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ABSTRACT

Deep generative models hold great promise for representing complex physical
systems, but their deployment is currently limited by the lack of guarantees on
the physical plausibility of the generated outputs. Ensuring that known physi-
cal constraints are enforced is therefore critical when applying generative mod-
els to scientific and engineering problems. We address this limitation by devel-
oping a principled framework for sampling from a target distribution while rig-
orously satisfying physical constraints. Leveraging the variational formulation
of Langevin dynamics, we propose Split Augmented Langevin (SAL), a novel
primal-dual sampling algorithm that enforces constraints progressively through
variable splitting, with convergence guarantees. While the method is developed
theoretically for Langevin dynamics, we demonstrate its effective applicability to
diffusion models. In particular, we use constrained diffusion models to gener-
ate physical fields satisfying energy and mass conservation laws. We apply our
method to diffusion-based data assimilation on a complex physical system, where
enforcing physical constraints substantially improves both forecast accuracy and
the preservation of critical conserved quantities. We also demonstrate the potential
of SAL for challenging non-convex feasibility problems in optimal control.

1 INTRODUCTION

Generative deep learning methods have recently emerged as powerful tools to model and sample
from complex data distributions, with successful applications in image synthesis (Ho et al., |2020),
protein and material design (Corso et al., [2023), and probabilistic weather forecasting (Price et al.|
2025)). By learning a stochastic process from a training dataset, these models can generate arbitrarily
many plausible samples conditioned on partial information. They are particularly useful in the
physical sciences, where data is often scarce and multiple states may be consistent with available
observations (Epstein & Fleming), 1971} [Nathaniel & Gentine, [2025)). While perceptual applications
mainly aim for plausibility, scientific and engineering problems require samples that obey strict
physical or structural constraints, such as conservation laws or system dynamics (Kashinath et al.,
2021). In such cases, approximate resemblance is not enough: generated samples must obey the
governing physical principles. This requirement becomes even more critical when generative models
are used out of distribution or in an autoregressive fashion, where small violations can accumulate
and severely degrade long-term accuracy (Pedersen et al., 2025)). Developing constrained sampling
methods applicable to pre-trained generative models in a zero-shot scenario (i.e. without additional
training) is therefore crucial.

Modern generative models, including energy-based, score-based, and diffusion models (Du &
Mordatch, 2019; |Song et al., [2020), typically rely on Langevin dynamics, where noisy gradient
steps push the samples toward high-likelihood regions. Enforcing mathematical constraints during
Langevin sampling remains a challenging problem. A natural idea is to project each iterate onto
the constraint set, leading to projected Langevin dynamics (Bubeck et al., 2015; |Durmus et al.,
2019; (Christopher et al., [2024). While these methods offer theoretical guarantees in convex set-
tings, they tend to perform poorly when applied to non-convex constraints, which are common in
physical systems. In such cases, strict projections can cause the dynamics to become trapped in lim-
ited regions of the constraint set, hindering exploration and introducing significant sampling bias.
Other approaches rather use a soft constraint penalty functions such as the barrier method (Fish-
man et al.| |2023)) and diffusion guidance (Ho & Salimans| 2022; [Meunier et al., 2025), requiring a
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differentiable constraint model. These methods encourage but do not enforce constraints, which is
insufficient when strict satisfaction is crucial. To our knowledge, no existing approach achieves both
strict constraint satisfaction and unbiased exploration.

Contributions Inspired by the variational formulation of Langevin dynamics and primal-dual op-
timization, we propose a novel sampling algorithm that bridges the gap between complex generative
modeling and constrained sampling, called Split Augmented Langevin (SAL). Our method enforces
hard constraints while preserving the exploration capability of Langevin dynamics. It ensures strict
constraint satisfaction and benefits from convergence guarantees via duality analysis. We show that
our approach generalizes to deep generative modeling and diffusion models. We demonstrate the ef-
fectiveness of SAL on complex physically-constrained sampling tasks, including data assimilation
problems where maintaining physical invariants is key to reliable forecasting, and on non-convex
feasibility problems in optimal control.

2 PROBLEM FORMULATION OF CONSTRAINED LANGEVIN SAMPLING

In this section, we provide a mathematical formulation of constrained sampling: given a genera-
tive model and a constraint set, our goal is to generate samples from the conditional distribution
supported on the constraint set. Such constrained distributions arise in many applications where
samples must strictly satisfy known physical laws. We adopt the framework of the Langevin Monte
Carlo algorithm (Rossky et all, [1978), a foundation of modern generative modeling frameworks.
The application to deep generative models is discussed in Section {.4}

Langevin Monte Carlo Consider a target distribution with density p(z) = e~/(®)/Z on R,
where f(x) is a differentiable potential. Markov chain Monte Carlo methods design iterative algo-
rithms producing samples (z;) whose distribution ¢; converges to p. Among them, the Langevin
Monte Carlo algorithm plays a central role. It requires access to the gradient of the potential V f(x),
also called the score function (Hyvirinen & Dayanl 2005), and performs noisy gradient descent
updates

Tyr1 = x¢ — TV f(24) + V27104, wy i N(0, Iy), 2.1)

where 7 is the step size. Under standard assumptions, the chain converges to p (Durmus et al.,[2019).

Constrained target distribution We now consider the case where the samples are known to sat-
isfy hard constraints at sampling time, in the form of a bounded measurable set C C R?, which
models prior information such as physical conservation laws. The conditional density supported
onC is

1
pe(x) == Z—Ce_f(m)llc(x), vz € RY, (2.2)

with 1¢ the indicator function of C and Z¢ is a normalizing constant. Note that the conditional distri-
bution (2.2) can be rewritten using a modified potential: p¢ (z) := e~ f¢ (z) /Zc, with the constrained
potential fe(z) := f(x) + xc(x), defined with the characteristic function of C

0 if xeC,

2.3
+00 otherwise. 2:3)

xe(zx) == {
We do not make any assumption on the constraint set C, except that it is bounded and that p¢ is well-
defined. Next, we provide examples of such constraints that may occur in physical applications.

Example 2.1 [Physical constraints] When x describes a discretized physical field, conservation of
energy E can often be expressed as the non-convex set C = {z € R? | ||z||2 = E}, while mass
conservation corresponds to C = {x € R? | 3. x; = M} for a prescribed mass M.

Objective Our objective is to design a sampling algorithm that produces samples distributed ac-
cording to pc for any constraint set C. It should use only access to the score function V f(x) of the
unconstrained density, and mathematical operations related to C such as constraint functions or a
projection operator Pz onto C. The method should operate in a “zero-shot” scenario, requiring no
retraining or additional data.
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Example 2.2 [Projected Langevin] A natural idea to enforce hard constraints is to project each
unconstrained update (2.1) onto C, leading to
iid.

i1 = Pe(zy — TV f(24) + V27wy), wy ~ N(0,I4). 2.4
This projected Langevin algorithm, and its extension to diffusion models, enjoy strong theoretical
guarantees when C is convex and p is log-concave (Bubeck et al., [2015). But with non-convex
constraints, repeated projection can trap the dynamics in small feasible regions, biasing explo-
ration (Barber & Ha, 2018 [Ahn & Chewil |2021). This motivates the need for sampling methods
that enforce constraints more gradually. More details on projected Langevin and its connection to
proximal methods can be found in Appendix[A]

Example 2.3 [Soft penalty methods] Constraints can also be enforced softly by adding a differen-
tiable cost ¢(x) > 0 to the potential, penalizing samples far from C, with a tunable coefficient A € R:

xrp1 = e — T(Vf(xe) + AVe(xy)) + V2rwy, We i1 N(0,1y). 2.5)

This corresponds to guidance in diffusion models (Ho & Salimans, 2022; [Huang et al., 2024b).
The cost function ¢(x) corresponds to a negative log-likelihood centered on the constraint set. Such
methods encourage constraint satisfaction but do not guarantee it, as violations are only smoothly pe-
nalized.

Evaluation Assessing the performance of constrained sampling algorithms is challenging, as p¢ is
generally intractable. In practice, we rely on two key performance criteria: constraint violation and
bias, which are both critical in physical applications. Constraint violation measures the deviation of
samples from C, via a distance function or a residual for instance. Even when samples lie within C,
they must accurately follow the conditional distribution pe without bias. To quantify that, bias is
typically estimated by comparing sample statistics to known or approximated quantities under pc.

3 VARIATIONAL FRAMEWORK OF SAMPLING AND DUALITY

To better understand the constrained sampling problem, we formulate it as an optimization prob-
lem in the space of probability measures. In the following, we review the variational structure of
Langevin Monte Carlo and Lagrangian duality introduced by (Chamon et al., 2024), which will
guide the development of our strictly constrained algorithm in Section Importantly, the dual-
ity framework outlined in this section enforces constraints only on average, and therefore does not
directly target the strictly constrained distribution p¢, which is the ultimate goal of our work.

Variational view of Langevin Monte Carlo Langevin Monte Carlo admits a variational inter-
pretation as a gradient flow in the space of probability distributions. Let ¢ be a density absolutely
continuous with respect to p, and define the Kullback-Leibler divergence with respect to p

F(q) :== D(qllp) = /Rd qlog(q/p), (3.1

which is a non-negative information-theoretic quantity measuring how ¢ differs from p (Kullback
& Leibler, [1951). Langevin updates can be viewed as a stochastic particle approximation of the
gradient flow minimizing F' in the Wasserstein space (Jordan et al., 1998 |Villani, 2021). Each
iteration drives the law ¢; of the chain (z;) closer to the minimizer ¢, = p. More details are given
in Appendix [C|

Average-constrained sampling Building on this variational formalism, constraints can be incor-
porated on average using classical tools from convex optimization (Bertsekas|, 2014). This frame-
work is developed in (Chamon et al., 2024), where both equality and inequality constraints are
considered. We focus here on equality constraints for clarity. Let P2 (R¢) denote the set of proba-
bility measures with finite second moments, and A : R? — R™ a constraint function. The closest
distribution to p in P2(R?) satisfying h(z) = 0 on average solves

minimize F(q)
q€P2(R%) (32)

subjectto  E,[h(x)] = 0.
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This convex problem admits a unique minimizer under standard assumptions (Chamon et al.l|2024),
but remains infinite-dimensional. To solve it, one can use the Lagrangian and its associated dual
function.

Definition 1 [Lagrangian] The Lagrangian of Problem (3.2) is defined as
L(g,)\) := F(q) + NTE [h(z)] Vg € Pa(RY), X € R™. (3.3)
Definition 2 [Dual function] The dual function of Problem 3.2]is defined as

A) = inf  L(g)), VYAeR™ 3.4
g(\) et (¢, M) (3.4)

The dual function g is concave, and the corresponding dual problem, consisting in maximizing g(\),
is a finite-dimensional concave maximization problem (Boyd & Vandenberghe, [2004). It provides
a lower bound on the primal value, as g(A) < F(g,) for all \. A key property is that the infimum
in (3.4) is achieved by py(x) o exp(—U(z, \)), with the Lagrangian potential

Ulz,\) := f(x) + X h(z). (3.5)
Strong duality refers to the case of equality, when sup,cpm g(A) = F(q.).

Proposition 1 [Attained strong duality] Suppose that strong duality holds and is attained: there
exists A\, € R™ such that g(A,) = F(¢x). Then, ¢, = py, .

When strong duality is attained, Proposition [I]implies that sampling from g, amounts to finding the
Lagrange multiplier A, by solving the finite-dimensional dual problem, and sampling from py, . The
Lagrange multiplier can be found by to the so-called dual ascent algorithm:

Ai41 = A¢ + nEq, [h(2)], Gt = Dx,» (3.6)

where 7 is a step size (Ruszczynskil 2006). Dual ascent is detailed in Algorithm@ If Proposition
applies, then this algorithm converges to \,.

Primal-dual sampling In practice, the expec-

h | . . Algorithm 1 Primal-dual Langevin
tation E,, [h(z)] is approximated using samples

obtained via Langevin dynamics under poten-
tial U(x, A¢). This motivates a primal-dual algo-
rithm: alternating between Langevin sampling and
stochastic dual ascent on A. This scheme, proposed
by [Chamon et al.| (2024), is known as primal-dual
Langevin Monte Carlo and is summarized in Algo-
rithm [I] Although the primal-dual Langevin sam-
pling has been successfully applied to constrained
sampling problems, it requires differentiable con-
straint functions, and it only enforces the constraint
in expectation, without any control on the variance.

input potential gradient V f, equality con-
straint function h, step sizes 7,1 > 0, iter-
ation number 7', initial distribution qq
output sample z7 € R¢
define U(z, \) := f(x) + AT h(z)
initialize x¢ ~ qg, A\g € R™
for0<t<T—-1do
draw w; ~ N (0, I4)
Tpp1 = xp — TVRU (24, M) + V21w,
Ait1 = A VAU (2441, Ar)
end for

Therefore, it does not directly target pc. In the next
section, we address the problem of sampling while satisfying arbitrary constraints almost surely.

4  SPLIT AUGMENTED LANGEVIN FOR STRICTLY CONSTRAINED SAMPLING

In this section, we introduce a novel method for the constrained sampling problem. We first derive
a variational formulation of the constrained distribution p¢ and, drawing on the duality framework
of Section[3] show why standard penalty-based methods fail to enforce strict constraints. Building on
this analysis, we propose Split Augmented Langevin (SAL), a constrained sampling algorithm that
provably approaches pc while ensuring that all samples belong to C through the use of a non-smooth
potential.

4.1 VARIATIONAL FORMULATION OF CONSTRAINED SAMPLING

Our method builds upon the following variational formulation of constrained sampling. Importantly,
we observe that the constrained distribution p¢ can be characterized as the projection of the uncon-
strained distribution p onto the set of distributions supported on C.
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Proposition 2 Suppose that 0 < P,(C) < 1. Then the conditional distribution p¢ is the projection
of p onto the set of distributions supported on C:
pc = argmin  D(q||p)
qEP2(R?) 4.1)
subjectto P, (C) = 1.

This is a special case of I-projection (Csiszar, [1975). To solve it, one might try to apply the du-
ality framework of Section |3| to this problem by casting the support constraint as an expectation
constraint E,[c(x)] = 0, where ¢(x) > 0 vanishes only on C. The resulting Lagrangian potential
then exactly matches the penalty and guidance schemes of Example[2.3] thus providing a variational
interpretation of these approaches. However, we show in the following result that strong duality is
not attained, implying that such methods cannot ensure strict constraint satisfaction.

Proposition 3 For Problem (4.1]), strong duality is only attained for an infinite Lagrange multiplier:

VAER, o) < Flg), and  g(A) — Flg,). “2)

A—+oo

Corollary 1 [Penalty methods] Penalty methods (2.3) cannot enforce P, (C) = 1.

This singularity stems from the support set being a strict subset of R%. A possible relaxation is to
allow a small violation probability P;(C) > 1 — ¢ for small § > 0, but this allows unphysical states
and leads to poor conditioning. To overcome this limitation, we introduce a different relaxation that
preserves strict constraint satisfaction.

4.2 SPLIT AUGMENTED LANGEVIN

To relax the problem without compromising constraint satisfaction, we propose to split the variable
into a pair (z,2) € R? x C, enforcing that z € C while encouraging = and z to remain close. We
thus define a joint probability density ¢(x, z), with marginals ¢, and g..
Proposition 4 [Variable splitting] Problem .1} is equivalent to the following problem:
ninimize D(gz|lp) ws)
subjectto Py (z =2z2) =1.

This formulation mirrors variable splitting techniques in optimization (Boyd et al. 2011a), and
separates the roles of x and z € C, which are respectively maximizing likelihood and enforcing
the constraint. Rather than requiring x = z almost surely, we relax the condition to be satisfied in
expectation, and penalize the variance. Specifically, we consider the following problem:
. P 2
minimize D(q|lp @ uc) + zE, |||z — 2
minimize Dl ® ue) + 5B, (o — 2| s
subjectto Ey[z — 2] =0,

where uc denotes the uniform distribution on C, and parameter p > 0 controls coupling strength.
This relaxed formulation avoids the duality failure in Proposition [3| by softening the coupling con-
straint between x and z. Following Section 3] we introduce the associated non-smooth augmented
Lagrangian potential

Uy (@, 2,)) = f(z) + xe(2) + A (2 — 2) + gnx TS (4.5)

Stochastic proximal primal-dual updates. To sample from this non-smooth potential, we gen-
eralize the primal-dual iterations of (Chamon et al|(2024) to stochastic proximal iterations. Given
independent Gaussian noise vectors wy, w; ~ N(0, I4), the stochastic updates derived from the
augmented potential (4.5) are

i1 =@ — T (Vf(ae) + plxe — z¢ + pe)) + V21w, (4.62)
ziv1 = Pelze — mp(20 — T — pe) + V27105) (4.6b)
fe1 = pe + 10(Te41 — 2Ze41), (4.6¢)

with rescaled multiplier i := (1/p) x A. We call this scheme Split Augmented Langevin, or SAL,
detailed in Algorithm 2] The output zp € C strictly satisfies the constraint. AppendixA] gives a
detailed derivation.
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Connection with optimization algo- ‘Asorithm 2 Split Augmented Langevin (SAL)
rithms The update formulas re-

semble the Alternating Direction Method input potential gradient V f, projection Fe, step
of Multipliers (ADMM) (Boyd et all sizes 7,1 > 0,.Couphng p > 0, iteration number T,
2011b), widely used in constrained opti-  initial distribution go

mization. Here, the variables x and z play output sample 27 € C .

the role of the primal variables in ADMM initialize x¢ ~ qo, 20 = Fc(z0), po € R

and A the dual, and the stochastic aug- for0<t<T—1do

mented potential (@.3) plays the role of draw wy, wy ~ N(0, I4)

an augmented Lagrangian. Our sampling Tip1 = =TV f(@0) —Tp(ve— 20+ 401) V270,
scheme can be seen a stochastic analog ze41 = Pe(ze — mp(2t — xpq1 — pit) + \/Ewg)
of ADMM in sample space RY, just like pir1 = pt + 0(Trp1 — 2e41)

Langevin Monte Carlo parallels gradient end for
descent. However, it differs from ADMM
applied in distribution space P»(R¢), as our method operates directly on coupled samples.

4.3 CONVERGENCE ANALYSIS

We now provide theoretical support for the proposed scheme. Proofs can be found in Appendix
First, we prove that strong duality holds and is attained for the relaxed problem, thus ensuring the
convergence of the dual ascent algorithm.

Proposition 5 [Attained duality] Strong duality holds and is attained for Problem (4.4).
Corollary 2 [Convergence guarantee] The dual ascent algorithm converges for Problem (4.4).

Corollary 2] guarantees that our relaxation leads to a well-behaved iterative algorithm. Moreover, the
relaxed problem recovers the original projection in the limit of infinite coupling.

Proposition 6 [Recovery of the projection] Let ¢” denote the solution to (@.4). Then

q?,q9? — pc indistribution. 4.7
p——+00

Thus, larger values of p bring the x samples closer to C, while smaller values encourage exploration.

These results support SAL as a principled method for sampling from constrained distributions.

4.4 PRACTICAL IMPLEMENTATION AND DEEP GENERATIVE MODELS

Implementation in diffusion models Our proposed algorithm is a constrained variant of Langevin
Monte Carlo, which plays a central role in many generative frameworks (Du & Mordatch), 2019
Song & Ermon} [2019). The split-augmented update ([@.6) can be used as a drop-in replacement for
standard Langevin steps, without altering other sampler components, making constraint enforcement
simple and modular. Leveraging the connection between Langevin dynamics and diffusion mod-
els (Ho et al., 2020), SAL provides a training-free constrained sampling algorithm for pre-trained
diffusion models. This parallel has already been exploited by (Christopher et al.| (2024) to introduce
projected diffusion models. We further extend SAL to latent diffusion and to incorporate partial
signal observations, which is key in real-life applications. Details are discussed in Appendix [A]

Constraint satisfaction Our algorithm applies to arbitrary constraint sets, provided that a projec-
tion operator (exact or approximate) is available. Unlike primal-dual Langevin and penalty methods,
it does not require a differentiable constraint model, which can be challenging to derive (Laumond,
1987). The coupling parameter p can be tuned or progressively increased along the diffusion pro-
cess. This is detailed with ablation studies in Appendix [E]

Computational cost For learning methods to accelerate large-scale physical simulations, effi-
ciency is central. Crucially, SAL extends to latent diffusion, which is key to mitigate sampling
costs. Compared to unconstrained diffusion, our method adds the cost of a projection operation at
each step, as does projected diffusion. For non-convex constraints, efficient numerical methods such
as augmented Lagrangian algorithms can be used to solve the projection step, and are amenable to
parallelization (Boyd et al., 2011bj|Liang et al., 2025). More details can be found in Appendix @



Under review as a conference paper at ICLR 2026

5 APPLICATION TO PHYSICS-PRESERVING GENERATIVE MODELING

We evaluate SAL on three scientific generative modeling tasks where challenging non-convex phys-
ical constraints play a critical role. We apply SAL to diffusion models as described in Section[4.4]

Baselines Our sampling algorithm is compared with the unconstrained Langevin algorithm, the
projected Langevin algorithm, constraint penalty guidance methods, primal-dual Langevin, and their
diffusion analogs (Carvalho et al.| 2023} [Christopher et al., 2024} Zhang et al., [2025; Zampini et al.,
2025). All methods share the same score function, and differ only in how constraints are incorpo-
rated. More details are given in Appendix [E}

5.1 ENERGY-PRESERVING STATIONARY FIELD GENERATION

We first validate our method to constrained Monte Carlo sampling of a station-
ary distribution. We consider a two-dimensional field, representing for instance
a fluid (see Figure T)), discretized on a 100 x 100 grid. The equilibrium distri-
bution p is sampled using Langevin dynamics. Sampling from an equilibrium
distribution is a critical problem in climate science and in molecular dynamics
for example (Paquet & Viktor| 2015} Pedersen et al.,|2025). A key macroscopic
quantity is the kinetic energy, which often remains conserved and is known in  Figure 1: Sampled
advance in physical prediction tasks. The task is to sample from the conditional ~field snapshot.
distribution under a fixed energy % [|z||3 = E, a non-convex constraint.

r {

oy

Experimental setup The distribution p is bimodal in Fourier — target

space, with asymmetric modes on the first Fourier coefficient: one Il unconstrained 2 penalized
positive and concentrated, the other negative and wider, allowing Bl projected N SAL
higher energy. The unconstrained distribution is sampled with the
Langevin Monte Carlo algorithm, and p¢ is estimated via rejection
sampling. The bimodal nature of p makes the exploration chal-
lenging. We condition on a high energy level, only achievable via
the negative mode. As the positive mode cannot satisfy the energy
constraint, the correct conditional distribution concentrates on the
negative mode, and we can easily compare it to the generated sam-
ples. For each method, 1000 independent chains are run and the Figure 2: Empirical his-
last iterate is collected. We compute histograms of the first Fourier  tograms for the first mode.
coefficient for evaluation.

3 0 3
mode

Results Figure |2| shows the results. Only SAL matches p¢ closely. Projected Langevin satisfies
the constraint exactly but fails to explore, yielding many samples in the wrong mode. Soft constraint
penalty (Zhang et al.||2025)) enforce energy conservation only on average, and therefore the produced
samples do not match p¢. Primal-dual Langevin yields a similar histogram. These results demon-
strate that SAL enforces hard constraints while retaining enough exploration to correctly sample the
conditional distribution.

5.2 PHYSICALLY-CONSTRAINED DATA ASSIMILATION

Data assimilation, a central problem in geophysics, aims to estimate the state of a dynamical sys-
tem from sparse, noisy observations using prior knowledge. Recent work applies deep generative
architectures to this task (Rozet & Louppel 2023} |Qu et al.| 2024), but these models do not enforce
physical invariants, such as energy or mass conservation, which are essential for physical plausibility
in long-term forecasting. We study physically-constrained generative models for data assimilation
on the Burgers equation, a reduction of the Navier-Stokes equations with conserved mass and energy
that exhibits rich dynamics and complex multiscale behaviors similar to turbulence (van Gastelen
et al.| 2024). Appendix gives additional background.

Experimental setup We perform cyclic data assimilation on the Burgers equation discretized on
a 200-point spatial grid. The ground truth trajectory evolves from a random initial condition over
a time horizon H = 8. Observations are sparse: the system is observed at 10 equally spaced
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== target 0] Gaussian Il unconstrained Il projected Il SAL

time 0 time 3 time 6 0.1 1
l-l ly
3 /4
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0
position position position 0 time 8 0 time 8

Figure 3: Left Data assimilation sampled states and reanalysis. The black crosses represent the
observations. Right Averaged relative error, in terms of constraint violation and £ norm.

times, with 4 noisy spatial measurements at fixed, evenly spaced locations. Each method runs for 5
cycles per trajectory, producing a predicted trajectory that can be compared to the ground truth. The
first baseline is 3D-Var (Courtier et al., |1998)), which estimates the state with a Gaussian posterior.
We compare 3D-Var to deep generative models by training a latent diffusion model offline on a
dataset of trajectories, without any conditioning. At sampling time, diffusion is combined with the
Gaussian posterior, which conditions sampling to the available information. For each cycle, the
analysis is computed as the average of 5 diffusion posterior samples. The experiment is repeated on
50 independent trajectories. We compute the average mean squared error with respect to the ground
truth in the state space, in ¢ norm, and in the constraint space, where the quadratic constraint
violation error is reported. All methods share the same biased linear forecast model.

Results Figure [3 shows assimilated states and averaged error curves. In this under-observed set-
ting, the diffusion prior helps to regularize the structure of complex states better than the Gaussian
prior, especially for longer times, where the system shows a stiffer structure. However, uncon-
strained diffusion drifts away from the true trajectory, with significant deviations in both mass and
energy. Projected diffusion (Christopher et al., [2024) strictly enforces constraints but introduces
high-frequency artifacts, leading to physically implausible states. Our algorithm SAL achieves the
best compromise: it respects conservation and guides sampling toward physically plausible states,
resulting in significantly lower estimation error. These results highlight the potential of constrained
generative modeling for robust data assimilation in physical systems.

5.3 CONSTRAINED PRIORS FOR FEASIBILITY PROBLEMS IN OPTIMAL CONTROL

As a final application, we evaluate SAL on a feasibility problem in optimal control: find trajectories
that satisfy both system dynamics and non-convex obstacle avoidance constraints. These prob-
lems are hard due to the non-convexity of obstacle regions. We consider a dynamical system with
state y(s) and control u(s), with s the physical time, and define a trajectory as x := (y(s), u(s))s.
Dynamics are encoded via the constraint set Cq := {2z | ¢ = f(y,u), |u| < Umax}. Obstacle
constraints define the potentially non-convex set C, := {z | y(s) ¢ O; Vs}, for obstacle regions O;.
The goal is to find trajectories in the intersection Cgq N Co.

For this task, ADMM (Bilkova & Sorel, 2021) is a classical solver alternating projections onto Cq
and C,, but its convergence can be compromised when C, is non-convex. Instead, we propose to
guide ADMM with samples from a generative prior: a diffusion model trained on trajectories, with
constraints enforced at sampling. This approach has seen promising results in control and robotics
with diffusion penalty guidance and projected diffusion (Carvalho et al.l 2023} |Shaoul et al.| 2025;
Zampini et al.,2025)), which we implement and compare with SAL.

Experimental setup We consider a planar quadrotor system, controlled in acceleration an-
gle (Tedrakel 2009). A latent diffusion model is trained on a dataset of obstacle-free trajectories,
obtained with a variety of random periodic excitations. At test time, non-convex obstacles are intro-
duced. The corresponding constraint is imposed during sampling. In order to avoid the obstacles,
the algorithm needs to find a swinging trajectory. Each sampled trajectory is then used to initial-
ize ADMM, and we record the fraction of samples for which a feasible solution is found.
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Results Figure[dshows some sampled trajec- mmm obstacle HEM penalty [ projected I SAL
tories and success rates as the obstacle sizes r success

increases, computed over 10000 samples. Con-
straint penalty guidance favors obstacle avoid-
ance, but some sampled trajectories penetrate
the obstacles. Projected diffusion avoids ob- 0
stacles but suffers projection bias, producing % r 15 2 r
distorted and unphysical paths. Our algorithm
balances both aspects: it produces obstacle-
avoiding trajectories that remain dynamically
feasible, leading to significantly higher success.

Y2

Figure 4: Left Dashed lines are sampled trajecto-
ries, solid lines are the projections onto the feasi-
bility set. Right Feasibility success rates for dif-
ferent sizes of the rightmost obstacle.

6 RELATED WORK

Constrained Langevin Monte Carlo Early approaches adapted optimization methods to
Langevin dynamics, including Projected Langevin Monte Carlo (Bubeck et al.l [2015), proxi-
mal Monte Carlo (Salim et al., [2019), Mirrored Langevin (Hsieh et al., 2018), and penalized
Langevin (Gurbuzbalaban et al) 2024). Extensions to diffusion models have also been ex-
plored (Fishman et al., 2023; (Christopher et al.| 2024} [Liu et al.l [2023)). These methods offer con-
vergence guarantees in convex settings, where constraints do not hinder exploration, but are less
effective in non-convex physical problems. The variational formulation of Langevin sampling has
been used by (Chamon et al.|(2024) to enforce constraints on average.

Variable splitting Variable splitting, inspired by ADMM, has been applied to Bayesian posterior
sampling (Vono et al.l [2019), plug-and-play samplers for inverse problems (Bouman & Buzzard,
2023; Wu et al.| 2024; Martin et al., [2024), and guided diffusion (Zhang et al.| [2025). These works
apply variable splitting to a smooth maximum a posteriori optimization problem, where the aux-
iliary variable is updated by gradient descent. Crucially, our framework enforces exact constraint
satisfaction through non-smooth constraint potential, without requiring a differentiable constraint
model. Moreover, we formalize sampling as an optimization problem in density space rather than
in sample space, which is key to obtain our probabilistic sampling guarantees. Our algorithm also
extends to latent diffusion, enabling computational savings.

Physically constrained neural networks Physical constraints have also been imposed on de-
terministic neural networks (Négiar et all [2023; [Hansen et al., [2023)). In related sampling ap-
proaches, (Cheng et al| (2024) integrate projection into flow-matching, and Meunier et al.| (2025)
enforce soft constraints in diffusion models for ocean modeling. Our approach differs in targeting
strict satisfaction in a sampling framework.

7 CONCLUSION

We introduced Split Augmented Langevin (SAL), a new principled algorithm for constrained gen-
erative modeling that enforces hard constraints while preserving complex sampling abilities. Our
method formulates conditional sampling as a variational problem and applies primal-dual updates
in a relaxed space where strict constraints are progressively enforced. Unlike projection methods,
which can distort dynamics, or penalty methods, which may fail to enforce constraints, SAL ensures
constraint satisfaction while provably maintaining fidelity to the target distribution. The algorithm
is modular, training-free, and integrates seamlessly into Langevin samplers or diffusion models with
minimal assumptions on the constraints. Experiments on physical systems, including data assimi-
lation and optimal control, demonstrate improved constraint enforcement and predictive accuracy.
These results highlight the potential of combining generative models with physical reasoning in
scientific applications where conservation laws and feasibility constraints are essential.

Limitations include the computational cost of repeated projections, which may slow sampling but
can be mitigated, the choice of the coupling parameter, and the lack of a non-asymptotic anal-
ysis. Future work will extend the framework to other generative models such as stochastic in-
terpolants (Albergo & Vanden-Eijnden, |2023), and develop finite-time convergence guarantees in
Wasserstein space (Chamon et al.| 2024).
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Reproducibility statement The proofs of the new theoretical results included in this paper are
available in Appendix [B| The code of the proposed algorithm is available online at anonymous.
4open.science/r/constrained-sampling-F7DC/. Implementation details and comparison
with other algorithms and diffusion models are discussed in Appendix [A] Ablation studies, discus-
sion about algorithm hyperparameters and experimental details are available in Appendix [E}
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A  ALGORITHMS

A.1 DETAILED ALGORITHMS

Algorithm 3 Langevin Monte Carlo Algorithm 4 Projected Langevin Monte Carlo

input potential f(x), projection Pc, step
size T, iteration number 1T’
output sample 7 € C
initialize x( ~ qq
for0<t<T-—1do
we ~ N (0, I d)

input potential gradient V f, step size T, iter-
ation number T’

output sample z

initialize x¢ ~ qo

for0<t<T-1do

Wi ~ N(O, Id) B
Tep1 =z — TV f(2¢) + V271w, jtﬂ :th (_xTv)f(Zt) + V21w,
end for t+1 = £c (Tt

end for

Algorithm 6 Time-dependent SAL

input time dependent potential gradient f(z, t), iteration num-
ber T time-dependent step sizes 7y, projection FPr, step size
n > 0, regularization p > 0, intial distribution g

Algorithm 5 Dual ascent

input constraint function h,
dual step size n > 0, iteration

number 7' output sample zr € C

output sample z7 initialize © =P, = d
0~ qo,2 = Pc(xo),po=0€R
initialize o € R?, \y € R™ for0<t<T _q 1 do (o) 1

forOStST.—ldo draw wy, w; ~ N(0,1,)
& = qirgﬁl]é?) Lig, M). Topr = — Tt V(@4 t) — Tep(we — 20 + pe) + V/2T0wy
A1 = M + E,, [h(z)] zep1 = Po(z — mep(ze — 21 — ) + V27w0))
end for Pt = pe + (i1 — 2e41)
end for

A.2 PROJECTED LANGEVIN

Projected Langevin consists in applying Langevin dynamics to the constrained potential fc, How-
ever, since fe is non-smooth, its gradient is not defined. This issue can be addressed using the
proximal operator:

1
prox,,(z) := argmin_ [z — z|? + o(2). (A.1)
z€ER4 2

An important case for non-smooth functions is the proximal operator of the characteristic func-
tion ¢, which is the projection onto C:

Pe(z) = prox, (7). (A2)
When well-defined, the proximal operator generalizes the gradient step of a smooth func-
tion ¢ in the sense that prox,.,(z) = x — 7Vp(z). Applying the proximal step associ-
ated with 7fc to the noisy iterate x; + /27w, yields the so-called Projected Langevin itera-

tion z;41 = Pe(zy — 7V f(2¢) + vV27w,;). The corresponding constrained sampling algorithm is
the Projected Langevin Algorithm (Brosse et al.| 2017), which we detail in Algorithm 4]

e
B4

3 0 3

z potential C

Figure 5: Projected Langevin Algorithm.
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Limited exploration Figure[5|shows the exploration issue arising with Projected Langevin Monte
Carlo in the case of non-convex constraints and a bi-modal distribution. Here, projecting on the
constraint set C = {z | %||z||> = E} leads to poor exploration, as the samples are suck on the
positive side of the likelihood landscape, while the only high-likelihood zone compatible with the
constraint is on the other side.

A.3 DERIVATION OF THE SPLIT-AUGMENTED SAMPLING FORMULAS

Recall the augmented Lagrangian potential

Uplw,23) = F(@) + xe(2) + AT (@ = 2) + Gl — [ (A3)
and let = (1/p) . Taking a stoachastic gradient step with respect to z yields
Tip1 =20 — 7 (Vo) + p(we — 20 + 1)) + V27w, (A.4)
Taking a stoachastic proximal step with respect to z yields
241 = Pe(ze — 7p(2e — Tpg1 — pe) + \/ﬁwg) (A.S5)

Taking a stoachastic gradient step with respect to \ yields

Pp1 = pit + (Tep1 — Ze41)- (A.6)

A.4 EXTENSION OF SAL TO DEEP GENERATIVE MODELS

Many modern generative frameworks—from energy-based models to state-of-the-art diffusion mod-
els rely on Langevin dynamics for sampling (Hinton, 2002; Du & Mordatch, |2019;[Song & Ermon)
2019; Song et al.| |2020). In Appendix D] we review how key classes of generative models relate to
Langevin updates.

For these generative models, sampling takes the form
Tp1 = ¢ — e V(e t) +V2m we,  we ~ N(0, ). (A7)

We interpret these steps as the discretization of a Wasserstein flow for a time-dependent func-
tional F'(q,t), which is summarized in Appendix [C} We can then identically apply our constrained
sampling algorithm, as a time-dependent variation of Algorithm [2] detailed in Algorithm [6] From
a variational point of view, this results in framing the constrained sampling as a time-varying con-
strained optimization problem.

A.5 EXTENSION TO LATENT DIFFUSION AND PARTIAL OBSERVATIONS

Our framework naturally extends to the case where the Langevin steps, or the diffusion model, are
operated in a latent space R*, which is mapped to the physical space through a decoder

¢ :RF - R% (A.8)

The augmented potential takes the form
Upl@,2,X) := f(x) + xe(2) + AT (p(2) — 2) + gllso(w) —z|?, (A9)

and the stochastic updates (4.6]) become
Tig1 =Xy — T (Vf(:vt) + pJ;—(;L't)(go(xt) — 2z + ut)) +V27Twy (A.10a)
zer1 = Pe(ze — 7p(2e — p(41) — ) + V27w)) (A.10b)
per1 = pe + n(P(Te41) — 2e41), (A.10c)

where J,, is the decoder Jacobian.
When linear observations are available, in the form of a likelihood

y~Hz+w, w~N(O,R), (A.11)
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this additional source of information can naturally be accounted by our framework, by modifying
the augmented potential as

1
Up(,2,0) 5= (&) + xe(2) + AT (p() = 2) + Elloe) = 212 + S Hz — ylfs, (A1)

and sampling from the corresponding distribution accordingly.

A.6 CHOICE OF ALGORITHM HYPERPARAMETERS

The hyperparameters of our algorithm are the primal initial distribution qq, step size 7, the initial
dual variable ), the dual step size 7, and the coupling parameter p.

In practice, in diffusion models, gq is a normal distribution, and 7 follows a prescribed schedule. We
choose \g = 110 = 0 and we tune 7 € [1073,10~] so that we observe convergence in expectation of
the two variables x and z. The coupling parameter can be fixed or tuned during sampling. Note that,
in diffusion models, the time-varying step size directly influence the effective coupling parameter.

In Appendix [E} we detail the hyerparameters for each experiment. We also provide ablation studies
are provided to study the influence of \g and p quantitatively.

A.7 COMPARISON OF CONSTRAINED SAMPLING ALGORITHM

Connection with constrained Langevin Monte Carlo Constrained sampling adapted methods
from classical optimization include Projected Langevin Monte Carlo (Bubeck et al., 2015} Durmus
et al.,[2019)), proximal Monte Carlo (Salim et al., 2019;[Salim & Richtarik} 2020; |Brosse et al., 2017;
Durmus et al., 2018), Mirrored Langevin (Hsieh et al., 2018; |Ahn & Chewi, 2021} [Sharrock et al.}
2023)), and penalized Langevin (Gurbuzbalaban et al.| 2024). These approaches are designed for
convex constraint sets, for which they enjoy theoretical guarantees. Those guarantees do not hold
for non-convex settings, such as those encountered in our applications to physical systems, where
exploration of sample space is key.

Connection with Split-and-Augmented Gibbs samplers The constrained sampling formulas of
SAL are related to the Split-and-Augmented Gibbs samplers of [Vono et al.|(2019), which themselves
are inspired by ADMM. The main difference is that, z represents a smooth, prior distribution in their
case, while it represents hard constraints in our case. Therefore, the framework developed in (Vono
et al.l 2019) is different from the constrained sampling approach developed in our present work,
and Split-and-Augmented Gibbs samplers cannot be applied to enforce strict constraints in deep
generative models for example.

Comparison with diffusion guidance Enforcing constraints in diffusion models using penalty
and guidance methods has been proposed by Huang et al.| (2024b) and |Carvalho et al| (2023).
Crucially, unlike SAL, constraint penalty and guidance methods rely on a differentiable constraint
penalty function. Therefore, their sampling objective is inherently different from (@.I)), as the almost-
sure constraint defines a non-smooth potential {.3)) that is not differentiable. Our approach tackles
this non-smoothness using a proximal operator and projections, thereby ensuring strict constraint
satisfaction, rather gradient steps on a smooth approached loss. In the experiments of Section [5.1]
we implement the algorithm of [Zhang et al.|(2025) applying guidance with variable splitting. In the
other experiments, we tried to generalize it to latent space diffusion but found the sampling algo-
rithm to fail in sampling with constraints. This is due to the difficulty of scaling the augmentation
term and the constraint penalty term to simultaneously ensure constraint satisfaction and coupling
with the diffusion model. Instead, we propagated the penalty function through the decoder.

Comparison with projected diffusion Projected diffusion can take different forms (Liang et al.,
2024; |Christopher et al., [2024)). Projected diffusion can be applied in a latent space Zampini et al.
(2025), which we implement in [5.3] The constraints are enforced in the latent space by solving
an optimization problem through the decoder. Our algorithm allows us to decouple these the two
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problems of sampling and of projection by relaxing the physical and the latent variable to be equal
only on average. Specifically, the iterations of Zampini et al.| (2025) can be obtained as a special
case of by setting Ay = 0, = 0, and by projecting the maximum likelihood iterate (7).
In our experiments, we tried to extend this algorithm to account for linear observations, but found
no simple way of propagating both a hard constraint projection and an observation likelihood to the
latent state.

A.8 COMPUTATIONAL COST

To assess the computational cost of SAL, we summarize below the costs for the constraint sets used
in our experiments. We provide below a breakdown of the projection cost for different constraint
types, and compare them to the overall runtime.

In our experiments, we used three types of projections:

* projection onto a sphere for energy conservation,
* projection onto intervals for obstacle avoidance,

* projection onto a linear subspace for mass conservation,

All of these admit efficient implementations.
For the sphere and the interval, cost is O(d) with closed-form formulas.

For a linear subspace,
C={z| Az +b=0} (A.13)

with A € R™*4, The projection is given by Pe(x) = z + AT(AAT)~!(b — Ax), which requires
a precomputed pseudoinverse at cost O(d?m) and a matrix-vector product at cost O(m), which
remains small compared to neural network evaluations.

In all tested settings, the runtime overhead from projections was small compared to the cost of score
evaluations in diffusion models. Furthermore, SAL is compatible with approximate projections,
allowing further savings. For more complex constraint sets, iterative solvers such as ADMM can
be employed with a limited number of steps, trading accuracy for speed in early iterations, where
perfect constraint enforcement is not yet required.

To validate this point, we conducted the following additional runtime experiment. We measure
the average wall-clock time for the different sampling algorithms in the data assimilation problem,
where each sampled state is projected on the intersection of 2 constraint sets: one for mass and one
for energy. All times are in seconds per 10 sampling steps, measured on an Apple M1 setup.

Experiment | unconstrained Langevin | primal-dual Langevin | projected Langevin | SAL
Fluid generation 0.37 0.41 0.43 0.45
Data assimilation 1.27 N/A 1.34 1.36

Table 1: Comparison of computational times.

We also note that diffusion guidance can be computationally costly as it can require multiple penalty
gradient steps per sampling step to enforce constraints. In the experiment[5.3] we found this method
to be of the order of 3 times slower than SAL and projected diffusion.

In summary, SAL has comparable runtime to projected Langevin. For a number of usecases, its ad-
ditional cost is modest, especially in the context of deep generative models where the computational
budget is dominated by score evaluations. This cost can also be adjusted in practice, by computing
approximate projections in the early steps of sampling.
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B PROOFS

B.1 PROOF OF PROPOSITION[I]

The proof can be found in the work of Chamon et al.| (2024).

B.2 PROOF OF PROPOSITION[2]

Proposition Suppose that P,(C) > 0. Then the conditional distribution p¢ is the projection of p
onto the set of distributions supported on C:

pe = argmin  D(q]|p)
gEP2(RY) (B.1)
subjectto P, (C) = 1.

Proof. Let g € P2(R?) such that P,(C) = 1. Then g vanishes almost everywhere out of C. Hence,

D(gllp) = /C o(z) log ]q)gdx

— [[ateyton (A5 ) av ®2)

Zc
-D ——
(qllpe) + 7

where Z satisfies

H
|
T
=
o

Z
== z)dz (B.3)
Ze ), P@)
Z
= —P,(C
ZC p( )
Therefore,
D(qllp) = D(allpe) +Pp(C). (B.4)
This quantity is minimized for ¢ = p¢, and the minimal value is P, (C). O

B.3 PROOF OF PROPOSITION
Proposition Consider the following problem:

pe = argmin  D(ql|p)
q€P2(R?) (B.5)

subjectto Py (C) =1,

with the constrained expressed as E[c(x)] = 0 for a penalty function ¢(x) > 0 such that ¢(z) = 0
only on C. For example, c¢(xz) = 1 — 1¢(x). Recall that F(¢) = D(q||p) and

A= inf  L(g,\). B.6
g(A) b (¢, ) (B.6)

Strong duality holds, but is attained only for an infinite Lagrange multiplier:

VAER, g(A) < F(gi), and  g()) o F(qs)- (B.7)

Proof.
L(g,\) = D(q|lp) + A (1 —Py(z € C))

= D(q||p) + AEq[c(x)]. (B.3)
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For all A € R, the infimum in the dual function definition is attained by

L —f@)=re@)

pa(x) = —e”
ZZ’\ (B.9)
= Zp(x)e—/\C(w)
and the Lagrangian evaluated at p) equals
VA
A

To compute 7, we note that

1=/ DA
Rd

(B.11)
_Z Z [ et
=7 Cp(x)der 7 /ée p(z)dz
Let
e(A) ::[e*Ac(w)p(x)dx. (B.12)
¢
Then,
1= Zm,0) +e0\)] (B.13)
Z

By assumption, for all A € R%, 0 < £(\) < 1. Furthermore, we obtain by combining (B-10)

and (B.13), that
1

A)=log—n——. B.14
This value is always strictly lower than its limit:
VA, g(A) <log —— = i A B.15
» 9(A) <log 7, (C) Jm g(d), (B.15)
which is precisely the optimal value of Problem (4.1)), attained by ¢ = pc¢. Indeed,
Z Z
Dipellp) = [ 5-pla)log 5 -do
c 4c c
(B.16)
=P (C)£ lo Z
=1y Zo g Zo s
where Z satisfies
o
R4
Z
=— [ p(z)dx (B.17)
Ze Je
Z
—P .
ZC P(C)
It follows that )
D(pcllp) = log -~ (B.18)
P,(C)
This value is found to be the minimizer of Problem (4.1)) using Gibbs’ inequality. O

B.4 PROOF OF COROLLARYI]

Corollary [Penalty methods] Penalty methods (2.5)) cannot enforce P (C) = 1.

Proof. Penalty methods sample from p,, with finite \. For all densities ¢ € P2(R?) satisfying the
constraint P (C) = 1, the duality gap implies

L(gx, A) = g(A) < F(pe) < Fq) = L(q, ). (B.19)
Therefore, py does not satisfy P, (C) = 1. O
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B.5 PROOF OF PROPOSITION

Proposition 7 [Variable splitting] Problem (.1)) is equivalent to the following problem:
minimize  D(q.||p
q€P2(RIxC) (gp) (B.20)
subjectto Py (z =2z2) =1.

Proof. Given ¢(x, z) the solution of Problem (4.3), the marginal ¢, gives the solution of Prob-
lem (.I). Given g(x) the solution of Problem (.T)), the solution of Problem (3] can be obtained
by defining z as a copy of x. O

B.6 PROOF OF PROPOSITION[3]

Proposition 8 [Attained duality] Strong duality holds and is attained for Problem (4.4)).

Proof. In order to apply Proposition 2.2 from|Chamon et al.|(2024), we verify the required assump-
tion: there exists ¢ > 0, such that E,[x — z] = 0 (positivity ensures constraint qualification). Such
distribution can be obtained by defining ¢(x, z) := q(z)q(z|x), with for example ¢(z) a Gaussian
normal density and ¢(z|z) a Gaussian density centered on x. Then, the aforementioned proposition
can be applied and Proposition [5]follows. This result cannot be applied to Problem because the
feasibility set for ¢ imposes that the density has zeros measure out of C, making the non-negativity
constraint of the density not qualified. O

B.7 PROOF OF PROPOSITIONIG]
Recall the relaxed problem

minimize  D(q||p ® uc) + pE, [||z — 2|
minimize D{allp® uc) + o, [|lr — 2| 5o
subjectto E4[z — 2] = 0.
Proposition [Problem approximation] The p-approximation converges to the strictly constrained
problem, as

Proof of Proposition[6] Recall that, because strong duality is attained, the solution of [@.4) is at-
tained by a distribution of the form

S B PR -
Zx
Let 2 € C and = # z in R%. Then, q,(z, 2) = 0 = p2(z, 2).
p—+o0
Additionally,
1
4p(2,2) = = (B.23)
Z
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C VARIATIONAL FRAMEWORK FOR LANGEVIN MONTE CARLO

Consider the functional
F(q) = D(q|lp) = /qlog(Q/p)-

The Wasserstein gradient flow is defined as the following differential system
0 oF
5= (V%)
For functional @, the differential system is found to be
99 _
ot
which is found to be the Fokker-Planck equation for the Langevin dynamics

de = -V f(z)dt + dB.

V- (qVf(z) + Aqlz, ),

(C.1)

(C.2)

(C.3)

(C4)

More details can be found in (Jordan et al., [1998; |Ambrosio et al., 2008} |Villanil 2021} [(Chamon

et al., 2024).
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D CONNECTION BETWEEN GENERATIVE MODELS AND LANGEVIN
SAMPLING

D.1 ENERGY-BASED MODELS (EBMS)

An EBM defines a density
1

p(x) = - exp(=fo(2)), (D.1)
where fy is a learned energy function. Sampling from p typically relies on Langevin dynamics
or stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011). EBMs with Langevin
sampling have demonstrated strong performance across a range of tasks(Du & Mordatchl 2019),
and offer distinct advantages over methods such as Variational Autoencoders (VAEs)(Kingma et al.,
2013) and Generative Adversarial Networks (GANs)(Goodfellow et al.| 2014). A particularly valu-
able property of EBMs is their flexibility in incorporating constraints via summing up the corre-
sponding energies. From this perspective, our algorithm, when applied to EBMs, can be interpreted
as providing stronger constraint enforcement through an augmented Lagrangian potential and cor-
responding proximal Langevin updates—going beyond the simple addition of constraint energies.

D.2 SCORE-BASED GENERATIVE MODELS

Score-based generative models aim to learn the score function V log p;(x) of a family of progres-
sively noised data distributions {p; }+<[o,7], rather than modeling the data density directly. Once the
score is learned—typically via denoising score matching—samples can be generated by Langevin-
type updates.

Annealed Langevin Dynamics Proposed by |Song & Ermon| (2019)), this method generates sam-
ples by applying Langevin dynamics at a sequence of decreasing noise levels o > --- > 01. A
score model sq(z, o) is trained to approximate the noise-dependent score V,, log ¢(x; o) of the per-
turbed data distribution p(x; o), which is obtained by convolving p(z) with a Gaussian of various
noise level o;. Then update step takes the form

Ti41 :l't+Tt Sg(l’,Ut)+\/2Tt Wi, Wi NN(O,I), (DZ)
where 74 o o7 are time-varying step sizes.  The update takes the form of (A7)
with Vf(z,t) = —sg(x,0:). This can be seen as an unadjusted Langevin algorithm with tem-

perature oy, gradually refining the sample as noise decreases. In this case our algorithm can be
directly applied at each noise level to impose constraints. It is worth noting that the projected diffu-
sion model (Christopher et al.,[2024) also falls into this category — a hard projection following each
Langevin update within the annealed Langevin dynamics framework. Note that this covers the case
where several Langevin steps are taken at fixed noise level, as in the work of [Song & Ermon|(2019),
by choosing 7; to be constant for a number of steps .

D.3 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPM) Denoising diffusion probabilistic mod-
els (DDPMs), introduced by Ho et al.| (2020), define a forward process that gradually corrupts a
data point yy by adding Gaussian noise through a fixed Markov chain:

Qe | yi—1) = N(ye; V1 = Beye—1, BeI), (D.3)

where 3; € (0, 1) is a small noise schedule. This leads to a closed-form expression for ¢(x; | zo),
with the following definitions:

t
ap = 1-— Bta (jét = HO(S. (D4)
s=1

The reverse process is parameterized by a neural network eg(x, t), which predicts the noise com-
ponent. The sampling procedure follows:

1 1-—
Ty = N (mt ;i _a(;t ee(xt,t)) +omw, wy~N(0,1), (D.5)
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where oy is typically set to match the forward variance ;. As noted by |[Ho et al.| (2020), this
step corresponds to an Euler-Maruyama discretization of a variant of Langevin dynamics, and the
learned noise predictor €y implicitly estimates the score V log p;(x) up to a scaling factor. Hence,
the sampling formula (D.3)) takes the form with 7, = 07/2 and

1
Vlog pi(ws) = sg(xt,t) = —\/jee(fl?t,t)- (D.6)

1—oy

The DDPM can be regarded as a discrete score-based model under the variance preserving stochastic
differential equation (VP-SDE) interpretation (Song et al., 2020)), and thus our SAL sampling is valid
for DDPM sampling.

D.4 SCORE-BASED DIFFUSION MODELS

Score-based diffusion models (Song et al., | 2020) directly learn the score function of perturbed data
distributions and generate samples by simulating the reverse-time stochastic dynamics.

Forward SDE. Define a forward It SDE that gradually adds noise to data zg ~ pgata:
dz = a(z,t)dt + b(t) dWy, (D.7)
where for the variance-preserving (VP) choice,
a(z,t)=—3B{t)z, b(t)=/B(1). (D.8)
This yields marginal distributions p,(x) that interpolate between the data and near-Gaussian noise
as ¢ increases.
Reverse SDE. The time-reversed process follows
dz = [a(z,t) — b(t)* V, logpy(z)]dt + b(t) dW, (D.9)

where W/ is a reverse-time Wiener process. A neural network sg(z, t) is trained by score matching
to approximate V log p(x,t).

Predictor—Corrector sampling. Once the score network is trained, our SAL sampling is applicable.
SAL can also be integrated seamlessly into the predictor-corrector sampling scheme proposed by
Song et al.|(2020). The predictor-corrector sampler interleaves:

* Predictor: an Euler—-Maruyama step of the reverse SDE,
T =z — T [a(@y, ) — b(t)? sg (x4, t)] +b(t) Verw, wy ~N(0,1;).  (D.10)
* Corrector: a few steps of Langevin MCMC to refine samples,
Tio1 = Ty + 7 Se(xe, 1) +V2mwe,  wy ~ N(0, 1y). (D.11)

Similar to the previous sections, these formulas take the form of (A.7), with different time-varying
potential gradients V f(z, t).

Summary Across EBMs, diffusion models, and hybrid schemes, the core sampling formula is an
overdamped Langevin update, possibly annealed through noise scales. This makes our constrained
sampling algorithm SAL compatible with all these approaches as a zero-shot plug-in.
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E EXPERIMENTAL DETAILS

E.1 FIELD GENERATION

Baselines Our algorithm is compared to projected Langevin Monte Carlo, primal-dual Monte
Carlo and constraint-penalized Langevin Monte Carlo. For the latter, we implement the variable-
splitting algorithm of|Zhang et al.|(2025), and the penalty parameter is a dual variable that is adapted
and updated following the same scheme as SAL.

Sampling Langevin Monte Carlo is iterated over 1000 steps, and we set p to follow a linear inter-
polation schedule between 2 and 20.

Constraints The field is subject to energy conservation (Example @ The projection in closed
forms. For the penalty method, the penalty costis c(z) = (> x; — The primal-dual Langevin
Monte Carlo algorithm enforces the constraint functlon h( ) = > a; — M on average.

E.2 DATA ASSIMILATION

Context In many geophysical and engineering applications, one relies on numerical simulation to
predict the time-dependent evolution of a complex system, whose state at physical time ¢ is denoted
by = € R%. But these models are inherently imperfect—either because of computational constraints
or incomplete knowledge of the true dynamics. When real-world observations y € R™ become
available (for example in digital-twin settings), we assume a statistical model of the form

y=h(x)+e, (E.1)

where i : R? — R™ is an observation operator and ¢ is the measurement error. The imperfect
simulation yields a prior forecast b € R, the background estimate, which must be adjusted using y
to produce a more accurate estimate of the true state, usually referred to as the analysis, as the initial
condition for the next simulation. Equivalently, one seeks samples from the posterior

p(z | b,y) o< p(y | =) p(x | b). (E.2)

This estimation problem is formulated sequentially for each new observation, by propagating the
obtained posterior analysis with a forecast model, and repeating the process. Classically, this is
achieved by one of three approaches: sequential Monte Carlo methods (e.g. particle filters (Gor-
don et all, |1993)), ensemble-based filters (e.g. the Ensemble Kalman Filter (Evensenl 2003))), or
variational methods that solve for the MAP estimate (e.g. 3D-Var/4D-Var (Sasakil (1970; Lorenc
1986)). The 3D-Var algorithm assumes that the background error distribution and observation error
distribution are Gaussian,

x|b~N(@, B), e~N(0,P), (E.3)

then taking negative logarithm of (E:2) yields the following optimization target:

J() = 5lly = 1) s + 3l = 0lf - (E4)

Deep learning represents a promising tool to learn more complex priors for data assimilation (Huang
et al.| 2024a; Rozet & Louppe, [2023; Qu et al.,|2024; |Blanke et al.,[2024)

Data For simulating the Burgers equation, we implemented the same method as|van Gastelen et al.
(2024), but we added an extra constant linear advection term. We work in Fourier space with the
first 20 Fourier modes. The field evolves according to the Burgers equation for 4 time units. We
generate 1,000 trajectories, with the field recorded at 10 timesteps for each trajectory, with the initial
state drawn at random in Fourier space with a power-law decay of the coefficient magnitude.

Learning architecture We implemented a DDPM diffusion model, using the formalism detailed
in Appendix [D] Diffusion is learned in a latent space, defined as the first 10 Fourier modes. The
neural network involved is a fully connected network with depth 3 and width 128, using a cosine
time embedding. It is trained for 200 epochs. At sampling time, 1000 diffusion steps are used
with p = 10.
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Baselines Our algorithm is compared to unconstrained latent diffusion and Projected diffusion,
which incorporate observations using diffusion posterior sampling Rout et al.[ (2023). We tried to
apply penalty guidance diffusion in latent space but did not find a suitable method of incorporating
observations in latent space.

Constraints The field is sampled subject to energy and mass conservation constraints (Exam-
ple[2.1). The projection is computed by alternating projections on the two constraint set, which have
closed forms.

The initial conditions are drawn at random following the same distribution of the training data.

Additional results Figure [6|shows the evolution of key metrics for a data assimilation trajectory,

for the various methods compared.
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Figure 6: Mass conservation, energy conservation and s error.

E.3 FEASIBILITY PROBLEM

Trajectory planning for quadrotor obstacle avoidance is an imoprtant problem |Le Hellard et al.
(2025). We implement a linearized version of the planar quadrotor dynamics described in (Tedrake)
2009).

Data The trajectories are discretized in time as (y1, . .., ys, u1, . .. us) € R*%, with S = 200 and
a time interval As = 0.01. The dynamics constraint
Ca = {z | y(0) = 0,5(s) = Ay(s) + Bu(s), [u(s)| < tmax} (E.5)

is described by a linear equality constraint, discretized into a linear system, and an inequality con-
straint on the control inputs. The projection on this convex constraint set is obtained by Dykstra’s
double projection algorithm (Bilkova & Sorel, |2021), and is used within the ADMM solver.

Learning architecture We implemented a DDPM diffusion model, using the formalism detailed
in Appendix [D] The trajectories signals are learned in a latent Fourier space encoding the first 10
modes of the input signal. The neural network involved is a fully connected network with depth 3
and width 128, using a cosine time embedding. It is trained for 200 epochs. At sampling time, 1000
diffusion steps are used with p = 100.

Baselines We implement the latent projected diffusion algorithm |[Zampini et al.|(2025)), and diffu-
sion guidance with constraint penalties (Carvalho et al., 2023), and propagate the penalty function
through the decoder.

Constraint The obstacles are segments, and projecting onto the feasible region is performed by
moving the penetrating trajectory portions trajectory either directly above or directly underneath
the obstacle. For the penalty method, the constraint penalty is the quadratic distance between the
trajectory and the obstacle, which is simple enough to differentiate through in this case.
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E.4 ABLATION STUDIES FOR p AND A

For the field generation task of Section[5.1} we generate 1000 samples of energy-constrained fields,
using different schedules for p. For each schedule, we evaluate the samples with the following
measure of error: we report the proportion of samples that fall near the unlikely positive mode of
the bimodal potential, implying that the sampled distribution deviates from the target

We experiment with 4 different schedules: two schedules use constant p throughout the iterations.
The two other schedules are linear and logarithmic interpolation between these two values. We run
the experiment for different numbers of Langevin iterations. The results are reported in the following

table.
number of steps / schedule | constant p = pin | constant p = piax | linear | logarithmic

1000 42.4% 22% 0.04% 3.8%
5000 44.7% 2.8% 0.001% | 0.0002%

Table 2: Proportion of samples in the wrong mode for different schedules of p

We observe that allowing p to vary across iterations substantially improves sample quality. With too
small p, the deviation between x and z is too large. With too largep, the chain fails to explore the
energy landscape. When the number of steps is limited, only annealed schedules manage to recover
the correct mode. This experiment highlights the importance of adaptive schedules in practice.

In the other experiments, we found that the time-varying step size induce by diffusion models, which
also scales p, was sufficient to balance exploration and constraint satisfaction

We conduct an ablation study on both the field generation experiment (Section [5.1)) and the Burg-
ers data assimilation task (Section [5.2) to investigate the influence of the initial value of the dual
variables.

In the first experiment, the fields are sampled with the Langevin Monte Carlo algorithm, with fixed
potential. In the second experiment, a diffusion model is used, so the score function is time-varying
function throughout iterations.

We run our sampling algorithm with Gaussian initialization of A\, with different sizes o. For each
value of o, we run 100 independent chains. For the flow sampling experiment, we report the maxi-
mum number of sampling steps required to converge. For the data assimilation experiment, because
the dual problem changes over time, we do not evaluate the convergence of the dual variables. In-
stead, we report the average reconstruction accuracy.

o Steps to convergence | Reconstruction error
0 10 0.56
1 200 0.56
5 800 0.56
10 1000 0.57
20 1600 0.58
50 2500 0.79
100 N/A 1.34

Table 3: Influence of \
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Usage of Large Language Models We used large language models at the sentence level to correct
English writing and avoid word repetition
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