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Abstract

Large language models (LLMs) demonstrate
impressive capabilities in mathematical reason-
ing. However, despite these achievements, cur-
rent evaluations are mostly limited to specific
mathematical topics, and it remains unclear
whether LLMs are genuinely engaging in rea-
soning. To address these gaps, we present the
Mathematical Topics Tree (MaTT) benchmark,
a challenging and structured benchmark that
offers 1,958 questions across a wide array of
mathematical subjects, each paired with a de-
tailed hierarchical chain of topics. Upon assess-
ing different LLMs using the MaTT benchmark,
we find that the most advanced model, GPT-4,
achieved a mere 54% accuracy in a multiple-
choice scenario. Interestingly, even when em-
ploying Chain-of-Thought prompting, we ob-
serve mostly no notable improvement. More-
over, LLMs accuracy dramatically reduced by
up to 24.2 percentage point when the ques-
tions were presented without providing choices.
Further detailed analysis of the LLMs’ perfor-
mance across a range of topics showed sig-
nificant discrepancy even for closely related
subtopics within the same general mathemat-
ical area. In an effort to pinpoint the reasons
behind LLMs performances, we conducted a
manual evaluation of the completeness and cor-
rectness of the explanations generated by GPT-
4 when choices were available. Surprisingly,
we find that in only 53.3% of the instances
where the model provided a correct answer, the
accompanying explanations were deemed com-
plete and accurate, i.e., the model engaged in
genuine reasoning.

1 Introduction

Large Language Models (LLMs) have increasingly
demonstrated remarkable capabilities as mathemat-
ical reasoners, underscoring their potential in com-
plex problem-solving domains (Chowdhery et al.,
2022; Touvron et al., 2023; OpenAl, 2023; Team
et al., 2023). Recent studies have shown that LLMs,

when applied to mathematical problems, can ex-
hibit a high degree of reasoning ability, often align-
ing with or even surpassing human-level perfor-
mance in certain contexts. This proficiency in math-
ematical reasoning is further enhanced by inno-
vative techniques such as Chain-of-Thought (Wei
et al., 2022), Tree-of-Thought (Yao et al., 2024),
and Self-Verification (Weng et al., 2022), empha-
sizing on the importance of the procedural steps in
solving a mathematical problems.

Despite these advancements, several critical gaps
persist in our understanding of LLMs’ mathemat-
ical reasoning capabilities. Firstly, it remains un-
clear which specific areas of mathematics LLMs
excel or falter in, as comprehensive evaluations
across diverse mathematical domains are lacking.
Secondly, distinguishing between instances where
LLMs rely on memorization versus genuine rea-
soning is challenging, raising questions about the
depth of their understanding. Thirdly, the influence
of multiple-choice formats on LLM behavior is not
well understood, suggesting that models’ perfor-
mance might be affected by the structure of the
questions posed. These gaps underscore the neces-
sity for a more robust benchmark that facilitates
a holistic evaluation of LLMs, enabling us to dis-
sect their strengths, weaknesses, and the nuances
of their problem-solving strategies.

In this paper, we developed the Mathematical
Topics Tree (MaTT) benchmark by initially lever-
aging Wikipedia’s “Lists of mathematics topics”!
to identify key areas in mathematics, resulting in
twelve major topics that span both pure and ap-
plied mathematics. This was followed by extract-
ing important reference books for each topic from
Wikipedia to build a detailed topical tree. We then
further refine the benchmark by using the books’
tables of contents to structure a comprehensive tree

1https: //en.wikipedia.org/wiki/Lists_of_
mathematics_topics
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Figure 1: Overview of Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that
presents questions spanning a diverse range of mathematical subjects, each associated with a detailed hierarchical

structure of topics.

reflecting the hierarchical organization of mathe-
matical knowledge. Upon completing the topic
tree, we extracted questions from the subsections
of these books, and gathered them under leaf nodes.
Finally, we pair each question with multiple-choice
options, enhancing the benchmark’s utility for eval-
uating mathematical understanding. An illustration
of MaTT is depicted in Figure 1.

After developing MaTT, we evaluate the math-
ematical reasoning capabilities of various LLMs,
including commercial models like GPT-4 (OpenAl,
2023) and ChatGPT (Kocon et al., 2023) (turbo
versions), alongside the open-source LLM, Mis-
tral (Jiang et al., 2023). Notably, GPT-4, the most
advanced among them, achieved only 54% accu-
racy in a multiple-choice format. Furthermore,
the use of Chain-of-Thought prompting mostly did
not enhance LLMs’ performance, underscoring the
benchmark’s complexity and suggesting that mere
step-by-step reasoning might be insufficient. Also,
when questions were presented without multiple-
choice options, we observe a dramatical drop of up
to 24.2 percentage point in LLMs accuracy. Addi-
tionally, our comprehensive analysis of LLMs’ per-
formance across different topics revealed notable
discrepancy, highlighting the models’ inconsistent
ability to address even related subtopics within the
same mathematical domain.

To understand the underlying causes of the
LLMs’ inadequate performance and their inconsis-
tent results across various topics, we did a detailed
evaluation of the explanations provided by GPT-
4. Surprisingly, we observe that only in 53.3% of
cases where the models answered correctly, the ex-

planations were also complete, i.e., GPT-4 engaged
in genuine reasoning. These cases were typically
associated with simpler or more well-known ques-
tions that required only a few straightforward steps
to resolve. For more complex questions demand-
ing either more number of steps, complicated cal-
culations, or creative/intelligent problem-solving,
LLMs often failed or relied on alternative strate-
gies. These tactics included choice engineering,
unsupported theorem use, circular reasoning, or
blind memorization, instead of true mathematical
reasoning.

2 MATT: Mathematical Topics Tree
Benchmark

In recent years, LLMs have shown remarkable abil-
ities in mathematical reasoning. Yet, their prowess
is not fully understood due to the narrow focus of
current benchmarks, which typically concentrate
on specific mathematical areas. This limitation hin-
ders our understanding of the depth and breadth
of LLMs’ reasoning capabilities. There’s a press-
ing need for more comprehensive mathematical
benchmarks that cover a wider array of topics and
offer deeper insights into the models’ reasoning
processes. Such benchmarks would not only chal-
lenge the models across a broader mathematical
spectrum but also can help with better understand-
ing the nuances of how and where these models
apply reasoning.

To address this gap, in the paper, we create the
Mathematical Topics Tree (MaTT) benchmark. To
create MaTT, we start by harnessing the “Lists of



mathematics topics” available on Wikipedia as a
foundational resource. This exploration was cru-
cial for identifying the spectrum of mathematical
knowledge we aimed to encompass. Extracting
the list of mathematics topics from Wikipedia, we
identified twelve principal topics that comprehen-
sively encapsulate the breadth of pure and applied
mathematics. Then, for each topic, we extracted
one or few key reference books listed on their re-
spective Wikipedia pages. The topics and their
corresponding resources are as follows: for pure
math we consider Algebra (Meyer, 2023; Herstein,
1991; McGee, 2002), Calculus and Analysis (Stew-
art, 2012), Number Theory (Niven et al., 1991),
Combinatorics (Béna, 2002), Geometry and Topol-
ogy (Coxeter, 1969; Coxeter and Greitzer, 1967;
Engelking, 1989), and Logic (Mendelson, 2009).
In applied math we have Game Theory (Osborne
and Rubinstein, 1994), Probability (Tijms, 2012,
2017), Operations Research (Hillier and Lieber-
man, 2015), Differential Equations (Boyce et al.,
2021), Statistics (Hogg et al., 2013), and Informa-
tion Theory and Signal Processing (Cover, 1999;
Proakis, 2007).

Next, we utilized the tables of content from these
selected reference books to enrich and structure
the MaTT topical Tree. This approach allowed us
to map out the hierarchical organization of topics
and subtopics as presented in these books, thereby
creating a comprehensive graph that reflects the
depth and interconnectivity of mathematical do-
mains. The final step in the creation of MaTT
involved a detailed extraction of questions from
the sections of the reference books, gathering them
under the leaf nodes within our topic tree. For each
question identified, we then crafted multiple-choice
options to facilitate an objective assessment frame-
work. To generate the options, we selected choices
that closely resembled the actual answer, such as
those with similar numerical values, those attain
by omitting a step from the proof, or those present-
ing alternative combinations. For instance, if the
correct answer was “A & B”, we included “A or
B’ as one of the possible choices. We provide an
illustration of MaTT in Figure 1.

The statistical overview of the MaTT benchmark
is detailed in Table 1. The benchmark comprises
1,958 examples, meticulously curated across 12
distinct mathematical topics that span the breadth
of pure and applied mathematics. In assembling
these questions, we aimed to ensure a broad yet
consistent spectrum of difficulty across all topics.

While extracting questions, we exclude questions
that are overly popular or simplistic to mitigate the
risk of data contamination.

3 Experimental details

We assessed the performance of commercial
LLMs—GPT-4 (OpenAl, 2023) and ChatGPT (Ko-
con et al., 2023) (turbo versions)—alongside the
open-source LLM, Mistral (Jiang et al., 2023)
(Mistral-7B-Instruct-v0.2), using the MaTT bench-
mark. In our evaluation, we structured the prompts
to request that LLMs first generate an explanation
and then the final answer. In the multiple-choice
setting, we specifically directed the models to se-
lect one of the provided options (A, B, C, or D)
as their final answer. Additionally, for zero-shot
chain-of-thought prompting, we appended “let’s
think step by step” to the prompt. Examples of the
prompts utilized in our experiments are provided
in the Appendix.

4 Experiments

In this section, we begin with an analysis of
LLMs’ mathematical reasoning capabilities using
the MaTT benchmark. Subsequently, we exam-
ine the variation in model performance across dif-
ferent sub-topics. We then assess the effect of
choice availability by presenting MATT questions
to LLMs without multiple-choice options. Lastly,
we concentrate on GPT-4’s explanations, manually
annotating the level of reasoning in each expla-
nation and exploring the strategies employed by
GPT-4 to arrive at correct answers.

4.1 LLMs Performance on MaTT

We present the accuracy of LLMs on the MATT
benchmark across various topics in Table 2. The
performance of all models is notably low, with
GPT-4 achieving only about 54% accuracy and
Mistral performing close to the random choice se-
lection. A detailed examination reveals that Mistral
frequently declines to answer, asserting that the
correct choice is not among the provided options,
while other models attempt to select the closest
match or engage in some form of reasoning with
the available choices when their calculated answer
is not listed.

Additionally, there is a significant variance in
the accuracy levels of LLMs across different top-
ics, with gap as high as 31%, highlighting a sig-
nificant level of difference in understanding and



Topics #Nodes #Leaf #Qs # Avgleaf’s Qs

Algebra 69 49 120 2.45

§ Calculus and Analysis 137 115 517 4.50
= Number Theory 37 31 126 4.06
e Combinatorics 19 15 139 9.27
£ Geometry and Topology 93 81 159 1.96
Logic 23 18 35 1.94

= Game Theory 23 15 35 2.33
§ Probability 113 91 276 3.03
= Operations Research 64 53 104 1.96
& Differential Equations 70 60 157 2.62
= Statistics 56 48 109 2.27
< Information Theory and Signal Processing 69 50 181 3.62
All 772 625 1958 3.13

Table 1: Data Statistics of MaTT.

reasoning capability of LLMs across various math-
ematical areas. Finally, we observe that zero-shot
CoT prompting mostly did not enhance model per-
formance, potentially due to the complexity of
the questions. Many of question in MaTT, re-
quire intricate/numerous steps or necessitate intelli-
gent/creative thinking, which cannot be addressed
by merely following a few simple steps. This ob-
servation raises questions about the assumption
that CoT prompting is effective in many reason-
ing tasks. Many available evaluation benchmarks
on reasoning tasks are designed to be solved in a
few straightforward steps (Srivastava et al., 2022),
whereas real-world reasoning often involves many
steps and requires creative problem-solving.

4.2 Per-topic Break Down of LLMs
Performance

As highlighted in the previous section, the explo-
ration of LLMs’ capabilities in mathematical rea-
soning across a diverse array of topics or distinct
sub-topics within the same mathematical domain
remains significantly unexplored. We detail the
LLMs’ accuracy on sub-topics within the MATT
benchmark in Figures 2 for pure mathematics and
3 for applied mathematics, respectively.

These figures reveal that the models display vary-
ing levels of accuracy even within sub-topics of
the same main topic, emphasizing the differences
in their understanding and reasoning capabilities
even across closely related subjects. Notably, we
find that in certain sub-topics, such as applica-
tion of integration, parametric equations, quadratic
reciprocity, diophantine equation, duality theory,
non-linear programming, conditional probability,
continuous-time Markov chains, and basic statis-
tics, ChatGPT and Mistral outperform GPT-4. This

observation further underscores the significance of
going beyond the overall performance on high-level
topics and instead examining model performance
on a more granular level to understand their mathe-
matical reasoning skills comprehensively.

4.3 LLMs Performance without Providing
Choices

To delve deeper into the mathematical reason-
ing abilities of LLMs, we assessed their perfor-
mance on the MaTT benchmark without the aid of
multiple-choice options. We manually evaluated
the models’ accuracy on MaTT in the absence of
choices and provided the results in Table 3. The
findings indicate a substantial decrease in perfor-
mance, with GPT-4, ChatGPT, and Mistral loosing
29.4%, 56.4%, and 69.7% of the accuracy they
achieved when choices were available, respectively.
This significant decline underscores the models’
dependency on choices for deriving answers and
highlights their limitations in genuine mathemati-
cal reasoning. It also stresses the importance of not
solely relying on a single overall score to evaluate
LLMs’ reasoning capabilities. We provide more
detailed analysis on the impact of availability of
choices on LLMs prediction in Section 4.5.

4.4 Reasoning Level of the Explanations

To understand the reasons behind the poor perfor-
mance of LLMs without providing choices and
their varying accuracy across different topics, we
conducted a manual examination of the complete-
ness and accuracy of the explanations generated
by LLMs for their predictions. Given GPT-4’s rel-
atively superior performance compared to other
evaluated LLMs, our analysis in this section is
specifically focused on the explanations generated



. GPT-4 ChatGPT Mistral
Topics

w/o CoT  wCoT w/oCoT wCoT w/oCoT wCoT
Algebra 71.1 73.6 455 52.1 339 39.7
% Calculus and Analysis 52.2 50.9 41.6 42.6 19.3 19.3
s Number Theory 52.4 50.0 54.0 47.6 222 23.8
@ Combinatorics 52.1 55.6 45.1 40.8 21.8 19.0
g Geometry and Topology 53.8 53.8 51.9 50.0 26.3 27.5
Logic 62.9 65.7 314 343 343 28.6
= Game Theory 40.0 40.0 314 45.7 14.3 20.0
= Probability 50.5 46.2 36.5 37.9 20.2 17.6
E Operations Research 40.6 453 37.7 30.2 22.6 24.5
2 Differential Equations 53.5 522 41.5 43.4 18.9 16.3
= Statistics 63.3 59.6 56.9 523 28.4 23.9
< Info and Signal 59.3 533 38.2 38.2 29.1 26.6
All 54.0 52.7 429 42.7 23.1 22.5

Table 2: Accuracy of LLMs over the MaTT benchmark.
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Figure 2: Per-topic breakdown for pure Math.

by GPT-4. Our objective is to identify the per-
centage of explanations in correctly predicted in-
stances (when choices are available) for each of
the following categories: (1) complete reasoning,
where the explanation is thorough and logical;
(2) choice/weak reasoning, where the model uses
strategies such as leveraging the given options or
offers partial reasoning; and (3) no/wrong reason-
ing, where the explanation is incorrect or missing,
and the model reaches a conclusion without justifi-
cation. Additionally, we calculated the percentage
of instances (from all cases where GPT-4 answered
correctly with choices) in which GPT-4, with no
choice, still provided a correct answer and deliv-
ered a complete explanation.

The results of our manual evaluation of expla-
nations for samples where GPT-4 (when choices
are available) predicts the correct answer are de-
tailed in Table 4. Remarkably, we found that only
53.3% of the explanations for correctly answered
questions were complete, i.e., GPT-4 engaged in
actual reasoning, highlighting a significant incon-
sistency in GPT-4’s actual reasoning abilities. Also,
we observe varying levels of explanation complete-

ness across different topics, which do not necessar-
ily correlate with GPT-4’s overall performance in
those topics. When comparing samples with com-
plete explanations both with and without choices,
we notice a significant gap, underscoring that the
presence of choices aids the model in better nav-
igating or recalling the reasoning process. Fur-
thermore, we note that GPT-4 genuinely engaged
in reasoning primarily for simpler or more well-
known questions that could be solved through a
few straightforward steps, whereas it struggled with
questions requiring more complex steps or creative
problem-solving, often resorting to different strate-
gies (we explore these strategies in more detail in
Section 4.5). This aligns with the observed limited
effectiveness of Chain-of-Thought prompting in
enhancing the performance of LLMs. We provide
more analysis on explanations in the Appendix.

4.5 Observations from Explanations

Besides annotating the reasoning level of explana-
tions (as presented in Table 4), we also pinpoint
the strategies GPT-4 employs to arrive at correct
answers, which do not involve reasoning. We sum-
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Figure 3: Per-topic breakdown for applied Math.
Topics GPT-4 ChatGPT Mistral
Algebra  63.6 (-7.5)  32.5(-13.0) 16.9(-17.0)
§ Calculus and Analysis ~ 49.7 (-2.5)  23.1 (-18.5) 7.3 (-12.0)
= Number Theory  26.5 (-25.9)  19.6 (-34.4) 6.3 (-15.9)
@ Combinatorics  43.4(-8.7)  25.4(-19.7) 6.6 (-15.2)
5 Geometry and Topology  40.8 (-13.0) 349 (-17.0) 109 (-15.4)
Logic  60.7 (-2.2) 17.9(-13.5) 14.3(-20.0)
= Game Theory 22.6 (-17.4) 22.6 (-8.8) 9.7 (-4.6)
§ Probability  32.8 (-17.7) 12.3 (-24.2) 6.3 (-13.9)
= Operations Research  15.9 (-24.7) 6.9 (-30.8) 5.0 (-17.6)
& Differential Equations  25.0 (-28.5) 8.3(-33.2) 4.5 (-14.4)
e Statistics  38.1 (-25.2)  12.3 (-44.6) 2.1(-26.3)
<« Info and Signal  28.3 (-31.0)  12.1 (-26.1) 5.2 (-23.9)

All  38.1(-15.9)

18.7 (-:24.2)  7.0(-16.1)

Table 3: LLMs accuracy in answering questions without providi

ng choices. We demonstrate the decrease in LLMs’

performance when choices are not provided, compared to when they are, in red.

marise these strategies as follows:

Choice engineering refers to the strategy where
amodel, such as GPT-4, manipulates or exploits the
available multiple-choice options to determine an
answer, rather than relying on a deep understanding
or genuine reasoning process. This can be divided
to the following cases:

* Choices use: In this case, GPT-4 directly uses
the choices and chooses the one matching the
question the best. For example, in linear pro-
gramming questions, despite GPT-4 without
choice could not answer any of the optimiza-
tion problems, when choices were available,
using this strategy, GPT-4 achieves a high per-
formance on those questions by simply choos-
ing the minimum or maximum values among
the choices.

* Deducing a plausible answer: In this strat-
egy, instead of actual reasoning, GPT-4 tries
to choose the answer by removing choices that
are not plausible answers for the question. For
a better understanding, consider the following

question: Generate X which has a beta distri-
bution with parameters « and 3. GPT4’s An-
swer: “Option B incorrectly raises U; and U,
to the powers of « and f3, respectively. This
does not correspond to any standard method of
generating beta-distributed variables and does
not make intuitive sense in the context of the
properties of the beta distribution... > GPT-4
provides similar arguments for the other op-
tions and correctly derive the answer but with-
out any actually reasoning.

Choice expert: GPT4 seems to have an un-
derstanding of how the choices are usually
made. For example consider this question:
what are the probabilities of events X and Y?
A)1/3,13/27 B)1/3,1/3 C)1/2,1/2 D)None of
them. GPT4 was only able to derive the prob-
ability of event X to be 1/3, and without any
reasoning claimed that probability of event Y
could not be 1/3, and then chose A. Note that
we also have the choice “None of them”.



* Middle ground rule: We observed that GPT4
tends to choose the middle ground if it cannot
find the correct answer. For example: what
is the expected duration of the game (which
is described in the question and is omitted
here)? GPT4’s answer: “Choices A) 16.519
and C) 22.955 seem more plausible, but with-
out the exact calculation or simulation, it’s
challenging to pinpoint the exact expected du-
ration. However, B) 19.737 strikes a balance
between ... Without the ability to perform a
detailed calculation or simulation here, the
most reasonable choice would be: Answer: B)
19.737”

Theorem Use refers to the strategy where a
model, such as GPT-4, utilizes a theorem or prop-
erty which is the actual and main challenging part
of the question. Therefore, by applying it directly,
it sidesteps complex derivations and reaches the so-
lution without explaining or proving why that is cor-
rect. In order to better grasp the idea, consider the
following question and answer from GPT4: What
is determinant of Vandermonde Matrix 2? GPT4’s
Answer: “The determinant of a Vandermonde ma-

trix is given by [[o<; < (25 — @)

Circular reasoning Circular reasoning is a logi-
cal fallacy in which the conclusion of an argument
is used as a premise to support itself. This strat-
egy is closely related to hallucination (Huang et al.,
2023) which can be very challenging to detect. In
these cases, the reasoning starts and ends at the
same point, with the argument essentially saying,
“A is true because B is true while B is true as A is
true”. For example, let us consider the following
question: The Fermat point of a triangle, is a point
such that the sum of the three distances from each
of the three vertices of the triangle to the point is
the smallest possible. What is Fermat point for the
triangle having an angle > 120? GPT4’s answer:
“The Fermat point is defined for the purpose of min-
imizing the total distance from the three vertices of
the triangle to this point... When one of the angles
of the triangle is greater than or equal to 120 de-
grees, the Fermat point coincides with the vertex of
the triangle that has the angle > 120 degrees. This
is because, in such a case, positioning the point at
the obtuse-angled vertex minimizes the total dis-
tance from the point to the other vertices of the

*Vandermonde Matrix is a n x n matrix with coefficient
(z;)” at the ith row and jth column for arbitrary values of ;.

triangle.” What GPT4 did was a prime example of
circular reasoning and in order to see why, let us
dig into it: let’s define the statements A="“triangle
having an angle > 1207, B="a vertex being a Fer-
mat point” and C="a vertex minimizing the total
distance from the three vertices of the triangle”. B
and C are equivalent by definition and A — B is
almost as hard as A — C. Here, GPT4 instead of
proving A — B asserts A — C' without any proof,
and the concludes A — B. Not so surprisingly,
we observe that GPT-4 relies on this strategy in
topics such as Geometry and Topology, which is
indicated by the notable percentage of cases involv-
ing choice/weak reasoning, as outlined in Table
4.

Blind memorization By blind memorization we
mean that LLMs sometimes tend to blindly mem-
orize an answer to a question without learning the
necessary steps leading into it or the reasoning
behind it. Let us further illustrate this with fol-
lowing question: Find the expected value of the
distance between two points that are chosen at ran-
dom inside the unit square, unit circle, and equi-
lateral triangle with sides of unit length. For the
square, here is GPT4’s answer: “...The exact so-
lution to this problem involves a double integral
that accounts for the distances between all pairs of
points within the square. The calculation is some-
what complex but well-documented in mathemat-
ical literature. The correct answer, derived from
these calculations, is approximately 0.521.” For the
circle, here is GPT4’s answer: “...The exact solu-
tion to this problem involves complex calculus and
is not trivial to derive without advanced mathemati-
cal tools. However, it is known from mathematical
studies that the expected distance is approximately
128/(457), which is about 0.905... .” Finally, for
the triangle, GPT4’s answered as follows: “...the
exact solution to this problem is not straightforward
and requires a detailed calculation that involves the
geometry of the equilateral triangle and the proper-
ties of distances within it...”. These examples are
prime illustrations of how blind memorization will
disable an LLM in being able to reason and answer
somewhat similar questions.

5 Related Work

As LLMs grow stronger, they exhibit significant
mathematical reasoning capabilities on existing
benchmarks. However, the scope of current evalu-
ation settings is restricted in terms of the breadth



Topics \ Complete Choice/Weak No/Wrong No Choice Complete

Algebra 80.5 13.8 5.7 43.7

§ Calculus and Analysis 79.6 10.4 10.0 66.2
= Number Theory 26.9 40.3 32.8 26.9
@ Combinatorics 333 453 21.3 30.7
E Geometry and Topology 20.0 52.9 27.1 15.3
Logic 72.7 27.3 0.0 54.5

= Game Theory 28.6 35.7 35.7 21.4
] Probability 40.0 37.9 22.1 32.1
E Operations Research 21.4 28.6 50.0 16.7
& Differential Equations 40.0 27.0 32.9 30.6
= Statistics 43.5 40.6 15.9 34.8
< Info and Signal 68.6 16.2 15.2 429
All | 533 274 19.3 40.7

Table 4: Level of reasoning for explanations in instances where GPT-4’s answers were correct, when the choices
were available. We report the percentage of explanations with complete, choice/weak, or no/wrong reasoning. We
also present the percentage of explanations that exhibited complete reasoning when choices were not provided.

of mathematical areas covered and fails to conclu-
sively determine whether these models genuinely
engage in reasoning or rely on alternate strategies
to find the answer.

Mathematical Benchmarks Previous research
primarily concentrated on developing benchmarks
for math word problems—mathematical problems
in the form of written description—which typically
require only a few steps to solve, often involving
basic arithmetic or elementary algebra (Ling et al.,
2017; Cobbe et al., 2021; Patel et al., 2021). Ad-
ditionally, the work in Mishra et al. (2022) intro-
duced a comprehensive mathematical reasoning
benchmark that encompasses 23 varied tasks across
four dimensions: mathematical abilities, language
format, language diversity, and external knowl-
edge. Furthermore, Zhang et al. (2023) presented
a multi-modal benchmark with a focus on geome-
try. The most relevant to our study are the MATH
(Hendrycks et al., 2021) and Theoremqga (Chen
et al., 2023) benchmarks. Despite providing math-
ematical questions on various topics, they have
a much narrower scope compared to our bench-
mark and did not provide a detailed topical break-
down for each question. Additionally, a recent
effort (Toshniwal et al., 2024) has begun to gener-
ate large-scale synthetic mathematical benchmarks
for instruction tuning of LLMs.

LLMs and Math In recent years, LLMs have
shown notable achievements in mathematical rea-
soning (Srivastava et al., 2022; Liu et al., 2023).
These accomplishments are supported by methods
aimed at enhancing LLMs’ performance, predomi-
nantly through decomposed reasoning. Such strate-

gies, inspired by human problem-solving processes,
include providing step-by-step guidance (Wei et al.,
2022; Yao et al., 2024; Besta et al., 2023), em-
ploying verification mechanisms to enhance model
consistency and accuracy (Weng et al., 2022), and
incorporating complex strategies (Qi et al., 2023).

6 Conclusion

In this paper, we provide a comprehensive evalua-
tion on mathematical reasoning of LLMs. We cre-
ate the Mathematical Topics Tree (MaTT) bench-
mark, a challenging and systematically organized
benchmark that presents a series of questions cov-
ering an extensive range of mathematical subjects,
each linked to a detailed hierarchical structure of
topics. Exploring LLMs accuracy on MaTT, we ob-
serve their struggle with a wide range of mathemat-
ical topics, particularly when deprived of multiple-
choice options. We also observe the discrepancy
in LLMs’ performance across various topics and
the lack of substantial improvement with Chain-
of-Thought prompting. To investigate the gaps in
models performances, we manually analysis their
explanations in answering the questions. We find
that in only 53.3% of the instances where GPT-4
provided a correct answer, the accompanying ex-
planations were deemed complete. Further, we
observe that models faring better on simpler prob-
lems and resorting to alternative strategies for more
complex questions. This indicates a fundamental
gap in LLMs’ ability to engage in deep, creative,
and complex mathematical thinking. We will make
all the code, annotations, and data associated with
the MaTT benchmark publicly available.



7 Limitations

This study presents several limitations that should
be considered when interpreting the findings.
Firstly, our evaluation of mathematical reasoning
capabilities was conducted on only three widely
adopted LLMs using the MATT benchmark. This
limited selection of models may not fully repre-
sent the diverse capabilities of LLMs. Including a
wider range of models in future assessments could
provide a more comprehensive understanding of
LLMs’ mathematical reasoning across various ar-
chitectures and training paradigms.

Secondly, our methodology for assessing mod-
els’ reasoning capabilities heavily relied on analyz-
ing their self-generated explanations. While this ap-
proach allows us to gauge how models rationalize
their answers, it inherently carries potential biases
and inaccuracies. The explanations provided by
LLMs might not always accurately reflect the un-
derlying reasoning processes and could sometimes
be misleading or incomplete. More objective or
diverse methods of evaluation might be necessary
to gain a clearer and more accurate picture of how
LLMs process and solve mathematical problems.
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A Details of Prompts

Example prompts utilized for multiple-choice ques-
tion answering without and with CoT is provided in
prompts A.1 and A.2, respectively. Moreover, the
example prompt for answering questions without
choices is provided in the prompt A.3.

Example Prompt with Choices

Choose the answer to the question only from A,
B, C, and D choices, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.

Choices: A) 4 B) 5 C) 6 D) None of them.

The output should be in the following format:
Explanation: <explanation>

Answer:

\

\

Example Prompt with Choices and CoT

Choose the answer to the question only from A,

B, C, and D choices, and express your reason.

Question: Find the smallest n that makes the

following statement correct: The vertices of

any planar graph can be properly colored with

n colors.

Choices: A) 4 B) 5 C) 6 D) None of them.

The output should be in the following format:

Explanation: <explanation>

Answer:
Let’s think step by step.

\




Example Prompt without Choices

Answer to the question, and express your reason.
Question: Find the smallest n that makes the
following statement correct: The vertices of
any planar graph can be properly colored with
n colors.
The output should be in the following format:
Explanation: <explanation>

LAnswer: ==

B Further Analysis on Explanations

To better understand the influence of choices and to
distinguish between instances where the model gen-
uinely engages in reasoning, we provided further
analysis in GPT-4 generated explanations. We aim
to identify the number of samples in which GPT-4
with choices gave a complete explanation, GPT-4
without choices provided a complete explanation,
and both scenarios resulted in complete explana-
tions (over all the questions in MaTT). The findings
are presented in Table 5. The result indicates that
in most topics, samples that had complete explana-
tions even without the availability of choices also
had complete explanations when GPT-4 was pro-
vided with choices. Furthermore, in some topics,
there is a meaningful difference in the percentage
of complete explanations between scenarios with
and without choices, emphasizing that the presence
of choices can aid models in better engaging with
or recalling the reasoning process.
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Topics \ both Complete No Choice Complete  With Choice Complete

Algebra 28.3 36.7 58.3

§ Calculus and Analysis 30.8 44.7 41.4
= Number Theory 4.8 16.7 14.3
® Combinatorics 6.5 20.1 18.0
'._E Geometry and Topology 2.5 10.1 10.7
Logic 229 429 45.8

= Game Theory 8.6 114 11.4
= Probability 134 19.9 20.3
E Operations Research 4.8 10.6 8.7
& Differential Equations 13.4 22.3 21.7
= Statistics 19.3 24.8 27.5
< Info and Signal 249 27.1 39.8
All | 18.0 274 28.9

Table 5: Comparison on the completeness of explanations from GPT-4 when choices were provided versus when no
choices were given (this is over all the samples in MaTT).
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