Let us describe our experimental setup.2 In all datasets that we use in this work, there is a heavy
ranker that provides relevance, which we consider to be close to the ground truth. With this ranker,
we build the complete table (R : I ×Q→ R) of the relevance scores. We denote the predicted scores
by R̂.

The task is to find the most relevant items for a given query. The quality is evaluated as

HitRate(P, T ) :=
∑

qi∈Qtest

|BestP (R̂, qi) ∩ BestT (R, qi)|
|BestT (R, qi)| |Qtest|

, HitRate(K) := HitRate(K,K),

where BestK(R, q) ⊂ I is defined as the set of K items i1, . . . , iK with the highest relevances
R(i1, q), . . . , R(iK , q) to a given query q ∈ Q; Qtest is a set of test queries that do not participate
in the training: SQ ⊂ Qtrain, Qtrain

⊔
Qtest = Q. For all our experiments, |Qtest| ≈ 0.3|Q|,

|SI | = 100, SQ = Qtrain.

4.1 DATASETS

ZESHEL The Zero-Shot Entity Linking (ZESHEL) dataset was constructed by Logeswaran et al.
(2019) from Wikia. The task of zero-shot entity linking is to link mentions of objects in the text to an
object from the list of entities with related descriptions. The dataset consists of 16 different domains.
Each domain contains disjoint sets of entities, and during testing, mentions should be associated with
invisible entities solely based on entity descriptions. We run the experiments on five domains from
ZESHEL selected by Yadav et al. (2022). As a heavy ranker R, we use the cross-encoder trained
by Yadav et al. (2022) and publicly available. Table 7 in Appendix shows the dataset statics for the
domains used in this paper.

Question-Answering To additionally cover the question-answering domain, we conducted experi-
ments on the MsMarco (Nguyen et al., 2016) based dataset provided by huggingface.3 As a heavy
ranker, we use all-mpnet-base-v2 from the SentenceTransformers library (Reimers & Gurevych,
2019), which is trained, among other datasets, on the MsMarco data. We took ∼10K test queries
and 0.8M passages corresponding to them (QA). For the experiments in Table 1, we used the smaller
(QA.Small) version with 82K passages (only test passages).

RecSys To evaluate the generalization of the proposed approach to other tasks and domains, we
collected a dataset from a production service providing recommendations of items to users.4 As a
heavy ground-truth ranker R, we use the CatBoost gradient boosting model (Prokhorenkova et al.,
2018) trained on a wide range of features, including categories and other static attributes of items,
social information (age, language, etc.) of users, simple item statistics, user statistics, real-time
statistics on user and item interaction, factors derived from the matrix factorizations, and multiple
two-tower neural networks, receiving the features listed above as their features.

Two versions of the dataset are presented. In the first one, CatBoost was trained to predict the time
that a user is going to spend on a given item immediately after the click (in one session). In the
second version, CatBoost was trained on the pairwise PairLogit target to predict the item with the
longest time spent for some long time after the click (including new sessions). The first version is
denoted in the tables as RecSysLT and the second as RecSys. This dataset allows us to evaluate the
generalizability of our approach across different domains and different types of heavy rankers since
gradient-boosting models differ significantly from neural approaches. 5

RecSys2 To further increase diversity of the considered domains, we collected a dataset from
another production recommender service. Here, the CatBoost gradient boosting model is used as a

2The code and experimental data will be made publicly available after the blind review due to anonymity
considerations.

3v1.1 version from https://huggingface.co/datasets/microsoft/ms_marco
4Not specified to preserve anonymity.
5We plan to publish both CE relevances and DE embeddings for RecSys, RecSysLT, RecSys2 in the final

version of the paper (this requires legal approval).
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Table 1: Support item selection applied to the CUR relevance approximation, HitRate(100) (larger is
better) is reported

Support items Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT RecSys2 QA.Small

random (i.e. AnnCUR) 0.4724 0.4280 0.2287 0.1919 0.2455 0.6697 0.5842 0.1478 0.5828
first 100 0.4845 0.4182 0.2489 0.1975 0.2599 0.6490 0.5609 0.1551 0.5491
popular 0.2429 0.3001 0.1154 0.1197 0.1907 0.7623 0.6695 0.1422 0.5536
KMeans 0.5083 0.4850 0.3226 0.2517 0.3042 0.7070 0.6184 0.1661 0.5578
BisectingKMeans 0.4825 0.4592 0.2839 0.2159 0.2752 0.7035 0.6213 0.1483 0.5394
MiniBatchKMeans 0.5077 0.4737 0.2912 0.2365 0.2826 0.7033 0.5981 0.1721 0.5529
AgglomerativeClustering 0.5105 0.4911 0.3264 0.2531 0.2448 0.7050 0.6265 0.1557 0.5666
SpectralCoclustering 0.4618 0.4443 0.2540 0.2076 0.2551 0.6998 0.6094 0.1594 0.5415
SpectralBiclustering 0.4654 0.4708 0.2628 0.1845 0.2533 0.7409 0.5972 0.1607 0.5358
SpectralClusteringNN 0.5087 0.4690 0.2742 0.2048 0.2507 0.6936 0.5740 0.2343 0.5741
ByMin 0.5333 0.4290 0.3325 0.2278 0.2483 0.6504 0.6182 0.1329 0.5925
l2-greedy 0.5618 0.5119 0.3677 0.2960 0.3357 0.7197 0.6565 0.1478 0.6100

Table 2: Evaluating neural relevance-based embeddings, HitRate(100) (larger is better) is reported
Model Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT RecSys2 QA

Popular 0.0917 0.2410 0.0884 0.0821 0.1127 0.5077 0.2886 0.0142 0.0001
AnnCUR 0.4724 0.4280 0.2287 0.1919 0.2455 0.6697 0.5842 0.1478 0.5522

AnnCUR+KMeans 0.5083 0.4850 0.3226 0.2517 0.3042 0.7070 0.6184 0.1661 0.5027
RBE+KMeans 0.5431 0.4979 0.3399 0.2539 0.3019 0.7137 0.6300 0.3729 0.5505

AnnCUR+l2-greedy 0.5618 0.5119 0.3677 0.2960 0.3357 0.7197 0.6565 0.1478 0.5700
RBE+l2-greedy 0.5849 0.5249 0.3867 0.2992 0.3349 0.7234 0.6682 0.3964 0.6022

heavy ranker and a dual encoder as a baseline. Both CE and DE are trained on a large set of external
data and features. A smaller subsample of this data was used to train RBE, since we believe that RBE
is able to show good quality even on a significantly smaller size of the training data.

4.2 BASELINES

As our main baseline, we consider the AnnCUR (Yadav et al., 2022) recommendation algorithm that
approximates relevances with the CUR decomposition as discussed in Section 3.2. What is important
for further discussion, a broad comparison of this method with different basic approaches, including
various dual encoders, is carried out by Yadav et al. (2022). In most of our experiments, we rely on
these results, comparing only with AnnCUR. However, we explicitly provide the comparison with
dual encoders for the new datasets RecSysLT and RecSys in Section 5. For better interpretability of
the results, we also provide metrics for a baseline that always selects the most popular items (not to
be confused with Table 1, where the “popular” refers to selecting support items).

4.3 RBE IMPLEMENTATION

Following Theorem 3.2, we train lightweight neural networks fI and fQ, which are significantly
faster than the heavy ranker R, and independently transform the relevance vectors R(i, SQ), R(SI , q)
into embeddings. The training is performed by the Adam algorithm on sampled batches with a
listwise loss function (see Appendix C), similar to the training of various DEs.

As follows from Section 3.2, the CUR decomposition gives a reasonably good approximation of the
relevance function. Hence, we split the RBE representation into the CUR representation and the
trainable prediction of its error. In the experiments, such decomposition improves the convergence
and training stability. Technical implementation details are placed in Appendix C.

5 EXPERIMENTAL RESULTS

Support items selection Following Section 3.4, we check various ways of choosing support ele-
ments as opposed to the existing approaches that use random selection. All clustering algorithms are
taken from the scikit-learn (Pedregosa et al., 2011) library, SpectralClusteringNN is a SpectralClus-
tering with “nearest neighbors” affinity. The algorithms are used with their default parameters since
even this simple setting already allows us to get significant improvements over the random selection.
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The results are shown in Table 1, where the best three results for each dataset are highlighted. Clearly,
there is a significant superiority of almost any approach based on clustering or diversity over the
random selection. The theoretically justified l2-greedy algorithm is the clear winner, second and
third places are taken by KMeans and AgglomerativeClustering. However, due to the significantly
worse quality of AgglomerativeClustering on the Military dataset, KMeans will be used in further
experiments. Another observation is that on RecSys and RecSysLT, there is a clear superiority of the
choice of popular items as the support ones. It is worth mentioning that for this dataset, the elements
extracted by popularity are also quite stratified by their categories and an explicit restriction on the
number of elements from one category changes the top slightly. However, this may not be true for
other data (e.g., we do not observe a similar feature for RecSys2).

Neural relevance-based embeddings Following the description in Section 4.3, we also apply
non-trivial trainable relevance mappings fI(R(I, SQ), θI), fQ(R(SI , q), θQ) to check whether this
modification improves prediction quality in practice. The results are shown in Table 2. To better
interpret the values, the quality of the constant output consisting of popular (in the same sense as
in the previous paragraph) elements is also given. It can be seen that in most cases, except for one
dataset (Military), trainable relevance mappings improve the final quality of the search for relevant
elements and the improvements are obtained for both KMeans and l2-greedy support elements
selection. Improvement from the trainable mappings is most noticeable for the QA dataset. Note that
the transformation that we use is not claimed to be optimal and is given rather to demonstrate that
with the help of an easy transformation, one can get an increased quality on various datasets.

Table 3: Dual encoder embeddings vs support relevances, different tops, RecSysLT
X 100 200 300 400 500 600 700 800 900

Dual Encoder HR(X+100, X) 0.7048 0.6803 0.6739 0.6739 0.6760 0.6792 0.6827 0.6868 0.6904
AXNDE HR(X+100, X) 0.7065 0.6769 0.6740 0.6769 0.6820 0.6883 0.6958 0.7054 0.7161

RBE+l2-greedy HR(X, X) 0.6682 0.6955 0.7221 0.7406 0.7538 0.7639 0.7720 0.7792 0.7853

Table 4: Dual encoder embeddings vs support relevances, different tops, RecSys2
X 100 200 300 400 500 600 700 800 900

Dual Encoder HR(X+100, X) 0.3792 0.3198 0.2928 0.2784 0.2702 0.2661 0.2647 0.2652 0.2671
AXNDE HR(X+100, X) 0.3843 0.3333 0.3015 0.2879 0.2839 0.2835 0.2836 0.2855 0.2893

RBE+l2-greedy HR(X, X) 0.3964 0.4471 0.4693 0.4833 0.4929 0.5008 0.5070 0.5119 0.5162

Table 5: Dual encoder embeddings vs support relevances, RecSysLT
K 100 200 300 400 500 600 700 800 900

Dual Encoder HR(K+100, 100) 0.7048 0.7977 0.8518 0.8855 0.9086 0.9258 0.9385 0.9484 0.9561
AXNDE HR(K+100, 100) 0.7065 0.7970 0.8538 0.8902 0.9153 0.9331 0.9465 0.9572 0.9660

RBE+l2-greedy HR(K, 100) 0.6682 0.8359 0.9026 0.9342 0.9522 0.9632 0.9704 0.9760 0.9799

Comparison with dual encoders In this part, we compare RBE with dual encoders. For RecSys and
RecSys2 datasets, we consider the embeddings produced by the dual encoder used in the production of
the service (i.e., the one that is proved to be the best in this task). To fairly compare the performance,
we replace the relevance vectors in the RecSys experiments with embeddings obtained by the DE,
keeping the transformation of the relevance vectors and the training parameters unchanged. The only
difference between the pipelines for RBE and DE is that since we used |SI | = 100 requests to a
heavy ranker to obtain an RBE, we have to decrease the budget for RBE CE calls when calculating
the top: compared to RBE, DE uses |SI | more CE calls for the re-ranking. We also applied the AXN6

method in addition to DE-embedding as an alternative approach to improve DE-like methods using
CE calls. Similarly to DE, AXN uses an increased budget for CE calls. Thus, for the dual encoder
and AXN, we use the metric HitRate(X + |SI |, X) and for RBE — HitRate(X,X), which gives

6We have to note that, since the source code of the authors was not posted at the time of the experiment, we
reproduced it ourselves, which may cause some differences in metrics.
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Table 6: Dual encoder embeddings vs support relevances, RecSys2
K 100 200 300 400 500 600 700 800 900

Dual Encoder HR(K+100, 100) 0.3792 0.4228 0.4514 0.4738 0.4927 0.5091 0.5239 0.5373 0.5493
AXNDE HR(K+100, 100) 0.3843 0.4296 0.4557 0.4834 0.5020 0.5198 0.5351 0.5485 0.5630

RBE+l2-greedy HR(K, 100) 0.3964 0.5435 0.6253 0.6819 0.7253 0.7599 0.7888 0.8135 0.8343

the former an advantage for small top sizes.7 However, starting from X = 200, our algorithm is
superior to both dual encoder and AXNDE baselines, as can be seen from Table 3. As for Table 4,
our algorithm is superior to both dual encoder and AXNDE baselines from X = 100.

A second comparison, where the size of the desired top is fixed, while the number of extracted
elements changes, is presented in Tables 5 and 6. Similarly to the previous comparison, RBE calls to
the heavy ranker are taken into account: for the dual encoder and AXN, HitRate(K + |SI |, 100) is
calculated, and for RBE — HitRate(K, 100). In this comparison, RBE outperforms the dual encoder
and AXNDE starting at K = 200 for RecSysLT and at K = 100 for RecSys2. Let us note that in
the production service, the actual size of the top used to select candidates before ranking exceeds the
values indicated in the table.

A similar comparison with the dual encoder on the data from ZESHEL can be found in Yadav et al.
(2022): it is shown that AnnCUR outperforms the dual encoder. Thus, on ZESHEL we compare only
with AnnCUR.

Transfer Learning Often in practice, embeddings trained to solve one problem are also applied
to other ones. Following this, we conducted an additional experiment on predicting the categories
of items in the RecSys dataset and obtained that the relevance vectors are informative vector repre-
sentations. Moreover, the proposed algorithms for selecting key elements improve the quality of the
prediction. Due to space constraints, the detailed results are provided in Appendix D.2.

6 CONCLUSION

In this paper, we present the concept of relevance-based embeddings. We justify our approach
theoretically and show its practical effectiveness on various datasets. We demonstrate that RBE
allows one to obtain better quality compared with existing approaches. An important contribution of
our work is the study of different strategies for choosing the support elements for RBE: we show that
a proper choice of the support elements allows one to significantly boost performance.

Promising directions for future research include a deeper investigation of support element selection
strategies as well as applying the proposed RBE to other algorithms, e.g., based on using a heavy
ranker during the nearest neighbor search (Morozov & Babenko, 2019) or adaptive nearest neighbor
search (Yadav et al., 2024). Regarding the latter approach, we note that AXN can be naturally
combined with any query-item representations, e.g., RBE. The obtained AXNRBE model has to
perform at least as well as RBE due to the presence of the regularization that balances between the
query-item representation and the proposed modification.
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A THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 3.2

Queries as functions on items and vice versa Each query q defines a function rq on items:
rq(i) = R(i, q). Let us call two queries q and q′ R-equivalent if rq = rq′ and write q ∼R q′ to denote
this relation. R-equivalent queries are interchangeable when it comes to measuring their relevance to
any item. Let QR be the set of R-equivalence classes. QR may be considered as an image of Q in C(I)
under the mapping RQ which maps query q to rq . This point of view suggests a natural metric dQR

on
QR induced by the uniform norm on C(I): dQR

(q, q′) = ∥rq − rq′∥ = supi∈I |R(i, q)−R(i, q′)|.
Now let us note that the map RQ : Q→ C(I) is continuous since R is continuous and I is compact.
Therefore, QR is compact as an image of a compact space Q under a continuous mapping. And
there is an (injective) embedding of C(QR) to C(Q) under which the function f ∈ C(QR) goes to
f ◦ RQ ∈ C(Q). Simply speaking, a continuous function on the equivalence classes of queries is
also a continuous function on the queries themselves.

Analogously, we define:

RI : I → C(Q), RI(i) = ri, ri(q) = R(i, q), RI(I) = IR,

dIR(i, i
′) = ∥ri − ri′∥ = sup

q∈Q
|R(i, q)−R(i′, q)|.

For convenience, we will identify functions in C(IR) and C(QR) with functions in C(IR × QR)
which are independent of one of their arguments. The relationships mentioned above and similar
ones are shown in the diagram below (hooked arrows represent injective mappings, arrows with two
heads stand for surjective ones):

C(I ×Q)

C(I) C(IR ×QR) C(Q)

C(IR) C(QR)

Q QR IR I

Now, let us make several observations.
Claim 1. ri ∈ C(QR) and, similarly, rq ∈ C(IR).

Proof. We note that ∥ri(q) − ri(q
′)∥ = ∥rq(i) − rq′(i)∥ ≤ ∥rq − rq′∥ = dQR

(q, q′). So, ri(q) −
ri(q

′) = 0 if rq = rq′ and the value ri(q) does not change if a query is replaced with an equivalent
one. It means that ri is a correctly defined function on the classes of equivalent queries, i.e., on
QR. And finally the same inequality ∥ri(q) − ri(q

′)∥ ≤ dQR
(q, q′) implies that the function ri is

1-Lipschitz with respect to the metric dQR
.

Claim 2. R ∈ C(IR, QR).

Proof. We have |R(i, q) − R(i, q′)| = |rq(i) − rq′(i)| ≤ ∥rq − rq′∥ = dQR
(q, q′) and |R(i, q) −

R(i′, q)| ≤ dIR(i, i
′). It follows that the value R(i, q) does not change after replacement of a

query-item pair (i, q) with some equivalent pair (i′, q′). So, R can be considered as a function on
IR×QR. And by the same inequality R is 1-Lipschitz with respect to the metric dR((i, q), (i′, q′)) =
dIR(i, i

′) + dQR
(q, q′) and hence is continuous.
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Stone-Weierstrass theorem Let us call all functions rq and ri elementary. Consider the family of
all elementary functions F = {rq|q ∈ Q} ∪ {ri|i ∈ I} ⊂ C(IR ×QR).
Claim 3. The familyF separates points in IR×QR, i.e., for each two different points x, y ∈ IR×QR,
there is a function f ∈ F such that f(x) ̸= f(y).

Proof. Indeed, let (i1, q1) and (i2, q2) be any two different points in IR × QR. Then i1 ̸= i2 or
q1 ̸= q2. Without loss of generality, we can assume that i1 ̸= i2 (they are unequal as points in IR).
So, ri1 and ri2 are different functions on QR and there exists q ∈ QR such that ri1(q) ̸= ri2(q)⇔
R(i1, q) ̸= R(i2, q) ⇔ rq(i1) ̸= rq(i2) ⇔ rq((i1, q1)) ̸= rq((i2, q2)). Thus, we found a function
(rq) from our family that separates the two points.

Next, consider the algebra of functions R[F ] generated by the family F . This algebra consists
of all polynomial combinations of functions in F . More formally, each element of R[F ] has a
representation of the form:

R[F ] ∋ f =

d∑
k=1

ck · rik,1
· . . . · rik,ak

· rqk,1
· . . . · rqk,bk

.

In other words, there are d sets S1, . . . , Sd of queries and items such that:

Sk = Sk
I ∪ Sk

Q, Sk
I = {ik,1, . . . , ik,ak

} ⊂ I, Sk
Q = {qk,1, . . . , qk,bk} ⊂ Q.

f =

d∑
k=1

ck ·

∏
i∈Sk

I

ri

 ·
 ∏

q∈Sk
Q

rq

 . (4)

Products of the form
∏

i∈Sk
I
ri may be empty and in this case the product equals 1. So, R[F ]

contains constant functions and separates points of IR ×QR (because it contains F). Hence, by the
Stone-Weierstrass theorem, the algebra R[F ] is dense in C(IR ×QR). In particular, the function R
can be approximated by an element of R[F ] up to an arbitrarily small absolute error.

Represent polynomials in R[F ] as products of query and item embeddings Consider an arbitrary
function f ∈ R[F ] and its representation of the form (4). Denote the products

∏
i∈Sk

I
ri(q) and∏

q∈Sk
Q
rq(i) by πSk

I
(q) and πSk

Q
(i) respectively. Consider two d-dimensional vectors:

e(q) =
(
c1 · πS1

I
(q), . . . , cd · πSd

I
(q)
)
,

e(i) =
(
πS1

Q
(i), . . . , πSd

Q
(i)
)
.

Then, f(i, q) = ⟨e(i), e(q)⟩. Let SI = ∪dk=1S
k
I and SQ = ∪dk=1S

k
Q. Then e(q) is a continu-

ous (more specifically, polynomial) function of the vector R(SI , q) and e(i) is a continuous func-
tion of the vector R(i, SQ). So, by the universality theorem for MLPs (Cybenko, 1989; Leshno
et al., 1993), the vector e(i) can be approximated up to arbitrarily small absolute error in the
form fI(R(i, SQ), θI) where fI(·, θI) — a rich enough MLP architecture. Similarly, e(q) can
be approximated by fQ(R(SI , q), θQ). Hence, ⟨fI(R(i, SQ), θI), fQ(R(SI , q), θQ)⟩ approximates
f(i, q). Finally, we can consider f ∈ R[F ] such that ∥f − R∥ < ε

2 and then find such θI and
θQ that ∥f − ⟨fI(R(i, SQ), θI), fQ(R(SI , q), θQ)⟩∥ < ε

2 . These parameters will give us a desired
ε-approximation of R in a form of the product of relevance-based embeddings.

A.2 RBE ON A SPHERE

The corollary below shows that the retrieval of the most R-relevant items with tolerance to ε-sized
relevance loss can be reduced to the standard nearest neighbor search on a sphere.
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Corollary A.1. For each ε > 0, there is a multiplier a ∈ R such that aR̃ is an ε-approximation of R
and R̃ uses embeddings scaled to the unit sphere.

Proof. Let us take some ε
2 -approximation of R of the form

R(i, q) ≈ ⟨eI(q), eQ(i)⟩ = ⟨fQ(R(SI , q), θQ), fI(R(i, SQ), θI)⟩
via the relevance-based embeddings eI(q) and eQ(i) of dimension d. Take a constant C such that
∥eI(i)∥ < C and ∥eQ(Q)∥ < C for all q ∈ Q and i ∈ I and consider the following vector
embeddings of dimension d+ 2:

ẽI(i) =

(
1

C
eI(i),

√
1− ∥ 1

C
eI(i)∥2, 0

)
,

ẽQ(q) =

(
1

C
eq(q), 0,

√
1− ∥ 1

C
eq(q)∥2

)
.

Note that ⟨eI(i), eQ(q)⟩ = C2 · ⟨ẽI(i), ẽq(q)⟩ and ẽI(i) and ẽq(q) lie on the (d + 1)-dimensional
unit sphere Sd+1 ⊂ Rd+2. We can take new powerful enough architectures f̃I and f̃Q with outputs
normalized to unit sphere in Rd+2 and fit for them parameters θ̃I and θ̃Q such that f̃I(R(i, SQ), θ̃I) ≈
ẽI(i) and f̃Q(R(SI , q), θ̃Q) ≈ ẽQ(q) and R̃(i, q) = ⟨f̃I(R(i, SQ), θ̃I), f̃Q(R(SI , q), θ̃Q)⟩ ≈
⟨ẽI(i), ẽQ(q)⟩. More specifically, take θ̃I and θ̃Q such that:

|⟨ẽI(i), ẽQ(q)⟩ − R̃(i, q)| < ε

2C2
⇒ |⟨eI(i), eQ(q)⟩ − C2R̃(i, q)| < ε

2
.

Given that |R(i, q)− ⟨eI(i), eQ(q)⟩| < ε
2 , it yields |R− aR̃| < ε. Which means that the statement

of the corollary is satisfied with a = C2.

A.3 PROOF OF THEOREM 3.1

Preliminaries Let us start with some notation. We assume that the spaces of items and queries
I and Q are equipped with the structure of a measure space and probabilistic measures µI and
µQ, respectively. For any item i, by ri we denote a function on Q such that ri(q) = R(i, q). By
L2(I) = L2(I, µI) we denote a Hilbert space of measurable functions whose square is integrable.
We also denote Eif(i) =

∫
I
fdµI for f ∈ L2(I).

Recall that with CUR decomposition, the relevance R(i, q) is approximated as:

R̃(i, q) = ⟨R(i, SQ)× pinv(R(SI , SQ)), R(SI , q) ⟩ =
|SI |∑
t=1

ct · rit(q) (5)

with some coefficients ct that are defined as:
c = (c1, . . . , c|SI |) = [R(i, SQ)× pinv(R(SI , SQ))]

T
= pinv(R(SI , SQ)

T )×R(i, SQ)
T .

The last equality holds because pinv(A)T = pinv(AT ).

For any vector v ∈ R|SQ|:
pinv(R(SI , SQ)

T )v ∈ argmin
x∈R|SI |

∥R(SI , SQ)
Tx− v∥22 .

Thus, the coefficients c minimize the MSE between R(i, SQ)
T and R(SI , SQ)

T c, i.e., between the
relevances of queries from SQ to the item i and

∑|SI |
t=1 ct · rit . Thus, calculating the item embedding

c is merely solving a linear regression.

Then, CURλ is the analog of the CUR approximation that uses l2 regularization with coefficient λ
while solving these multiple linear regression problems. Formally, recall that we define

pinvλ(A) = (ATA+ λE)−1AT

with E being the identity matrix of a proper size. Then, CURλ uses pinvλ instead of pinv in (5).

Now, we are ready to prove the theorem. We do it in the following steps.
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Step 1 We note that the function R can be represented in the form of a no more than countable sum:

R(i, q) =

K∑
k=0

λkfk(i)hk(q),

where K ∈ N ∪ ∞ and {f0, f1, . . .}, {h0, h1, . . .} are orthonormal sets of vectors in L2(I) and
L2(Q), respectively. Equality holds almost everywhere on I×Q with respect to the measure µI×µQ.
Note that this statement is a generalization of finite dimensional PCA. Without loss of generality, we
can assume that λk ⩾ λk+1. Then, the approximation R(i, q) ≈

∑n
k=1 λkfk(i)hk(q) is a function

on I ×Q of rank n closest to R in L2(I ×Q) (like in ordinary PCA).

To prove this, we consider an operator A : L2(I) → L2(Q), A(f)(q) = Ei∼µI
f(i)R(i, q). A

is a Hilbert-Schmidt integral operator and hence it is compact. So, A∗A is compact self-adjoint
positive semi-definite operator in L2(I). By the spectral theorem for compact operators, A∗A(v) =∑

k λ
2
kfk⟨fk, v⟩, where {f1, . . .} is at most countable orthonormal set. Taking hk = 1

λk
A(fk)

completes the construction.

Step 2 Let {i1, i2, . . .} be an infinite sequence of independently sampled items. Then, with
probability one (with respect to sampling of {i1, i2, . . .}), there is N large enough that:

Ei

(
min

i′∈{i1,...,iN}
∥ri − ri′∥22

)
< ε.

In other words, for every item i, there is some replacement r(i) ∈ {i1, . . . , iN} such that
Ei,q|R(i, q)−R(r(i), q)|2 < ε. To prove that, we need resolve some technical issues.

Substep 2.1 Let H be a countably dimensional (and hence separable) subspace of L2(Q) generated
by {h1, h2, . . .}. Then, ri ∈ H with probability one (with respect to the measure µI ).

We have ri(q) −
∑K

k=0 λkfk(i)hk(q) = 0 almost everywhere on I × Q, so for almost every i:
ri(q) =

∑K
k=0 λkfk(i)hk(q) for almost every q. Also, ∥ri∥2 < ∞ for almost every i (otherwise

∥R∥2 could not be finite). So, for i such that both ∥ri∥2 < ∞ and ri(q) =
∑K

k=0 λkfk(i)hk(q)
holds that ri ∈ H . Thus, further we can assume that ri ∈ H (ignoring the set of “bad” items of
measure 0).

Substep 2.2 The mapping e : i→ ri ∈ H is measurable with respect to the Borel σ-algebra on H .

Let Bδ(h) be a ball of radius δ around h ∈ H . Then, it is sufficient to show that for every h ∈ H
and δ > 0 the set of items e−1(Bδ(h)) is measurable in I . Let f(i) =

∫
q
|R(i, q)− h(q)|2dµQ. The

function |R(i, q)− h(q)|2 is integrable over I ×Q. So by the Fubini’s theorem, f is integrable over
I . In particular, the set {i|f(i) < δ2} = e−1(Bδ(h)) is measurable.

Substep 2.3 ∀ε > 0 for almost every i ∈ I: Pi′∼µI
(∥ri − ri′∥ < ε) > 0.

Consider the Borel measure e∗(µI) on H (the image of µI under the mapping e: e∗(µI)(A) =
µI(e

−1(A)) or, informally speaking, the distribution of all ri in H). Let X ⊂ H be a countable dense
subset in H . Consider the set Xε/2 = {x ∈ X|e∗(µI)(Bε/2(x)) = 0} and Y = ∪x∈Xε/2

Bε/2(x).
Y is the union of a countable set of balls of measure zero, so e∗(µI)(Y ) = 0. For h such
that e∗(µI)(Bε(h)) = 0 there is x ∈ X such that ∥h − x∥ < ε/2. Bε/2(x) ⊂ Bε(h), hence
e∗(µI)(Bε/2(x)) = 0, hence x ∈ Xε/2, hence h ∈ Bε/2(x) ⊂ Y . So, {h ∈ H|Pi(∥ri − h∥ <
ε)} ⊂ Y and the measure of this set is zero which yields the required statement.

Substep 2.4 Take our infinite sequence of independently sampled items {i1, i2, . . .}. Consider the
sequence of functions:

fn(i, i1, . . . , in) = min
i′∈{i1,...,in}

∥ri − ri′∥22.

We know that for every i: Pi′(∥ri − ri′∥22 < ε2) > 0. So with probability one some item ik will
fall into Bε(ri) and ∀n ⩾ k : fn(i, i1, . . . , in) < ε2. It follows that fn → 0 almost everywhere (on
some large measure space where all independent variables i, i1, i2, . . . are defined). The sequence fn
is bounded by the integrable function f1(i, i1) = ∥ri − ri1∥22.
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It follows that for almost every item i and an infinite sequence {i1, . . .} of items independently
sampled from µI ,

lim
k→∞

(
min

i′∈{0}∪{i1,...,ik}
∥ri − ri′∥22

)
= 0.

The expression inside the lim is bounded by ∥ri∥22. Hence, by the Lebesgue’s dominated convergence
theorem, its mean over i ∈ I tends to zero.

Step 3 Take N large enough that

Ei

(
min

i′∈{0}∪{i1,...,iN}
∥ri − ri′∥22

)
< ε.

Take {i1, . . . , iN} as our support items. Let IN = span(ri1 , . . . , riN ) be a linear span of the first N
random items in L2(Q). Then, for each choice of the regularization coefficient λ:

Ei min
c1,...,cN

(
λ

N∑
k=1

c2k + ∥ri −
N∑

k=1

ckrik∥22

)
< λ+ ε.

For v ∈ L2(Q), let projλ(v, IN ) be a linear combination c1ri1 + . . . + cNriN that minimizes
λ
∑N

k=1 c
2
k + ∥v −

∑N
k=1 ckrik∥22. So, ∥ri − projλ(ri, IN )∥22 < λ+ ε. Take λ = ε.

Step 4 We know that projε(ri, IN ) is close to ri (the average l2 distance is at most
√
2ε). Next,

we will prove that the linear combination of the support items by which the regularized CUR
approximates ri is close to projε(ri, IN ) (on average).

Let {q1, q2, . . .} be a sequence of random queries independently sampled from µQ. Let Qm be a set
of the first m queries. Then, for any pair of items i, i′ ∈ I let ⟨i, i′⟩m = 1

m

∑m
k=1 R(i, qk) ·R(i′, qk).

In other words, ⟨i, i′⟩m is the Monte-Carlo estimate of the product of ri and ri′ in L2(Q). Consider
N ×m matrix R̂ such that R̂a,b = R(ia, qb). The matrix Ĝ = R̂R̂T consists of pairwise estimates
of products of support items Ĝkl = ⟨ik, il⟩m. As m tends to infinity, the matrix Ĝ converges to the
matrix G of the exact scalar products of support items in the space L2(Q): Gkl = Eq (rik(q)ril(q)).

For each item i, let ⟨i, IN ⟩m be a vector (⟨i, i1⟩m, . . . , ⟨i, iN ⟩m) and ⟨i, IN ⟩ =
(⟨i, i1⟩, . . . , ⟨i, iN ⟩) = Eq⟨i, IN ⟩m. Each component of ⟨i, IN ⟩m is the average of m random
variables of the form ri(q)rik(q) which are conditionally mutually independent given i and IN . Let
us estimate the mean squared deviation of ⟨i, IN ⟩m from ⟨i, IN ⟩ (with the fixed set of support items
IN ):

Ei,q1,...,qm∥⟨i, IN ⟩m − ⟨i, IN ⟩m∥22 =
1

m

N∑
k=1

Ei,q(⟨ri, rik⟩ − ri(q)rik(q))
2

⩽
1

m

N∑
k=1

Ei,qr
2
i (q)r

2
ik
(q)) ⩽

1

m

N∑
k=1

Ei∥r2i ∥∥r2ik∥

=
1

m
Ei∥r2i ∥

N∑
k=1

∥r2ik∥ ⩽
1

m
∥R2∥

N∑
k=1

∥r2ik∥.

So, the mean squared deviation of ⟨i, IN ⟩m from the vector ⟨i, IN ⟩ tends to zero as m→∞.

Finally, let A be an operator that maps the coefficients c1, . . . , cN to linear combinations of support
items c1ri1 + . . .+ cNriN ∈ L2(Q). Note that the operator norm ∥A∥ of A is finite as it is a finite
rank operator (so ∥Av∥ ⩽ ∥v∥∥A∥).
We have

projε(ri, IN ) = A(G+ εEN )−1⟨i, IN ⟩,
where EN is N ×N identity matrix. While the regularized CUR approximation of ri is:

CURε(ri, IN ) = A(Ĝ+ εEN )−1⟨i, IN ⟩m.
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Let δm be the vector ⟨i, IN ⟩m − ⟨i, IN ⟩ and δG−1
m be (Ĝ + εEN )−1 − (G + εEN )−1. Then, the

norm of the difference between CURε(ri, IN ) and projε(ri, IN ) can be estimated as:

∥CURε(ri, IN )− projε(ri, IN )∥
= ∥A((G+ εEN )−1 + δG−1

m )(⟨i, IN ⟩+ δm)−A(G+ εEN )−1⟨i, IN ⟩∥
= ∥A(δG−1

m ⟨i, IN ⟩+ δG−1
m δm + (G+ εEN )−1δm)∥

⩽ ∥A∥(∥δG−1
m ∥∥⟨i, IN ⟩∥+ ∥δG−1

m ∥∥δm∥+ ∥(G+ εEN )−1∥∥δm∥)

⩽ ∥A∥ · (∥δm∥
1

ε
+ ∥δG−1

m ∥∥⟨i, IN ⟩∥+ ∥δm∥∥δG−1
m ∥),

where we use ∥(G+ εEN )−1∥ ⩽ 1
ε .

We can take m large enough that the expectation of the square of that difference is arbitrarily small,
say less than ε. Then,

Ei∥ri − CURε(i)∥ ⩽ ∥ri − projε(ri, In)∥+ ∥projε(ri, In)− CURε(i)∥ ⩽
√
2ε+

√
ε.

B GREEDY SELECTION OF SUPPORT ITEMS

Let us denote X := (I, SQ), which is an M × n matrix (M is the total number of items). Then, our
optimization problem can be formulated as follows.

We are given an M × n matrix X of real numbers and let xi, i = 1, . . . ,M , be the rows of X .
Choose m rows in such a way that the sum of squared distances from each row of the matrix to
the space generated by the chosen rows would be minimal. In other words, find a subset of indices
S = {i1, . . . , im} ⊂ {1, . . . ,M} which minimizes following expression:

M∑
i=1

∥xi − π(xi, span(xi1 , . . . , xim))∥22 =

M∑
i=1

∥xi −XT
S pinv(X

T
S )xi∥22,

where π(v, V ) is orthogonal projection of vector v to subspace V , XS is an m× n matrix consisting
of rows with indices from S. This problem corresponds to the CUR-decomposition of X with m
rows and all n columns.

A straightforward way is to choose items greedily. Suppose we have already chosen items i1, . . . , it.
Then, we choose an item it+1 so that

M∑
i=1

∥xi − π(xi, span(xi1 , . . . , xit+1
))∥22

is minimal.

Let us discuss how to choose xit+1 . Let ∆t be the M × n matrix of our current approximation
errors: ∆t

i = xi − π(xi, span(xi1 , . . . , xit)) (∆0 = X). Note that span(xi1 , . . . , xit , xi) =
span(xi1 , . . . , xit ,∆

t
i/∥∆t

i∥2), so for the purpose of evaluation our objective we can replace xi with
oti = ∆t

i/∥∆t
i∥2. When we add xi to the support set, the squared error on xj reduces by ⟨xj , oi⟩2

and ∆j becomes ∆j − ⟨xj , oi⟩oi. It can be seen by considering the orthonormal basis of Rm, the
first t elements of which generate span(xi1 , . . . , xit) and (t+ 1)-th is oti. Adding oti to the support
set will set to zero the (t+ 1)-th coordinate of the vector xt

j (and ∆t
j). And in the standard basis this

coordinate may be calculated as ⟨xj , oi⟩. So we want to maximize over i:

M∑
j=1

⟨xjo
t
i⟩2 =

M∑
j=1

otTi xjx
T
j o

t
i = otTi

 M∑
j=1

xjx
T
j

 oti = otTi XTXoti.

The procedure is summarized in Algorithm 1.

The choice of the next support item may be trivially implemented with O(n2M) complexity. But
it can be optimized: together with otj we can keep the vectors ctj = XTXotj that can be computed
once initially in O(n2M) and can be updated at each iteration synchronously with otj . Updates
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Algorithm 1 l2-greedy support items selection
compute XTX
compute normalized vectors o0i = xi/∥xi∥2
for t in [1, . . . ,m] do

choose it+1 which maximize otTi XTXoti
update all oj
for j in [1, . . . N ] do

ot+1
j ← otj − otit+1

⟨otit+1
, otj⟩

ot+1
j ← ot+1

j /∥ot+1
j ∥2

end for
end for

of otj at each iteration have the form ot+1
j = αotj + βotit+1

, so cj transforms analogously with the
same coefficients: ct+1

j = αctj + βctit+1
. So we can score all the items in O(nM), calculating all

the dot products ⟨otj , ctj⟩ and update vectors oj and cj . The total complexity of the algorithm is
O(nM(n+m)).

C DETAILS ON RBE IMPLEMENTATION

In this section, we discuss our implementation of the relevance-based embeddings.

As a trainable mapping fQ(R(SI , q), θQ), we use the following variant:

fQ(R(SI , q), θQ) := R(SI , q) ||Fmlp
Q (R(SI , q), θQ) || (1),

where Fmlp
Q is a 2-layer perceptron with the ELU activations, || is the vector concatenation, and the

last term is needed to represent the items offsets as a scalar product. The intuition here is that we
split the representation into the prediction of AnnCUR and the trainable prediction of its error. In the
experiments, such decomposition improves the convergence and training stability.

For the item mapping fI(R(i, SQ), θI), we use the following function:

fI(R(i, SQ), θI) := tI(R(i, SQ), θI) ||Fmlp
I (tI(R(i, SQ), θ̃I)) || (ci),

tI(R(i, SQ), θI) := R(i, SQ)× P,

P = pinv(R(SI , Qtrain)), θI := (P, c, θ̃I),

where c is a trainable bias vector, θ̃I — perceptron trainable parameters. Although, as noted in
Section 3.5, the transformation fI acts in practice on a finite set I of elements and can be learned as
an embedding matrix, the approach described above greatly accelerates the speed and stability of
learning.

The mappings are trained using the Adam algorithm to optimize the following loss function inside
the batches:

L :=
1

|Qtrain|
∑

q∈Qtrain

softmax(R̃(q, I))(̇2 · 1binRelevance(q) − 1),

binRelevance(q) := R̃(q, I) ≥ q1− K
|I|
(R(q, I)),

where K is the desired top size and qx(v) calculates the x-th quantile of the vector v. We have
experimented with various loss functions, but the one described above leads to consistently good
results.

Our implementation of RBE has about 50K trainable parameters.
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Table 7: Datasets sizes

items queries (used)

Yugioh 10031 3374
P.Wrest. 10133 1392
StarTrek 34430 4227
Dr.Who 40281 4000
Military 105K 2400
RecSys 16514 6958
RecSysLT 16514 6958
RecSys2 8950 10179
QA.Small 82326 9650
QA 0.8M 9650

Table 8: Dual encoder embeddings vs support relevances, different tops, RecSysLT

X DUAL ENCODER AXNDE RBE+K-MEANS RBE+l2-GREEDY

HR(X+100, X) HR(X+100, X) HR(X, X) HR(X, X)

100 0.7048 0.7065 0.6300 0.6682
200 0.6803 0.6769 0.6611 0.6955
300 0.6739 0.6740 0.6912 0.7221
400 0.6739 0.6769 0.7109 0.7406
500 0.6760 0.6820 0.7253 0.7538
600 0.6792 0.6883 0.7357 0.7639
700 0.6827 0.6958 0.7448 0.7720
800 0.6868 0.7054 0.7527 0.7792
900 0.6904 0.7161 0.7589 0.7853

D ADDITIONAL EXPERIMENTS

D.1 DUAL ENCODER EMBEDDINGS VS SUPPORT RELEVANCES (EXTENDED)

See Tables 8 and 9. For all datasets, DEs were trained on a significantly larger number of queries, the
table refers to the data used for AnnCUR/RBE.

Table 9: Dual encoder embeddings vs support relevances, HitRate(K, 100), RecSysLT

K DUAL ENCODER AXNDE RBE+K-MEANS RBE+l2-GREEDY

HR(K+100, 100) HR(K+100, 100) HR(K, 100) HR(K, 100)

100 0.7048 0.7065 0.6300 0.6682
200 0.7977 0.7970 0.8090 0.8359
300 0.8518 0.8538 0.8823 0.9026
400 0.8855 0.8902 0.9190 0.9342
500 0.9086 0.9153 0.9402 0.9522
600 0.9258 0.9331 0.9536 0.9632
700 0.9385 0.9465 0.9629 0.9704
800 0.9484 0.9572 0.9691 0.9760
900 0.9561 0.9660 0.9740 0.9799

D.2 CATEGORY PREDICTION FROM RELEVANCE-BASED EMBEDDING

In various practical applications, embeddings trained in one task are used to solve another. To check
whether RBE has the ability to such transfer and how support items selection affects the quality
of such a prediction, we trained a simple MLP category classifier on CUR-based item embeddings
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R(I, SQ)× pinv(R(SI , SQ)) obtained with different SI support items selection strategies and DE
embeddings (sizes are the same). The categories of elements are marked by the authors of the content
among 30 available options, multiple categories are allowed. Intersection over Union (IoU) is used as
a metric:

IoU(Cpred, Ctrue) =
Cpred ∩ Ctrue

Cpred ∪ Ctrue
.

The results are presented in Table 10. Two conclusions can be made: first, in this setup, categories
are predicted better by vectors derived from relevance than by vectors DE, and secondly, improving
the algorithm for selecting support items also improves the quality of category prediction. Although
these results are promising, we note that the possibility of such a transfer in other tasks and data
requires a more detailed further study.

Table 10: Category prediction from CUR-Approx embeddings, RecSysLT dataset

SI IOU

(DUAL ENCODER) 0.6796

RANDOM 0.7331
KMEANS 0.7419
l2-GREEDY 0.7516

E SCALABILITY HINTS

Let us consider separately the selection of the support elements, training, and inference:

Support items selection Since different clusterization approaches have shown near-optimal quality,
there are different options for scalable clustering:

• Clusterization on downsampled datasets: for extremely large (and dense) datasets it is natural
to expect that cluster structure could be inferred from a significantly smaller subsample
(according to the authors’ experience, on the data of ads recommendation systems with
billions of banners and downsampling to millions, this is so). Even for our research (small)
datasets downsampling 75% of data reduces the quality of key selection in a discussable
way (Table 11).

• Using data-driven clusterization: as shown in the third row of Table 1, choosing popular
items from different categories/genres (in our case the global top of popular items is almost
uniformly diversified) works extremely well.

• Using a distributed clustering algorithm.

Training As discussed in Sections 3.3 and 4.1.4, the training of such a model does not significantly
differ from any dual-encoder-like models (which are commonly used in production recommendation

Table 11: Support items selection on downsampled data

YUGIOH P.WREST. STARTREK DR.WHO MILITARY

ANNCUR+RANDOM 0.4724 0.4280 0.2287 0.1919 0.2455

ANNCUR+KMEANS 0.5083 0.4850 0.3226 0.2517 0.3042
ANNCUR+1/4KMEANS 0.5112 0.4685 0.3101 0.2514 0.2854
ANNCUR+1/8KMEANS 0.5111 0.4694 0.3103 0.2450 0.2950

ANNCUR+l2-GREEDY 0.5618 0.5119 0.3677 0.2960 0.3357
ANNCUR+1/4l2-GREEDY 0.5529 0.4865 0.3582 0.2862 0.3270
ANNCUR+1/8l2-GREEDY 0.5492 0.4712 0.3533 0.2822 0.3231
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services) with relevance vectors as inputs. The only major difference is that relevances to fixed
support items should be provided. Let us also note that efficient sampling of negative samples for the
loss function should be used in order to train on such large datasets.

Inference It is also similar to dual-encoders: the item representations are precalculated and placed
in the Approximate Nearest Neighbours index like HNSW, which accepts the embedding of the query
as input.

F STATISTICAL SIGNIFICANCE FOR ANNCUR (WITH RANDOM SELECTION)

Since our baseline includes a random selection of support elements, the results can be noisy. In
Table 12, we provide the average and standard deviation of HitRate(100) value (similar to Table 1),
obtained by aggregating 15 runs of the algorithm with different initializations. As shown, even a
random selection of support items gives fairly stable results. Moreover, it can be noted that the results
of most non-random selection and RBE algorithms are several standard deviations higher.

Table 12: Average and standart deviation for AnnCUR over 15 launches

Yugioh P.Wrest. StarTrek Dr.Who Military RecSys RecSysLT RecSys2 QA.Small

avg 0.4599 0.4232 0.2447 0.1875 0.2557 0.6747 0.5908 0.1492 0.5803
std 0.0081 0.0062 0.0118 0.0060 0.0037 0.0048 0.0087 0.0066 0.0030

G POPULAR AS A SUPPORT KEY SELECTION

The results for AnnCUR + popular are shown in the 3rd row of Table 13, the results for RBE+popular
for ZeSHEL datasets are shown below in Table 13.

Table 13: Popular as a support key selection

Yugioh P.Wrest. StarTrek Dr.Who Military

AnnCUR + Popular (Table 1) 0.2429 0.3001 0.1154 0.1197 0.1907
RBE + Popular 0.2637 0.3161 0.1330 0.1207 0.2038

H INFORMATION ABOUT LICENSES

• The Zero-Shot Entity Linking (ZESHEL) dataset (Logeswaran et al., 2019): CC-BY-SA;
• MsMarco (Nguyen et al., 2016) dataset: Custom (research-only, non-commercial);8

• RecSys, RecSysLT dataset: yet to be published;
• all-mpnet-base-v2 from the SentenceTransformers (Reimers & Gurevych, 2019) library:

Apache-2.0;
• CatBoost (Prokhorenkova et al., 2018) gradient boosting library: Apache-2.0.

8https://microsoft.github.io/msmarco/
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