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Abstract001

Large language models (LLMs) demonstrate002
impressive capabilities in mathematical reason-003
ing. However, despite these achievements, cur-004
rent evaluations are mostly limited to specific005
mathematical topics, and it remains unclear006
whether LLMs are genuinely engaging in rea-007
soning. To address these gaps, we present the008
Mathematical Topics Tree (MaTT) benchmark,009
a challenging and structured benchmark that010
offers 1,958 questions across a wide array of011
mathematical subjects, each paired with a de-012
tailed hierarchical chain of topics. Upon assess-013
ing different LLMs using the MaTT benchmark,014
we find that the most advanced model, GPT-4,015
achieved a mere 54% accuracy in a multiple-016
choice scenario. Interestingly, even when em-017
ploying Chain-of-Thought prompting, we ob-018
serve mostly no notable improvement. More-019
over, LLMs accuracy dramatically reduced by020
up to 24.2 percentage point when the ques-021
tions were presented without providing choices.022
Further detailed analysis of the LLMs’ perfor-023
mance across a range of topics showed sig-024
nificant discrepancy even for closely related025
subtopics within the same general mathemat-026
ical area. In an effort to pinpoint the reasons027
behind LLMs performances, we conducted a028
manual evaluation of the completeness and cor-029
rectness of the explanations generated by GPT-030
4 when choices were available. Surprisingly,031
we find that in only 53.3% of the instances032
where the model provided a correct answer, the033
accompanying explanations were deemed com-034
plete and accurate, i.e., the model engaged in035
genuine reasoning.036

1 Introduction037

Large Language Models (LLMs) have increasingly038

demonstrated remarkable capabilities as mathemat-039

ical reasoners, underscoring their potential in com-040

plex problem-solving domains (Chowdhery et al.,041

2022; Touvron et al., 2023; OpenAI, 2023; Team042

et al., 2023). Recent studies have shown that LLMs,043

when applied to mathematical problems, can ex- 044

hibit a high degree of reasoning ability, often align- 045

ing with or even surpassing human-level perfor- 046

mance in certain contexts. This proficiency in math- 047

ematical reasoning is further enhanced by inno- 048

vative techniques such as Chain-of-Thought (Wei 049

et al., 2022), Tree-of-Thought (Yao et al., 2024), 050

and Self-Verification (Weng et al., 2022), empha- 051

sizing on the importance of the procedural steps in 052

solving a mathematical problems. 053

Despite these advancements, several critical gaps 054

persist in our understanding of LLMs’ mathemat- 055

ical reasoning capabilities. Firstly, it remains un- 056

clear which specific areas of mathematics LLMs 057

excel or falter in, as comprehensive evaluations 058

across diverse mathematical domains are lacking. 059

Secondly, distinguishing between instances where 060

LLMs rely on memorization versus genuine rea- 061

soning is challenging, raising questions about the 062

depth of their understanding. Thirdly, the influence 063

of multiple-choice formats on LLM behavior is not 064

well understood, suggesting that models’ perfor- 065

mance might be affected by the structure of the 066

questions posed. These gaps underscore the neces- 067

sity for a more robust benchmark that facilitates 068

a holistic evaluation of LLMs, enabling us to dis- 069

sect their strengths, weaknesses, and the nuances 070

of their problem-solving strategies. 071

In this paper, we developed the Mathematical 072

Topics Tree (MaTT) benchmark by initially lever- 073

aging Wikipedia’s “Lists of mathematics topics”1 074

to identify key areas in mathematics, resulting in 075

twelve major topics that span both pure and ap- 076

plied mathematics. This was followed by extract- 077

ing important reference books for each topic from 078

Wikipedia to build a detailed topical tree. We then 079

further refine the benchmark by using the books’ 080

tables of contents to structure a comprehensive tree 081

1https://en.wikipedia.org/wiki/Lists_of_
mathematics_topics
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Figure 1: Overview of Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that
presents questions spanning a diverse range of mathematical subjects, each associated with a detailed hierarchical
structure of topics.

reflecting the hierarchical organization of mathe-082

matical knowledge. Upon completing the topic083

tree, we extracted questions from the subsections084

of these books, and gathered them under leaf nodes.085

Finally, we pair each question with multiple-choice086

options, enhancing the benchmark’s utility for eval-087

uating mathematical understanding. An illustration088

of MaTT is depicted in Figure 1.089

After developing MaTT, we evaluate the math-090

ematical reasoning capabilities of various LLMs,091

including commercial models like GPT-4 (OpenAI,092

2023) and ChatGPT (Kocoń et al., 2023) (turbo093

versions), alongside the open-source LLM, Mis-094

tral (Jiang et al., 2023). Notably, GPT-4, the most095

advanced among them, achieved only 54% accu-096

racy in a multiple-choice format. Furthermore,097

the use of Chain-of-Thought prompting mostly did098

not enhance LLMs’ performance, underscoring the099

benchmark’s complexity and suggesting that mere100

step-by-step reasoning might be insufficient. Also,101

when questions were presented without multiple-102

choice options, we observe a dramatical drop of up103

to 24.2 percentage point in LLMs accuracy. Addi-104

tionally, our comprehensive analysis of LLMs’ per-105

formance across different topics revealed notable106

discrepancy, highlighting the models’ inconsistent107

ability to address even related subtopics within the108

same mathematical domain.109

To understand the underlying causes of the110

LLMs’ inadequate performance and their inconsis-111

tent results across various topics, we did a detailed112

evaluation of the explanations provided by GPT-113

4. Surprisingly, we observe that only in 53.3% of114

cases where the models answered correctly, the ex-115

planations were also complete, i.e., GPT-4 engaged 116

in genuine reasoning. These cases were typically 117

associated with simpler or more well-known ques- 118

tions that required only a few straightforward steps 119

to resolve. For more complex questions demand- 120

ing either more number of steps, complicated cal- 121

culations, or creative/intelligent problem-solving, 122

LLMs often failed or relied on alternative strate- 123

gies. These tactics included choice engineering, 124

unsupported theorem use, circular reasoning, or 125

blind memorization, instead of true mathematical 126

reasoning. 127

2 MATT: Mathematical Topics Tree 128

Benchmark 129

In recent years, LLMs have shown remarkable abil- 130

ities in mathematical reasoning. Yet, their prowess 131

is not fully understood due to the narrow focus of 132

current benchmarks, which typically concentrate 133

on specific mathematical areas. This limitation hin- 134

ders our understanding of the depth and breadth 135

of LLMs’ reasoning capabilities. There’s a press- 136

ing need for more comprehensive mathematical 137

benchmarks that cover a wider array of topics and 138

offer deeper insights into the models’ reasoning 139

processes. Such benchmarks would not only chal- 140

lenge the models across a broader mathematical 141

spectrum but also can help with better understand- 142

ing the nuances of how and where these models 143

apply reasoning. 144

To address this gap, in the paper, we create the 145

Mathematical Topics Tree (MaTT) benchmark. To 146

create MaTT, we start by harnessing the “Lists of 147
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mathematics topics” available on Wikipedia as a148

foundational resource. This exploration was cru-149

cial for identifying the spectrum of mathematical150

knowledge we aimed to encompass. Extracting151

the list of mathematics topics from Wikipedia, we152

identified twelve principal topics that comprehen-153

sively encapsulate the breadth of pure and applied154

mathematics. Then, for each topic, we extracted155

one or few key reference books listed on their re-156

spective Wikipedia pages. The topics and their157

corresponding resources are as follows: for pure158

math we consider Algebra (Meyer, 2023; Herstein,159

1991; McGee, 2002), Calculus and Analysis (Stew-160

art, 2012), Number Theory (Niven et al., 1991),161

Combinatorics (Bóna, 2002), Geometry and Topol-162

ogy (Coxeter, 1969; Coxeter and Greitzer, 1967;163

Engelking, 1989), and Logic (Mendelson, 2009).164

In applied math we have Game Theory (Osborne165

and Rubinstein, 1994), Probability (Tijms, 2012,166

2017), Operations Research (Hillier and Lieber-167

man, 2015), Differential Equations (Boyce et al.,168

2021), Statistics (Hogg et al., 2013), and Informa-169

tion Theory and Signal Processing (Cover, 1999;170

Proakis, 2007).171

Next, we utilized the tables of content from these172

selected reference books to enrich and structure173

the MaTT topical Tree. This approach allowed us174

to map out the hierarchical organization of topics175

and subtopics as presented in these books, thereby176

creating a comprehensive graph that reflects the177

depth and interconnectivity of mathematical do-178

mains. The final step in the creation of MaTT179

involved a detailed extraction of questions from180

the sections of the reference books, gathering them181

under the leaf nodes within our topic tree. For each182

question identified, we then crafted multiple-choice183

options to facilitate an objective assessment frame-184

work. To generate the options, we selected choices185

that closely resembled the actual answer, such as186

those with similar numerical values, those attain187

by omitting a step from the proof, or those present-188

ing alternative combinations. For instance, if the189

correct answer was “A & B”, we included “A or190

B” as one of the possible choices. We provide an191

illustration of MaTT in Figure 1.192

The statistical overview of the MaTT benchmark193

is detailed in Table 1. The benchmark comprises194

1,958 examples, meticulously curated across 12195

distinct mathematical topics that span the breadth196

of pure and applied mathematics. In assembling197

these questions, we aimed to ensure a broad yet198

consistent spectrum of difficulty across all topics.199

While extracting questions, we exclude questions 200

that are overly popular or simplistic to mitigate the 201

risk of data contamination. 202

3 Experimental details 203

We assessed the performance of commercial 204

LLMs—GPT-4 (OpenAI, 2023) and ChatGPT (Ko- 205

coń et al., 2023) (turbo versions)—alongside the 206

open-source LLM, Mistral (Jiang et al., 2023) 207

(Mistral-7B-Instruct-v0.2), using the MaTT bench- 208

mark. In our evaluation, we structured the prompts 209

to request that LLMs first generate an explanation 210

and then the final answer. In the multiple-choice 211

setting, we specifically directed the models to se- 212

lect one of the provided options (A, B, C, or D) 213

as their final answer. Additionally, for zero-shot 214

chain-of-thought prompting, we appended “let’s 215

think step by step” to the prompt. Examples of the 216

prompts utilized in our experiments are provided 217

in the Appendix. 218

4 Experiments 219

In this section, we begin with an analysis of 220

LLMs’ mathematical reasoning capabilities using 221

the MaTT benchmark. Subsequently, we exam- 222

ine the variation in model performance across dif- 223

ferent sub-topics. We then assess the effect of 224

choice availability by presenting MATT questions 225

to LLMs without multiple-choice options. Lastly, 226

we concentrate on GPT-4’s explanations, manually 227

annotating the level of reasoning in each expla- 228

nation and exploring the strategies employed by 229

GPT-4 to arrive at correct answers. 230

4.1 LLMs Performance on MaTT 231

We present the accuracy of LLMs on the MATT 232

benchmark across various topics in Table 2. The 233

performance of all models is notably low, with 234

GPT-4 achieving only about 54% accuracy and 235

Mistral performing close to the random choice se- 236

lection. A detailed examination reveals that Mistral 237

frequently declines to answer, asserting that the 238

correct choice is not among the provided options, 239

while other models attempt to select the closest 240

match or engage in some form of reasoning with 241

the available choices when their calculated answer 242

is not listed. 243

Additionally, there is a significant variance in 244

the accuracy levels of LLMs across different top- 245

ics, with gap as high as 31%, highlighting a sig- 246

nificant level of difference in understanding and 247
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Topics # Nodes # Leaf # Qs # Avg leaf’s Qs

Pu
re

M
at

h

Algebra 69 49 120 2.45
Calculus and Analysis 137 115 517 4.50

Number Theory 37 31 126 4.06
Combinatorics 19 15 139 9.27

Geometry and Topology 93 81 159 1.96
Logic 23 18 35 1.94

A
pp

lie
d

M
at

h Game Theory 23 15 35 2.33
Probability 113 91 276 3.03

Operations Research 64 53 104 1.96
Differential Equations 70 60 157 2.62

Statistics 56 48 109 2.27
Information Theory and Signal Processing 69 50 181 3.62

All 772 625 1958 3.13

Table 1: Data Statistics of MaTT.

reasoning capability of LLMs across various math-248

ematical areas. Finally, we observe that zero-shot249

CoT prompting mostly did not enhance model per-250

formance, potentially due to the complexity of251

the questions. Many of question in MaTT, re-252

quire intricate/numerous steps or necessitate intelli-253

gent/creative thinking, which cannot be addressed254

by merely following a few simple steps. This ob-255

servation raises questions about the assumption256

that CoT prompting is effective in many reason-257

ing tasks. Many available evaluation benchmarks258

on reasoning tasks are designed to be solved in a259

few straightforward steps (Srivastava et al., 2022),260

whereas real-world reasoning often involves many261

steps and requires creative problem-solving.262

4.2 Per-topic Break Down of LLMs263

Performance264

As highlighted in the previous section, the explo-265

ration of LLMs’ capabilities in mathematical rea-266

soning across a diverse array of topics or distinct267

sub-topics within the same mathematical domain268

remains significantly unexplored. We detail the269

LLMs’ accuracy on sub-topics within the MATT270

benchmark in Figures 2 for pure mathematics and271

3 for applied mathematics, respectively.272

These figures reveal that the models display vary-273

ing levels of accuracy even within sub-topics of274

the same main topic, emphasizing the differences275

in their understanding and reasoning capabilities276

even across closely related subjects. Notably, we277

find that in certain sub-topics, such as applica-278

tion of integration, parametric equations, quadratic279

reciprocity, diophantine equation, duality theory,280

non-linear programming, conditional probability,281

continuous-time Markov chains, and basic statis-282

tics, ChatGPT and Mistral outperform GPT-4. This283

observation further underscores the significance of 284

going beyond the overall performance on high-level 285

topics and instead examining model performance 286

on a more granular level to understand their mathe- 287

matical reasoning skills comprehensively. 288

4.3 LLMs Performance without Providing 289

Choices 290

To delve deeper into the mathematical reason- 291

ing abilities of LLMs, we assessed their perfor- 292

mance on the MaTT benchmark without the aid of 293

multiple-choice options. We manually evaluated 294

the models’ accuracy on MaTT in the absence of 295

choices and provided the results in Table 3. The 296

findings indicate a substantial decrease in perfor- 297

mance, with GPT-4, ChatGPT, and Mistral loosing 298

29.4%, 56.4%, and 69.7% of the accuracy they 299

achieved when choices were available, respectively. 300

This significant decline underscores the models’ 301

dependency on choices for deriving answers and 302

highlights their limitations in genuine mathemati- 303

cal reasoning. It also stresses the importance of not 304

solely relying on a single overall score to evaluate 305

LLMs’ reasoning capabilities. We provide more 306

detailed analysis on the impact of availability of 307

choices on LLMs prediction in Section 4.5. 308

4.4 Reasoning Level of the Explanations 309

To understand the reasons behind the poor perfor- 310

mance of LLMs without providing choices and 311

their varying accuracy across different topics, we 312

conducted a manual examination of the complete- 313

ness and accuracy of the explanations generated 314

by LLMs for their predictions. Given GPT-4’s rel- 315

atively superior performance compared to other 316

evaluated LLMs, our analysis in this section is 317

specifically focused on the explanations generated 318
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Topics GPT-4 ChatGPT Mistral

w/o CoT w CoT w/o CoT w CoT w/o CoT w CoT

Pu
re

M
at

h

Algebra 71.1 73.6 45.5 52.1 33.9 39.7
Calculus and Analysis 52.2 50.9 41.6 42.6 19.3 19.3

Number Theory 52.4 50.0 54.0 47.6 22.2 23.8
Combinatorics 52.1 55.6 45.1 40.8 21.8 19.0

Geometry and Topology 53.8 53.8 51.9 50.0 26.3 27.5
Logic 62.9 65.7 31.4 34.3 34.3 28.6

A
pp

lie
d

M
at

h Game Theory 40.0 40.0 31.4 45.7 14.3 20.0
Probability 50.5 46.2 36.5 37.9 20.2 17.6

Operations Research 40.6 45.3 37.7 30.2 22.6 24.5
Differential Equations 53.5 52.2 41.5 43.4 18.9 16.3

Statistics 63.3 59.6 56.9 52.3 28.4 23.9
Info and Signal 59.3 53.3 38.2 38.2 29.1 26.6

All 54.0 52.7 42.9 42.7 23.1 22.5

Table 2: Accuracy of LLMs over the MaTT benchmark.
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Figure 2: Per-topic breakdown for pure Math.

by GPT-4. Our objective is to identify the per-319

centage of explanations in correctly predicted in-320

stances (when choices are available) for each of321

the following categories: (1) complete reasoning,322

where the explanation is thorough and logical;323

(2) choice/weak reasoning, where the model uses324

strategies such as leveraging the given options or325

offers partial reasoning; and (3) no/wrong reason-326

ing, where the explanation is incorrect or missing,327

and the model reaches a conclusion without justifi-328

cation. Additionally, we calculated the percentage329

of instances (from all cases where GPT-4 answered330

correctly with choices) in which GPT-4, with no331

choice, still provided a correct answer and deliv-332

ered a complete explanation.333

The results of our manual evaluation of expla-334

nations for samples where GPT-4 (when choices335

are available) predicts the correct answer are de-336

tailed in Table 4. Remarkably, we found that only337

53.3% of the explanations for correctly answered338

questions were complete, i.e., GPT-4 engaged in339

actual reasoning, highlighting a significant incon-340

sistency in GPT-4’s actual reasoning abilities. Also,341

we observe varying levels of explanation complete-342

ness across different topics, which do not necessar- 343

ily correlate with GPT-4’s overall performance in 344

those topics. When comparing samples with com- 345

plete explanations both with and without choices, 346

we notice a significant gap, underscoring that the 347

presence of choices aids the model in better nav- 348

igating or recalling the reasoning process. Fur- 349

thermore, we note that GPT-4 genuinely engaged 350

in reasoning primarily for simpler or more well- 351

known questions that could be solved through a 352

few straightforward steps, whereas it struggled with 353

questions requiring more complex steps or creative 354

problem-solving, often resorting to different strate- 355

gies (we explore these strategies in more detail in 356

Section 4.5). This aligns with the observed limited 357

effectiveness of Chain-of-Thought prompting in 358

enhancing the performance of LLMs. We provide 359

more analysis on explanations in the Appendix. 360

4.5 Observations from Explanations 361

Besides annotating the reasoning level of explana- 362

tions (as presented in Table 4), we also pinpoint 363

the strategies GPT-4 employs to arrive at correct 364

answers, which do not involve reasoning. We sum- 365
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Figure 3: Per-topic breakdown for applied Math.

Topics GPT-4 ChatGPT Mistral

Pu
re

M
at

h

Algebra 63.6 (-7.5) 32.5 (-13.0) 16.9 (-17.0)
Calculus and Analysis 49.7 (-2.5) 23.1 (-18.5) 7.3 (-12.0)

Number Theory 26.5 (-25.9) 19.6 (-34.4) 6.3 (-15.9)
Combinatorics 43.4 (-8.7) 25.4 (-19.7) 6.6 (-15.2)

Geometry and Topology 40.8 (-13.0) 34.9 (-17.0) 10.9 (-15.4)
Logic 60.7 (-2.2) 17.9 (-13.5) 14.3 (-20.0)

A
pp

lie
d

M
at

h Game Theory 22.6 (-17.4) 22.6 (-8.8) 9.7 (-4.6)
Probability 32.8 (-17.7) 12.3 (-24.2) 6.3 (-13.9)

Operations Research 15.9 (-24.7) 6.9 (-30.8) 5.0 (-17.6)
Differential Equations 25.0 (-28.5) 8.3 (-33.2) 4.5 (-14.4)

Statistics 38.1 (-25.2) 12.3 (-44.6) 2.1 (-26.3)
Info and Signal 28.3 (-31.0) 12.1 (-26.1) 5.2 (-23.9)

All 38.1 (-15.9) 18.7 (-24.2) 7.0 (-16.1)

Table 3: LLMs accuracy in answering questions without providing choices. We demonstrate the decrease in LLMs’
performance when choices are not provided, compared to when they are, in red.

marise these strategies as follows:366

Choice engineering refers to the strategy where367

a model, such as GPT-4, manipulates or exploits the368

available multiple-choice options to determine an369

answer, rather than relying on a deep understanding370

or genuine reasoning process. This can be divided371

to the following cases:372

• Choices use: In this case, GPT-4 directly uses373

the choices and chooses the one matching the374

question the best. For example, in linear pro-375

gramming questions, despite GPT-4 without376

choice could not answer any of the optimiza-377

tion problems, when choices were available,378

using this strategy, GPT-4 achieves a high per-379

formance on those questions by simply choos-380

ing the minimum or maximum values among381

the choices.382

• Deducing a plausible answer: In this strat-383

egy, instead of actual reasoning, GPT-4 tries384

to choose the answer by removing choices that385

are not plausible answers for the question. For386

a better understanding, consider the following387

question: Generate X which has a beta distri- 388

bution with parameters α and β. GPT4’s An- 389

swer: “Option B incorrectly raises U1 and U2 390

to the powers of α and β, respectively. This 391

does not correspond to any standard method of 392

generating beta-distributed variables and does 393

not make intuitive sense in the context of the 394

properties of the beta distribution... .”’ GPT-4 395

provides similar arguments for the other op- 396

tions and correctly derive the answer but with- 397

out any actually reasoning. 398

• Choice expert: GPT4 seems to have an un- 399

derstanding of how the choices are usually 400

made. For example consider this question: 401

what are the probabilities of events X and Y? 402

A)1/3,13/27 B)1/3,1/3 C)1/2,1/2 D)None of 403

them. GPT4 was only able to derive the prob- 404

ability of event X to be 1/3, and without any 405

reasoning claimed that probability of event Y 406

could not be 1/3, and then chose A. Note that 407

we also have the choice “None of them”. 408
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• Middle ground rule: We observed that GPT4409

tends to choose the middle ground if it cannot410

find the correct answer. For example: what411

is the expected duration of the game (which412

is described in the question and is omitted413

here)? GPT4’s answer: “Choices A) 16.519414

and C) 22.955 seem more plausible, but with-415

out the exact calculation or simulation, it’s416

challenging to pinpoint the exact expected du-417

ration. However, B) 19.737 strikes a balance418

between ... Without the ability to perform a419

detailed calculation or simulation here, the420

most reasonable choice would be: Answer: B)421

19.737.”422

Theorem Use refers to the strategy where a423

model, such as GPT-4, utilizes a theorem or prop-424

erty which is the actual and main challenging part425

of the question. Therefore, by applying it directly,426

it sidesteps complex derivations and reaches the so-427

lution without explaining or proving why that is cor-428

rect. In order to better grasp the idea, consider the429

following question and answer from GPT4: What430

is determinant of Vandermonde Matrix 2? GPT4’s431

Answer: “The determinant of a Vandermonde ma-432

trix is given by
∏

0≤i<j≤n(xj − xi).”433

Circular reasoning Circular reasoning is a logi-434

cal fallacy in which the conclusion of an argument435

is used as a premise to support itself. This strat-436

egy is closely related to hallucination (Huang et al.,437

2023) which can be very challenging to detect. In438

these cases, the reasoning starts and ends at the439

same point, with the argument essentially saying,440

“A is true because B is true while B is true as A is441

true”. For example, let us consider the following442

question: The Fermat point of a triangle, is a point443

such that the sum of the three distances from each444

of the three vertices of the triangle to the point is445

the smallest possible. What is Fermat point for the446

triangle having an angle ≥ 120? GPT4’s answer:447

“The Fermat point is defined for the purpose of min-448

imizing the total distance from the three vertices of449

the triangle to this point... When one of the angles450

of the triangle is greater than or equal to 120 de-451

grees, the Fermat point coincides with the vertex of452

the triangle that has the angle ≥ 120 degrees. This453

is because, in such a case, positioning the point at454

the obtuse-angled vertex minimizes the total dis-455

tance from the point to the other vertices of the456

2Vandermonde Matrix is a n× n matrix with coefficient
(xi)

j at the ith row and jth column for arbitrary values of xi.

triangle.” What GPT4 did was a prime example of 457

circular reasoning and in order to see why, let us 458

dig into it: let’s define the statements A=“triangle 459

having an angle ≥ 120”, B=“a vertex being a Fer- 460

mat point” and C=“a vertex minimizing the total 461

distance from the three vertices of the triangle”. B 462

and C are equivalent by definition and A → B is 463

almost as hard as A → C. Here, GPT4 instead of 464

proving A → B asserts A → C without any proof, 465

and the concludes A → B. Not so surprisingly, 466

we observe that GPT-4 relies on this strategy in 467

topics such as Geometry and Topology, which is 468

indicated by the notable percentage of cases involv- 469

ing choice/weak reasoning, as outlined in Table 470

4. 471

Blind memorization By blind memorization we 472

mean that LLMs sometimes tend to blindly mem- 473

orize an answer to a question without learning the 474

necessary steps leading into it or the reasoning 475

behind it. Let us further illustrate this with fol- 476

lowing question: Find the expected value of the 477

distance between two points that are chosen at ran- 478

dom inside the unit square, unit circle, and equi- 479

lateral triangle with sides of unit length. For the 480

square, here is GPT4’s answer: “...The exact so- 481

lution to this problem involves a double integral 482

that accounts for the distances between all pairs of 483

points within the square. The calculation is some- 484

what complex but well-documented in mathemat- 485

ical literature. The correct answer, derived from 486

these calculations, is approximately 0.521.” For the 487

circle, here is GPT4’s answer: “...The exact solu- 488

tion to this problem involves complex calculus and 489

is not trivial to derive without advanced mathemati- 490

cal tools. However, it is known from mathematical 491

studies that the expected distance is approximately 492

128/(45π), which is about 0.905... .” Finally, for 493

the triangle, GPT4’s answered as follows: “...the 494

exact solution to this problem is not straightforward 495

and requires a detailed calculation that involves the 496

geometry of the equilateral triangle and the proper- 497

ties of distances within it...”. These examples are 498

prime illustrations of how blind memorization will 499

disable an LLM in being able to reason and answer 500

somewhat similar questions. 501

5 Related Work 502

As LLMs grow stronger, they exhibit significant 503

mathematical reasoning capabilities on existing 504

benchmarks. However, the scope of current evalu- 505

ation settings is restricted in terms of the breadth 506
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Topics Complete Choice/Weak No/Wrong No Choice Complete

Pu
re

M
at

h

Algebra 80.5 13.8 5.7 43.7
Calculus and Analysis 79.6 10.4 10.0 66.2

Number Theory 26.9 40.3 32.8 26.9
Combinatorics 33.3 45.3 21.3 30.7

Geometry and Topology 20.0 52.9 27.1 15.3
Logic 72.7 27.3 0.0 54.5

A
pp

lie
d

M
at

h Game Theory 28.6 35.7 35.7 21.4
Probability 40.0 37.9 22.1 32.1

Operations Research 21.4 28.6 50.0 16.7
Differential Equations 40.0 27.0 32.9 30.6

Statistics 43.5 40.6 15.9 34.8
Info and Signal 68.6 16.2 15.2 42.9

All 53.3 27.4 19.3 40.7

Table 4: Level of reasoning for explanations in instances where GPT-4’s answers were correct, when the choices
were available. We report the percentage of explanations with complete, choice/weak, or no/wrong reasoning. We
also present the percentage of explanations that exhibited complete reasoning when choices were not provided.

of mathematical areas covered and fails to conclu-507

sively determine whether these models genuinely508

engage in reasoning or rely on alternate strategies509

to find the answer.510

Mathematical Benchmarks Previous research511

primarily concentrated on developing benchmarks512

for math word problems—mathematical problems513

in the form of written description–which typically514

require only a few steps to solve, often involving515

basic arithmetic or elementary algebra (Ling et al.,516

2017; Cobbe et al., 2021; Patel et al., 2021). Ad-517

ditionally, the work in Mishra et al. (2022) intro-518

duced a comprehensive mathematical reasoning519

benchmark that encompasses 23 varied tasks across520

four dimensions: mathematical abilities, language521

format, language diversity, and external knowl-522

edge. Furthermore, Zhang et al. (2023) presented523

a multi-modal benchmark with a focus on geome-524

try. The most relevant to our study are the MATH525

(Hendrycks et al., 2021) and Theoremqa (Chen526

et al., 2023) benchmarks. Despite providing math-527

ematical questions on various topics, they have528

a much narrower scope compared to our bench-529

mark and did not provide a detailed topical break-530

down for each question. Additionally, a recent531

effort (Toshniwal et al., 2024) has begun to gener-532

ate large-scale synthetic mathematical benchmarks533

for instruction tuning of LLMs.534

LLMs and Math In recent years, LLMs have535

shown notable achievements in mathematical rea-536

soning (Srivastava et al., 2022; Liu et al., 2023).537

These accomplishments are supported by methods538

aimed at enhancing LLMs’ performance, predomi-539

nantly through decomposed reasoning. Such strate-540

gies, inspired by human problem-solving processes, 541

include providing step-by-step guidance (Wei et al., 542

2022; Yao et al., 2024; Besta et al., 2023), em- 543

ploying verification mechanisms to enhance model 544

consistency and accuracy (Weng et al., 2022), and 545

incorporating complex strategies (Qi et al., 2023). 546

6 Conclusion 547

In this paper, we provide a comprehensive evalua- 548

tion on mathematical reasoning of LLMs. We cre- 549

ate the Mathematical Topics Tree (MaTT) bench- 550

mark, a challenging and systematically organized 551

benchmark that presents a series of questions cov- 552

ering an extensive range of mathematical subjects, 553

each linked to a detailed hierarchical structure of 554

topics. Exploring LLMs accuracy on MaTT, we ob- 555

serve their struggle with a wide range of mathemat- 556

ical topics, particularly when deprived of multiple- 557

choice options. We also observe the discrepancy 558

in LLMs’ performance across various topics and 559

the lack of substantial improvement with Chain- 560

of-Thought prompting. To investigate the gaps in 561

models performances, we manually analysis their 562

explanations in answering the questions. We find 563

that in only 53.3% of the instances where GPT-4 564

provided a correct answer, the accompanying ex- 565

planations were deemed complete. Further, we 566

observe that models faring better on simpler prob- 567

lems and resorting to alternative strategies for more 568

complex questions. This indicates a fundamental 569

gap in LLMs’ ability to engage in deep, creative, 570

and complex mathematical thinking. We will make 571

all the code, annotations, and data associated with 572

the MaTT benchmark publicly available. 573
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7 Limitations574

This study presents several limitations that should575

be considered when interpreting the findings.576

Firstly, our evaluation of mathematical reasoning577

capabilities was conducted on only three widely578

adopted LLMs using the MATT benchmark. This579

limited selection of models may not fully repre-580

sent the diverse capabilities of LLMs. Including a581

wider range of models in future assessments could582

provide a more comprehensive understanding of583

LLMs’ mathematical reasoning across various ar-584

chitectures and training paradigms.585

Secondly, our methodology for assessing mod-586

els’ reasoning capabilities heavily relied on analyz-587

ing their self-generated explanations. While this ap-588

proach allows us to gauge how models rationalize589

their answers, it inherently carries potential biases590

and inaccuracies. The explanations provided by591

LLMs might not always accurately reflect the un-592

derlying reasoning processes and could sometimes593

be misleading or incomplete. More objective or594

diverse methods of evaluation might be necessary595

to gain a clearer and more accurate picture of how596

LLMs process and solve mathematical problems.597
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A Details of Prompts 751

Example prompts utilized for multiple-choice ques- 752

tion answering without and with CoT is provided in 753

prompts A.1 and A.2, respectively. Moreover, the 754

example prompt for answering questions without 755

choices is provided in the prompt A.3. 756

Example Prompt with Choices

Choose the answer to the question only from A,
B, C, and D choices, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
Choices: A) 4 B) 5 C) 6 D) None of them.
The output should be in the following format:
Explanation: <explanation>
Answer: —-

757

Example Prompt with Choices and CoT

Choose the answer to the question only from A,
B, C, and D choices, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
Choices: A) 4 B) 5 C) 6 D) None of them.
The output should be in the following format:
Explanation: <explanation>
Answer: —-
Let’s think step by step.

758
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Example Prompt without Choices

Answer to the question, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
The output should be in the following format:
Explanation: <explanation>
Answer: —-

759

B Further Analysis on Explanations760

To better understand the influence of choices and to761

distinguish between instances where the model gen-762

uinely engages in reasoning, we provided further763

analysis in GPT-4 generated explanations. We aim764

to identify the number of samples in which GPT-4765

with choices gave a complete explanation, GPT-4766

without choices provided a complete explanation,767

and both scenarios resulted in complete explana-768

tions (over all the questions in MaTT). The findings769

are presented in Table 5. The result indicates that770

in most topics, samples that had complete explana-771

tions even without the availability of choices also772

had complete explanations when GPT-4 was pro-773

vided with choices. Furthermore, in some topics,774

there is a meaningful difference in the percentage775

of complete explanations between scenarios with776

and without choices, emphasizing that the presence777

of choices can aid models in better engaging with778

or recalling the reasoning process.779
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Topics both Complete No Choice Complete With Choice Complete

Pu
re

M
at

h

Algebra 28.3 36.7 58.3
Calculus and Analysis 30.8 44.7 41.4

Number Theory 4.8 16.7 14.3
Combinatorics 6.5 20.1 18.0

Geometry and Topology 2.5 10.1 10.7
Logic 22.9 42.9 45.8

A
pp

lie
d

M
at

h Game Theory 8.6 11.4 11.4
Probability 13.4 19.9 20.3

Operations Research 4.8 10.6 8.7
Differential Equations 13.4 22.3 21.7

Statistics 19.3 24.8 27.5
Info and Signal 24.9 27.1 39.8

All 18.0 27.4 28.9

Table 5: Comparison on the completeness of explanations from GPT-4 when choices were provided versus when no
choices were given (this is over all the samples in MaTT).
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