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ABSTRACT

We study Stochastic Convex Optimization in Differential Privacy model (DP-SCO).
Unlike previous studies, here we assume the population risk function satisfies the
Tsybakov Noise Condition (TNC) with some parameter θ > 1, where the Lipschitz
constant of the loss could be extremely large or even unbounded, but the ℓ2-norm
gradient of the loss has bounded k-th moment with k ≥ 2. For the Lipschitz
case with θ ≥ 2, we first propose an (ϵ, δ)-DP algorithms whose utility bound

is Õ

((
r̃2k(

1√
n
+ (

√
d

nϵ ))
k−1
k

) θ
θ−1

)
in high probability, where n is the sample

size, d is the model dimension, and r̃2k is a term that only depends on the 2k-th
moment of the gradient. It is notable that such an upper bound is independent of
the Lipschitz constant. We then extend to the case where θ ≥ θ̄ > 1 for some
known constant θ̄. Moreover, when the privacy budget ϵ is small enough, we

show an upper bound of Õ
((

r̃k(
1√
n
+ (

√
d

nϵ ))
k−1
k

) θ
θ−1

)
even if the loss function

is not Lipschitz. For the lower bound, we show that for any θ ≥ 2, the private
minimax rate for ρ-zero Concentrated Differential Privacy is lower bounded by

Ω

((
r̃k(

1√
n
+ (

√
d

n
√
ρ ))

k−1
k

) θ
θ−1

)
.

1 INTRODUCTION

Machine learning is increasingly being integrated into daily life, driven by an ever-growing volume
of data. This data often includes sensitive information, which raises significant privacy concerns.
In response, regulations such as the GDPR mandate that machine learning algorithms not only
effectively extract insights from training data but also uphold stringent privacy standards. Differential
privacy (DP) Dwork et al. (2006), a robust framework for ensuring statistical data privacy, has
garnered substantial attention recently and has emerged as the leading methodology for conducting
privacy-preserving data analysis.

Differential Privacy Stochastic Convex Optimization (DP-SCO) and its empirical form, DP Empirical
Risk Minimization (DP-ERM), stand as core challenges within the machine learning and differential
privacy communities. These methodologies have been the focus of significant research over the past
decade, beginning with seminal works like those by Chaudhuri et al. (Chaudhuri et al., 2011) and
followed by numerous influential studies (Bassily et al., 2014; Wang et al., 2017; 2019a; Wu et al.,
2017; Kasiviswanathan & Jin, 2016; Kifer et al., 2012; Smith et al., 2017; Wang et al., 2018; 2019b;
Asi et al., 2021a). For instance, Bassily et al. Bassily et al. (2019) have provided near-optimal rates
for DP-SCO across both convex and strongly convex loss functions. Feldman et al. Feldman et al.
(2020) have developed algorithms that boast linear time complexity, and Su et al. Su et al. (2023)
have expanded the discussion to non-Euclidean spaces.

However, the majority of existing theoretical frameworks primarily focus on scenarios where the
loss function is O(1)-Lipschitz across all data, necessitating assumptions that the underlying data
distribution is either bounded or sub-Gaussian. Such assumptions are crucial for the effectiveness of
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differential privacy methods based on output perturbation Chaudhuri et al. (2011) and objective or
gradient perturbation Bassily et al. (2014). Yet, these assumptions may not be valid for real-world
datasets, particularly those from fields like biomedicine and finance, which are known to exhibit
heavy-tailed distributions Woolson & Clarke (2011); Biswas et al. (2007); Ibragimov et al. (2015).
This discrepancy can compromise the effectiveness of the algorithms in maintaining differential
privacy. To bridge this gap, recent research has begun exploring DP-SCO in the context of heavy-
tailed data, where the Lipschitz constant for the loss may be significantly higher or even unbounded
Wang et al. (2020); Kamath et al. (2022); Hu et al. (2022); Lowy & Razaviyayn (2023); Tao et al.
(2022a). These studies typically assume that the gradient of the loss is bounded only in terms of its
k-th moment for some k > 0, a much less stringent requirement than O(1)-Lipschitz continuity.

Although DP-SCO with heavy-tailed data has been extensively studied, most research has concen-
trated on general convex or strongly convex functions. Yet, numerous other problems exist that exceed
the complexity of strongly convex functions or do not neatly fit within the convex-to-strongly convex
spectrum. In non-private settings, several studies have managed to achieve faster convergence rates
by introducing additional constraints on the loss functions. It has been demonstrated that it is possible
to exceed the convergence rates of general convex functions (Yang et al., 2018; Koren & Levy, 2015;
van Erven et al., 2015), and some approaches have even matched the rates typical of strongly convex
functions without the function actually being strongly convex (Karimi et al., 2016; Liu et al., 2018;
Xu et al., 2017). Similar advancements have been observed in the context of privacy-preserving
algorithms (Asi et al., 2021b; Su & Wang, 2021). This leads to a compelling question:

For the problem of DP-SCO with heavy-tailed data and special classes of population risk
functions, is it possible to achieve faster rates of excess population risk than the optimal ones of
general convex and (or) strongly convex cases?

In this paper, we affirmatively respond by examining certain classes of population risk functions.
Specifically, we focus on the case where the population risk function possesses a large or potentially
infinite Lipschitz constant and meets the Tsybakov Noise Condition (TNC) 1, encompassing strongly
convex functions, SVM, ℓ1-regularized stochastic optimization, and linear regression with heavy-
tailed data as notable examples.

Our contributions are detailed as follows (refer to Table 1 for details).

1. We study DP-SCO where the population risk satisfies (θ, λ)-TNC with θ > 1. Here, the
loss function is Lf -Lipschitz, and the k-th moment of the loss gradient is small, where
Lf < ∞ could be extremely large and k ≥ 2. Based on our newly developed localization
method, we propose an (ϵ, δ)-DP algorithm whose utility bound, with high probability, is
Õ((r̃2k(

1√
n
+ (

√
d

nϵ ))
k−1
k )

θ
θ−1 ) when θ ≥ 2. Here, n is the sample size, d is the model

dimension and r̃2k is a term that only depends on the 2k-th moment of the gradient. It is
notable that such an upper bound is independent of the Lipschitz constant.

2. We further relax the assumption that θ ≥ 2 to θ ≥ θ̄ > 1 for some known θ̄ and propose an
algorithm that could achieve asymptotically the same bound as the previous one. Moreover,
when the privacy budget ϵ is small enough, we show that even if the loss function is not
Lipschitz, we can still get an upper bound of Õ((r̃k(

1√
n
+ (

√
d

nϵ ))
k−1
k )

θ
θ−1 ).

3. On the lower bound side, for any θ ≥ 2, we show that there exists a population risk function
satisfying TNC with parameter θ, whose minimax population risk under ρ-zero Concentrated
Differential Privacy is always lower bounded by Ω((r̃k(

1√
n
+ (

√
d

n
√
ρ ))

k−1
k )

θ
θ−1 ).

2 RELATED WORK

DP-SCO with Heavy-tailed Data. As we mentioned previously, there is a long list of work for
DP-SCO from various perspectives. Here we only focus on the work related to DP-SCO with
heavy-tailed data. Generally speaking, there are two ways of modeling heavy-tailedness: The first
one considers each coordinate of loss gradient has bounded moments, while the second one assumes

1This is also referred to as the Error Bound Condition or the Growth Condition in related literature (Liu et al.,
2018; Xu et al., 2017).
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Table 1: Comparion with previous results on DP-SCO with different assumptions in (ϵ, δ)-DP (we always
assume the loss is smooth). All results omit the term of log 1

δ
, smoothness and strong convexity. † means the

result is for ρ-zCDP. ⋆ indicated the result holds when ϵ = Õ( 1
n
) .

Upper Bound Lower Bound Assumption

Bassily et al. (2019) O
(

1√
n
+

√
d

nϵ

)
Ω
(

1√
n
+

√
d

nϵ

)
O(1)-Lipschitz

Bassily et al. (2019) O
(
1
n + d

n2ϵ2

)
Ω
(

1√
n
+ d

n2ϵ2

)
O(1)-Lipschitz

Kamath et al. (2021) Õ
(

d√
n
+ d2

nϵ (
ϵn

d
3
2
)

1
k

)
Ω(
√

d
n +

√
d(

√
d

n
√
ρ )

k−1
k )† O(1)-Lipschitz and bounded k-th moment (k ≥ 2)

Kamath et al. (2021) Õ
(

d
n + d(

√
d

nϵ )
2(k−1)

k

)
Ω
(

d
n + d(

√
d

n
√
ρ )

2(k−1)
k

)†
O(1)-Lipschitz, strongly convex and bounded k-th moment (k ≥ 2)

Asi et al. (2021a); Su & Wang (2021) Õ

((
1√
n
+

√
d

nϵ

) θ
θ−1

)
Ω

((
1√
n
+

√
d

nϵ

) θ
θ−1

)
when θ ≥ 2 O(1)-Lipschitz under TNC with θ > 1

Lowy & Razaviyayn (2023) O

(
R̃2k,n

(
1√
n
+
(√

d
ϵn

) k−1
k

))
Ω

(
r̃k

(
1√
n
+
( √

d√
ρn

) k−1
k

))†

(large) Lipschitz, bounded k-th moment (k ≥ 2)

Lowy & Razaviyayn (2023) Õ

r̃k

 1√
n
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1
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)1/4 √
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ϵn

) 4(k−1)
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,
(√
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bounded k-th moment (k ≥ 2)

Lowy & Razaviyayn (2023) Õ

(
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1
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strongly convex, bounded k-th moment (k ≥ 2)

This paper Õ
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(√

d
ϵn
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) θ
θ−1

 Ω
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(√
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 when θ ≥ 2 (large) Lipschitz function under TNC with θ > 1

This paper Õ

r̃
θ

θ−1

k

(
1√
n
+
(√

d
ϵn

) k−1
k

) θ
θ−1

⋆

Ω

(r̃k( 1√
n
+
(√

d
ϵn

) k−1
k

)

) θ
θ−1

 when θ ≥ 2 TNC with θ > 1

the norm of loss gradient has bounded moments, which is stronger than the first one. For the first
direction, Wang et al. (2020) provides the first study under the assumption of bounded k-th moment
(k ≥ 2) and proposes three different ways for both convex and strongly convex loss. The bounds
were later improved by Kamath et al. (2021). Specifically, Kamath et al. (2021) provides improved
upper bounds for convex loss and optimal rate for strongly convex loss. Later, there are some works
that consider different extensions. For example, Hu et al. (2022) extends to the high dimensional
and polyhedral cases, Tao et al. (2022a) extends to the case where the gradient only has (1 + v)-th
moment with v ∈ (0, 1], Wang & Xu (2022) considers the ℓ1-regression. For the second direction,
Lowy & Razaviyayn (2023) provides a comprehensive study for both convex and strongly convex
loss. In detail, for Lipschitz loss whose gradient has k-th moment, they provide upper bounds that are
independent of the Lipschitz constant. Compared to Lowy & Razaviyayn (2023), we first extend to
the population risks that satisfy TNC (when θ = 2, our results match their results for strongly convex
loss). Moreover, the results in Lowy & Razaviyayn (2023) are in expectation form while we provide
new algorithms, and our results are in the high probability form.

DP for Heavy-tailed Data. In addition to DP-SCO, there is also some work on DP for heavy-tailed
data. Barber & Duchi (2014) provided the first study on private mean estimation for distributions with
the bounded moment, which has been extended by Kamath et al. (2020); Liu et al. (2021); Brunel &
Avella-Medina (2020) recently. However, these methods cannot be applied to our problem as these
results are all in the expectation form. Motivated by Wang et al. (2020), we later consider statistical
guarantees of DP Expectation Maximization and applies to the Gaussian Mixture Model. Wu et al.
(2023); Tao et al. (2022b); Wu et al. (2024) considers private reinforcement learning and bandits
learning where the reward follows a heavy-tailed distribution. However, since the reward is a scalar,
these methods are not applicable to our problem.

Loss functions with TNC. While most of this paper focuses on loss functions that are either convex
or strongly convex, many loss functions fall between these two categories. That is, they are not
strongly convex, but their statistical rate is better than purely convex losses. For TNC and Lipschitz
loss functions, the best-known current rate is O(( 1√

n
)

θ
θ−1 ) (Liu et al., 2018), which corresponds to

the first term in our upper bounds. In Theorem 5, we demonstrate that this upper bound is tight for
θ ≥ 2. A comparison to the non-private setting will be included in the final version of the paper.

Our methods introduce novel technical challenges compared to non-private approaches. The key
innovation lies in our analysis, which is based on algorithmic stability and a newly developed localized
and clipped algorithm (Algorithm 3), which has not been previously studied. Specifically, Algorithm
4 is inspired by Algorithm 2 in (Liu et al., 2018). However, while the base algorithm in (Liu et al.,
2018) is a simple averaged version of projected SGD, our Algorithm 3 is significantly more complex.
One major technical challenge is that Algorithm 2 in (Liu et al., 2018) assumes a Lipschitz loss
function with a fixed Lipschitz constant. Consequently, their bounds rely on this constant. In contrast,
we address scenarios where the Lipschitz parameter can be extremely large. Therefore, we developed
a new base algorithm that removes dependence on this parameter and instead utilizes moments.
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3 PRELIMINARIES

Definition 1 (Differential Privacy (Dwork et al., 2006)). Given a data universe X , we say that two
datasets S, S′ ⊆ X are neighbors if they differ by only one entry, which is denoted as S ∼ S′. A
randomized algorithm A is (ϵ, δ)-differentially private (DP) if for all neighboring datasets S, S′ and
for all events E in the output space of A, the following holds

P(A(S) ∈ E) ⩽ eϵP(A(S′) ∈ E) + δ.

If δ = 0, we call algorithm A is ϵ-DP.
Definition 2 (zCDP Bun & Steinke (2016)). A randomized algorithm A is ρ-zero-concentrate-
differentially private (zCDP) if for all neighboring datasets S, S′ and α ∈ (1,∞), we have
Dα(A(S)∥A(S′)) ⩽ ρα, where Dα is the α-Rényi divergence between A(S) and A(S′).
Remark 1. In this paper, we focus on (ϵ, δ)-DP for upper bounds and ρ-zCDP for lower bounds, and
we mainly use the Gaussian mechanism to guarantee the DP property. For Algorithms 1-5, which are
based on stability analysis and the Gaussian mechanism, they operate as one-pass algorithms without
sub-sampling. As a result, they can easily meet the requirements for CDP. However, a challenge
arises with Algorithm 6. In this case, we employ privacy amplification via shuffling to reduce the
noise. Currently, privacy amplification via shuffling is only applicable to ϵ and (ϵ, δ)-LDP, and no
version exists for zCDP. To maintain consistency throughout the paper, we use (ϵ, δ)-DP for all our
upper bounds.
Definition 3 (Gaussian Mechanism). Given any function q : Xn → Rd, the Gaussian mechanism
is defined as q(S) + ξ where ξ ∼ N (0,

16∆2
2(q) log(1/δ)

ϵ2 Id), where ∆2(q) is the ℓ2-sensitivity of the
function q, i.e., ∆2(q) = supS∼S′ ∥q(S) − q(S′)∥2. Gaussian mechanism preserves (ϵ, δ)-DP for
0 < ϵ, δ ⩽ 1.
Definition 4 (DP-SCO Bassily et al. (2014)). Given a dataset S = {x1, · · · , xn} from a data universe
X where xi are i.i.d. samples from some unknown distribution D, a convex loss function f(·, ·), and
a convex constraint set W ⊆ Rd, Differentially Private Stochastic Convex Optimization (DP-SCO) is
to find wpriv so as to minimize the population risk, i.e., F (w) = Ex∼D[f(w, x)] with the guarantee
of being differentially private. The utility of the algorithm is measured by the (expected) excess
population risk, that is

EA[F (wpriv)]− min
w∈W

F (w),

where the expectation of A is taken over all the randomness of the algorithm. Besides the population
risk, we may also measure the empirical risk of dataset S: F̄ (w, S) = 1

n

∑n
i=1 f(w, xi).

Definition 5 (Lipschitz). A function f : W 7→ R is L-Lipschitz over the domain W if for all
w,w′ ∈ W , |f(w)− f(w′)| ⩽ L∥w − w′∥2.
Definition 6 (Smoothness). A function f : W 7→ R is β-smooth over the domain W if for all
w,w′ ∈ W , f(w) ⩽ f(w′) + ⟨∇f(w′), w − w′⟩+ β

2 ∥w − w′∥22.
Definition 7 (Strongly Convex). A function F : W 7→ R is λ-strongly convex over the domain W if,
for all w,w′ ∈ W , F (w) + ⟨∇F (w), w′ − w⟩+ λ

2 ∥w
′ − w∥22 ⩽ F (w′).

Previous work on DP-SCO only focused on cases where the loss function is either convex or strongly
convex Bassily et al. (2019); Feldman et al. (2020). In this paper, we mainly examine the case where
the population risk satisfies the Tsybakov Noise Condition (TNC) Ramdas & Singh (2012); Liu et al.
(2018); Ramdas & Singh (2013), which has been extensively studied and has been shown that it could
achieve faster rates than the optimal one of general convex loss functions in the non-private case.
Below, we introduce the definition of TNC.
Definition 8 (Tsybakov Noise Condition). For a convex function F (·), let W∗ = argminw∈W F (w)
denote the optimal set and for any w ∈ W , let w∗ = argminu∈W∗ ∥u− w∥2 denote the projection
of w onto the optimal set W∗. The function F satisfies (θ, λ)-TNC for some θ > 1 and λ > 0 if, for
any w ∈ W , the following inequality holds:

F (w)− F (w∗) ≥ λ∥w − w∗∥θ2. (1)

From the definition of TNC and Definition 7, we can see that a λ-strong convex function is (2, λ
2 )-

TNC. Moreover, if a function is (θ, λ)-TNC, then it is also (θ′, λ)-TNC for any θ < θ′. Throughout
the paper, we assume that θ is a constant and thus we omit the term of cθ in the Big-O notation if c is
a constant.

4



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Lemma 1 (Lemma 2 in (Ramdas & Singh, 2012)). If the function F (·) is (θ, λ)-TNC and Lf -
Lipschitz, then we have ∥w − w∗∥2 ⩽ (Lfλ

−1)
1

θ−1 and F (w) − F (w∗) ⩽ (Lθ
fλ

−1)
1

θ−1 for all
w ∈ W , where w∗ is defined as in Definition 8.

As mentioned earlier, our primary focus here is on cases where the loss function’s Lipschitz constant
is sufficiently large or even infinite. In such cases, we may seek alternative terms to replace the
Lipschitz constant. Motivated by previous work on DP-SCO with heavy-tailed gradients, we consider
the moments of the gradient. Specifically, we assume that the stochastic gradient distributions have
bounded k-th moment for some k ⩾ 2:
Assumption 1. There exists k ⩾ 2 and r̃(k) > 0 such that E

[
supw∈W ∥∇f(w, x)∥k2

]
⩽ r̃(k), where

r̃k :=
(
r̃(k)

)1/k
. Moreover, we assume the constrained set W is bounded with diameter D.

If the loss function is Lf -Lipschitz, we can always observe that r̃k ⩽ Lf = supw,x ∥∇f(w, x)∥2.
Moreover, r̃k could be far less than the Lipschitz constant.

To state our subsequent theoretical results more clearly, we introduce some additional notations. For
a batch of data X ∈ Xm, we define the k-th empirical moment of f(w, ·), by

r̂m(X)(k) = sup
w∈W

1

m

m∑
i=1

∥∇f(w, xi)∥k2 .

For X ∼ Dm, we denote the k-th expected empirical moment by

ẽ(k)m := E[r̂m(X)(k)],

and let
r̃k,m := (ẽ(k)m )1/k.

Note that r̃k,1 = r̃k. We define R̃k,n :=
√∑l

i=1 2
−ir̃2k,ni

, where ni = 2−in and l = log2 n.

Actually, R̃k,n, a weighted average of the expected empirical moments for distinct batch sizes, is a
constant used in the excess risk upper bounds, where we give more weight to r̃m for large m. The
following lemma indicates that it is smaller than r̃k.

Lemma 2 ((Lowy & Razaviyayn, 2023)). Under Assumption 1, we have: r̃(k) = ẽk1 ⩾ ẽ
(k)
2 ⩾ ẽ

(k)
4 ⩾

· · · ⩾ r(k). Thus, we have R̃k,n ⩽ r̃k.

4 LARGE LIPSCHITZ CONSTANT CASE

In this section, we will focus on the population risk function satisfying (θ, λ)-TNC, and the Lipschitz
constant of the loss is extremely large (but finite). Before that, we first propose a novel localized noisy
stochastic gradient method whose excess population risk is independent of the Lipschitz constant for
general convex loss. See Algorithm 3 for details.

In Algorithm 3, we first partition the dataset into O(log2 n) subsets where the i-th set has O(2−in)
samples. In the i-th iteration, we use the i-th set and construct an ℓ2-regularized empirical risk
function Fi with hyperparameter λi in step 5. Moreover, based on the current model wi−1, we
construct the constrained set Wi with diameter exponential decay Di. To handle large Lipschitz
constant and to solve the ℓ2-regularized empirical risk, we adopt a clipped gradient descent method
(Algorithm 2) with clip threshold Ci, where we use clipped gradients (Algorithm 1) to update our
model instead of the original gradient. After Ti iterations, we add Gaussian noise based on the
stability of our clipped gradient descent to ensure (ϵ, δ)-DP. In the following we show Algorithm 3
could achieve a rate Õ(max{ 1√

n
, (

d log 1
δ

ϵn )
k−1
k }) with specific parameters λi, Ti and Ci.

Theorem 1. Under Assumption 1, suppose that f(·, x) is α-smooth and Lf -Lipschitz with Lf < ∞
for every x. Then, for any 0 < ϵ ⩽

√
log(1/δ), 0 < δ < 1 and ηi ⩽ 1

α for all i, Algorithm 3 is

(ϵ, δ)-DP. Let p ≥ 1 such that Lf ⩽ np/2R̃2k,n(
1√
n
+ (

√
d log n

ϵn )
k−1
k ). For any 0 < β ⩽

1

n
, with

probability at least 1− β, it holds that

F (wl)− F (w∗) ⩽Õ

(
R̃2k,nD(

1√
n
+ (

√
d

ϵn
)

k−1
k )

)
,
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Algorithm 1 ClippedMean({zi}ni=1, n, C)

Input: Z = {zi}ni=1, C > 0,

1: Compute ṽ := 1
n

n∑
i=1

∏
C(zi), where

∏
C(z) := argminy∈BC

∥y − z∥22 denotes the projection

onto the ℓ2 ball BC .
Return ṽ

Algorithm 2 Clipped Regularized Gradient Method

Input: Dataset S ∈ Xn, iteration number T , stepsize η, clipping threshold C, regularization λ ⩾ 0,
constraint set W and initialization w0 ∈ W .

1: for all t ∈ [T − 1] do
2: ∇̃Ft(wt) :=ClippedMean({∇f(wt, xi)}ni=1;C) for gradients ∇f(wt, xi).
3: wt+1 =

∏
W [wt − η(∇̃Ft(wt) + λ(wt − w0))]

4: end for
Return wT

where the Big-Õ notation omits all logarithmic terms (it is the same for other upper bounds).

Remark 2. Previous work on DP-SCO such as Wang et al. (2017); Bassily et al. (2014), Lipschitz
is still required for the loss function, though, it disappears in the final excess risk upper bound.
And due to the property of worst-case stability and our assumption that Lf can be controlled

by np/2R̃2k,n(
1√
n
+ (

√
d log n

ϵn )
k−1
k ) for sufficiently large p, we reach the upper bound with high

probability without Lf in the final result. Compared to Lowy & Razaviyayn (2023), the main
difference is that our result is in the high probability form while Lowy & Razaviyayn (2023) is only
in the expectation form. Specifically, to achieve a high probability result, instead of adding Gaussian
noise to the gradient, we use the stability of the gradient descent. However, we cannot directly use
the stability result in Hardt et al. (2015) here, which depends on the Lipschitz constant, making a
large noise, we show that by using clipping, the stability now only depends on the clipping threshold.

Algorithm 3 Localized Noisy Clipped Gradient Method for DP-SCO(LNC-GM)(w0, η, n,W)

Input: Dataset S ∈ Xn, stepsize η, clipping threshold {Ci}log2 n
i=1 , privacy parameter ϵ, δ, hyperpa-

rameter p, initialization w0 ∈ W .
1: Let l = log2 n.
2: for all i ∈ [l] do
3: Set ni = 2−in, ηi = 4−iη, λi = 1

ηin
p
i

when i ⩾ 2, and λ1 = 1
η1n

2p
1

, Ti =

Θ̃
(

1
λiηi

)
, and Di =

2Lf

λi
.

4: Draw a new batch Bi of ni = |Bi| samples from S without replacement.
5: Denote F̂i(w) :=

1
ni

∑
j∈Bi

f(w, xj) +
λi

2 ∥w − wi−1∥2.
6: Use Algorithm 2 with initialization wi−1 to minimize F̂i over Wi := {w ∈ W| ∥w − wi−1∥ ⩽

Di} for Ti iterations with clipping threshold Ci = r̃2k,ni(
ϵni√

d log(n)
)1/k and stepsize ηi. Let

ŵi be the output of Algorithm 2.

7: Set ξi ∼ N (0, σ2
i Id) where σi =

8Ci

√
log 1

δ

niλiϵ

8: Set wi = ŵi + ξi.
9: end for

10: Return the final iterate wl

Based on our novel locality algorithm, we then apply it to TNC functions. See Algorithm 4 for details.
Specifically, we partition the dataset into several subsets of equal size. As the iteration number
increases, we consider a constrained set centered at the current parameter with a smaller diameter
and learning rate in Algorithm 3.
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Algorithm 4 Private Stochastic Approximation(w1, n,R0)

Input: Dataset S ∈ X , initial point w1 ∈ W , privacy parameter ϵ and δ, hyperparameter p, initial
diameter R0.

1: Set ŵ0 = w1, m = ⌊ 1
2 log2

2n
log2 n⌋ − 1, n0 = ⌊ n

m⌋. Then partition the dateset S into m disjoint
subsets, namely, {S1, · · · , Sm} with each |Si| = n0.

2: for all l ∈ [m] do
3: Set γl =

Rl−1

n
p
2
0

min{ 1
Lf

, 1

R̃2k,nn
p+1
2

0

( ϵn0√
d log n

)
k−1
k , 1

n
p−1
2

0 L2
f

√
log n0 log(1/β)

} and Rl =
Rl−1

2 .

4: Denote ŵl = LNC-GM(ŵl−1, γl, nl,W), and constrained set W ∩ B(ŵl−1, Rl−1).
5: end for

Return ŵm

Theorem 2. Under Assumption 1 and suppose that the population risk function F (·) is (θ, λ)-TNC
with θ ≥ 2, and f(·, x) is α-smooth and Lf -Lipschitz for each x. Additionally, take p ≥ 1 such that

Lf ⩽ np/2R̃2k,n(
1√
n
+ (

√
d log n

ϵn )
k−1
k ), then algorithm 4 is (ϵ, δ)-DP. Moreover, for sufficiently large

n such that γl ⩽ 1
α , with probability at least 1− β, we have

F (ŵm)− F (w∗) ⩽ Õ

(
1

λ
1

θ−1

(R̃2k,n(
1√
n
+ (

√
d

ϵn
)

k−1
k ))

θ
θ−1

)
.

We note that there is no dependence on p in the final bound in Theorem 1 and 2. p is used to control
the Lipschitz constant thus we can remove the Lipschitz constant from the final bound. We can see
that in the proof of Theorem 1, there exists a term with np both in the numerators and denominators.
By assuming that Lf is controlled by the O(np/2) and choosing specific η, we can eliminate the p in
the final bound. A similar result holds for Theorem 2.
Remark 3. In the case of O(1)-Lipschitz loss under TNC, compared with the optimal rate Θ((( 1√

n
+

(
√
d

ϵn )
k−1
k ))

θ
θ−1 ) in Asi et al. (2021b), our improved result gets rid of the dependence of Lipschitz

constant, which could be extremely large. Moreover, when θ = 2, i.e., the population risk is strongly
convex, our result covers the result in Lowy & Razaviyayn (2023). Thus, our result is a generalized
upper bound. It is also notable that our upper bound is independent of the diameter of the constrained
set and the Lipschitz-smoothness parameter. In Algorithm 4, one need the projection onto the ball
W ∩ B(ŵl−1, Rl−1) in each iteration of the Phased-SGD in each phase. This could be solved using
Dykstra’s algorithm (Dykstra, 1983; Boyle & Dykstra, 1986).

Example. We consider the ℓ1 constrained ℓ4-norm linear regression, which has been studied in (Xu
et al., 2017) and satisfies TNC with θ = 4 (Liu et al., 2018). Specifically, it can be written as the
following.

min
∥w∥1⩽1

F (w)
∆
= E[(⟨w, x⟩ − y)4]. (2)

When y is bounded by O(1) and x follows a truncated normal Gaussian distribution at [−n, n]d.
Then we can see that the loss function is Poly(n)-Lispchitz, but its 2k-th moment is O(1). In this
case, our bound in equation 2 is much smaller than the previous results in Asi et al. (2021b); Su &
Wang (2021).

So far, we have proposed an algorithm for TNC. Nevertheless, we also find that Theorem 2 needs
a strong assumption on θ, i.e. θ ⩾ 2. Thus, a direct question that occurs to us is whether we
can further improve the upper bound. To conquer the disadvantage of the above algorithm, we
propose the following. We assume θ is unknown but bigger than some definite θ̄ > 1. Then we
divide the whole dataset into subsets with distinct elements, detailly l = ⌊(logθ̄ 2) · log log n⌋ with
ni =

⌊
2i−1n/(log n)log

2
θ̄
2
⌋

samples for each subset. Then we run the Algorithm 1 for l times while
each phase implements on the i-th subset and is initialized at the output of the previous one.
Theorem 3. Under Assumption 1 and assume that the loss function F (·) satisfies (θ, λ)-TNC with
parameter θ ⩾ θ̄ > 1 for some definite constant θ̄, and f(·, x) is convex, α smooth and Lf -
Lipschitz for each x. Algorithm 5 is (ϵ, δ)-DP for any ϵ ⩽ 2 log(1/δ), and take p ≥ 1 such that

7
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Algorithm 5 Iterated Localized Noisy Clipped Gradient Method

Input: Dataset S ∈ Xn, initial point w0 ∈ W , privacy parameter ϵ and δ, parameter p, initial
diameter R0.

1: Partite the data S into l disjoint subsets {S1, · · · , Sl}, where l = ⌊(logθ̄ 2) · log log n⌋ and for
each i ∈ [l], |Si| = ni =

⌊
2i−1n/(log n)log

2
θ̄
2
⌋

.
2: for all t = 1, · · · , l do
3: Let wt = Algorithm 3 with input (Si, wt−1, ηt,W), where ηt =

Rt−1

n
p
2
0

min{ 1
Lf

, 1

R̃2k,nn
p+1
2

i

( ϵni√
d log n

)
k−1
k , 1

n
p−1
2

i L2
f

√
log ni log(1/β)

} and Rl =
Rl−1

2 .

4: end for
Return wl

Lf ⩽ np/2R̃2k,n(
1√
n
+ (

√
d log n

ϵn )
k−1
k ). Moreover, if the sample size n is sufficiently large such that

θ̄ ⩾ 2
log log n
log n−1 and ηt ⩽ 1

α , we have with probability at least 1− β

F (wl)− F (w∗) ⩽ Õ

(
(
1

λ
)

1
θ−1 (R̃2k,n(

1√
n
+ (

√
d

ϵn
)

k−1
k ))

θ
θ−1

)
.

Remark 4. We pause to have another glimpse of Algorithm 4 and Algorithm 5. Note that they have a
similar procedure to take the dataset apart, while the number of each subset is the same in Algorithm
5 and increases in Algorithm 5 as the iteration grows. And the set we project on also varies between
Algorithm 4 and 5.

5 LOWER BOUNDS

In this section, we will show that the above upper bounds is nearly optimal (if r̃2k and r̃k are asymp-
totically the same) by providing lower bounds of the private minimax rate for ρ-zCDP. Specifically,
for a sample space X ⊆ Rd and collection of distributions P over X , we define the function class
Fθ

k (P, r̃(k)) as the set of population risk functions from Rd 7→ R that satisfy (θ, 1)-TNC and their
loss satsifies Assumption 1. We define the constrained minimax risk

M(W,P,Fθ
k (P, r̃(k)), ρ) = inf

A∈Q(ρ)
max

F×P∈Fθ
k (P,r̃k)×P

EA,D∈Pn [F (A(D)) − min
w∈W

F (w)],

where Q(ρ) is the set of all ρ-zCDP algorithms. We will show the following two results for different
sample spaces and constraint sets.

Theorem 4. For any θ, k ≥ 2, r̃(k) > 0, denote X = {±p−
1
k

r̃k
2
√
d
}d ∪ {0} with r̃k = (r̃(k))

1
k , and

W = Br with r = (p
− 1

k r̃k
2 )

1
θ−1 and p = d

n
√
ρ , then, if n is large enough such as n ≥ Ω(

√
d√
ρ ), we

have the following lower bound

M(W,P,Fθ
k (P, r̃(k)), ρ) ≥ Ω

(
(r̃k((

√
d

√
ρn

)
k−1
k ))

θ
θ−1

)
.

Theorem 5. For any θ, k ≥ 2, r̃k > 0, denote X = {± r̃k
2
√
d
}d, and W = Br with r = ( r̃k2 )

1
θ−1 , then,

if n ≥ Ω(
√
d), we have the following lower bound

M(W,P,Fθ
k (P, r̃(k)), ρ) ≥ Ω

(
(
r̃k√
n
)

θ
θ−1

)
.

Remark 5. First, it is notable that although the upper bounds in Section 4 are for (ϵ, δ)-DP, we
can easily extend to the ρ-zCDP case as we used the Gaussian mechanism and parallel theorem to
guarantee DP, which also hold for zCDP Bun & Steinke (2016). The only difference is replacing

the term O(

√
log 1

δ

ϵ ) by O( 1√
ρ ). Thus, from this side, combining with Theorem 4 and 5, we can

8
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see the upper bound is nearly optimal for ρ-zCDP in the general case if r̃2k (since R̃2k,n ⩽ r̃2k)
and r̃k are asymptotically the same. Secondly, in the Lipschitz case for (ϵ, δ)-DP, Asi et al. (2021a)
proved the lower bound result via a reduction to the ERM problem for general convex loss. However,
their reduction cannot be applied to our problem as their proof heavily relies on the O(1)-Lipschizt
condition, which is not satisfied for our loss. For ϵ-DP, Asi et al. (2021a) considered the empirical
risk and used the packing argument for the lower bound, which cannot be applied to our problem
as our loss is not constant Lipschitz. In our proof, we directly considered the population risk
FP (w) = −⟨w,EP [x]⟩ + 1

θ∥w∥
θ
2 for some data distribution P and used private Fano’s lemma to

prove the lower bound.

6 RELAX THE LIPSCHITZ ASSUMPTION

Algorithm 6 Permuted Noisy Clipped Accelerated SGD for Heavy-Tailed DP SCO (PNCA-SGD)

Input: Data S ∈ Xn, iteration number T , stepsize parameters {ηt}t∈[T ], {αt}t∈[T ] with α1 = 1,
private paratemter ϵ, δ, initialization w0.

1: Randomly permute the data and denote the permuted data as {x1, · · · , xn}.
2: Initialize wag

0 = w0.
3: for all t ∈ [T ] do
4: wmd

t := (1− αt)w
ag
t−1 + αtwt−1.

5: Draw new batch Bt (without replacement) of n/T samples from S.
6: ∇̃Ft

(
wmd

t

)
:= ClippedMean

({
∇f

(
wmd

t , x
)}

x∈Bt
; n
T ;C

)
+ ζi, where ζi ∼ N (0, σ2Id),

σ2 = O(
C2T log 1

δ

n2ϵ2 ) and C = r̃k

(
ϵn√

d log(1/δ)

)1/k

.

7: wt := arg
w∈W

{
αt

〈
∇̃Ft

(
wmd

t

)
, w
〉
+ ηt

2 ∥wt−1 − w∥2
}

.

8: wag
t := αtwt + (1− αt)w

ag
t−1.

9: end for
Return wag

T

In the previous section, we have considered the Lipschitz case and show that under the TNC,
compared to that for the general convex loss, it is possible to get improved excess population risk
that is independent of the Lipschitz constant. There are still two questions left: (1) Compared to the
previous studies on DP-SCO with heavy-tailed gradient such as Wang et al. (2020); Kamath et al.
(2021), our above upper bounds still need the finite Lipschitz condition; (2) We can see our upper
bounds depend on R̃2k,n ⩽ r̃2k while the lower bounds only depend on r̃k. Thus, there is a gap for
the moment term. In this section, we aim to address these two issues. Specifically, we will show that
even if the loss function is not Lipschitz, it is still possible to get the same upper bound as in the
above section when ϵ is small enough. Moreover, we can improve the dependency from R̃2k,n to r̃k.

Specifically, our main method, Algorithm 7, shares a similar idea as in Algorithm 5 with different
parameters and base algorithm. Specifically, rather than using Algorithm 3, here we propose
Algorithm 6 as our base algorithm, which is a shuffled, clipped, and private version of the accelerated
SGD. Specifically, in step 1 we randomly shuffle the data for privacy amplification Feldman et al.
(2022). Then, in each iteration, we clipped the gradients and added Gaussian noise to ensure DP. We
can show that with some parameters, the output could achieve an upper bound similar to Theorem 1
even if the loss is not Lipschitz.

Theorem 6. For any ϵ = O(
√

logn/δ
n ), and 0 < δ < 1, Algorithm 6 is (ϵ, δ)-DP. Moreover, under

Assumption 1 and assume function F is β-smooth with the diameter D over w ∈ W , then the output
of Algorithm 6, by selecting the following T ,

T = min{
√

βD

r̃k
· ( ϵn√

d log(1/δ)
)

k−1
2k ,

√
βD

r̃k
· n1/4},

9



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Algorithm 7 Iterated PNCA-SGD
(
w0, n,W, θ̄

)
Input: Dataset S ∈ Xn, initial point w0 ∈ W , privacy parameter ϵ and δ.

1: Partite the data S into k disjoint subsets {S1, · · · , Sk}, where k = ⌊(logθ̄ 2) · log log n⌋, and for
each i ∈ [k], |Si| = ni =

⌊
2i−1n/(log n)log

2
θ̄
2
⌋

.
2: for all t = 1, · · · , k do
3: Let wt = PNCA-SGD (wt−1, ηt, nt,W), where the AC-SA runs on the t-th subset Si.For

(ϵ, δ)-DP, ηt = 4η
t(t+1) , αt =

2
t+2 and Rl =

Rl−1

2 .
4: end for

Return wk

we have

EF (wag
T )− F ∗ ⩽ O

(
r̃kD(

1√
n
+ (

√
d log(1/δ)

ϵn
)

k−1
k )

)
.

Note that (Lowy & Razaviyayn, 2023) also proposes a private accelerated SGD. However, their bound
is sub-optimal (see the second row is Table 1). Here, we leverage privacy amplification via shuffling
to reduce the noise added to each iteration. Thus, we can get the optimal rate here. We note that this
is also the first result that can achieve the optimal rate for the general convex function without the
Lipschitz assumption. Based on this result, we have the following theorem for Algorithm 7.

Theorem 7. For any ϵ = O(
√

logn/δ
n ), and 0 < δ < 1, Algorithm 7 is (ϵ, δ)-DP. Moreover, under

Assumption 1 and assume function F is β-smooth, then we have

EF (ŵm)− F (w∗) ⩽ Õ

(
1

λ
1

θ−1

(r̃k(
1√
n
+ (

√
d

ϵn
)

k−1
k ))

θ
θ−1

)
. (3)

Compared with the results in the above section, we can see the result in Theorem 7 is in the
expectation form, which is due to the noisy clipped gradient in Algorithm 6. Moreover, the constraint

of ϵ = O(
√

logn/δ
n ) comes from the results of privacy amplification via shuffling Feldman et al.

(2022). We leave these two assumptions to be relaxed for future research. Moreover, the improvement
from R̃2k,n to r̃k is due to the different results between Theorem 6 and 1.

7 CONCLUSION

In this paper, we address the challenge of DP-SCO with heavy-tailed data. We establish bounds
for Lipschitz loss functions using the k-th moments, without relying on the Lipschitz constant. A
key contribution of our work is the elimination of the Lipschitz requirement for loss functions.
Furthermore, we introduce the Tsybakov Noise Condition as a unifying framework for our analysis.
We reveal the fundamental trade-off between privacy preservation and utility, offering comprehensive
insights into the interplay between privacy guarantees and data quality.
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A APPENDIX

A.1 OMITTED PROOF

Proof of Lemma 2. Let l ∈ N, and n = 2l and consider

r̂n(X)(k) =
1

n
sup
w

n/2∑
i=1

∥∇f(w, xi)∥k +

n∑
i=n/2+1

∥∇f(w, xi)∥k


⩽
1

n

sup
w

n/2∑
i=1

∥∇f(w, xi)∥k + sup
w

n∑
i=n/2+1

∥∇f(w, xi)∥k
 .

Taking expectations over the random draw of X ∼ Dn and we have ẽ
(k)
n ⩽ ẽ

(k)
n/2. Thus, R̃k,n ⩽

r̃k.

Proof of Theorem 1. Privacy. Since in each epoch of Algorithm 3 we use a disjoint dataset, it is
sufficient for us to show each wi is (ϵ, δ)-DP.

Since the batches Bi
l
i=1 are disjoint, it suffices (by parallel composition in (McSherry, 2009) to show

that wi (produced by Ti iterations of Algorithm 2 in line 6 of Algorithm 3) is ε2

2 -zCDP for all i ∈ [l],
hence by Proposition 1.3 in (Bun & Steinke, 2016), then it is (2ϵ

√
log(1/δ), δ)-DP

13
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With clip threshold Ci and batch size ni, the ℓ2 sensitivity of the clipped subgradient update is
bounded by

∆ = sup
w,x∼x′

∥∥∥∥∥∥ 1

ni

ni∑
j=1

ΠCi
(∇f(w, xj))−ΠCi

(∇f(w, x′
j))

∥∥∥∥∥∥ =
1

ni
sup

w,x,x′
∥ΠCi

(∇f(w, x))−ΠCi
(∇f(w, x′))∥ ≤ 2Ci

ni
.

(4)

Note that the terms arising from regularization cancel out. Thus, by Proposition 1.6 of [2], conditional
on the previous updates w1:i, the (i+1)-st update in line 3 of Algorithm 2 satisfies ε2

2Ti
-zCDP. Hence,

Lemma 2.3 in [2] implies that wi (in line 6 of Algorithm 3) is ε2

2 -zCDP, hence (2ϵ
√
log(1/δ), δ)-DP.

By the assumption that ϵ ⩽
√
log(1/δ), the mechanism is (2ϵ, δ)-DP.

Excess risk: We finish our proof through several parts. We first recall the following lemma.

Lemma 3. [(Feldman & Vondrak, 2019)] Assume diam2(X ) ⩽ D. Let S = (S1, . . . , Sn) where
Sn
1

iid∼ P and f(w, x) is L-Lipschitz and λ-strongly convex for all x ∈ X . Let x̂ = argminx∈X F̄ (w)
be the empirical minimizer. For 0 < β ⩽ 1/n, with probability at least 1− β

F (x̂)− F (x⋆) ⩽
cL2 log(n) log(1/β)

λn
+

cLD
√

log(1/β)√
n

.

Theorem 8. We have the following bound for ∥wT − ŵ∥2 for T iterations:

∥wT − ŵ∥2 ⩽ exp{−ληT

2
} ∥w0 − ŵ∥2 + 8ηr̂2n(x)

λ
+ 8ηλD2 +

20B̂2

λ2
.

Proof. Detailly, ∥∥∥∇̃Fλ (wt)
∥∥∥2 ⩽ 2

(∥∥∥∇F̂λ (wt)
∥∥∥2 + ∥bt∥2

)
⩽ 2

(
2r̂n(X)2 + 2λ2D2 + B̂2

)
,

And also, by Young’s inequality,

|⟨bt, wt − ŵ⟩| ⩽ B̂2

λ
+

λ

4
∥wt − ŵ∥2 .

Set ∇̃Fλ (wt) = ∇F̂λ (wt) + bt = 1
n

∑n
i=1 ΠC (∇f (w, xi)) + λ (w − w0) as the biased, noisy

subgradients of the regularized empirical loss in Algorithm 3 , with Nt ∼ N
(
0, σ2Id

)
and bt =

1
n

∑n
i=1 ΠC (∇f (wt, xi))− 1

n

∑n
i=1 ∇f (wt, xi). Denote yt+1 = wt−η∇̃Fλ (wt), so that wt+1 =

ΠW (yt+1). For now, by strong convexity, we have

F̂λ (wt)− F̂λ(ŵ) ⩽
〈
∇F̂λ (wt) , wt − ŵ

〉
− λ

2
∥wt − ŵ∥2

=
〈
∇̃Fλ (wt) , wt − ŵ

〉
− λ

2
∥wt − ŵ∥2 +

〈
∇F̂λ (wt)− ∇̃Fλ (wt) , wt − ŵ

〉
=

1

2η

(
∥wt − ŵ∥2 + ∥wt − yt+1∥2 − ∥yt+1 − ŵ∥2

)
− λ

2
∥wt − ŵ∥2

+
〈
∇F̂λ (wt)− ∇̃Fλ (wt) , wt − ŵ

〉
=

1

2η

(
∥wt − ŵ∥2 (1− λη)− ∥yt+1 − ŵ∥2

)
+

η

2

∥∥∥∇̃Fλ (wt)
∥∥∥2

+
〈
∇F̂λ (wt)− ∇̃Fλ (wt) , wt − ŵ

〉
⩽

1

2η

(
∥wt − ŵ∥2 (1− λη)− ∥wt+1 − ŵ∥2

)
+

η

2

∥∥∥∇̃Fλ (wt)
∥∥∥2 − ⟨bt, wt − ŵ⟩ ,

14
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where we used non-expansiveness of projection and the definition of ∇̃Fλ (wt) in the last line. Now,
re-arranging this inequality,

∥wt+1 − ŵ∥2 ⩽ ∥wt − ŵ∥2 (1− λη) + η2
∥∥∥∇̃Fλ(wt)

∥∥∥2 − 2η⟨bt, wt − w⟩ − 2η(F̂λ(wt)− F̂λ(ŵ))

⩽ ∥wt − ŵ∥2 (1− λη) + η2
∥∥∥∇̃Fλ(wt)

∥∥∥2 − 2η⟨bt, wt − w⟩

⩽ ∥wt − ŵ∥2 (1− λη

2
) + η2 · 2(2r̂2n(x) + 2λ2D2 + B̂2) +

2ηB̂2

λ

⩽ ∥wt − ŵ∥2 (1− λη

2
) + 4η2(r̂2n(x) + λ2D2 + B̂2) +

2ηB̂2

λ
,

where B̂ is defined as below,

B̂ = sup
t∈T

∥bt∥ ⩽
r̂n(X)(k)

(k − 1)Ck−1
.

Thus, iterating the above equation, we get

∥wT − ŵ∥2 ⩽ (1− λη

2
)T ∥w0 − ŵ∥2 + (4η2(r̂2n(x) + λ2D2 + B̂2) +

2ηB̂2

λ
)

T−1∑
t=1

(1− λη

2
)t

⩽ (1− λη

2
)T ∥w0 − ŵ∥2 + (4η2(r̂2n(x) + λ2D2 + B̂2) +

2ηB̂2

λ
)
2

λη

= (1− λη

2
)T ∥w0 − ŵ∥2 + 8η

λ
(r̂2n(x) + λ2D2 + B̂2) +

4B̂2

λ2

⩽ exp{−ληT

2
} ∥w0 − ŵ∥2 + 8ηr̂2n(x)

λ
+ 8ηλD2 +

8ηB̂2

λ
+

4B̂2

λ2

⩽ exp{−ληT

2
} ∥w0 − ŵ∥2 + 8ηr̂2n(x)

λ
+ 8ηλD2 +

20B̂2

λ2
.

The last inequality holds due to the assumption that η ⩽ 2
λ .

Theorem 9. We have the following bound for f(wl)− f(ŵl):

F (wl)− F (ŵl) ⩽ Õ

(
r̃2k,nl

R̃2k,n

· DLf√
n

)
.

Proof. Firstly, the choise of Di ensures that ŵi ∈ Wi.

Then by the above lemma, and choosing specific Ti,

∥wi − ŵi∥2 ⩽ exp{−λiηiTi

2
} ∥wi−1 − ŵi∥2 +

8ηir̂
2
ni
(Bi)

(2)

λi
+ 8ηiλiD

2
i +

20r̂2ni
(Bi)

(2)

λ2
i (k − 1)Ck−1

i

.

∥wi − ŵi∥2 ≲
ηi
λi

L2
f +

r̃
(2k)
ni

λ2
iC

2k−2
i 4i

≲
η2n

16i4i
(L2

f +
nr̃

(2k)
ni

C2k−2
i 4i

). (5)

15
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Then by setting L = supw∈W ∥∇F (w)∥ ⩽ r. Therefore,

F (wl)− F (ŵl) ⩽
√

∥wl − ŵl∥2

⩽L

√√√√η2l (L
2
f +

ẽ
(2k)
ni

C2k−2
l 4i

)

≲L
η

n2
(Lf +

r̃k2k
Ck−1

l

)

≲L
η

n2
(Lf +

r̃k2k
Ck−1

l

)

⩽L
η

n2

(
Lf + r̃2k(

√
d

ϵ
)

k−1
k

)
.

We know that ξi ∼ N (0, σ2
i ) and ξ is sub-Gaussian, thus, we can derive that

P{∥ξi∥ ⩾ t
√
d} ⩽ 2 exp{− t2

16σ2
i

}.

Here there shall be some confusion about the lower index, where k is equivalent to l as above, not the
original k here. Therefore, with probability 1− β, ∥ξi∥ ⩽ 4

√
dσi log(4/β). Thus, due to the choice

of η, we have

F (wl)− F (ŵl) ⩽4Lf

√
dσl log(4/β) = 4Lf

√
d log(4/β)

8Cl

√
log(1/δ)

nlλlϵ

=32Lf

√
d log(4/β)

Clηln
p−1
l

ϵ

=32Lf

√
d log(4/β)r̃2k,nl

(
ϵnl√

d log(n)

) 1
k
η

4l
np−1

(2l)p−1

1

ϵ

⩽
r̃2k,nl

R̃2k,n

· 32DL log(1/β)
√
n logp+

5
2 n

.

Finally, we reach the upper bound for F (wl)− F (w∗):

Theorem 10. Finally, we reach the upper bound for F (wl)− F (w∗):

F (wl)− F (w∗) ≲ R̃2k,nD(
1√
n
+ (

√
d log n

ϵn
)

k−1
k ) +

D
√
log(1/β)

2p+1
√
n

.

Proof. Rewrite this term into summation of their differences,

F (wl)− F (w∗) =

l∑
i=1

[f(ŵi)− f(ŵi−1)] + [f(wl)− f(ŵl)],

By lemma 3,

F (ŵi)− F (ŵi−1) ⩽
cL2 log ni log (2/β)

λini
+

cLDi

√
log(2/β)

√
ni

+
λi

2
∥wi−1 − ŵi−1∥2 .

For ∥wi − ŵi∥2 ⩽ ηi

λi
L2
f +

r̃(2k)
ni

λ2
iC

2k−2
i 4i

⩽ O

(
η2n
16i4i (L

2
f +

nr̃(2k)
ni

C2k−2
i 4i

)

)
, then summing over i from 1

to l, we have with probability at least 1− β, for some constant C0

16
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f(wl)− f(w∗)

⩽C0

l∑
i=1

{
λi ∥ŵi−1 − wi−1∥2 +

cL2
f log ni log(1/β)

λini
+

cLfDi

√
log(1/β)

√
ni

}

⩽λ1 ∥ŵ0 − w0∥2 +
l∑

i=2

λi ∥ŵi−1 − wi−1∥2 +
l∑

i=1

L2
f log ni log(1/β)

λini
+

l∑
i=1

LfDi

√
log(1/β)

√
ni

⩽
D2

ηn2p
+

l∑
i=2

λi

[
η2i n

p
iL

2
f +

η2i n
2p
i ẽ

(2k)
ni

C2k−2
i

]
+

l∑
i=1

L2
f (log n− log 2i) log(1/β)

ni
ηin

p
i +

l∑
i=1

L2
fηin

p− 1
2

i

√
log(1/β)

⩽
D2

ηn2p
+

l∑
i=2

[
η2iL

2
f +

ηin
p
i ẽ

(2k)
ni

C2k−2
i

]
+

l∑
i=1

L2
fηin

p−1
i (log n− log 2i) log(1/β) +

l∑
i=1

L2
fηin

p− 1
2

i

√
log(1/β)

⩽
D2

ηn2p
+ η

(
L2
f + R̃2k,nn

p(
d log n

ϵ2n2
)

k−1
k

)
+ L2

fηn
p−1 log(1/β)

l∑
i=1

(log n− i)

4i · (2p−1)i
+ L2

fηn
p− 1

2

√
log(1/β)

l∑
i=1

(
1

2p+
3
2

)i

⩽
D2

ηn2p
+ η

(
L2
f + R̃2k,nn

p(
d log n

ϵ2n2
)

k−1
k

)
+L2

fηn
p−1 log(1/β)

(
log n

2p+1
+

1

2p+1 logp n

)
+ L2

fηn
p− 1

2

√
log(1/β)

1− 1

np+3
2

2p+
3
2 − 1

⩽
D2

ηn2p
+ η(L2

f + R̃2k,nn
p(
d log n

ϵ2n2
)

k−1
k ) + L2

fηn
p−1 log(1/β) log n · 2−(p+1) + L2

fηn
p− 1

2

√
log(1/β) · 2−(p+ 3

2 ).

Assume that ∃p s.t. Lf ⩽ O

(
np/2R̃2k,n(

1√
n
+ (

√
d log n

ϵn )
k−1
k )

)
and take η =

D

n
p
2
min{ 1

Lf
, 1

R̃2k,nn
p+1
2

( ϵn√
d log n

)
k−1
k , 1

n
p−1
2 L2

f

√
log n log(1/β)

}, then the above can be reduced to

f(wl)− f(w∗) ⩽ O

(
R̃2k,nD(

1√
n
+ (

√
d log n

ϵn
)

k−1
k ) +

D
√
log(1/β)

2p+1
√
n

)
,

which holds with probability at least 1− β.

Proof of Thorem 2.

Theorem 11. Assume that loss function F (·) is (θ, λ)-TNC and f(·, x) is convex, α-smooth and
Lf -Lipschitz for each x. Then algorithm 4 is (ϵ, δ)-DP based on different stepsizes {γk}mk=1 and
noises if γk ⩽ 1

α . Then for sufficiently large n and (ϵ, δ)-DP, with probability at least 1− β, we have

F (ŵm)−F (w∗) ⩽ O

 1

λ
1

θ−1

·

R̃2k,n(

√
log n
√
n

+


√

d log3 n

ϵn


k−1
k

) +

√
log n log(1/β)

2p+1
√
n


θ

θ−1

 .

Proof. The guarantee of (ϵ, δ)-DP is just followed by Theorem 1.

For simplicity, we denote a(n) = O

(
R̃2k,n(

1√
n
+ (

√
d log n

ϵn )
k−1
k ) +

√
log(1/β)

2p+1
√
n

)
. We set µ0 =

2R1−θ
0 a (n0) , µk = 2(θ−1)kµ0 and Rk = R0

2k
, where k = 1, · · · ,m.
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Then we have µk · Rθ
k = 2−kµ0R

θ
0. We can also assume that λ ⩽ L

Rθ−1
0

, otherwise we can set

λ = L

Rθ−1
0

, which makes TNC still hold. Recall that m =
⌊
1
2 log2

2n
log2 n

⌋
− 1, when n ≥ 256, it

follows that
0 <

1

2
log2

2n

log2 n
− 2 ⩽ m ⩽

1

2
log2

2n

log2 n
− 1 ⩽

1

2
log2 n.

Thus, we have 2m ≥ 1
4

√
2n

log2 n .(if we pick specific m such that 2m ≥ 1
4

√
2n

log2 n · 1

log n0

√
log(1/β)

)

Thus
µm = 2(θ−1)mµ0 ≥ 2mµ0

≥ 1

4

√
2n

log2 n

1

log n0

√
log(1/β)

· 2 ·R1−θ
0 a (n0)

=
5 ·R1−θ

0

log n0

√
log(1/β)

√
2n

log2 n

(
R̃2k,n0

(
1

√
n0

+ (

√
d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1
√
n0

)

≥ 5 · R̃2k,n0R
1−θ
0

√
2n

log2 n

 1√
2n

log2 2n−log2 log2 n−4


= 5 · R̃2k,n0

R1−θ
0

√
log2 2n− log2 log2 n− 4

log2 n
· log n0

√
log(1/β)

≥ R̃2k,n0R
1−θ
0

(
Since 5 ·

√
log2 2n− log2 log2 n− 4

log2 n
≥ 1 when n ≥ 256

)
≥ λ( By assumption ).

where the third inequality is given by throwing away the (

√
d log n0

ϵn0
)

k−1
k and

√
log(1/β)

2p+1
√
n0

term and
substituting m in term 1√

n
m

with 1
2 log2

2n
log2 n − 2. Below, we consider the following two cases.

Case 1 If λ ≥ µ0, then µ0 ⩽ λ ⩽ µm. We have the following lemma.

Lemma 4. Let k∗ satisfies µk∗ ⩽ λ ⩽ 2θ−1µk∗ , then for any 1 ⩽ k ⩽ k∗, the points {ŵk}mk=1
generated by Algorithm 4 satisfy

∥ŵk−1 − w∗∥2 ⩽ Rk−1 = 2−(k−1) ·R0, (6)

F (ŵk)− F (w∗) ⩽ µkR
θ
k = 2−kµ0R

θ
0. (7)

Moreover, for k ≥ k∗, we have
F (ŵk)− F (ŵk∗) ⩽ µk∗Rθ

k∗ . (8)

Proof. We prove (6), (7) by induction. Note that (6) holds for k = 1. Assume (6) is true for some
k > 1, then we have

F (ŵk)− F (w∗) ⩽ Rk−1 ·

(
R̃2k,n0

(
1

√
n0

+ (

√
d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1
√
n0

)
= Rk−1a (n0)

=
1

2
µk2

(1−θ)kRθ−1
0 Rk−1

= µkR
θ
k

Which is (7). By the definition of TNC, we have

∥ŵk − w∗∥θ2 ⩽
1

λ
(F (ŵk)− F (w∗))

⩽
F (ŵk)− F (w∗)

µk∗

⩽
µkR

θ
k

µk∗
⩽ Rθ

k
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Thus (6) is true for k + 1. Now we prove (8). Referring to Theorem 1 , we know that

F (ŵk)− F (ŵk−1) ⩽ Rk−1 · a (n0)

= 2k
∗−kRk∗−1a (n0)

= 2k
∗−kµk∗Rθ

k∗

= µkR
θ
k

Thus, for k > k∗,

F (ŵk)− F (ŵk∗) =

k∑
j=k∗+1

(F (ŵj)− F (ŵj−1))

⩽
k∑

j=k∗+1

2k
∗−jµk∗Rθ

k∗

=
(
1− 2k

∗−k
)
µk∗Rθ

k∗

⩽ µk∗Rθ
k∗

Here completes the proof of the lemma. Now we proceed to prove Theorem 1 in this case.

F (ŵm)− F (w∗) = (F (ŵm)− F (ŵk∗)) + (F (ŵk∗)− F (w∗))

⩽ 2µk∗Rθ
k∗

⩽ 4
(µk∗

λ

) 1
θ−1

µk∗Rθ
k∗

(
Since

(µk∗

λ

) 1
θ−1 ≥ 1

2

)

= 4

(
2(θ−1)k∗

µ0

λ

) 1
θ−1

µk∗Rθ
k∗

= 4

(
2k

∗
µk∗Rθ

k∗µ
1

θ−1

0

(
1

λ

) 1
θ−1

)

= 4

(
µ0R

θ
0µ

1
θ−1

0

(
1

λ

) 1
θ−1

)

= 4

(
Rθ

0µ
θ

θ−1

0

(
1

λ

) 1
θ−1

)

= 4 ·

(
(2 · a (n0))

θ
θ−1

(
1

λ

) 1
θ−1

)

= 4 ·
(
1

λ

) 1
θ−1

· 2

(
R̃2k,n0(

1
√
n0

+ (

√
d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1
√
n0

) θ
θ−1

where m = O (log2 n) ( Recall that m ⩽ 1
2 log2 n).

Case 2 If λ < µ0, then

F (ŵ1)− F (w∗) ⩽ R0a (n0)

=

(
2

µ0

) 1
θ−1

· a (n0)
θ

θ−1

<

(
2

λ

) 1
θ−1

· a (n0)
θ

θ−1
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Also, we have

F (ŵm)− F (ŵ1) =

m∑
j=2

(F (ŵj)− F (ŵj−1))

⩽
m∑
j=2

Rj−1 · a (n0)

=

m∑
j=2

2−(j−1)R0 · a (n0)

=
(
1− (1/2)m−1

)
R0 · a (n0) < R0 · a (n0)

By a similar argument process as in Case 1, we have

F (ŵm)− F (w∗) = (F (ŵm)− F (ŵ1)) + (F (ŵ1)− F (w∗))

⩽ 2R0a (n0) ⩽ 2

(
2

λ

) 1
θ−1

· a (n0)
θ

θ−1

= 2 ·
(
2

λ

) 1
θ−1

·

(
R̃2k,n0

(
1

√
n0

+ (

√
d log n0

ϵn0
)

k−1
k ) +

√
log(1/β)

2p+1
√
n0

) θ
θ−1

Combining the two cases, we conclude that with probability at least 1− β,

F (ŵm)−F (w∗) ⩽ O

 1

λ
1

θ−1

·

R̃2k,n(

√
log n
√
n

+


√

d log3 n

ϵn


k−1
k

) +

√
log n log(1/β)

2p+1
√
n


θ

θ−1

 .

Proof of Theorem 3. Proof. The guarantee of (ϵ, δ)-DP is just followed by Theorem 1 and the
parallel theorem of Differential Privacy. In the following we focus on the utility.

Since k = ⌊(log logθ̄ 2) · log log n⌋, then k ⩽ (logθ̄ 2) · log log n, namely 2k ⩽ (log n)log 2 and
2k−1

(logn)
log

θ2
⩽ 1. Observe that the total sample number used in the algorithm is

∑k
i=1 ni ⩽∑k

i=1
2i−1n

(logn)logθ̄ 2 =
(2k−1)n

(logn)logθ̄ 2 ⩽ n.

For the output of phase i, denote ∆i = F (wi)−F (w∗), and let Dθ
i = ∥wi − w∗∥θ2. The assumption

of TNC implies that F (wi)−F (w∗) ≥ λ ∥wi − w∗∥θ2, which is F (wi)−F (w∗) ≥ λ ∥wi − w∗∥θ2
when we take expectations at both sides, namely

∆i ≥ λDθ
i . (9)

Thus, we have

∆i ⩽ cR̃2k,nDi−1(
1

√
ni

+ (

√
d log ni

ϵni
)

k−1
k ) +

cDi−1

√
log(1/β)

2p+1
√
ni

(9)

⩽

(
∆i−1

λ

) 1
θ

(
cR̃2k,n(

1
√
ni

+ (

√
d log ni

ϵni
)

k−1
k ) +

c
√

log(1/β)

2p+1
√
ni

)
,

(10)

where the first inequality comes from Theorem 1 and the second inequality uses (9). Denote

Ei =
cθ

λ

(
R̃2k,n(

1√
ni

+ (

√
d log ni

ϵni
)

k−1
k ) +

√
log(1/β)

2p+1
√
ni

)θ

. Then (10) can be simplified as

∆i ⩽ (∆i−1Ei)
1
θ . (11)
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Notice that ni/ni−1 = 2, then Ei−1

Ei
⩽
(

ni

ni−1

)θ
= 2θ, namely:

Ei ≥ 2−θEi−1. (12)

Then we can rearrange the above inequality as

∆i

E
1

θ−1

i

⩽
(∆i−1Ei)

1
θ

E
1

θ−1

i

⩽ 2
1

θ−1

∆i−1

E
1

θ−1

i−1

 1
θ

, (13)

where the first inequality uses (11) and the second inequality applies (12).

It can be verified that (13) is equivalent to

∆i

2
θ

(θ−1)2 E
1

θ−1

i

⩽

 ∆i−1

2
θ

(θ−1)2 E
1

θ−1

i−1

 1
θ

⩽

 ∆1

2
θ

(θ−1)2 E
1

θ−1

1

 1

θi−1

.

According to Lemma 1, ∆1 ⩽
(
Lθλ−1

) 1
θ−1 . Also observe that

E1 =
cθ

λ

(
R̃2k,n(

1
√
n1

+ (

√
d log n1

ϵn1
)

k−1
k ) +

√
log(1/β)

2p+1
√
n1

)θ

≥
cθR̃θ

2k,n

λ

1(√
n1

)θ ≥
cθR̃θ

2k,n

λ

1

nθ
.

Let c1 = c
θ

θ−1 2
θ

(θ−1)2 , then ∆1

2
θ

(θ−1)2 E
1

θ−1
1

⩽ n
θ

θ−1

c1
, which implies that for l = ⌊(logθ̄ 2) · log log n⌋,

∆l

2
θ

(θ−1)2 E
1

θ−1

l

⩽

(
n

θ
θ−1

c1

) 1

θl−1

.

Let C1 = 2
θ3

θ−1+θ2|log c1|. In the following we prove that(
n

θ
θ−1

c1

) 1

θl−1

⩽ C1.

Since l + 1 ≥ (logθ̄ 2) log log n ≥ (logθ 2) log log n, it follows that

(l − 1) log θ + log logC1 ≥ log

(
θ

θ − 1
+ |log c1|

)
+ log log n,

which indicates (
θ

θ − 1
+ |log c1|

)
log n ⩽ θl−1 logC1.

Thus we have θ
θ−1 log n− log c1 ⩽ θl−1 logC1, which is equivalent to our object

(
n

θ
θ−1

c1

) 1

θk−1

⩽

C1. Now we know

∆l

2
θ2

(θ−1)2 E
1

θ−1

l

⩽

(
n

θ
θ−1

c1

) 1

θl−1

⩽ C1,

which indicates that ∆l

E
θ

θ−1
l

⩽ 2
θ

(θ−1)2 C1 = 2
θ2

(
θ2−θ+1

(θ−1)2
+|log c1|

)
:= C. As a result, we hold a

solution with error:

F (wl)− F (w∗) ⩽ CE
1

θ−1

l = C

(
cθ

λ

) 1
θ−1

(
R̃2k,n(

1
√
nl

+ (

√
d log nl

ϵnl
)

k−1
k ) +

√
log(1/β)

2p+1
√
nl

) θ
θ−1

21



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Proof of Theorem 4. We first define the set of distributions {Qv}v∈V . Specifically, by the standard
Gilbert-Varshamov bound, there exists a set V ⊂ {±}d such that: (1) |V| ≥ 2

d
20 , (2) for all v, v′ ∈ V ,

dham(v, v′) ≥ d
8 Acharya et al. (2021). For each v ∈ V , we define Qv as

Xv =

{
0, with probability 1− p

p−
1
k

r̃k
2
√
d
v, with probability p

(14)

We can see that for each Xv ∼ Qv , we always have ∥µv = E[Xv]∥2 = p
k−1
k

r̃k
2 = µ.

We then consider the loss function f(w, x) = −⟨w, x⟩ + 1
θ∥w∥

θ
2, i.e., FP (w) = −⟨w,EP [x]⟩ +

1
θ∥w∥

θ
2 for distribution P . By Ramdas & Singh (2012) we know it satisfies (θ, 1)-TNC when θ ≥ 2.

Moreover, for each Qv we have

E[ sup
w∈W

∥∇f(w, x)∥k2 ] = E[ sup
w∈W

∥∥w∥θ−2
2 w − x∥k2 ] ⩽ E[∥2x∥k2 ] = r̃kk = r̃(k), (15)

where the first inequality is due to the radius of W is (p
− 1

k r̃k
2 )

1
θ−1 . Thus we can see FP (w) satisfies

Assumption 1. For convenience we denote FQv
(w) = Fv(w).

By the form the Fv(w) we can also see that

∇Fv(w
∗) = 0 ≡ ∥w∗∥θ−2

2 w∗ = µv. (16)

Thus the optimal solution w∗
v = µv

µ
θ−2
θ−1

∈ W by our assumption on n and thus p ⩽ 1. In total we have

M(W,P,Fθ
k (P, r̃k), ρ) ≥ inf

A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
[Fv(A(D))− min

w∈W
Fv(w)], (17)

≥ inf
A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
∥A(D)− w∗

v∥θ2 = inf
A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
∥A(D)− µv

µ
θ−2
θ−1

∥θ2.

(18)

Next, we recall the following private Fano’s lemma:

Lemma 5. [Theorem 1.4 in Kamath et al. (2021)] Let P be a class of distributions over a data
universe X . For each distribution p ∈ T , there is a deterministic function θ(p) ∈ T , where T is the
parameter space. Let ρ : T ×T :7→ R+ be a semi-metric function on the space T and Φ : R+ 7→ R+

be a non-decreasing function with Φ(0) = 0. We further assume that X = {Xi}ni=1 are n i.i.d
observations drawn according to some distribution p ∈ P , and Q : Xn 7→ Θ be some algorithm
whose output Q(X) is an estimator. Consider a set of distributions V = {p1, p2, · · · , pM} ⊆ P such
that for all i ̸= j,

• Φ(ρ(θ(pi), θ(pj)) ≥ α,

• DKL(pi, pj) ⩽ β, where DKL is the KL-divergence,

• DTV (pi, pj) ⩽ γ,

then we have for any ρ-zCDP mechanism Q.

1

M

∑
i∈[M ]

EX∼pn
i ,Q

[Φ(ρ(Q(X), θ(pi))] ≥
α

2
max{1− nβ + log 2

logM
, 1− ρ(n2γ2 + nγ(1− γ)) + log 2

logM
}.

Now we will leverage the above lemma to lower bound equation 18. We can see in our set of
probabilities {Qv}v∈V , for any v, v′ ∈ V we have DTV (Qv, Qv′) ⩽ p. And

∥ µv

µ
θ−2
θ−1

− µv′

µ
θ−2
θ−1

∥θ2 =
1

µ
θ(θ−2)
θ−1

∥p
k−1
k

r̃k

2
√
d
(v − v′)∥θ2 ≥ C

p
θ(k−1)

k

µ
θ(θ−2)
θ−1

r̃θk = Ω(r̃
θ

θ−1

k p
k−1
k

θ
θ−1 ). (19)
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Taking p =
√
d

n
√
ρ and by Lemma 5 we have

inf
A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
∥A(D)− µv

µ
θ−2
θ−1

∥θ2 ≥ Ω

(
(r̃k(

√
d

n
√
ρ
)

k−1
k )

θ
θ−1

)
. (20)

Proof of Theorem 5. The lower bound for non-private case follows the proof in Asi et al. (2021a).
Here we extend to the heavy-tailed case. For the index set V we consider the same one as in the proof
of Theorem 4. For each v ∈ V we define X ∼ Pv as

for j ∈ [d], Xj =

{
vjej

r̃k
2
√
d
, with probability 1+δ

2 ,

−vjej
r̃k
2
√
d
, with probability 1−δ

2 .
(21)

We can see that for each Xv ∼ Qv , we always have ∥µv = E[Xv]∥2 = δ r̃k
2 = µ.

We then consider the loss function f(w, x) = −⟨w, x⟩ + 1
θ∥w∥

θ
2, i.e., FP (w) = −⟨w,EP [x]⟩ +

1
θ∥w∥

θ
2 for distribution P . By Ramdas & Singh (2012) we know it satisfies (θ, 1)-TNC when θ ≥ 2.

Moreover, for each Qv we have

E[ sup
w∈W

∥∇f(w, x)∥k2 ] = E[ sup
w∈W

∥∥w∥θ−2
2 w − x∥k2 ] ⩽ E[∥2x∥k2 ] = r̃kk = r̃(k), (22)

where the first inequality is due to the radius of W is ( r̃k2 )
1

θ−1 . Thus we can see FP (w) satisfies
Assumption 1. For convenience we denote FQv

(w) = Fv(w).

By the form the Fv(w) we can also see that

∇Fv(w
∗) = 0 ≡ ∥w∗∥θ−2

2 w∗ = µv. (23)
Thus the optimal solution w∗

v = µv

µ
θ−2
θ−1

∈ W by our assumption on n and thus p ⩽ 1. In total we have

M(W,P,Fθ
k (P, r̃k), ρ) ≥ inf

A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
[Fv(A(D))− min

w∈W
Fv(w)], (24)

≥ inf
A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
∥A(D)− w∗

v∥θ2 = inf
A∈Q(ρ)

1

|V|
∑
v∈V

EA,D∈Qn
v
∥A(D)− µv

µ
θ−2
θ−1

∥θ2.

(25)

We can see in our set of probabilities {Qv}v∈V , for any v, v′ ∈ V we have DKL(Qv, Qv′) ⩽ δ2.
And

∥ µv

µ
θ−2
θ−1

− µv′

µ
θ−2
θ−1

∥θ2 =
1

µ
θ(θ−2)
θ−1

∥ δr̃k

2
√
d
(v − v′)∥θ2 ≥ C

δθ

µ
θ(θ−2)
θ−1

r̃θk = Ω(r̃
θ

θ−1

k δ
θ

θ−1 ). (26)

Thus by Fano’s lemma or Lemma 5, taking δ =
√

d
n we have the result.

Proof of Theorem 6. Proof of Privacy. We first recall the following lemma:

Lemma 6. (Feldman et al., 2022) For a domain D, let R(i) : f ×D → S(i) for i ∈ [n] be a sequence
of algorithms such that R(i)(z1:i−1, ·) is a (ϵ0, δ0)-DP local randomizer for all values of auxiliary
inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let AS : Dn → S(1) × · · · × S(n) be the algorithm that
given a dataset x1:n∈Dn , sample a uniformly random permutation π, then sequentially computes
zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n], and the outputs z1:n. Then for any δ ∈ [0, 1] such that ϵ0 ⩽

log
(

n
16 log(2/δ)

)
, AS is (ϵ, δ +O(eϵδ0n))-DP where ϵ = O

(
(1− e−ϵ0) · (

√
eϵ0 log(1/δ)√

n
+ eϵ0

n )

)
.

We know that for each x ∈ Bt, we have R(ΠC(∇f(w, x))) = ΠC(∇f(w, x)) + ζx, with

ζx ∼ N (0, σ2
1) and σ2

1 =
8C2 log 1

δ0

ϵ20
) is an (ϵ0, δ0)-LDP randomizer. As we randomly shuf-

fled the data in the beginning, thus, the algorithm will be (ϵ̂, δ̂ + O(eϵ̂δ0n))-DP where ϵ̂ =

O

(
(1− e−ϵ0) · (

√
eϵ0 log(1/δ̂)√

n
+ eϵ0

n )

)
.
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Now, assume that ϵ0 ⩽ 1
2 , then ∃c1 > 0, s.t.,

ϵ̂ ⩽ c1(1− e−ϵ0) ·


√
eϵ0 log(1/δ̂)

√
n

+
eϵ0

n


⩽ c1 ·

(eϵ0/2 − e−ϵ0/2) ·

√
log(1/δ̂)

n
+

eϵ0 − 1

n


⩽ c1 ·

((1 + ϵ0)− (1− ϵ0
2
)
)
·

√
log(1/δ̂)

n
+

(1 + 2ϵ0)− 1

n


= c1 · ϵ0 ·

3

2

√
log(1/δ̂)

n
+

2

n

 .

Set δ̂ = δ
2 , δ0 = c2 · δ

eϵ̂n
for some constant c2 > 0 and replace ϵ0 =

2
√
2C

√
log 1

δ0

σ1
):

ϵ̂ ⩽ c1 ·
2
√
2C
√
log 1

δ0

σ1
) ·

3

2

√
log(1/δ̂)

n
+

2

n


⩽ O

(
C ·
√

log(1/δ) log(eϵ̂n/δ)

σ1
√
n

)
.

For any ϵ ⩽ 1, if we set σ = O

(
C·
√

log(1/δ) log(eϵ̂n/δ)

ϵ
√
n

)
, then we have ϵ̂ ⩽ ϵ. Furthermore, we

need ϵ0 =
2
√
2C

√
log 1

δ0

σ1
) ⩽ 1

2 , which would be ensured if we set ϵ = O

(√
log(n/δ)

n

)
. This

implies that for σ1 = O

(
C·
√

log(1/δ) log(eϵ̂n/δ)

ϵ
√
n

)
, algorithm 6 satisfies (ϵ, δ)-DP as long as ϵ =

O

(√
log(n/δ)

n

)
if releasing R(ΠC(∇f(w, x))) for all x. Thus in step 6 we can see ∇̃Ft

(
wmd

t

)
=

T
n

∑
x∈Bt

(R(ΠC(∇f(wmd
t , x))) is (ϵ, δ)-DP for each t. And since {Bt} are disjoint, Algorithm 6

is (ϵ, δ)-DP.

Lemma 7. (Barber & Duchi, 2014) Let {zi}si=1 ∼ Ds be Rd-valued random vectors with Ezi = ν

and E ∥zi∥k ⩽ r(k) for some k ⩾ 2. Denote the noiseless average of clipped samples by ν̂ :=

1
s

s∑
i=1

∏
C(zi) and ν̃ := ν̂ + N . Then, ∥Eν̃ − ν∥ = ∥Eν̂ − ν∥ ⩽ E∥ν̂ − ν∥ ⩽ r(k)

(k−1)Ck−1 , and

E∥ν̃ − Eν̃∥2 = E∥ν̃ − Eν̂∥2 ⩽ dσ2 + r(2)

s .

claim: we can improve the noise to Σ2 := supt∈[T ] E[∥Nt∥2] ⩽ dσ2 + r2T
n ≈ dC2T

ϵ2n2 + r2T
n .

Excess risk: Consider round t ∈ [T ] of Algorithm 6, where Algorithm 1 is run on input data
{∇f (wt, x

t
i)}

n/T
i=1 . Denote the bias of Algorithm 1 by bt := E∇̃Ft (wt) − ∇F (wt), where

∇̃Ft (wt) = ν̃ in the notation of Algorithm 1. Also let ∇̂Ft (wt) := µ̂ (in the notation of Lemma
7) and denote the noise by Nt = ∇̃Ft (wt) − ∇F (wt) − bt = ∇̃Ft (wt) − E∇̃Ft (wt). Then
we have B := supt∈[T ] ∥bt∥ ⩽ r(k)

(k−1)Ck−1 and Σ2 := supt∈[T ] E
[
∥Nt∥2

]
⩽ dσ2 + r2T

n ⩽

O
(

dC2T
ϵ2n2 + r2T

n

)
, by Lemma 5. Plugging these estimates for B and Σ2 into Proposition 40 of (Lowy
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& Razaviyayn, 2023) and setting C = r

(
ϵn√

d log(1/δ)

)1/k

, we get

EF (wag
T )− F ∗ ⩽ O

(
βD2

T 2
+

D(Σ +B)√
T

+BD

)
⩽ O

(
βD2

T 2
+

CD
√

d log(1/δ)

ϵn
+

rD√
n
+

r(k)D

Ck−1

)

⩽ O

βD2

T 2
+ rD

 1√
n
+

(√
d log(1/δ)

ϵn

)(k−1)/k
 .

Now, our choice of T

T = min{
√

βD

r
·

(
ϵn√

d log(1/δ)

) k−1
2k

,

√
βD

r
· n1/4},

implies that βD2

T 2 ⩽ rD

[
1√
n
+

(√
d log(1/δ)

ϵn

)(k−1)/k
]

and we get the result upon plugging in

T .

Proof of Theorem 7. Similar to the proof of Theorem 3.
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