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Abstract

We introduce the Diffusion Chain of Lateral Thought (DCoLT), a reasoning frame-
work for diffusion language models. DCoLT treats each intermediate step in the
reverse diffusion process as a latent "thinking" action and optimizes the entire rea-
soning trajectory to maximize the reward on the correctness of the final answer with
outcome-based Reinforcement Learning (RL). Unlike traditional Chain-of-Thought
(CoT) methods that follow a causal, linear thinking process, DCoLT allows bidirec-
tional, non-linear reasoning with no strict rule on grammatical correctness amid
its intermediate steps of thought. We implement DCoLT on two representative
Diffusion Language Models (DLMs). First, we choose SEDD as a representative
continuous-time discrete diffusion model, where its concrete score derives a proba-
bilistic policy to maximize the RL reward over the entire sequence of intermediate
diffusion steps. We further consider the discrete-time masked diffusion language
model — LLaDA, and find that the order to predict and unmask tokens plays an
essential role to optimize its RL action resulting from the ranking-based Unmasking
Policy Module (UPM) defined by the Plackett-Luce model. Experiments on both
math and code generation tasks show that using only public data and 16 H800
GPUs, DCoLT-reinforced DLMs outperform other DLMs trained by SFT or RL or
even both. Notably, DCoLT-reinforced LLaDA boosts its reasoning accuracy by
+9.8%, +5.7%, +11.4%, +19.5% on GSM8K, MATH, MBPP, and HumanEval.

1 Introduction

To enable complex reasoning, most large language models (LLMs) [15] 20] learn to decompose
problems into simpler sub-steps and generate intermediate reasoning in natural language. Chain-
of-Thought (CoT) [40] first reveals that step-by-step reasoning facilitates language models, as the
outputs from previous steps could be rationales for more accurate next step prediction. Based on
that, OpenAI’s PRM [23] supervises these intermediate reasoning steps with progressive rewards, to
ensure the correctness of each single step. More recently, DeepSeek-R1 [[15] eliminates the need of
the reward model and verifies only the correctness of the final answer, relaxing the constraints on
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Lateral Thinking

Vertical Thinking
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Figure 1: Comparison between CoT and DCoLT. (a) A typical CoT performs vertical thinking by
following an auto-regressive convention that generates responses token by token from left to right in
a linear way. (b) DCoLT performs lateral thinking that generates the responses in a non-linear way
without following the auto-regressive order; moreover, at each step, it can generate multiple tokens
at chosen positions. We focus on the lateral thinking in this paper by reinforcing the chain of such
lateral thought as an entirety in Diffusion Language Models (DLMs).

the reasoning process. However, due to the causal nature of attention mechanisms, auto-regressive
models are still forced to reason in a single, sequential direction.

However, when developing ideas, human cognition does not always proceed through strictly sequential
steps. At the beginning of thinking, human does not require an intact linguistic structure. Concepts,
words, or ideas emerge spontaneously and independently first, and are gradually refined and organized
over time to follow grammar rules. This non-linear and creative mode of reasoning, known as lateral
thinking [17]], contrasts with the structured, step-by-step approach of vertical thinking.

Contrary to auto-regressive models, Diffusion Language Models (DLMs) [24} 27, /43]] have also been
adopted for text generation. The intermediate steps of the reverse diffusion process are naturally
well-suited to emulate lateral thinking. Unlike auto-regressive models, diffusion models generate
all tokens in parallel from a prior distribution. Each token can attend freely to all others under a
non-causal mask in self attention, and intermediate reasoning steps are not required to conform to
grammatical rules during multi-step generation, thus leading to more divergent thinking. In this paper,
we propose the Diffusion Chain of Lateral Thought (DCoLT) to reinforce the lateral reasoning in
diffusion language models, as shown in Fig.[I] Rather than providing explicit supervision for the
thinking process, we employ outcome-based reinforcement learning, offering a rule-based reward that
evaluates only the correctness of the final responses. This reward encourages the model to explore
diverse, creative, and non-linear thought trajectories that ultimately lead to correct answers.

We study two paradigms of diffusion language models to reinforce the DCoLT, continuous-time
diffusion language models [6, 24] and discrete-time diffusion language models [3} |19} 27, 37, 143]].
For the continuous-time paradigm, we consider SEDD [24] as a representative DLM. SEDD predicts
the concrete score, allowing for a closed-form expression of the predicted diffused distribution of
generated tokens at each step. This distribution can be viewed as a probabilistic policy for sampling
tokens, which can be trained to optimize the reward on the final answers by reinforcing DCoLT.

For the discrete-time paradigm, we consider a masked DLM — LLaDA [27]. Besides the output
distributions over discrete tokens, we note that the unmasking order plays an important role to decide
which tokens ought to be kept to form the current step of lateral thought, and thus should be part of
the learnable reasoning process. To this end, we introduce a Plackett—Luce model [28} 32] to define a
ranking-based unmasking policy, where each masked token is assigned a predicted ranking score,
and the unmasking policy selects the top-K ranked tokens to retain in the output sequence at each
diffusion step. The unmasking policy is trained together with the token generation policy to optimize
the reward on the final answers.

We conduct experiments on both Math and code generation tasks to demonstrate the efficacy of
DCoLT. After training the DCoLT on the SEDD 400M model, it achieves 96.2% and 57.0% in
accuracy on Sudoku 4 x4 and GSM8K-Aug [10]] tasks. On the LLaDA 8B model, DCoLT achieves
the state-of-the-art performance among existing DLMs trained with SFT or RL or even both. Using



only public data and 16 H800 GPUs, the DCoLT-reinforced LLaDA model achieves 88.1% on
GSMBK [8]], 44.6% on MATH [16], 51.6% on MBPP [4] and 59.1% on HumanEval [[7] in the
challenging zero-shot setting. Even compared with auto-regressive models that are trained with
significantly more proprietary data and fully annotated CoT reasoning processes, it still demonstrates
competitive performances.

2 Related Works

Diffusion Language Models Diffusion models have achieved impressive results in image modeling
(181214133} 138} 441, with recent efforts [2} 3} [11H13] 124} 27, 1291 137, 143|148l |49]] extending to language
tasks. Depending on the types of diffused distributions over text tokens, diffusion language models
can be categorized into continuous diffusion models [[13]] and discrete diffusion models [3} [11} 24],
with our work focusing primarily on the latter due to the discrete nature of language.

Among discrete diffusion models, masked diffusion models [24} 27} 43]] emerge as a promising
approach due to their superior performances. Recent advances simplify model training and design by
adopting the straight cross-entropy loss [29, 37, 49] and removing the time embeddings [48]]. The
resultant models [[27,43]] achieve the state-of-the-art performance among existing diffusion language
models.

Particularly, we consider two representative examples of discrete diffusion language models in this
paper: SEDD [24]] — a discrete diffusion model with a continuous diffusion time, and LLaDA [27] —
a masked diffusion model with discrete diffusion timesteps. We will reinforce the entire sequence
of their reverse diffusion processes containing non-linear text generations to release their lateral
thinking ability. In contrast, DoT (Diffusion of Thought) [42] uses annotated step-by-step CoT data
for supervised fine-tuning with existing diffusion losses such as the score entropy loss [24]] or the
noise prediction loss [13]. Thus, it still encourages a conventional stepwise reasoning process as in
vertical thinking [17].

Reinforcement Learning for Language Models Reinforcement Learning (RL) helps language
models better align with human preference [30] or verifiable knowledge [22] (e.g. rewards on
math/code tasks). Recently, there appear various algorithms for RL optimization [} 25| [35] [36].
These methods enhance model’s ability to produce aligned outputs and show strong potential in
inference-time scaling for challenging problems [15} 20].

However, existing RL approaches are primarily applied to auto-regressive language models [[15[30].
For DLMs, previous works explored policy gradient methods within the concrete score-matching
framework [46], or estimated the log-probability of the sampled responses to perform reinforcement
learning [47]]. However, both models merely focused on the generated text response in the final
diffusion step as an action to optimize, ignoring the role of intermediate diffusion steps as lateral
thought to reinforce amid the reverse diffusion process.

Instead, in this paper, we seek to explicitly reinforce the reverse diffusion process to enable the
training of lateral reasoning. We demonstrate in experiments that even though these intermediate
diffusion steps perform non-linear rather than step-by-step reasoning, reinforcing them can eventually
lead to correct answers at the final step that outperforms many CoT models [10} 40].

3 Methods

3.1 Diffusion Chain of Lateral Thought

To model the probability distribution pg,, over a finite vocabulary V = {1, ..., V'} for text generation
tasks, discrete diffusion processes model how the unknown data distribution pg., at ¢ = 0 gradually
evolves into a prior distribution ppior at ¢ = T' [6]. The distribution at an intermediate diffusion time
t is denoted by p;.

Then a generation process is realized by reversing this diffusion process. Practically, it begins by
sampling o from the prior ppo and then iteratively denoising through a sequence of diffusion time
to.v. At each step n, the model 0 estimates the diffused distribution pg ;, at time ¢,,, from which an
intermediate sample x,, is drawn, as shown in Eq.|l} The diffusion time ¢,, decreases progressively as



n increases. After completing all denoising steps, reaching ¢t = 0, the final response x x is obtained.

Tn ~ Pot, (|Tn-1) )

This naturally generates a series of intermediate results x.y_1 before arriving at the final output
z . This behavior is analogous to the Chain-of-Thought (CoT) technique [40]. However, unlike the
vertical and causal structure of CoT, the diffusion process enables the model to produce intermediate
content that facilitates reaching final answers, aligning more closely with the concept of lateral
thinking—solving problems through indirect and creative approaches. Thus, we define the entire
sequence of all intermediate steps z.n as the Diffusion Chain of Lateral Thought (DCoLT), as shown
in Fig.[I] and seek to apply reinforcement learning to train it based on the given reward function.

Compared to standard CoT, DCoLT is distinguished with several notable features:

* Bidirectional Reasoning: CoT generates tokens sequentially in a causal, irreversible
manner; once derived, earlier thought remains fixed in the context. Instead, DCoLT adopts a
bidirectional structure: each token is influenced by both preceding and succeeding content
with bidirectional self-attention masks, allowing global refinement throughout generations.

* Format-Free Reasoning: CoT typically adheres strictly to natural language format with
complete linguistic structures. DCoLT, however, relaxes this constraint, allowing early stage
of intermediate steps not necessarily to be complete or correct in format, thus enabling more
divergent and creative patterns of thought before finally converging to complete responses.

* Nonlinear Generation: CoT generates tokens one-by-one linearly in an auto-regressive
manner from left to right. In contrast, DCoLT allows nonlinear generation of tokens at
various positions. This aligns with how human develops ideas by beginning with keywords
or critical points and then refining the details around them.

Fig.[7}Fig.[9]in Appendix [B]show some examples of intermediate responses from DCoLT-reinforced
DLMs, demonstrating the above features with bidirectional and nonlinear generations throughout
reverse diffusion processes from incomplete masked phases to complete unmasked responses.

To enhance the lateral thinking, we adopt final-outcome rewarded reinforcement learning to train the
model, promoting reasoning trajectories that can lead to correct final responses x . For this, we treat
the generation of x;. as a sequence of actions to optimize as a whole. At each denoising step n, a
distribution 7y ,, (-|z,—1) over possible outputs is defined, which serves as the policy for sampling
x,, to calculate action probabilities during RL training. The reward r is assigned based on verifiable
correctness of final results. We do not impose any explicit supervision on the intermediate steps,
promoting the model’s lateral thinking ability to explore diverse reasoning strategies to maximize the
reward. This could yield useful patterns of thinking processes — for example, as shown in Fig. [3|of
Appendix [A] an easy-to-hard progressive generation of responses emerges from the DCoLT-trained
DLM, in contrast to its counterpart supervisedly trained with the conventional diffusion loss.

We summarize the algorithm in Alg.[I} Details about training specific diffusion language models such
as SEDD [24] and LLaDA [27] will be elaborated on in the following two subsections. Considering
the demanding computation graph that expands multi-step generations in memory, we back-propagate
the gradients at each step and accumulate them after the whole reverse diffusion process (c.f. Line 26
and 28 in Alg. . We use the GRPO [36] for fair comparisons with other RL-based models [36} 47]],
while alternative RL training approaches such as PPO [35]] and RLOO [1]] can also be adopted.

3.2 A Continuous-Time DLM Case: DCoLT-reinforced SEDD

To define a discrete diffusion process, continuous-time diffusion language models such as SEDD
[24] evolve a family of distributions p, according to a continuous-time Markov process, which can be
represented by the following linear ordinary differential equation.

dpy
E = Qtpt, Do = Pdata; PT = Pprior ()

Here, (), is the transition rate matrix defining the forward process. We may first consider the simple
single-token case (Q; € RV*"). Conversely, to generate a sample from Dprior» this process has a



Algorithm 1 A General Framework for Training DCoLT

Require: Model parameters 6, a dataset D, and reward_func.

1: while 8 not converged and maximum epochs not reached do

2 Sample questions g ~ D

3 for g = 1to G do > Generate a group of G trajectories
4: Initialize 2§ with ¢ and mask tokens.

5: forn =1to N do > NN denotes the number of denoising steps
6: if training SEDD then

7 Sample z ~ po.,, -]z _1)

8 else if training LLaDA then

9 Calculate the ranking score hyg , for each token
10 Sample K tokens to unmask in this step: Un ~ Plackett-Luce(ho,n, K)
11 Sample z5" ~ pg . (-|z2_,), Vi € Up
12: end if
13: end for
14 r9 = reward_func(q, %) > Compute the rewards
15 end for
16 for g =1to G do > Compute the advantages
17 A9 — rg—mean(rlic)
: std(riiG)
18: end for
19: forn =1to N do > Compute g and losses for each denoising step
20: if training SEDD then
21: mon(zd)2?_1) = H "ll po.i, (x8xd_ ) > see Eq.
22: else if training LLaDA then
23: Ton (24|29 1) = mpm N (UL |zn) - T (20 | Tn—1, Un) > see Eq.E]
24: end if (| :
. L G
25: Lon=—520, e A
26: Calculate the gradient Vo Ly »,
27: end for
28: Update 6 with accumulated gradients Zf:j _1 VoLyg,n along the descent direction

29: end while

corresponding reverse process, defined by a reverse transition rate matrix ;:

dpr_ ~ _ P
L = QT—tpT—t) Qt(%x) = t(y) (.f, y)7 Qt x, .13 Z Qt Y, T (3)
dt pe()
y#x
By Euler’s method, we have the transition probability p;, at each diffusion step ¢,,, resulting in an
iterative formula for multi-step generations from ¢ty =T toty =0 withn =0,--- , N,
Pt (xp, = y‘xn—l =)= Oy + (th—1 — tn)Qtnq(yax) “4)

with z,, denoting x;, to avoid notational clutter, i.e., the diffused sample x; at ¢t = ¢,,.

Specifically, we consider a representative discrete diffusion model, SEDD [24]. This model learns to

approximate the concrete score, i.e. 5p(2,t), ~ 7 zgz%

transfer to other tokens. Thus, we may replace @, , (y, ) with the model-estimated s¢(z, t,—1)y -
Q:, _, (z,y) in Eq. ' making the transition probability tractable.

for any y # x to represent the probability to

When scaling to sequences, we may apply 7-leaping to define the probability of action at each
timestep as the product of transition probabilities across all tokens:

|a’,’7l|

o (@nltn—1) = [ ] pot. @hlzn-1) )
1=1

I ( i |$ ) _ Se(xn—ly tn—l)i,m% . (tn—l - tn) : Qtnfl ($11 17.%,1' )7 m;l—l 7é $1”

Otn nt 1- Zy;ﬁac; sﬁ(xnflvtnfl)i,y ! (tn,1 - tn) Qtn 1( n—1s y)v x;—l = ‘T:w

(6)

where |z, | denotes the token length of the sequence x,,. Note that the predicted p;, is dependent on
the model parameters §. During training, we may update 6 to reinforce or suppress the probability of
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Figure 2: The structure of LLaDOU. It first predicts the token set to unmask U4, according to the
ranking score hg , by the UPM, and then samples those unmasked tokens in U, by LLaDA blocks.

all actions along a trajectory of thoughts [z, 21, ..., 2 x], according to the reward associated with each
completion. Unlike traditional diffusion model training, which typically optimizes each individual
denoising step independently with ground truth responses, DCoLT jointly optimizes the entire reverse
process of thought from ¢y = 7T to ¢ty = 0, promoting the emergence of lateral thought leading to
correct answers.

3.3 A Discrete-Time DLM Case: DCoLT-reinforced LLaDA

Some other diffusion language models instead operate at discrete timesteps [27,43]]. They can be
viewed as Discrete-Time Diffusion Language Models with a multi-step generation process. For these
models, we will figure out the probability of actions for each discrete step.

Among them is LLaDA [27] which is a typical Discrete-Time Masked Diffusion Language Model. It
generates text by progressively unmasking a sequence initially prefilled entirely with mask tokens. At
each generation step, the model receives a partially masked sequence as input. Then, it chooses and
predicts a subset of masked tokens to reveal as clean text. As it progresses, the number of masked
tokens gradually decreases, so that the model ultimately yields a fully generated sequence.

Specifically, we can define the model’s action at each step n in two parts: 1) determining the set U4,
of tokens to unmask, and 2) predicting the values of these tokens to obtain the new sequence x,, over
the unmasked part U, .

The action of selecting which tokens to unmask at each step can be decided by ranking masked
tokens with a score function under the current state. To this end, we introduce an Unmask Policy
Module (UPM), which predicts a score value hé’n for each token ¢ at the current diffusion step n.
Based on these scores, we define a policy to sample a top-K ranked list U, = [uy, (1), ..., uy (K)]
from a Plackett-Luce model [28} 32]: a multinomial distribution is formed from the predicted scores,
and K tokens are sequentially sampled without replacement, such that the corresponding scores are

non-increasingly ordered hg:;z(l) > 2> hgj;(K) with high probability.

Formally, let M,, denote the set of tokens that remain masked after the n-th step, i.e., M, _1 \ U,.
Then, the probability of sampling a specific ranking list 4, is given by:

K u.,,,(k)
unmas exp(h B )
To,n KUnlzn—1) = H L

K n j Un j
i i exp(hgn ) + Y g, exp(hgn?)

N

Specifically, UPM takes the hidden states from the last hidden layer as inputs at each denoising step n,
and predicts a ranking score hé,n for i-th token. It contains only one transformer block, introducing
marginal computation cost. Moreover, the step index n and the mask indicator of each token in z,,_;
can benefit the model training. Thus, we embed both of them into the Unmask Policy Module (UPM)
via adaptive layer normalization. The module structure is shown in Fig. 2] For convenience, we name
the DCoLT-trained LLaDA with UPM by LLaDOU (LLaDA with Ordered Unmasking).



As shown in Fig. [10|of Appendix @ the learned scores hg ,, can be viewed as the ranked confidences
over the token predictions at the current step n. Higher scores indicate that the UPM predicts lower
levels of diffusion noises may be present in the generated tokens, which are less likely to contain
errors and thus could be unmasked with higher priorities at the current step. Fig.[/|shows the resulting
unmasking orders from the learned ranking scores for some prompts.

Once the unmask set U, is determined, the model predicts their token values based on the output
distribution by LLaDA blocks over the vocabulary. Viewing this prediction as a second-stage action,
the probability of generating x,, given x,,_; and U, can be written as

T (@nlwn—1,Un) = [] Poin (@l |zn_1). ®)
1EU,

Thus, the probability of the complete policy for transitioning from x,,—; to x,, is the product of those
of the unmask policy and the token prediction policy as used in Line 23 of Alg.

o, (@n|Tn-1) = g™ Unlan) - 75" (@n]Tn—1,Un). ©

4 [Experiments

We conduct DCoLT experiments on two DLMs — SEDD 400M and LLaDA 8B, each representing
one of the two categories mentioned in Sec.

4.1 Experiments on SEDD+DCoLT
4.1.1 Settings

We first conduct experiments on SEDD [24] for two different tasks: 1) Sudoku 4 x 4 task and 2)
GSM8K-Aug math problems [[10], both assessing math reasoning performance. These two tasks
allow us to perform direct comparisons with existing reasoning algorithms, including both supervised
fine-tuning [10} 42 and reinforcement learning approaches [36]. For all experiments, we use the
rule-based reward function to compute the reward for each sample: a reward of 1 is assigned if the
solution is correct, and 0 otherwise. We choose SEDD as the base model to conduct DCoLT training,
which is of medium size around 400 M. For detailed settings please refer to Appendix [C.1]

4.1.2 Results

From the results in Tab. [T} our method remarkably outperforms both (implicit) CoT [10] and DoT
[42] on both tasks. While both CoT and DoT perform vertical thinking, DoT also uses the SEDD as
its base model to simulate causal reasoning. In contrast, our approach only uses RL to train the model
without any CoT data for supervised training. For CoT, we adopt an auto-regressive language model —
GPT?2 [31]] as the base model, which has the similar model size of about 400M to the SEDD model.

Particularly, SEDD + DCoLT achieves an accuracy of 96.2% on Sudoku 4 x 4 task, the best
performance among all the methods. Using the same SEDD model, DCoLT greatly exceeds DoT
(79.4%), even though the latter introduce step-by-step annotated CoT data for supervised training. For
GPT?2 model, both CoT and Implicit CoT, no matter if being post-trained with SFT or RL, perform
worse than our model clearly. On the GSM8K-Aug dataset, SEDD + DCoLT also reaches 57.0% in
accuracy, which is notably higher than both DoT and CoT counterparts. We will further analyze the
generation process of SEDD + DCoLT in Appendix [A] demonstrating how tokens are generated in a
lateral thinking manner.

4.2 Experiments on LLaDOU (LLaDA+DCoLT)
4.2.1 Settings

We further apply DCoLT to LLaDA [27]], a SOTA discrete-time masked-based DLM with 8B
parameters. During generation, it starts with a masked sequence of length 256, and performs a
256-step reverse diffusion process. We adopt a block-wise unmasking strategy as in LLaDA [27]],
and divide the sequence into blocks of length 8. In Tab. |2} both LLaDA and LLaDOU are evaluated
with this setting for fair comparison. We conduct experiments with 16 H800 GPUs to jointly train
both UPM and LLaDA parts. For implementation details, please refer to Appendix



Table 1: Experimental Results on SEDD. All models listed below are of medium size, with approx-
imately 400M parameters. On the Sudoku 4 x 4 dataset, we report the accuracy on a test set of
2,000 samples each with 9 empty cells. On GSM8K-Aug, we use the test set from GSM8K]S8] for
evaluation following [[10].

Models Post-Training Sudoku 4x4 GSMS8K-Aug
GPT2 + CoT[10] SFT 71.5 439
GPT2 + Implicit CoT[10] SFT - 21.9
GPT2 + CoT RL 74.6 -
SEDD + DoT [42] SFT 79.4 53.5
SEDD + DCoLT RL 96.2 57.0

Table 2: Model accuracies on math and code generation benchmarks. The "Post-Training" column
indicates what kinds of post-training (SFT or RL) phase the model goes through. ' indicates the model
uses additional proprietary training data for the post-training phase. The numbers in parentheses
represent the number of shots for the in-context learning, with “-” indicating unknown cases not
mentioned in original papers. The results denoted with * are evaluated with the prompt templates in
Appendix [C.2] for fair comparison, while others are reported in original papers. The results denoted
with * are evaluated on a subset MATH-500 instead of MATH. We highlight the best-performing
model among compared DLMs in bold.

Math Code

Method Post-Training | GoMgK  MATH | HumanEval —MBPP
Diffusion Language Models
Dream 7B* [43] baseline 81.1(0) 429 (0) 51.8 (0) 49.6 (0)
LLaDA 8B* [27] baseline 78.3(0) 38.9(0) 39.6 (0) 40.2 (0)
+ SFT [47]] + SFT 81.1 (0) 34.8% (0) - -

+ diffu-GRPO [47] +RL 81.9(0) 39.2% (0) - -
d1-LLaDA (SFT + diffu-GRPO) + SFT + RL 82.1(0) 40.2% (0) - -
LLaDOU (LLaDA + DCoLT) 8B* +RL 88.1(0) 44.6(0) 59.1 (0) 51.6 (0)
Auto-regressive Models
LLaMA2 7B [39] baseline 14.6 (0) 2.5(0) 12.8 (0) 20.8 (3)
MetaMath 7B [45] + SFT' 66.5(0) 19.8 (0) - -

CodeLLaMA-Instruct 7B [34] + SFT' - - 34.8 (0) 44.4 (3)
Deepseek 7B [5] baseline 63.0 (0) 15.8 (0) 48.2 (0) 352 (3)
DeepseekMath-Instruct 7B [36] + SFT! 829 (-) 46.8 (-) - -
DeepseekMath-RL 7B [36]] +SFTt+RLY | 882() 51.7() - -

DeepseekCoder-Instruct 7B [[14]] + SFT! - - 66.1 (-) 65.4(-)

4.2.2 Results

As shown in Tab.[2] among all compared DLMs, LLaDOU consistently achieves the best performance
across all benchmarks. On GSM8K, LLaDOU reaches 88.1%, significantly higher than other methods.
On the more challenging MATH dataset, LLaDOU achieves 44.6%, outperforming baseline models
such as LLaDA 8B (+5.7%) and Dream 7B (+1.7%), as well as models enhanced with post-training
by SFT, RL or both. Notably, d1-LLaDA [47] uses 1K questions paired with detailed reasoning traces
[26] in SFT to boost reasoning capabilities. In contrast, LLaDOU achieves superior performance
—+6.0% on GSMS8K and +4.4% on MATH - without any reasoning supervision, relying solely on
reward signals based on the final answers.

Even when compared with auto-regressive models trained with a significantly larger amount of
proprietary data, LLaDOU remains highly competitive. For example, DeepseekMath [36] gathers
776K questions with reasoning process annotations for SFT and 144K questions for RL, while
LLaDOU is trained on just 15K public training samples from GSM8K and MATH. Despite using
nearly two orders of magnitude fewer data for RL training, LLaDOU matches DeepseekMath’s
performance on GSMS8K (88.1%), highlighting its data efficiency and the effectiveness of reward-
driven reasoning via diffusion-based lateral reasoning. In Appendix B} we provide a detailed analysis
of the thinking process generated by LLaDOU, including both visualization examples and quantitative
evaluations. Fig. [I2]illustrates the reward curve during DCoLT training in the math domain, showing
an increasing trend in the outcome-based reward over training iterations.



Table 3: Accuracy of LLaDOU on MATH subsets across difficulty levels (5: the hardest and 1: the
easiest) and generation lengths. The result at L = 512 is obtained from the model fine-tuned with
this length, while results at other lengths are directly evaluated using LLaDOU trained with L = 256.

Length Levell Level2 Level3 Leveld Level5

128 80.8% 61.0% 45.6% 29.5% 13.2%
256 833% 65.1% 523%  35.9% 18.7%
384 824%  66.6%  549%  39.0%  20.2%
512 82.6% 69.7%  569% 402%  21.5%

Similar trends are observed in code generation benchmarks. Unlike models that rely on valuable
ground-truth code for supervised training, LLaDOU requires no code for supervised training at all.
Instead, it only needs several test cases to provide a simple outcome-based reward for reinforcement
learning: The model is rewarded only if the generated code passes all unit tests. Despite this code-free
reward signal, LLaDOU achieves 51.6% on MBPP and 59.1% on HumanEval, outperforming other
DLMs and auto-regressive models, except for DeepseekCoder [14] that benefits from 2B tokens of
high-quality instruction-tuning data—approximately 150 more than we used (about 12M tokens).
Details of post-training datasets used by all compared methods are provided in the Appendix [C.3]

4.2.3 Ablation Studies

We provide some ablation studies to reveal the role of some model design and hyper-parameter
settings in LLaDOU. Unless otherwise specified, all experiments are conducted on LLaDOU with
N = 64 diffusion steps, and the model is trained for 150 iterations with a batch size of 32.

Better performance with the UPM In Table 4: Ablation on the Unmasking Policy Module
Tab. ] we ablate the model design in

LLaDOU. Even if we freeze the original Trained parameters <oy rap A o
model parameters in LLaDA part and only UPM LLaDA ’
train the UPM part, it achieves a significant X X 47.277 (Baseline)
improvement from 47.27% to 69.24%. This w/ AdaLN X 69.24
result indicates that the unmasking policy w/o AdaLN v 80.53

w/ AdaLN v 81.06

plays a crucial role in our model. By train-
ing the LLaDA part with RL together, the
accuracy further improves to 81.06%.

We use the adaptive layernorm in the UPM. Removing it degrades accuracy to 80.53%. This
demonstrates that incorporating the embeddings of diffusion step n and the mask indicators also
benefits the training of the unmasking policy.

Extension to longer generation length Though the models in Tab. [2]is trained to generate comple-
tions with a fixed generation length 256 (i.e., the length of initialized mask tokens), it can benefit from
generating longer sequences without further RL training on longer generations. This is especially
effective when answering difficult questions on MATH dataset, in which solving problems sometimes
require longer reasoning. Tab. [5]further summarizes the overall results under different generation
lengths and models. It suggests that longer generations in inference lead to better accuracies. For
example, a generation length of 384 achieves an accuracy of 46.22%, which is +1.62% higher than
the default length of 256. This improvement vanishes as we further increase the generation length.
However, if we further tune the model on a longer generation length, for example L = 512, the
accuracy further improves to 47.3%.

In Tab. 3] we report the accuracy of LLaDOU on MATH subsets across difficulty levels. The accuracy
on level-1 problems saturates with length 256, suggesting that shorter generations are sufficient
for simpler questions. In contrast, the performance on harder problems (levels 2-5) continues to
improve with longer generations, indicating that complex reasoning benefits from longer responses.
These results suggest the potential of how scaled generation lengths may improve the performance of
DCoLT-trained DLMs, as shown in Fig.[I3]of Appendix [D]



Table 5: Model accuracies with extended generation lengths on MATH without further RL-finetuning
the model on these longer generations. The results denoted with * are taken from [47] and evaluated
on a subset MATH-500 instead of MATH.

Generation Length

Model 256 320 384 448 512
LLaDA SB [27] 389 401 415 423 425
+ SFT* [&7] 386 - - - 402
+ diffu-GRPO* [47] 372 - - - 392
d1-LLaDA (SFT+diffu-GRPO)* [47] 38.6 - - - 402
LLaDOU (LLaDA + DCoLT) 8B 446 457 462 457 459

5 Conclusion

In this paper, we propose a new paradigm of model reasoning ability, Diffusion Chain of Lateral
Thought (DCoLT), for diffusion language models. DCoLT considers the intermediate steps in the
reverse diffusion process as the thinking actions, and optimizes this process with final-outcome
rewarded Reinforcement Learning (RL). We implement DCoLT on two representative diffusion
language models, SEDD and LLaDA. On SEDD, we derive the corresponding RL optimization
over the distribution chain of thinking actions via the predicted concrete scores at denoising steps.
On the masked-based diffusion language model LLaDA, we regard the order in which tokens are
unmasked at each diffusion step as its action, and propose an Unmask Policy Module (UPM) to
optimize over the order distribution with the Plackett-Luce model. The experiments indicate that
DCOoLT outperforms other SFT- or RL-based training algorithms, and demonstrate its effectiveness
on a wide range of tasks and benchmarks, including math and code generation.

Limitations First, due to limited training data and compute, our model’s performances on Math and
code generation tasks still have much rooms to improve. Prior works [[14} 134} 36, [45]] demonstrate
that proprietary data often significantly improves the model performances. Also, scaling the token
length of sequences during training can also enhance reasoning. We will seek to boost the model
ability along these directions when computing resources become available. Second, currently DCoLT
is only validated on tasks having a verifiable reward function. We may need a reward model to cover
more general tasks. We will develop these further in our future research.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The proposed Diffusion Chain of Lateral Thought is introduce in Section
and the results highlighted in the abstract and introduction can be found in Section ]

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations in Section[3l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please follow Appendix [C]for both train and evaluation details. Moreover, we
will release our model later.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code later.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high computational cost of training large language models, we omit
error bars in our reported results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix |C|for the computer resources we use.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: See Appendix [H]
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Appendix [
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets in the submission phase.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The paper describe the CoT dataset created by LLM in Appendix [C.1]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Analysis of Thinking Process in SEDD+DCoLT

For the Sudoku dataset, we aim to visualize the thinking process by analyzing the generation step
of different cells. We categorize all 4 x 4 cells into three groups: (1) given cells — those initially
provided by the puzzle; (2) easy cells — those that can be directly inferred using basic Sudoku rules
(each number 1-4 must appear exactly once per row, column, and 2 x 2 subgrid); and (3) hard cells
— the remaining positions that require more complex reasoning, often involving the resolution of
dependencies among other non-given cells.

In Fig. |3 we plot the distribution of generation step for these three cell types, the left side displays
statistics for the SEDD + SFT model, while the right side shows our further RL-trained SEDD
+ DCoLT model. The right figure reveals that the our SEDD + DCoLT significantly prioritizes
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generating easy cells in earlier steps than hard cells, as these cells can be directly determined from
the initial given cells, indicating that our model learns a progressive generation strategy from easy to
hard. Notably, in the left figure, we observe almost no difference between generation orders across
various difficulty levels for SEDD + SFT model. This comparison reveals that the DCoLT changes its
SFT-trained counterpart’s reasoning behavior to more progressive generation aligned naturally with
how humankind handles problems in a real world.

Cell Generation Steps Distribution
1800

Cell Generation Steps Distribution

mm given cells (avg=10.9)
hard cells (avg=11.1)
mmm easy cells (avg=11.1)

1600

1400

1200+

10001

5 10 15 20 25 30
Steps

m given cells (avg=6.6)
hard cells (avg=9.0)
mm easy cells (avg=6.8)

5 10 15 20 25 30
Steps

Figure 3: This figure shows the model’s inference patterns on Sudoku dataset, with the left side
displaying the pattern of SEDD + SFT model and the right side showing that of our SEDD + DCoLT
model. We plot the total number of generated tokens for these three cell types over diffusion steps on
Sudoku 4 x 4 dataset, with the number of sampling steps set to 32.

To further demonstrates the progressive generation behavior on sample level, we visualize the
generation process of our SEDD + DCoLT on the Sudoku dataset in Fig.[d] We show the predicted
Z( at each timestep, obtained by selecting the token with the highest probability (excluding the
mask token) at each token position. As shown in the top row, positions (0, 0) and (0, 1) can be
regarded as hard cells, because the value can’t be directly inferred from given cells denoted by black
borders. Initially, our model assigns the highest probabilities to incorrect answers in these red cells
due to insufficient contextual information. However, as the denoising process progresses, the model
gradually refines its predictions by leveraging information from newly unmasked cells (shown in dark
blue), eventually converging to the correct values. This demonstrates the importance of nonlinear

generation for Sudoku 4 X 4 tasks.

1 1 3 01
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14
(2] 3 1 (4)

1D

->1
!

2y 3

1

(4] 1

2

Figure 4: Visualization of predicted tokens g by SEDD + DCoLT on Sudoku 4 x 4: those that are
still masked appear in light blue, with unmasked ones in dark blue, incorrect predictions in red, and
corrected ones in green. Black borders indicate the given cells.

For GSMS8K-Aug dataset, since it’s hard to determine which token position is more difficult to predict,
we only show the generation process and the generation step statistics for each position. Fig. 3]
demonstrates the contrasting generation behaviors between SEDD + DCoLT and GPT2 + CoT on
the GSM8K-Aug dataset. While GPT2 + CoT consistently follows a left-to-right generation order
(where earlier generation steps correspond to lower token positions), SEDD + DCoLT shows minimal
positional bias in generation order across token positions. Furthermore, our results in Fig. [6|reveal
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Figure 5: Average generation step for each token position in GSM8K-Aug. Different from CoT,

SEDD + DCoLT generates in a non-linear way.

Question: Carla is downloading a 200 GB file. Normally she can download 2
GB/minute, but 40% of the way through the download, Windows forces a restart to
install updates, which takes 20 minutes. Then Carla has to restart the download
from the beginning. How load does it take to download the file?

Answer:

<<200/2=4=80200/80/4=100>> <<20*20=40>> <<100+40=70>> #### 70
<<200/2=4=80>>/80/4=100>> <<20*20=40>> <<100+40=70>> #### 70
<<2+40=80>> <<200%0.01=120>> <<20%2=40>> <<120+40=120>> ##i# 120

<<100+40=80>> <<200%0.01=120>> <<20*2=40>> <<120+40=160>> #### 160
<<2-40=60>> <<200%0.6=120>> <<20*2=40>> <<120+40=160>> ### 160

<<100-40=60>> <<200/0.6=120>> <<20*2=40>> <<120+40=160>> #### 160

Question: Marie ordered one chicken meal that costs $12, 5 packs of milk that costs
$3 each, 4 apples that cost $1.50 each, and some boxes of pizza. Marie paid a total of

$50. How many boxes of pizza did Marie order if each box costs $8.50?

Answer:

<<3*¥5=15>> <<1.50.50=6>> <<12+15-6-6= <<>> <<50/5=19>> <<19/5=2.2>> #### 2

<<3*5=15>> <<4*1.50=6>> <<12-15-15-6=23>> <<50/23= <<>> <<./5=1. ####
<<3*5=15>> <<1*1.50=6>> <<12+15+6=33>> <<50-33=17>> <<17/8.5=2>> #>>#
<<5*3=15>> <<4*1.50=6>> <<12+15+6=33>> <<50-33=17>> <<17/8.5=2>> #>> # 2

<<5%3=15>> <<4*1.50=6>> <<12+15+6-33>> <<5| 17>> <<17/8.5=2>> #i## 2

<<5%3=15>> <<4*1.50=6>> <<12+15+6=33>> <<50-33=17>> <<17/8.5=2>> #### 2

Figure 6: Our model’s generation process on GSM8K-Aug, each line displaying the predicted-zg
tokens across different steps, with masked tokens shown in gray and unmasked ones shown in black.

that SEDD + DCoLT’s generation order is sample-dependent, maintaining a nonlinear generation
throughout the process.

B Analysis of Thinking Process in LLaDOU (LLaDA+DCoLT)

We illustrate how LLaDOU generates a 64-token answer to a GSM8K question in Fig. [7] Tokens
shown in darker shades are generated in later diffusion steps. As the figure shows, key numbers and
symbols tend to emerge early in the generation process, while surrounding textual elements are filled
in later to ensure grammatical correctness and fluency.

Fig. [8|and Fig. [9]further show intermediate steps of the output when generating responses of length
256 with 64 steps, in which key numbers and symbols are generated to gradually form the structure
of thinking processes before grammatically correct sentences are completed.

Fig. @ visualizes the predicted ranking scores g, to unmask tokens during the generation process.
The examples show that at each step, the unmasking score evaluates how likely the predicted token is
correct at each position. For example, in Step 20 of case (a), the token “3" prior to the selected token
“0" has a smaller value of the unmasking score, suggesting that it is more likely than “0" to be wrong.
This token is corrected to “0" before being unmasked at a later step.
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uel uses 2 X 3 0 . 6 0 sheets . paper .
weEk . - mere are 4 WEEkS in é month . - -

<|endoftext|>

(a) Miguel uses 2 pads of paper a week for his drawing. If there are 30 sheets of paper on a pad of paper, how
many sheets of paper does he use every month?

If each train travels 0 miles west - -
mlles - . - - traVEIS . tOtaI .

<|endoftext|>

1 5 0

8

SEFS IS EREnIas

(b) Two trains leave San Rafael at the same time. They begin traveling westward, both traveling for 80 miles.
The next day, they travel northwards, covering 150 miles. What’s the distance covered by each train in the two

days?
e
Bl e -

(c) Janet buys a brooch for her daughter. She pays $500 for the material to make it and then another $800 for the
jeweler to construct it. After that, she pays 10% of that to get it insured. How much did she pay?

The child already has $ savings . . . needs . save .
additional . . . . promises to save
- <|end0fteXt|>

(d) An 8-year old child wants to buy a toy car which costs $12. He already has $4 savings. How many days will
it take him to save the remaining amount of money if he promises to save $2 daily from his allowance?

She pays

<|endoftext|>

Figure 7: Examples of 64-token responses generated by LLaDOU on GSMS8K. Token color reflects
the generation order, progressing from light (early steps) to dark (later steps). The corresponding
questions are provided in the sub-captions. We observe from the results that many tokens bearing key
information to final answers such as the numbers, units and factual entities tend to be unmasked at
earlier steps, while those tokens for function words and symbols such as “of" and “the" tend to be
unmasked at later steps.

23



Step 10

letermine- total make: we follow follow follow steps:
The robe takes 2 bolts: blue fiber
**Step 2: Determine amount: white:
Step 20
To determine: total bolts make robe we follow follow follow steps:
**Step 1: Identify the amount blue fiber used.”*
The robe takes 2 bolts blue fiber.
**Step 2: Determine amount white
The robe takes half- white: blue fiber: Since are 2 bolts blue fiber:
frac 1 times 2
Step 36
To determine the total bolts used make robe we follow follow follow steps:

**Step 1: Identify the amount
The robe takes 2 bolts

blue fiber used.”
blue fiber.

**Step 2: Determine the amount white fiber used."*

The robe takes half as much white fiber blue fiber. Since there are 2 bolts blue fiber: amount
\[ frac{1}{2} times 2 bol
**Step 3: Calculate the total number bolts
Add the total number of bolts from the blue fiber: white fiber:
\[2+1 text bolts
Therefore: total bolts
Step 50
To determine the total number bolts used make robe we follow follow follow steps:

**Step 1: Identify the amount
The robe takes 2 bolts

blue fiber used.”™
blue fiber.

**Step 2: Determine the amount white fiber used.™

The robe takes half as much white fiber: blue fiber. Since there are 2 bolts: blue fiber: amount:

\[ frac{1}{2} \times 2 1 text bolt

**Step 3: Calculate the total number bolts used.™

Add the total number of bolts from the blue fiber and white fiber:

\[2+1 3 text bolts

Therefore total bolts: make: robe boxed 3
Step 64

To determine the total number of bolts used to make the robe, we follow follow follow steps:

**Step 1: Identify the amount of blue fiber used.**
The robe takes 2 bolts of blue fiber.

**Step 2: Determine the amount of white fiber used.*™
The robe takes half as much white fiber as blue fiber. Since there are 2 bolts of biue fiber, the amount of white fiber is:
\[\frac(1}{2} times 2 = 1 \text{ bolt} \]

**Step 3: Calculate the total number of bolts used.”*
Add the total number of bolts from the blue fiber and the white fiber.
\[2+ 1= 3 text{ bolts} \]

Therefore, the total number of bolts used to make the robe is \(\boxed{3}\).<|eot_id|>

amount whi

white fiber is:

white fiber is:

**Step 1: Identify

ite is:
**Step 3: Calculate

amount

total

blue fiber used.”*

Figure 8: Intermediate step outputs from LLaDOU during the generation of a 256-token response.
The question is from GSM8K: A robe takes 2 bolts of blue fiber and half that much white fiber. How

many bolts in total does it take?

Table 6: Evaluation Hyperparameters for Sudoku and GSM8K-Aug

Models Sudoku

GSMBK-Aug

Generation Tokens NFEs

Temp.

Generation

Tokens NFEs

Temp.

GPT2 + CoT
SEDD + DoT
SEDD + DCoLT

256
256
19

256
512
32

0.0
0.5
0.5

256
256
64

256
64
64

0.5
0.0

Table 7: Training Hyperparameters for Sudoku

Models

| Post-Training  Post-Training Steps

Learning Rate

Batch Size

GPT2 + CoT
SEDD + DoT
GPT2 + CoT

SEDD + DCoLT

SFT
SFT
RL
RL

1,500
1,500
500
500

3e-4
le-4
le-5
le-5

64
64

1024
1024
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Step 12

To determine cars drove: can follow follow steps:
1. **Total the total number- cars the motor-
There originally 33 cars on motor
2. **Subtract: number cars took: exit 5 cars took: exit:

Step 23
To determine cars drove: traffic , we can follow follow steps:
1. **Total the total number- cars on the motor: -
There originally 33 cars on motor
2. **Subtract- number cars took an exit

5 cars took an exit- SO total cars drove through traffic is: \[
30-5 25.
3. **Determine: number- cars drove
4 **Calculate: number- drove

Step 45

To determine- cars drove traffic jam first 1 minutes, we can follow follow steps:

1. **Total the total number of cars on the motorway:**
There originally 33 cars on the motorway.

2. **Subtract the number cars that took an exit:**
5 cars took an exit so total of cars that drove through traffic jam s
\[
30-5=25.
1
3. **Determine the number cars drove remaining 1 minutes
20 cars drove remaining 1 minutes.
4 *Calculate number cars drove through first 1 minutes
Subtract the number cars drove remaining 1 minutes total cars drove traffic jam:
25-20=5.
Therefore: number- cars

tep 64

To determine how many cars drove through the traffic jam in the first 15 minutes, we can follow follow steps:

1. **Total the total number of cars on the motorway:**
There originally 33 cars on the motorway.

2. **Subtract the number of cars that took an exit:**
5 cars took an exit, so the total of cars that drove through the traffic jam is

\l
30-5=25.
\

3. **Determine the number of cars that drove through in the remaining 15 minutes:**
20 cars drove through in the remaining 15 minutes

4. **Calculate the number of cars that drove through in the first 15 minutes:**
Subtract the number of cars that drove through in the remaining 15 minutes from the total number of cars that drove through the traffic jam:
\

25-20=5
v

Therefore, the number of cars that drove through the traffic jam in the first 15 minutes is \(\boxed{5}\).<|eot_id|>
Figure 9: Intermediate step outputs from LLaDOU during the generation of a 256-token response.
The question is from GSMS8K: Cars have lined up on the motorway. Some of the cars drive through
in the first 15 minutes of the traffic jam, then 20 more cars drive through in the remaining 15 minutes
of the jam. 5 cars from the line take an exit so they don’t have to drive through the traffic jam. If there
were originally 30 cars on the motorway, how many cars drove through the traffic jam in the first 15
minutes?

C Experiment Settings

C.1 SEDD+DCoLT

Sudoku 4 x 4 We first generated 50,000 sudoku puzzles of size 4 x 4 by uniformly replacing 1-9
cells with zeros. Using DeepSeek V3-0324[9], we produced CoT reasoning steps and filtered the
results to remove repetitive responses and incorrect solutions. All training datasets were created from
this cleaned dataset to ensure fair comparison. Dataset samples can be found in the Fig. [IT]

We trained both DoT and CoT (with SFT) for 1,500 steps. For CoT (with RL), we first performed
1,000 steps of SFT to pretrain the CoT response, reaching 70.5% in accuracy, followed by another 500
steps of RL training using GRPO[36]. For a fair comparison, DCoLT was also pre-trained to reach
72.3% accuracy before applying 500 steps of RL training. Tab.[7]presents training hyperparameters
for the Sudoku 4 x 4 dataset. For both SFT and RL post-training, we employ Adam optimizer with
(81, B2) = (0.9,0.999). During RL post-training, we set the group size of GRPO to 32, and the kl
coefficient to 0.

For the Sudoku 4 x 4 task, the reward is determined by verifying whether the generated solution
satisfies all the rules of a valid 4 x 4 Sudoku, namely that each row, each column, and each 2 x 2
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(a) The number of students in a school hall was 1000. The hall had 3 entrances A, B, and C which also served as
the exits. If after a meeting 30% of the students went out of the building through exit A, 3/5 of the remaining
went out through exit B, and the rest went out through exit C, calculate the number of students who went out
through exit C.

Step 14
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(b) James has to buy insurance. Since he had an accident it was 60% more than normal. The normal cost is $120
a month. How much does he pay a year?

Figure 10: Illustration of intermediate steps of generated responses by LLaDOU on GSMS8K. Gray
tokens represent positions that have already been unmasked prior to the current step. For each masked
position, we show the predicted token with the highest generation probability. Token color indicates
the unmasking score, with darker blue indicating higher probability of be unmasked. The token
eventually selected to unmask at each step is bounded in a red box. The corresponding prompts are
given in the sub-captions.
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Fill the position where value are 0 in a 4x4 Sudoku Fill the position where value are 0 in a 4x4 Sudoku puzzle

puzzle with digits 1-4, where each row, column, and 2x2 with digits 1-4, where each row, column, and 2x2 subgrid
subgrid contains the numbers from 1 to 4 exactly once. contains the numbers from 1 to 4 exactly once.

Input: Input:

1423 3421

0304 0243

3002 4000

4031 0314

Output: Output:

Step 1: Step 2: Step 3: Step 1: Step 2: Step 3: Step 4:
1423 1423 1423 3421 3421 3421 3421
2314 2314 2314 1243 1243 1243 1243
3002 3142 3142 4000 4100 4132 4132
4031 4031 4231 0314 0314 0314 2314

Figure 11: Examples of CoT data used for training GPT2+CoT and SEDD+DoT.

subgrid must contain the digits 1-4 exactly once. A reward of 1 is assigned only when the solution is
entirely correct; otherwise, the reward is 0.

GSMS8K-Aug Our experiments are conducted on the GSM8K-Aug dataset (sourced from [10]]),
which contains 384,623 training samples with simplified CoT processes. After filtering out samples
with too long answers (exceeding 64 tokens) and those with invalid formats, we retained 382,553
examples. For the pretraining of SEDD on GSM8K-Aug, we train it for 120K steps using the Adam
optimizer with a learning rate of 3 x 10~%, a batch size of 512, and a generation length of 64 tokens.
In the RL training phase, we employ the Adam optimizer with a learning rate of 5 x 10~° and a batch
size of 32, and set the group size for GRPO to 64. This RL phase is trained for 1,000 steps.

All training was conducted on 8 H800 GPUs. For GSM8K-Aug pre-training, we spent 160 GPU hours
on pretraining for 120K steps, and additional 168 GPU hours for the RL post-training. Evaluation
hyperparameters for both datasets are provided in Tab.[6]

C.2 LLaDOU (LLaDA+DCoLT)
C.2.1 Implementation Details for Math Problems

Datasets & Benchmarks We consider two popular benchmarks, GSM8K [8] and MATH [16]. In
our experiments, we follow the common train-test split on these datasets. For GSM8K, there are
7.5K questions for training and 1.32K questions for testing. For MATH, there are 7.5K questions for
training and 5K questions for testing. We report the accuracy on their test set. During training, we
extract the final answers from generated responses to compute the rewards.

Reward function We assign a hard reward for each completion, that it is 1 only if the final answer
is equivalent to the ground truth [16]. For GSM8K and MATH, following [36], the answer must
appear inside a \boxed{}; we extract the boxed content, parse it into a number or expression, and
check symbolic equivalence against the reference answer.

Training configurations The model is trained with 64 prompts in a batch, each generating 16
completions to form a group for advantage calculation. We take an AdamW optimizer with a learning
rate of 5 x 107, and (31, B2) = (0.9,0.999). We do not apply the KL penalty by default, as it
provides marginal benefits in our experiments. The whole training lasts for 140 iterations on 16 H800
GPUs, which takes about 63 GPU days (i.e., about 4 days on wall clock with 16 GPUs). We visualize
the reward curves during training in Fig.
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Figure 12: Reward curves on MATH and GSMB8K during DCoLT training. Dashed lines denote the

raw rewards, while solid lines represent the moving-average smoothed rewards, showing the overall
trend.

C.2.2 Implementation Details for Code Generation

Dataset We filter the KodCode-V1-SFT-R1 [41]] dataset to construct our training dataset. KodCode
is a large fully-synthetic open-source dataset providing verifiable code solutions and test cases for
coding tasks.

To ensure the quality and consistency of the training data, we retain only samples labeled with the
"instruct" style and containing exactly one entry function for test with a non-empty docstring. We
further exclude any samples where the provided solutions include class definitions or constructor
methods, and ensure that the solutions contain exactly one function definition. Additionally, we only
use samples from a group of subsets, including Prefill, Taco, Leetcode, Codeforces, Code Contests,
and Filter, for their appropriate difficulty level.

After filtering, we obtain a training set with 48.9K samples (around 12M tokens). We then format the
samples into the prompt template below:
You are an expert Python programmer. Your task is to complete the implementation of
a function named “<function_name>".

** TARGET FUNCTION *x*
<docstring description>

**% UNIT TESTS *x*

Your code should pass unit tests like:
<assert statement 1>
<assert statement 2>

Here is the function to complete:
" “python
def <function_name>(<parameters>):
"""<docstring description>"""

Reward function We assign a hard 0/1 reward for each completion, that it is 1 only if the generated
code block passes all provided test cases. The code blocks are extracted from the responses based on
the markdown format.
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Training configurations The training configurations are kept the same as for math. The training
lasts for 240 iterations, and it takes about 127 GPU days on 16 H800 GPUs.

Evaluation details We evaluate the model in a zero-shot setting on MBPP [4] and HumanEval [7],
and report the pass@ 1 metric. We show some examples of their input prompts below.

 MBPP:

You are an expert Python programmer.Your task is to complete the
implementation of a function named “remove_Occ’.

** TARGET FUNCTION *x*

Write a python function to remove first and last occurrence of a given
character from the string.

** UNIT TESTS **
Your code should pass unit tests like:

assert remove_Occ("hello", "1") == "heo"
assert remove_Occ("abcda", "a") == "bcd"
assert remove_Occ("PHP", "P") == "H"

Here is the function to complete:
" “python
def remove_Occ(input_param_1, input_param_2):
"""Write a python function to remove first and last occurrence of a
given character from the string."""

* Humaneval:

You are an expert Python programmer.Your task is to complete the
implementation of a function named "has_close_elements’.

Here is the function to complete:

" “python

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
"""Check if in given list of numbers, any two numbers are closer to each
other than the given threshold.

Examples:

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

C.2.3 Direct Comparison with d1-LLaDA

A direct comparison with d1[47] using the same LoRA structure and dataset still reveals the superior
performance by our method. Specifically, we train LLaDOU on GSMS8K only, using LoRA with
rank = 128 and scaling factor o« = 64. During inference, we set the generation length to 256, the
number of diffusion steps to 128, and the block length to 32 — mirroring d1’s configuration. In the
same setting, DCoLT with LoRA achieves an accuracy of 84.7%, which outperforms d1 with both
diffu-GRPO (79.8%) and d1-LLaDA (81.1%) setups, as shown in Tab. |8} These results indicate that
LLaDOU still performs better than d1 with the same LoRA structure and the training data.

C.2.4 Applying DCoLT to Dream-7B on GSMS8K

To further examine the generality of DCoLT, we apply it to the Dream-7B [43] model on GSMS8K.
Unlike LLaDA, which is a natively masked diffusion model, Dream-7B originates from an auto-
regressive model.
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Table 8: Comparison between d1 and LLaDOU with LoRA on GSM8K. Both methods only use the
GSMEK to train the LLaDA model with their respective RL approach.

Model Accuracy (%)

LLaDA 8B 78.3
+diffu-GRPO 79.8
d1-LLaDA (SFT + diffu-GRPO) 81.1

LLaDOU 8B (LoRA) 84.7

Using the same reinforcement learning configuration as in the main experiments (64 denoising steps
and generation length L = 256), DCoLT raises Dream-7B’s accuracy from 50.11% to 80.53%, an
absolute gain of +30.42%. The improvement magnitude is comparable to that observed on LLaDA-
8B, suggesting that DCoLT consistently enhances reasoning ability across heterogeneous diffusion
architectures. The model is trained with a batch of 64 prompts, each generating 16 completions for
advantage calculation, using AdamW with a learning rate of 2.5 x 10~% and (31, 82) = (0.9,0.999).

C.3 Post-Training Data Used in Tab. 2]

In Tab.[9] we list the data used in post-training for math and code generation tasks by different models.
Note that some methods [[14, 34} 36] involve a considerable large amount of proprietary math/code
data for both pretraining and post-training of models, which makes crucial contributions to high
accuracies.

won

Table 9: Post-training data for math / code generation used in Tab. means this type of post-

training was not used for the model.

Method SFT RL

Auto-regressive Models

LLaMAZ2 7B [39] - -
MetaMath 7B [45] 395K samples (MetaMathQA) -

CodeLLaMA-Instruct 7B [34] thousands of SFT ]
+ millions of RS examples
Deepseek 7B [5] - -
DeepseekMath-Instruct 7B [36] 776K (problem, solution) pairs -
DeepseekMath-RL 7B [36] 776K (problem, solution) pairs 144K questions

DeepseekCoder-Instruct 7B [[14] 2B tokens -

Diffusion Language Models

Dream 7B [43]] - -
LLaDA 8B [27] - -

+ SFT [47] 1K samples from s1K -
+ diffu-GRPO [47]] - GSMS8K: 7.5K / MATH: 7.5K
d1-LLaDA (SFT + diffu-GRPO) 1K samples from s1K GSMB8K: 7.5K / MATH: 7.5K

Math: 7.5K GSM8K + 7.5K MATH /

LLaDOU (LLaDA + DCoLT) 8B ) Code: 48K filtered from KodCode

D Potential Scaling Law for Longer Generations

Fig.[13]illustrates some examples of generated responses of various lengths to the same prompt for
the LLaDOU. In DLMs, the generation length tends to increase as more mask tokens are initialized
at the beginning of the reverse diffusion process. This differs from auto-regressive language models,
where the length of a generated response is determined by when the End of Text (EoT) token appears.

Although DLMs also use the EoT token to mark the end of the output, the token often appears later
in the output sequence to generate a longer thinking process when more mask tokens are initialized.
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Answer (Generation Length=256):

Answer (Generation Length=384):

1. Set the equations equal to each other: \(x4 = 7x"2 - 10\).
2. Rearrange the equation: \(x"4 - 7x"2 + 10 = 0\).
3. Let \(u=x"2\), then \(u"2 - 7u + 10 = 0\).
4. Solve the quadratic equation: \(u = \frac{7 \pm \sqrt{49 - 40} } {2} =
\frac{7 \pm 3}{2}\).
-\u=5\) or\(u=2\).
5. Therefore, \(x2 = 5\) or \(x"2 = 2\).
6. The \(x\)-coordinates are \(\pm \sqrt{5}\) and \(\pm \sqrt{2}\).
7. Identify \(m = 5\) and \(n = 2\).
8. Calculate \(m - n\): \(m-n=5-2=3)).

Answer (Generation Length=512):

1. Set the equations equal to each other:
\[xM=T7x"2-10\]

2. Rearrange the equation:
\[x74-7x"2+10=01]

3.Let\(u=x"2\):
\[u2-Tu+10=0\]

4. Solve the quadratic equation:

\[ u=\frac{-(-7) \pm \sqrt{(-7)"2 - 4 \cdot 1 \cdot 10} } {2 \cdot 1} \]
\[ u=\frac{7 \pm \sqrt{49 - 40} } {2} \]

\[u=\frac{7 \pm \sqrt{9}} {2} \]

\[ u=\frac{7 \pm 3} {2} \]

\[ u=5\quad \text{or} \quad u=21]

5. Substitute back to find \( x \):

\[ x*2 = 5 \quad \text{or} \quad x"2 =2\]

\[ x =\pm \sqrt{5} \quad \text{or} \quad x = \pm \sqrt{2} \]

6. Determine \( m\) and \( n\):
\[ m=5\quad \text{and} \quad n=2]

7. Calculate \(m - n\):
\[m-n=5-2=3\]

\(\boxed{3}\)

Step 1: Set the equations equal to each other.
\[xM=7x"2-10\]

Step 2: Rearrange the equation to set it to zero.
\[ x4 -7x"2+10=0\]

Step 3: Let \(u=x"2\). The equation becomes:
\[u2-7u+10=01]

Step 4: Solve the quadratic equation for \(u\).

Using the quadratic formula \( u = \frac{-b \pm \sqrt{b"2 - 4ac}} {2a} \),
where \(a=1\),\(b=-7\),and \(c=10\):

\[ u=\frac{7 \pm \sqrt{(-7)"2 - 4 \cdot 1 \cdot 10} } {2 \cdot 1} \]

\[ u=\frac{7 \pm \sqrt{49 - 40} } {2} \]

\[u=\frac{7 \pm \sqrt{9}} {2} \]

\[u=\frac{7 \pm 3} {2} \]

Step 5: Calculate the two solutions for \(u\).
\[u=\frac{10} {2} =5\]
\[u=\frac{4} {2} =2\]

Step 6: Find the corresponding \( x \) values.
For\(u=5\):

\[ x*2 =5 \implies x = \pm \sqrt{5} \]
For\(u=2"\):

\[ x2 =2 \implies x = \pm \sqrt{2} \]

Step 7: Determine \( m \) and \( n \).
From \(x"2=5\),\(m=5)).
From \( x"2=2\),\(n=2)).

Step 8: Calculate \(m - n\).
m-n=5-2=31\]

Final answer:
\[ \boxed{3} \]

Answer (Generation Length=512 finetuned):

To find the points of intersection between the graphs of \( y =x"4\) and
\(y=7x"2-10\), we set the equations equal to each other:
\[xM=T7x"2-10\]

Rearrange the equation to form a quartic equation:
\[xM-7x"2+10=01]

Let \(u=x"2\). Then the equation becomes:
\[u2-7u+10=01]

We solve this quadratic equation using the quadratic formula \( u = \frac{-
b \pm \sqrt{b"2 - 4ac}} {2a} \):

\[ u=\frac{-(-7) \pm \sqrt{(-7)"2 - 4 \cdot 1 \cdot 10} } {2 \cdot 1} \]
\[u=\frac{7 \pm \sqrt{49 - 40} } {2} \]

\[u=\frac{7 \pm 3} {2} \]

This gives us two solutions:
\[u=\frac{10} {2} =5\]
\[u=\frac{4} {2} =2\]

Since \(u=x"2\), we have:
\[x2=51]
\[x2=21\]

Thus, the \( x \)-coordinates are:
\[ x =\pm \sqrt{5} \]
\[ x =\pm \sqrt{2} \]

We are given that \( m >n\), so \(m=5\) and \( n =2\). Therefore,
\[m-n=5-2=3}\]

Thus, the answer is:
\[ \boxed{3} \]

(a) The graphs of y = z* and y = 7z — 10 intersect at four points with z-coordinates &+/m and ++/7, where
m > n. Whatis m — n?

This offers a flexible way for DLMs to control various lengths of generated responses. As shown in
Tab. [3] longer generations could improve performance, particularly when the model is fine-tuned by
DCoLT with increasing generation length. This suggests the existence of a potential scaling law for
longer generations.

Fig. [I3b] shows that some mistakes generated in the thinking process can be corrected in longer
generations, thus achieving better results over shorter ones. We will study such a scaling phenomenon
further in the future.
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Answer (Generation Length=256):

Answer (Generation Length=384):

First, we convert the numbers in base 5 to base 10 for easier calculation: Step 1: Convert both numbers to base 10.
-\(4321_5=4\cdot 53 + 3 \cdot 52 + 2 \cdot 5 + 1 =276)) For \(4321_5\):
-\(1234_5 =1 \cdot 53 + 2 \cdot 5”2 + 3 \cdot 5 + 4 =139\) \[4 \cdot 53 + 3 \cdot 52 + 2 \cdot 571 + 1 \cdot 570 = 1000 + 75 +
- Perform the subtraction: \(276 - 139 = 137\) 10 +1=1086\]
For \(1234_5\):
Next, we convert 137 back to base 5: \[1 \edot 53 + 2 \edot 52 + 3 \edot 51 + 4 \edot 520 =125 + 50 + 15
-\(137 \div 5 = 27\) remainder \(2\) +4=194\]
-\(27 \div 5 = 5\) remainder \(2\)
-\(5 \div 5 = 1\) remainder \(0\) Step 2: Perform the subtraction in base 10.
-\(1\div 5 = 0\) remainder \(1\) \[1086 - 194 = 892\]
Reading the remainders from bottom to top, we get \(1042_5\). Step 3: Convert the result back to base 5.
\[892 \div 5 = 178 \text{ remainder } 2\]
Therefore, the answer in base 5 is \(\boxed{3042_5}\) \[178 \div 5 = 35 \text{ remainder } 3\]

\[35 \div 5 = 7 \text{ remainder } 0\]

\[7\div 5 = 1 \text{ remainder } 2\]

\[1\div 5 = 0 \text{ remainder } 1\]

Reading the remainders from bottom to top, we get \(1202_5\).

\(boxed{3202_5})

Answer (Generation Length=512 finetuned):

First, we convert both numbers to base 10 for easier calculation.

\(4321_5\):
\[

4\cdot 573 + 3 \cdot 52 + 2 \cdot 5 + 1 = 4 \cdot 125 + 3 \cdot 25 +2
\edot 5+1=500+75+10+1=586

\|

Answer (Generation Length=512):

Step 1: Convert \(4321_5)) to base 10. \(1234_5\):

\[ \[

4321_5=4\cdot 573 + 3 \cdot 572 + 2 \cdot 5+ 1 =4 \cdot 125+ 3 1\cdot 573 + 2 \cdot 572 + 3 \cdot 5 + 4 =1 \cdot 125 + 2 \edot 25 + 3
\cdot 25+ 2 \cdot 5+1=500+75+10+1=1586 \cdot5+4=125+50+15+4=194

\| \|

Step 2: Convert \(1234_5\) to base 10. Next, we perform the subtraction in base 10:

\[ \[

1234_5 =1 \cdot 53 + 2 \cdot 5”2 + 3 \cdot 5+ 4 =1 \cdot 125 + 2 586 - 194 =392

\cdot 25+ 3 \cdot 5+4=125+50+15+4=194 \]

\|
Now, we convert 392 back to base 5.
Step 3: Subtract the base 10 equivalents.

\[ First, repeatedly divide by 5:
586 - 194 =392 \[
\] 392 \div 5 =78 \text{ remainder } 2
\]
Step 4: Convert 392 back to base 5. \[
\[ 78 \div 5 = 15 \text{ remainder } 3
392 \div 5 = 78 \quad \text{remainder} \quad 2 \]
\] \[
\[ 15 \div 5 = 3 \text{ remainder } 0
78 \div 5 = 15 \quad \text{remainder} \quad 3 \]
\] \[
\[ 3\div 5 = 0 \text{ remainder } 3
15 \div 5 = 3 \quad \text{remainder} \quad 0 \]
\]
\[ Reading the remainders from bottom to top, we get \(3032_5\).
3\div 5 = 0 \quad \text{remainder} \quad 3
\] Thus, the final answer is:
Reading the remainders from bottom to top, we get \(3032_5\). \[
\boxed{3032_5}
\boxed{3032_5} \|

(b) Find 43215 — 12345. Express your answer in base 5.

Figure 13: Examples of how increasing generation lengths enable the DCoLT-reinforced model to
unfold more complex reasoning processes. Incorrect steps are marked in red, while the corrected
steps are highlighted in green. The generation length means the number of mask tokens initialized
in the input sequence to the reverse diffusion process. Except for the model finetuned with 512
generation length, other models are only trained with 256 generation length as shown in experiments.
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Table 10: Model accuracies with different block length on GSMS8K dataset. LLaDOU (LLaDA +
DCoLT) is trained with a generation length of 256 and 64 steps of reverse diffusion under respective
block lengths.

Block Length
Model 8 2 256
LLaDA SB 6326 62.12 4947

LLaDOU (LLaDA+DCoLT) 8B  83.17 83.11 82.27

E Ablation on Various Block Lengths

LLaDA [27] divides the sequence into several blocks and generates responses blockwise from left to
right in a semi-autoregressive manner. This policy introduces additional priors on the block-wise
order of text generation. In Tab.[T0} for the baseline LLaDA 8B model, setting block length to 8
achieves an accuracy of 63.26% on GSMBK, significantly higher than 49.47% without dividing
blocks.

However, when we apply DCoLT to LLaDA with different block lengths, all LLaDOU models
achieve similar performance, with the one with a block length 8 achieving slightly higher accurcy
(83.17%) than the one with block length 256 without dividing blocks (82.27%). These results suggest
that LLaDOU does not rely on the blocking prior as in the baseline model.

F Licenses for existing assets

The code and models associated with this paper will be released to the public later. For all code and
data assets, we refer to their licenses in Tab.[TT]

Table 11: Reference assets and their licenses.

Asset License Utility
SEDD [24] MIT Code & Model
GSMS8K-Aug [10] - Data
LLaDA [27] MIT Code & Model
MATH [16] MIT Data
GSMBK [8] MIT Data
KodCode [41]] CCBY-NC4.0 Data

G Broader Impacts

Our work introduces a novel perspective of lateral reasoning in language models, in contrast to the
widely adopted CoT paradigms used in LLMs. By enabling non-linear, format-free reasoning through
a reverse diffusion process, our approach offers new insights into the mechanisms of reasoning in
generative models. This perspective has the potential to benefit a broad range of reasoning-intensive
tasks, including embodied Al, autonomous agents, and complex decision-making systems, providing
transparent thinking processes to minimize the hallucination risks that could emerge from inadequate
reasoning of language models.

However, we acknowledge that DCoLT could pose potential unexpected societal impacts if misused,
especially when handling misleading or adversarial prompts. In this work, we focus on math and
code generation tasks, in which outputs are objectively verifiable. With such a reward design, we can
reduce the influence of dataset biases and encourage the development of reasoning behaviors that are
aligned with the factual and logical consistency. Handling subjective preferences in rewarding the
models to train the DCoLT could be more challenging, and we leave it to our future works.
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H Safeguards

DCoLT is designed for math and code generation tasks that involve objectively verifiable outputs
and well-defined correctness criteria. These domains present a relatively low risk of societal misuse
compared to open-ended language generation tasks. To further reduce the potential for unintended
use, we recommend deploying DCoLT alongside an input checker that ensures that the model only
processes input relevant to its target domains. This approach helps mitigate the risks related to
adversarial prompting or misuse beyond the intended scope.
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