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Abstract
Due to the challenges of processing temporal in-
formation, most trackers depend solely on visual
discriminability and overlook the unique tempo-
ral coherence of video data. In this paper, we
propose a lightweight and plug-and-play motion
prompt tracking method. It can be easily inte-
grated into existing vision-based trackers to build
a joint tracking framework leveraging both motion
and vision cues, thereby achieving robust track-
ing through efficient prompt learning. A motion
encoder with three different positional encodings
is proposed to encode the long-term motion tra-
jectory into the visual embedding space, while
a fusion decoder and an adaptive weight mech-
anism are designed to dynamically fuse visual
and motion features. We integrate our motion
module into three different trackers with five mod-
els in total. Experiments on seven challenging
tracking benchmarks demonstrate that the pro-
posed motion module significantly improves the
robustness of vision-based trackers, with mini-
mal training costs and negligible speed sacrifice.
Code is available at https://github.com/
zj5559/Motion-Prompt-Tracking.

1. Introduction
Given a sequence and an arbitrary object with interest, visual
object tracking (VOT) aims to locate this specified object
in each subsequent frame. As one of the fundamental com-
puter vision tasks, VOT has been developed rapidly over
the past decade. Mainstream trackers (Li et al., 2019; Bhat
et al., 2019; Zhao et al., 2022b; Chen et al., 2023) perceive
VOT as a visual matching problem between a pair of dis-
crete image patches, including a template and a local search
image cropped from the initial and current frames, respec-
tively. These vision-based tracking frameworks mainly rely
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Figure 1. Illustration of different tracking paradigms. Our plug-
and-play method enables visual trackers to benefit from motion
prompts, making them more akin to the human tracking paradigm.

on the discriminative ability of visual models but overlook
the crucial temporal coherence in videos. The temporal
consistency of these trackers can be only reflected in deter-
mining the next local search region by the predicted target
position. As shown in Fig. 1(a), due to inherent limita-
tions of appearance cues, these vision-based trackers are
prone to tracking drift when confronted with complex chal-
lenges, like distractors, severe occlusion, and so on. Unlike
relying solely on visual information, the human tracking
paradigm (Ramachandran, 1985; Sokhandan & Monadjemi,
2024) seamlessly integrates both vision and motion cues.
As shown in Fig. 1(b), humans can effortlessly identify the
specified target among multiple visually similar objects by
discerning its motion patterns from trajectories.

However, due to the blend of object and camera movement,
the irregularity in observed motion patterns makes it chal-
lenging to incorporate temporal coherence into tracking
frameworks. Recent state-of-the-art (SOTA) trackers (Wei
et al., 2023; Bai et al., 2024; Zheng et al., 2024) start ex-
ploring effective temporal mechanisms to enhance track-
ing accuracy, but sequential training (Kim et al., 2022) is
required for these methods, which considerably increases
computational and memory demands. Beyond the substan-
tial training costs, constrained computing resources will also
limit the ability of these models to perceive long temporal
information. In this paper, we post a question: Is heavy se-
quential training necessary for trackers to capture temporal
relations? We answer this question by proposing a training-
efficient Motion Prompt-based Tracking module (MPT),
which demonstrates that sequential training is unnecessary
for temporal-related tracking.
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Specifically, our MPT module can be flexibly integrated into
existing vision-based trackers to achieve joint tracking based
on both visual and motion cues. Within a lightweight frame-
level fine-tuning, our method can enhance various base-
line trackers to achieve comparable performance to those
sequential-based SOTA methods. As shown in Fig. 1(c),
our joint tracking framework contains a fixed vision-based
tracker and several additionally proposed motion modules.
The prompt encoder (the orange block) independently en-
codes historical trajectories into the visual embedding space
by three different positional encodings. A fusion decoder
(the green block) is then employed to dynamically fuse vi-
sual and motion features by a Transformer network and
an adaptive weighting mechanism. Furthermore, we adopt
prompt learning to integrate our motion modules into vision-
based SOTA trackers more efficiently and flexibly. We
develop our MPT as a plug-and-play prompt module, aim-
ing to learn the ability for dynamic adaptation to baseline
visual trackers. All parameters of the baseline are fixed
during training, enabling our method to have fast training
with minimal memory requirements. By integrating mo-
tion prompts from object trajectories, our MPT can sustain
robust tracking under challenging scenarios, reflecting a
tracking paradigm more akin to human-like behavior.

Our main contributions can be summarized as follows:

• We propose a plug-and-play motion prompt tracking
module (MPT), which can be flexibly integrated into
various tracking models to capture and utilize temporal
coherence from historical trajectories.

• Efficient prompt learning is employed to fine-tune our
method, which unbinds the necessity of heavy sequen-
tial training for temporal learning, thereby releasing
huge requirements of training resources.

• We integrate our MPT into three visual trackers across
five models. Experiments on seven benchmarks demon-
strate that our MPT enhances the robustness of existing
vision-based trackers in challenging scenarios, within
minimal training costs and negligible speed sacrifice.

2. Related Work
In this section, we review mainstream visual trackers,
temporal-related trackers, and prompt learning, respectively.

Visual Tracking. Existing trackers commonly adopt a vi-
sual matching strategy to model the tracking task. Most
earlier trackers (Bertinetto et al., 2016; Dai et al., 2019; Li
et al., 2019) employ correlation operations to compute the
similarity map between visual features of the template and
search region. TransT (Chen et al., 2021) and subsequent
Transformer-based works (Ye et al., 2022; Lin et al., 2022;
Chen et al., 2023) employ Transformer networks (Vaswani

et al., 2017; Dosovitskiy et al., 2021) to obtain the fused
features of the template and search region, which is then
used to make the final prediction. Due to global correlation
and deep fusion, these trackers lead to improved accuracy
compared to similarity-based methods. Despite achieving
superior performance on existing benchmarks, such solely
vision-based matching strategies encounter difficulties in
complex visual environments. To alleviate this bottleneck,
our work proposes a general tracking module based on mo-
tion prompts. By incorporating temporal motion cues into
these vision-based trackers, we enrich the information avail-
able to the head network for predictions, thereby signif-
icantly improving the tracking robustness in challenging
scenarios.

Temporal-related Tracking. Beyond visual information,
some works have investigated the significance of temporal
information for robust tracking. Some traditional track-
ers (Weng et al., 2006; Zhang et al., 2014) primarily utilize
kalman filtering to predict the next motion step of the target.
However, they assume that the target undergoes regular mo-
tion patterns, which usually do not align with the complex
tracking scenarios. The lack of deep visual representations
also leads to a substantial lag in their performance.

In the era of deep learning, some methods (Bhat et al., 2019;
Zhao et al., 2022a; Yan et al., 2021; Cui et al., 2022; Liu
et al., 2024) employ update mechanisms for models or tem-
plates to capture the temporal changes of visual information,
these methods primarily depend on richer appearance infor-
mation to enhance tracking. TCTrack++ (Cao et al., 2023)
and ODTrack (Zheng et al., 2024) employ heavy temporal
mechanisms, which implicitly integrate temporal informa-
tion via propagating consecutive visual features. Different
from them, our lightweight module directly encodes and
integrates motion trajectories into the visual tracking frame-
work, offering a fresh perspective. Our experiments with the
template update tracker SeqTrack (Chen et al., 2023) also
demonstrate that benefits derived from motion and updates
are complementary rather than conflicting.

Recently, Alireza et al. (Sokhandan & Monadjemi, 2024)
adopt optical flows to represent motion vectors, which raises
computational burdens. SLT (Kim et al., 2022) proposes
a sequential training method, incorporating motion cues
into training by locating short video clips. But it still fol-
lows vision-based tracking in inference. Implicitly learning
temporal correlations among consecutive frames is also a
complex and computationally intensive task. ARTrack (Wei
et al., 2023) and its extension (Bai et al., 2024) share a simi-
lar motivation with ours, integrating temporal information
into tracking by individually encoding the motion trajectory.
However, its motion encoding is tailored for autoregres-
sive models, which limits its applicability to other tracking
frameworks. Autoregressive model and sequential train-
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Figure 2. Pipeline of our motion prompt-based tracking method. The historical trajectory is first embedded into the visual embedding
space by our motion encoder, and then fused with the visual embedding using the proposed fusion decoder. An adaptive weight mechanism
is employed to further dynamically adjust vision and motion cues. Ultimately, the obtained fused embedding is used to make a robust
tracking prediction by the tracking head HeadTr.

ing also increase memory and computational costs. Lim-
ited hardware memory will further restrict the model from
perceiving long trajectories. In comparison, our method
employs a low-cost prompt learning approach to leverage
longer motion trajectories for guiding existing trackers, of-
fering greater flexibility and versatility.

Prompt Learning. Prompt learning is an emerging machine
learning paradigm, garnering particular attention in the field
of natural language processing (Liu et al., 2023b). Its core
idea involves interacting with the model via task-related
prompts rather than directly adjusting model parameters. In
computer vision and multi-modal domains, prompt learning
proves to be more efficient and flexible than traditional fine-
tuning methods. It shows success in various tasks, including
visual recognition (Jia et al., 2022), vision-language under-
standing (Liu et al., 2023a), dense prediction (Chen et al.,
2022b), and video understanding (Ju et al., 2022).

In the field of visual tracking, in addition to the aforemen-
tioned ARTrack and its extension, which adopt trajectories
as prompts by employing sequential training and autoregres-
sive models, ProTrack (Yang et al., 2022) and ViPT (Zhu
et al., 2023) utilize prompt learning to achieve superior per-
formance for multi-modal tracking, yet they do not exploit
the potential of prompt learning in general visual track-
ing. PromptVT (Zhang et al., 2024) can be treated as an
appearance-based prompt method. It efficiently enhances
appearance features using dynamic appearance informa-
tion, thereby enabling the model to be robust to appearance
changes during tracking. However, the tracking problem is

still treated as a discrete image processing task. In contrast,
our MPT leverages the temporal consistency of videos by
incorporating continuous object trajectories into the visual
tracking framework, offering a new perspective on employ-
ing prompt learning in the tracking field. Our method proves
to be more effective in addressing visually challenging sce-
narios, such as occlusions and distractors.

3. Method
3.1. Revisit of Vision-based Tracking Framework

Mainstream trackers formulate the tracking problem as

Bt = HeadTr(φv(Z,X
t)). (1)

A visual encoder φv(·) is commonly employed to embed
both the template image Z and the search image Xt, pro-
ducing the discriminative visual representations, like sim-
ilarity maps (Li et al., 2019; Bhat et al., 2019) or fused
features (Cui et al., 2022; Chen et al., 2022a) of image pairs.
The final tracking result Bt for the t-th frame is predicted
by a tracking head module, HeadTr. Some trackers (Ye
et al., 2022; Yan et al., 2021) employ a lightweight head to
directly predict coordinates, whereas other methods (Chen
et al., 2023; Wei et al., 2023) implement the head module
as a heavy decoder to tackle the sequential coordinate pre-
diction problem. For these vision-based tracking methods,
a powerful visual encoder φv is necessary to achieve robust
tracking. However, good visual models need to achieve in-
variant representations to appearance changes for the same
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object, while maintaining distinctive for distractors. Ac-
quiring such balanced discriminative visual representations
poses a challenging learning task for visual models. In addi-
tion, when faced with occlusion, illumination changes, or
distractors, visual information often turns out to be unreli-
able, leading to tracking drift in these vision-based trackers.

In this paper, we propose a motion prompt-based tracking
method, which can integrate motion cues into vision-based
baseline trackers by prompt learning. This joint tracking
framework incorporating both motion and vision cues can
adaptively extract complementary features, thereby enhanc-
ing the robustness of tracking predictions, particularly in the
face of complex challenges.

3.2. Overview of Motion Prompt Tracking

Our tracking method with motion prompts is formulated as

Bt = HeadTr(Df (φv(Z,X
t),φm(Bt−T :t−1))). (2)

In addition to the visual encoder φv(·), we employ a motion
encoder φm(·) to embed the historical trajectory Bt−T :t−1

into the latent embedding space consistent with visual fea-
tures. The trajectory is denoted as consecutive bounding
boxes of the target from previous T frames. A decoder
Df (·) is then utilized to fuse motion and visual features,
and the resulting fused representation will be forwarded to
the downstream head to generate robust tracking predictions.

As shown in Fig. 2, the two input flows, including the visual
input and the object motion trajectory, are processed sep-
arately through the baseline visual model and our motion
encoder to extract corresponding features. Through calcula-
tions of several self-attention and cross-attention modules,
features from the two branches are complementarily fused.
An adaptive weight mechanism is additionally utilized to
establish a dynamic residual connection between visual fea-
tures and the output of the fusion decoder, thereby achieving
stable fused embeddings. By integrating complementary
motion prompts, the proposed motion modules empower
the vision-based baseline tracker to achieve enhanced per-
formance, especially under challenging scenes.

3.3. Model Architecture

Our motion prompt tracking method mainly consists of three
modules, i.e., a motion encoder, a fusion decoder, and an
adaptive weight mechanism. Detailed architectures of each
module are described as follows.

Motion Encoder. Given consecutive object bounding boxes
of previous T frames, our motion encoder embeds these
sequential coordinates into multiple motion tokens aligned
with the visual embedding space. The following three types
of positional encodings (PE) are utilized to characterize
each token across both spatial and temporal dimensions.

(1) Spatial positional encoding. Inspired by SAM (Kirillov
et al., 2023), we represent each bounding box using the
normalized coordinates of two corner points, namely, the
top-left and bottom-right points. A Gaussian-based spatial
PE (Tancik et al., 2020) is adopted to map 2-dimensional
point coordinates into C-dimensional spatial vectors, align-
ing the motion embedding with the visual embedding in
terms of dimensions.

(2) Point embedding. After being mapped by the spatial
PE, the trajectory of T frames is transformed to a group
of motion tokens ∈ R2T×C . To distinguish between the
two corner point types for each token, we introduce two
learnable point embeddings and add them to their respective
motion tokens. This enables the model to perceive the point
type of each motion token.

(3) Temporal positional encoding. To establish temporal
orders for motion tokens, we incorporate a learnable tempo-
ral PE into each token. Tokens from the same frame share
identical temporal PE. Since the motion information closer
to the current frame is typically more crucial in a long-term
trajectory, we initialize this temporal PE in a non-linear
manner, formulated as follows:

PE(t, 2i) = sin

(
α lg(t+ 1)

n2i/d

)
,

PE(t, 2i+ 1) = cos

(
α lg(t+ 1)

n2i/d

)
.

(3)

Here, i, d denotes the dimension variable and the total di-
mension, t ∈ [0, T − 1] represents the temporal position
of the point in the trajectory. A larger t corresponds to
a closer position to the current frame. The constant n is
set to 104, and α is a parameter employed to control the
frequency range. To maximize spatial resolution without
causing aliasing, we set α = 7.23 according to the Nyquist
frequency (Nyquist, 1928). Both theoretical proof and ex-
perimental analysis can be found in Appendix A.

In addition to the 2T motion tokens, we also introduce three
learnable representative (Rep.) tokens. Among them, RTtl

and RTbr are employed to summarize motion information
from all top-left and bottom-right trajectory points, respec-
tively. RTw represents the confidence of the motion prompt.
We set two sub-tasks to guide the learning of three Rep.
tokens, namely, bounding box regression and weight re-
gression. These sub-tasks encourage our model to develop
the ability to extract crucial motion prompts and predict
dynamic weights. As the output of the motion encoder, we
concatenate 2T motion tokens and the three Rep. tokens to
represent the extracted motion feature.

Fusion Decoder. As shown in Fig. 2, we propose a
lightweight fusion decoder to fuse the visual feature fv ∈
Rb×HW×C and motion feature fm ∈ Rb×(2T+3)×C , where
b denotes the batch size, and H,W represent resolutions of
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the visual feature. The proposed fusion decoder consists
of N Transformer-based blocks, each including a motion
self-attention module, two cross-attention modules with dif-
ferent directions, and a multi-layer perception (MLP) layer.
Specifically, the self-attention module first explores crucial
motion information from motion features themselves. The
first cross-attention module then fuses visual cues into mo-
tion features, in which motion features fm are set as queries
(q). After the update by an MLP, we take the three Rep. to-
kens as keys (k) and values (v) for the second cross-attention
module, and update the visual feature fv (as queries) with
representative motion prompts. For each cross-attention
module, we incorporate a dense spatial map as positional en-
coding onto visual features. This ensures a correspondence
between visual and motion features in spatial coordinates.
Regarding temporal positions, we also apply the temporal
PE to motion features in the first cross-attention module.

Adaptive Weight Mechanism. Considering the instability
of motion trajectories, we calculate the weighted average
of the fused feature and original visual feature using an
adaptive weight mechanism. A weight head HeadW is em-
ployed to dynamically predict the weight WM according to
the output RTw from MLP. To explicitly guide the learning
of WM, we additionally introduce a motion head HeadM to
predict the current bounding box BM according to RTtl and
RTbr. We calculate the Intersection-over-Union (IoU) of
the groundtruth and BM, and use it to explicitly supervise
the learning for WM.

3.4. Training and Inference

Training. We adopt prompt learning to achieve efficient
training. All parameters in the baseline tracker are fixed, and
only our MPT modules are fine-tuned, including the motion
encoder, fusion decoder, learnable embeddings, HeadW,
and HeadM. The backpropagation process is illustrated as
dashed red arrows in Fig. 2, The loss function for our MPT
comprises the following three terms:

• Baseline tracking loss. We follow the same tracking
loss as baseline trackers, namely LTr(B,GTt), where
B denotes the output of HeadTr, and GTt represents
the groundtruth of the object bounding box.

• Motion regression loss. To enable Rep. tokens RTtl

and RTbr to extract essential motion patterns, we set a
bounding box regression task on HeadM. The general-
ized IoU loss (Rezatofighi et al., 2019) and ℓ1 loss are
employed to supervise this sub-task, formulated as

LM = λIoULIoU + λℓ1L1, (4)

where λIoU = 2 and λℓ1 = 5 in our experiments.

• Adaptive weight loss. In our assumption, a lower qual-
ity of the motion tracking prediction BM typically im-

plies less confidence in motion prompts. We thereby
adopt the IoU between BM and GTt as the label of
the predicted weight WM, and calculate MSE loss to
achieve explicit supervision. The adaptive weight loss
is formulated as

LW = LMSE(WM , IoU(BM,GTt)). (5)

The overall loss function of our MPT involves the above
three terms, represented as

L = LTr + λM(LM + LW), (6)

where λM = 1 in our experiments.

Inference. During the inference, predicted bounding boxes
of previous T frames are first aligned and normalized based
on the coordinate system of the current search region. Nor-
malized trajectory is sent together with the image pair into
our motion prompt-based tracking model for tracking pre-
diction. As HeadM primarily serves to facilitate the more
effective training for our motion modules, this network is
disregarded during inference to save computational costs.

4. Experiment
To demonstrate the effectiveness and training efficiency
of our MPT, we integrate our MPT into two different vi-
sual trackers, i.e., a one-stream tracker OSTrack1, and an
autoregressive-based tracker SeqTrack. We also apply our
MPT to ARTrack to show that our MPT can further comple-
ment temporal-related trackers rather than conflicting. We
select a total of five baseline models with different back-
bones and resolutions. To distinguish them, base / large
backbones are represented as “B / L”, while the follow-
ing numbers represent image resolutions. We compare our
methods with their baselines and other SOTA trackers on
seven challenging tracking benchmarks. Experimental re-
sults demonstrate that our MPT can be seamlessly integrated
into various trackers, enhancing their tracking robustness
with fast and memory-efficient training.

4.1. Implementation Details

Our methods are implemented in Python with PyTorch.
Models are trained on 2 NVIDIA A100 GPUs, and tested
on a single NVIDIA RTX2080Ti GPU.

Model. The length of the historical trajectory T is set to 30
based on experimental results. Each 2-dimensional coordi-
nate is encoded into a motion token with the same dimension
as baseline visual features. The lightweight fusion decoder
is implemented as a two-layer Transformer network. The
weight head HeadW and motion head HeadM are imple-
mented by a two-layer MLP, where the hidden size is 256.

1The official model without the candidate elimination module.
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Table 1. Performance comparison on three VOT datasets. The
best results are highlighted with bold.

Method VOT2018 VOT2020 VOT2022 (STB)
EAO (↑) R (↓) EAO (↑) R (↑) EAO (↑) R (↑)

MixFormer-22k 0.228 1.836 0.317 0.824 0.533 0.844
ROMTrack-B256 0.357 1.010 0.318 0.815 0.554 0.825
OSTrack-B256 0.287 1.204 0.311 0.803 0.530 0.823
+MPT (Ours) 0.406 0.473 0.334 0.846 0.572 0.859
SeqTrack-B256 0.339 1.067 0.316 0.806 0.523 0.815
+MPT (Ours) 0.428 0.471 0.315 0.810 0.528 0.825
ARTrack-B256 0.399 0.599 0.315 0.809 0.532 0.818
+MPT (Ours) 0.469 0.491 0.336 0.828 0.566 0.842

MixFormer-L 0.238 1.596 0.325 0.825 0.549 0.843
ROMTrack-B384 0.297 1.231 0.309 0.794 0.540 0.812
ARTrack-L384 0.391 0.520 0.336 0.834 0.570 0.852
OSTrack-B384 0.271 1.408 0.288 0.767 0.518 0.796
+MPT (Ours) 0.363 0.679 0.314 0.819 0.548 0.826
SeqTrack-L384 0.319 1.117 0.337 0.859 0.568 0.869
+MPT (Ours) 0.461 0.414 0.341 0.870 0.579 0.882

Average gain +10.2% +57.3% +1.5% +2.6% +2.4% +2.3%

Training. We adopt prompt learning to efficiently train
our MPT, where the baseline model is frozen. We se-
lect the training splits of LaSOT (Fan et al., 2019), GOT-
10K (Huang et al., 2019)2, and TrackingNet (Muller et al.,
2018) as the training data. For the motion input, we adopt
DiMP-18 (Bhat et al., 2019) to generate real tracking pre-
dictions for each of training sequences, and employ reverse
sampling, sparse sampling and CutMix (Yun et al., 2019)
for data augmentations. More implementation details can be
found in Appendix B, and extended experimental analysis
in terms of data augmentations and trajectory length can be
found in Appendix C.

4.2. State-of-the-Art Comparison

We compare our methods with baselines and other SOTA
trackers on the following seven tracking benchmarks.

VOT. The committee of VOT challenge proposes a series
of challenging tracking benchmarks. Trackers are evaluated
primarily by the expected average overlap (EAO), which
is a principled combination in terms of tracking accuracy
and robustness (R). As shown in Tab. 1, we compare our
methods with several SOTA trackers on three representative
VOT datasets, including VOT2018 (Kristan et al., 2018),
VOT2020 (Kristan et al., 2020), and VOT2022 (Kristan
et al., 2022). For a fair comparison, all of the presented
trackers are run with their official models and settings, and
evaluated based on bounding box outputs. Compared with
SOTA methods, trackers integrating our MPT exhibit supe-
rior performance on these challenging sequences, especially
in terms of robustness. Our MPT significantly enhances
the performance of the five baseline models, averaging an
improvement of 2.0% EAO across VOT2020 and VOT2022,

2Following the VOT protocol, 1k sequences are removed.

and 10.2% EAO on VOT2018.

LaSOT and LaSOTEXT. LaSOT (Fan et al., 2019) con-
tains 280 long-term sequences with 70 different categories,
while its extension LaSOTEXT (Fan et al., 2021), consists
of 150 extremely challenging sequences with 15 unseen
categories. The success rate (AUC), normalized precision
(Pnorm), and precision (Pre) are adopted to evaluate track-
ers. As reported in Tab. 2, our MPT increases baseline
trackers by an average 1.6% AUC on LaSOTEXT. Fur-
thermore, our training-efficient method (+MPT) enhances
SeqTrack-L384 to achieve an AUC of 73.9% on LaSOT,
which is competitive with sequential-level training method
using multi-template strategy, ODTrack (Zheng et al., 2024).

TNL2K (Wang et al., 2021). TNL2K is a recently released
dataset with 700 challenging sequences. As shown in Tab. 2,
our MPT yields average 0.6% and 1.0% improvements in
terms of AUC and Pnorm, respectively.

TrackingNet (Muller et al., 2018). TrackingNet contains
511 sequences covering diverse categories and scenarios.
As presented in Tab. 2, our MPT brings baselines an average
performance improvement of around 0.4% on each metric.

Discussion. We find that the performance improvement of
our MPT is slightly biased across different datasets, with
more substantial gains on more challenging ones (like VOTs,
LaSOTEXT). To explore the underlying reasons, we divide
each of the three datasets (i.e., LaSOT, LaSOTEXT, and
TNL2K) into “hard / easy” subsets based on the performance
of each sequence, and analyze the performance changes of
MPT on each subset (shown as Tab. 7). As discussed in Ap-
pendix C, our MPT shows great consistency in hard / easy
sets, achieving average AUC changes of +4.4% / -0.8%,
with small standard deviations of 0.6 / 0.4 across five base-
lines. Therefore, we reach a consistent conclusion that the
advantage of our MPT is more evident in hard scenarios.
This is because our MPT primarily aims to reduce tracking
failures by motion cues, leading to a significant improve-
ment in tracking robustness rather than accuracy. This can
also be intuitively demonstrated by the performance gains
on the three VOT benchmarks (shown as Tab. 1).

In addition, compared with some trackers like ODTrack and
ARTrackV2, which adopt sequential-level training or multi-
template strategies to enhance their tracking performance,
our MPT requires less memory and computing resources
during training. As shown in Tab. 3, taking a sequential-
training tracker (ARTrack-B256) as a reference, the set-
ting of 8 batch sizes (BS) needs 50G GPU memory, within
more than 3 days of training. In contrast, our MPT adopts
lightweight architecture and efficient frame-level training,
introducing only 13M parameters (Params) and negligible
speed (FPS) degradation for baselines. For OSTrack with
128 BS, our MPT only needs 5 hours of fine-tuning using
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Table 2. Comparisons on four tracking benchmarks. Top two results (except for sequential-training methods ) are marked in bold and
underlined. For a fair comparison, we list the training strategy (Train) and template amounts (Temp.) of each tracker.

Method Train Temp. LaSOT LaSOTEXT TNL2K TrackingNet
AUC Pnorm Pre AUC Pnorm Pre AUC Pnorm Pre AUC Pnorm Pre

SiamRCNN (Voigtlaender et al., 2020) Frame 1 64.8 72.2 - - - - - - - 81.2 85.4 80.0
TransT (Chen et al., 2021) Frame 1 64.9 73.8 69.0 - - - 50.7 - 51.7 81.4 86.7 80.3

STARK-ST101 (Yan et al., 2021) Frame 2 67.1 77.0 - - - - - - - 82.0 86.9 -
ToMP-101 (Mayer et al., 2022) Frame 1 68.5 79.2 73.5 45.9 - - - - - 81.5 86.4 78.9

AiATrack (Gao et al., 2022) Frame 2 69.0 79.4 73.8 46.8 54.4 54.2 - - - 82.7 87.8 80.4
MixFormer-22k (Cui et al., 2022) Frame 2 69.2 68.7 74.7 - - - - - - 83.1 88.1 81.6

Sim-B16 (Chen et al., 2022a) Frame 1 69.3 78.5 - - - - 54.8 - 53.8 82.3 86.5 -
ROMTrack-B256 (Chen et al., 2022a) Frame 2 69.3 78.8 75.6 48.9 59.3 55.0 - - - 83.6 88.4 82.7
MixViT (ConvMAE) (Cui et al., 2024) Frame 2 70.4 80.4 76.7 - - - - - - 84.5 89.1 83.7

OSTrack-B256 (Ye et al., 2022) Frame 1 68.6 78.0 74.5 46.9 56.9 52.8 55.6 72.1 56.1 83.0 87.7 81.7
+MPT (Ours) Frame 1 68.9 78.6 74.8 48.7 59.1 55.2 55.8 72.7 56.5 83.6 88.4 82.4

SeqTrack-B256 (Chen et al., 2023) Frame 2 69.4 79.2 75.8 49.8 61.2 56.8 56.5 74.2 58.6 83.2 88.3 82.3
+MPT (Ours) Frame 2 70.1 80.4 76.7 50.8 62.4 58.0 57.8 75.9 60.3 83.6 88.8 82.6

ARTrack-B256 (Wei et al., 2023) Seq 1 70.4 79.5 76.6 48.4 57.7 53.7 57.9 74.0 59.6 84.2 88.7 83.5
+MPT (Ours) Frame 1 70.3 80.1 76.8 50.4 60.7 57.5 58.5 75.2 60.9 84.2 88.9 83.2

ARTrackV2-B256 (Bai et al., 2024) Seq 2 71.6 80.2 77.2 50.8 61.9 57.7 59.2 - - 84.9 89.3 84.5

MixFormer-L (Cui et al., 2022) Frame 2 70.1 79.9 76.3 - - - - - - 83.9 88.9 83.1
Sim-L14 (Chen et al., 2022a) Frame 1 70.5 79.7 - - - - 55.6 - 55.7 83.4 87.4 -

ROMTrack-B384 (Cai et al., 2023) Frame 2 71.4 81.4 78.2 51.3 62.4 58.6 - - - 84.1 89.0 83.7
MixViT-L (ConvMAE) (Cui et al., 2024) Frame 2 73.3 82.8 80.3 - - - - - - 86.1 90.3 86.0

OSTrack-B384 (Ye et al., 2022) Frame 1 71.0 80.9 77.3 50.9 61.6 57.7 57.5 74.2 58.6 83.8 88.4 83.1
+MPT (Ours) Frame 1 70.7 80.5 76.9 52.8 64.0 60.7 57.8 74.8 59.5 84.6 89.1 83.8

SeqTrack-L384 (Chen et al., 2023) Frame 2 72.5 81.4 79.2 50.4 61.2 57.2 59.6 76.6 63.5 85.6 90.0 85.9
+MPT (Ours) Frame 2 73.9 83.2 81.0 51.7 62.7 58.8 60.4 77.5 64.2 85.8 90.1 86.2

ARTrack-L384 (Wei et al., 2023) Seq 1 73.1 82.0 80.2 52.0 62.4 59.0 60.8 77.5 64.5 85.4 90.2 85.8
ODTrack-B384 (Zheng et al., 2024) Seq 3 73.2 83.2 80.6 52.4 63.9 60.1 60.9 - - 85.1 90.1 84.9
ARTrackV2-L384 (Bai et al., 2024) Seq 2 73.6 82.8 81.1 53.4 63.7 60.2 61.6 - - 86.1 90.4 86.2
ODTrack-L384 (Zheng et al., 2024) Seq 3 74.0 84.2 82.3 53.9 65.4 61.7 61.7 - - 86.1 91.0 86.7

Average gain - - +0.4% +0.8% +0.6% +1.6% +2.1% +2.4% +0.6% +1.0% +1.0% +0.4% +0.4% +0.3%

Table 3. Efficiency of training and inference. Two A100 GPUs
are used with 128 batch sizes (BS), except for ARTrack with 8
BS. Timetr and NT denote training time and frame numbers of
temporal information.

Tracker (BS) FLOPs Params FPS Mem Timetr NT

OSTrack (128) 31.2G 92M 94 35G 38h 1
+MPT (128) 35.9G 105M 86 6G 5h 30
ARTrack (8) 55.2G 202M 26 50G 26+53h 7
+MPT (128) 56.8G 215M 26 21G 12h 30

6G memory. It demonstrates that our MPT is training ef-
ficient, and offers incremental benefits to various trackers
with minimal training resources.

4.3. Ablation Study and Analysis

To deeply analyze our MPT, we conduct comprehensive
ablation studies on LaSOTEXT and VOT2022, choosing
OSTrack-B256+MPT as our baseline (denoted as Ours). We
present AUC and EAO for two benchmarks, respectively,
and also the averaged performance change (denoted as ∆).

Positional encoding. To explore impacts of the adopted

Table 4. Impact of positional encodings, including respective role
of each PE and comparisons of TPE variants.

① ② ③ ④ ⑤ ⑥ ⑦
Ours w/o SPE w/o TPE w/o P Initran Initlin Non-Learn

LaSOTEXT 48.7 44.8 47.5 48.1 45.9 47.4 47.4
VOT2022 0.572 0.556 0.547 0.573 0.567 0.561 0.552

∆ - -2.8% -1.9% -0.3% -1.7% -1.2% -1.7%

three positional encodings, we individually remove one type
of PE, shown as Tab. 4. In our motion encoder, the spatial
PE (SPE) is mainly used to encode each point coordinate
to the visual embedding space, facilitating the alignment
of motion and visual features in terms of spatial positions.
When we replace our SPE with a simple MLP (②), the track-
ing performance decreases by 2.8% on average. Besides,
our temporal PE (TPE) integrates temporal orders to mo-
tion tokens in a non-linear way, and the employed point
embeddings (P) identify the type of corner points for motion
tokens. Removing any of them (③ and ④) results in a certain
degree of performance decline. These results indicate that
each type of PE plays a crucial role in the performance of
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Table 5. Impact of different losses and components.
Ours LTr + LM LTr Motion Vision w/o Weight

LaSOTEXT 48.7 48.6 45.1 48.5 46.9 46.4
VOT2022 0.572 0.558 0.556 0.525 0.530 0.568

∆ - -0.8% -2.6% -2.5% -3.0% -1.4%

IoU$%&%'(
IoU)'*%'(
IoU)+,
Predicted weight

Frame

Frame

Cup-1

Lantern-4

Figure 3. Illustration of adaptive weights, and tracking perfor-
mance based on different cues.

our MPT, particularly SPE and TPE.

Furthermore, we adopt a non-linear initialization on a learn-
able embedding for our TPE (formulated as Eq. 3) to make
the model dynamically focus on the significant motion in-
formation. To explore the impact of different TPE initializa-
tions, we compare random (⑤) and linear (⑥) initializations
with our non-linear method(①). It shows that our non-linear
TPE initialization performs superior to others. Besides,
to investigate the efficacy of the learnable attribute in our
TPE, we also compare our method with a variant with non-
learnable TPE (⑦). Disabling the learning capability of TPE
results in a performance degradation of 1.7%.

Loss function. We formulate three loss terms for model op-
timization. In addition to the baseline tracking loss LTr, we
introduce the other two loss terms to enhance supervision.
Among them, the motion regression loss LM guides Rep.
tokens to extract essential motion patterns from the trajec-
tory. The adaptive weight loss LW is employed to explicitly
supervise the weight prediction, allowing the model to adap-
tively adjust its reliance on visual or motion cues. Results
reported in Tab. 5 demonstrate the significance of both LM

and LW. The combined utilization of all three losses (Ours)
boosts the model to achieve superior performance.

Adaptive weight mechanism. Results in Tab. 5 (right)
demonstrate the respective roles of visual and motion in-
puts, as well as the effectiveness of the proposed adaptive
weight mechanism. “Motion” represents the tracking results
directly predicted by the motion head HeadM, while “Vi-
sion” shows the results of the baseline vision-based tracker.
We also implement a variant of MPT without the adaptive
weight mechanism, denoted as “w/o Weight”. That is, in-
stead of calculating the weighted average with the original
visual features, we directly use the output of the fusion
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Figure 4. Success rate of among varying trajectory qualities.
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[Failure] IoUtraj

Failure IoUlast

Figure 5. IoU distributions of average trajectory and the last
frame in success and failure cases.

decoder for tracking predictions. As observed, our MPT,
compared to the tracker relying solely on visual information,
yields more robust tracking results by incorporating mo-
tion prompts. Additionally, the adaptive weight mechanism
contributes to our method achieving further improvements.

Besides, we visualize frame-level qualities of tracking re-
sults predicted by the aforementioned three variant models,
namely “Vision”, “Motion”, and our MPT. As shown in
Fig. 3, when encountering plenty of distractors, the predic-
tion of the vision model (blue curve) is notably unstable.
In contrast, our MPT (red curve) can exhibit superior and
robust performance. Furthermore, the values of our dynamic
weights (green curve) are consistent with the quality of mo-
tion predictions (orange curve). This demonstrates that our
adaptive weight mechanism can achieve a dynamic balance
between visual and motion cues.

Sensitivity to the trajectory quality. To further analyze
the sensitivity of our MPT to varying noisy trajectories, we
evaluate the success rate (IoU > 0.5) under different quality
trajectory inputs on LaSOTEXT, as shown in Fig. 4. Here,
[a,b) represents the range where the average IoU of the tra-
jectory is no less than a and less than b. We can find that the
success rate increases significantly with the improvement of
trajectory quality, especially when the trajectory IoU is in
the range of [0.6, 1.0). Besides, our method shows a certain
level of robustness to noisy trajectory inputs, obtaining a

8
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Table 6. Impact of fine-tuning strategies, in terms of tracking
performance and training efficiency.

OSTrack Ours FinetuneAll FinetuneHead

LaSOTEXT 46.9 48.7 48.3 48.1
VOT2022 0.530 0.572 0.567 0.548
Mem (G) 35.0 6.1 37.5 7.7
Timetr(h) 38 5 8 6

success rate of 21% even when the trajectory IoU is in the
range of [0.1, 0.2).

In addition, to deeply explore the success and failure cases
of our MPT, we separately evaluate the distribution of tra-
jectory IoU (IoUtraj) and tracking IoU of the last frame
(IoUlast), in both conditions on LaSOTEXT. Here, we de-
fine a success case when the predicted IoU of our MPT
exceeds that of the visual baseline by more than 0.3. Con-
versely, when the predicted IoU of our MPT is lower than
that of the visual baseline by more than 0.3, we define it as a
failure case. As shown in Fig. 5, in success cases, the input
trajectory IoU primarily falls within a relatively broader
range of [0.6, 1.0), especially in [0.8, 0.9). In failure cases,
the input trajectory IoU mainly falls within the range of [0.0,
0.2), particularly in [0.0, 0.1). This indicates that addressing
misleading tracking issues caused by extremely poor-quality
trajectories remains a challenge for our method. This is a
limitation of our method that requires future research.

Fine-tuning strategies. Our method freezes all of the base-
line parameters, and only fine-tunes parameters of MPT
during training. We also evaluate two variants, shown in
Tab. 6. FinetuneAll fine-tunes both MPT and baseline pa-
rameters, while FinetuneHead fine-tunes parameters of MPT
and the tracking head of the baseline, i.e., only freezing the
backbone of the baseline model. Our method slightly outper-
forms the other two variants, and is more efficient in terms
of memory footprint and training time. The potential reason
is that freezing the baseline parameters enables the model
to focus on learning motion cues and the fusion mechanism.

Visualization of cross-attention maps. For a more straight-
forward understanding of how our MPT fuses visual and
motion features, we visualize the cross-attention maps (av-
eraged over heads) of the last decoder block, shown as
Fig. 6. Among them, “Attntl” and “Attnbr” represent
cross-attention maps between visual features and two rep-
resentative motion tokens (RTtl and RTtl), respectively. In
addition, we also visualize the score maps predicted by the
vision-based baseline tracker (ScoreMapV), and our MPT
model (ScoreMapMPT). We find that it is difficult to dis-
tinguish distractors based on a solely visual model. Due to
the complement of motion prompts, our MPT pays more
attention to the top-left and bottom-right corner points of
the interested target. This enables the model to weaken the

Reference ScoreMapMPTScoreMapV Attntl Attnbr
# 0001

# 0033# 0001 # 0142

# 0001 # 0040

# 0570# 0450

# 0123

ScoreMapMPTScoreMapV Attntl Attnbr

Figure 6. Visualization of cross-attention maps, and discrimi-
native comparison of score maps.

response to distractors, thereby achieving robust tracking.

Due to space limitations, more visualizations can be found
in Appendix E, including the optimizing process during
training (Fig. 11), qualitative comparisons (Fig. 13), and
some failure cases (Fig. 12).

Limitations. Although our MPT excels in training effi-
ciency and tracking robustness, its tracking accuracy is
slightly inferior to those sequential training methods. We
will further explore effective methods to capture dynamic
relations in efficient prompting. In addition, as shown in
Fig. 5, addressing misleading tracking issues caused by ex-
tremely poor-quality trajectories remains a challenge for our
method. which requires future research.

5. Conclusion
In this paper, we present a flexible and efficient motion
prompt tracking method. It can complement existing vision-
based trackers by learning motion prompts, thereby main-
taining robust tracking in challenging scenarios. Our method
includes a motion encoder with three different positional en-
codings, a Transformer-based fusion decoder, and an adap-
tive weight mechanism. Motion trajectories of the object are
independently encoded and then adaptively fused with vi-
sual features. We integrate our method into five visual track-
ing models. Experiments on seven datasets show that our
method efficiently enhances tracking performance within
minimal computational costs and memory usage. We hope
that our new insights into temporal tracking and prompt
tracking will leverage future research on these topics.
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Appendix
This appendix contains proof of non-linear temporal positional encoding in Section A, additional implementation details in
Section B, extended ablation studies in Section C, in-depth performance analysis in Section D, and more visualizations in
Section E.

A. Proof of Non-Linear Temporal Positional Encoding
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Figure 7. Impacts of different parameter α on VOT2022.

To allow our model to perceive temporal orders of motion tokens, we adopt a learnable temporal positional encoding and
initialize it in the following non-linear manner:

PE(t, 2i) = sin

(
α lg(t+ 1)

n2i/d

)
,

PE(t, 2i+ 1) = cos

(
α lg(t+ 1)

n2i/d

)
.

(7)

The parameter α is employed to control the frequency range, and set to 7.23 based on the Nyquist frequency (Nyquist, 1928).
The proof of this setting is presented as follows.

According to the theory of Nyquist frequency, a signal should be sampled at a rate at least twice its highest frequency to
avoid aliasing. Due to the logarithmic mapping of the time parameter t, the frequency ω of Eq. 7 changes in a non-linear
way and needs to be determined using the derivative (note that lg(t+ 1) = ln(t+ 1)/ ln(10)):

ω(t, i) =
∂tPE(t, 2i)

PE(t, 2i+ 1)
=

α

ln(10)(t+ 1)n2i/d
. (8)

Its maximum is attained at (t, i) = (0, 0). From ω(0, 0) = π, we obtain α = π ln(10) ≈ 7.23.

Moreover, we also verify its experimental effectiveness by comparing it with other parameter values. As shown in Fig. 7,
results on VOT2022 (Kristan et al., 2022) show that the best performance is attained at α = 7.23. Other parameter values
cause slight performance decays, but they are still superior to the baseline tracker (marked as the horizontal dashed line).

B. Implementation Details
Model. For our motion encoder, we encode each 2-dimensional coordinate into a motion token with the same dimension
as the baseline visual features, which are 768 and 256 for OSTrack-B / ARTrack-B, and SeqTrack-B, respectively. The
lightweight fusion decoder is implemented as a two-layer Transformer network. For each layer, the number of attention
heads is 8, and the hidden size of MLP is set to 1024 and 256 for OSTrack / ARTrack and SeqTrack, respectively. The
weight head HeadW and motion head HeadM are both implemented by a two-layer MLP, where the hidden size is 256.

Training. The model is trained for 60 epochs with 60k image pairs per epoch. We set the batch size to 128, and the learning
rate is decreased by a factor of 10 after 40 epochs. The initial learning rate and other training settings are set the same as
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Figure 8. Impacts of data augmentations on VOT2022.

corresponding baseline trackers. For the motion input, we sparsely sample a T -frames trajectory either before or after the
current search frame. In a trajectory, we employ equally spaced sparse sampling to preserve the original motion pattern of
the target. Such an offline trajectory generation strategy not only simplifies and accelerates the training process, but also
allows the model to confront real tracking noises and learn to adapt to motion trajectories with varying qualities. In addition,
we adopt CutMix strategy (Yun et al., 2019) on search images to simulate challenges like background clutter. Specifically,
we crop the object area from another frame, and paste it on a random position of the search image. This data augmentation
offers more chances for our model to learn how to effectively fuse and utilize extra motion information. The following
Section will analyze the impacts of the adopted data augmentations.
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Figure 9. Impact of the trajectory length. Our MPT obtains the best performance when the length of trajectories T = 30.

C. Extended Ablation Study
C.1. Analysis of Data Augmentations

Fig. 8 illustrates the individual impacts of CutMix and sparse sampling. For the CutMix, training our method without
using CutMix strategy (i.e.probability is set to 0) obtains slightly inferior performance than the baseline visual tracker. The
potential reason is that most original training samples are easy for the baseline visual model, limiting chances for our motion
model to learn the ability to complement and optimize tracking predictions. CutMix, however, can simulate hard scenes by
introducing distractors and slight occlusion, which mitigates this training issue. Fig. 8(a) shows that the best performance of
our model is attained when the probability of CutMix is set to 0.5. Therefore, we set the probability of 0.5 as the default in
our experiments.
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Table 7. Quantitative analysis of performance bias

LaSOT LaSOTEXT TNL2K ALL
Num Gain Num Gain Num Gain Num Gain

OSTrack-B256 ① 50 +4.8 80 +4.8 284 +2.3 414 +4.0
② 230 -0.7 70 -1.6 416 -1.4 716 -1.2

OSTrack-B384 ① 40 +5.6 71 +4.5 252 +2.1 363 +4.1
② 240 -1.3 79 -0.5 448 -0.7 767 -0.8

SeqTrack-B256 ① 44 +5.5 70 +2.8 271 +3.8 385 +4.0
② 236 -0.2 80 -0.4 429 -0.4 745 -0.3

SeqTrack-L384 ① 38 +9.3 76 +4.4 234 +2.8 348 +5.5
② 242 +0.2 74 -1.8 466 -0.3 782 -0.6

ARTrack-B256 ① 43 +5.9 78 +4.8 255 +3.2 376 +4.6
② 237 -1.9 72 -0.9 445 -0.8 754 -1.2

For sparse sampling, increasing the range of sparseness for trajectory sampling enables the model to learn from more diverse
motion inputs, but it concurrently means that our model faces more intricate and challenging motion patterns during the
training. As shown in Fig. 8(b), the sparseness of 5 is an optimized choice, which is also our default setting.

C.2. Impact of Trajectory Length

Fig. 9 illustrates the impact of the motion trajectory length T on the performance of our MPT. Our method exhibits
improved performance as T increases, and reaches its peak at T = 30. Since the longer trajectory might bring more motion
noises, further increasing the trajectory length results in slight performance degradation. Therefore, we set T = 30 in our
experiments. This ablation study confirms our conjecture that long-term temporal information can provide richer tracking
cues. Different from prior works (Kim et al., 2022; Wei et al., 2023) employing heavy temporal processing mechanisms, our
lightweight MPT independently encodes motion inputs using negligible computing resources, which allows the model to
manage long-term motion trajectories.

D. In-depth Performance Analysis
D.1. In-depth Analysis about Performance Bias

Aiming to reduce tracking failures by motion cues, our MPT can significantly improve tracking robustness over accuracy.
Our advantages are more evident in hard scenarios (like VOTs, LaSOTEXT). This may cause a slight bias in the overall
performance across different trackers or benchmarks. To give evidence for this conjecture, we dynamically split each dataset
into two subsets based on performance of baselines, namely hard / easy sets. As shown in Tab. 7, the hard set (①) includes
hard videos with baseline AUCs below 50.0%, while the easy set (②) includes the remaining videos. Hard set proportions of
LaSOT, TNL2K, LaSOTEXT are around 15%, 30%, 50%. This aligns with the trend in our average performance gains:
0.4%, 0.6%, 1.6%. Moreover, our MPT shows better consistency in hard / easy sets, achieving average AUC changes of
+4.4% / -0.8%, with small standard deviations of 0.6 / 0.4 across five baselines.

D.2. Attribute Analysis

For a more intuitive observation of the impacts of our MPT on different attributes, we report performance gains achieved
by our MPT across different attributes on LaSOTEXT (Fan et al., 2021), shown as Fig. 10. As we can see, our MPT
significantly enhances the baseline tracker when faced with the challenge of background clutter, obtaining 6.3% AUC
improvements. Besides, challenges like viewpoint change, partial occlusion, low resolution, deformation, and full occlusion
can also be better addressed by our MPT.
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Figure 10. Performance gains of our method on each attribute.

E. Visualizations
E.1. Visualization of the Training Process

As shown in Fig. 11, we present the optimizing process of our model by visualizing dynamic changes of (a) loss values, (b)
Intersection-over-Union (IoU), and (c) location accuracy of the score map (Acc). Here, we consider the location prediction
to be accurate if the position of the maximum value in the score map coincides with the center of the target groundtruth. As
we can see, due to fine-tuning few parameters, the model exhibits fast convergence during the training process. Moreover,
compared with the baseline visual model OSTrack-B256 (Ye et al., 2022), our motion prompt-based model yields a more
accurate score map (see Fig. 11(c)), consequently leading to a more precise prediction of the object position (see Fig. 11(b)).
These curves further substantiate the efficacy of our MPT method in terms of both training efficiency and performance.
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Figure 11. Visualization of optimizing process of our model during training.

E.2. Qualitative Comparison

To intuitively demonstrate the effectiveness of our MPT, we make a qualitative comparison of our methods with corresponding
baseline trackers and other state-of-the-art (SOTA) trackers. As shown in Fig. 13, our MPT allows SOTA vision-based
baseline trackers to perform more robustly when faced with challenges, like distractors, occlusion, severe appearance
changes, fast motion, etc.
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Figure 12. Several failure cases of our method (“ MPT”).

Moreover, we make a video (please find it at https://github.com/zj5559/Motion-Prompt-Tracking) to
show more qualitative comparisons on three challenging sequences. For each sequence, we visualize bounding boxes
predicted by our method (“+MPT”) and the corresponding baseline tracker OSTrack. We also compare score maps output
by these two trackers. The historical trajectories are plotted in our score maps (“Feat MPT”). Compared with the baseline
tracker, our MPT can utilize object motion cues to help the tracker recognize the interested object from multiple distractors.
Besides, when faced with severe occlusion, our MPT can predict the next position of the object based mainly on the motion
prompt, thereby avoiding tracking drift.

However, since motion trajectories often include inherent noises like wrong observations, low-quality motion cues sometimes
interfere with visual cues. We propose an adaptive weight mechanism to mitigate this phenomenon, but some tracking
failures still inevitably happen. Some failure cases of our method are shown in Fig. 12.
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Figure 13. Qualitative comparisons of our trackers (“ MPT”) with other SOTA trackers.
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