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Abstract

This paper presents a pioneering exploration of reinforcement learning (RL) via
group relative policy optimization for unified multimodal large language mod-
els (ULMs), aimed at simultaneously reinforcing generation and understanding
capabilities. Through systematic pilot studies, we uncover the significant poten-
tial of ULMs to enable the synergistic co-evolution of dual capabilities within
a shared policy optimization framework. Building on this insight, we introduce
CoRL, a Co-Reinforcement Learning framework comprising a unified RL stage
for joint optimization and a refined RL stage for task-specific enhancement. With
the proposed CoRL, our resulting model, ULM-R1, achieves average improve-
ments of 7% on three text-to-image generation datasets and 23% on nine multi-
modal understanding benchmarks. These results demonstrate the effectiveness
of CoRL and highlight the substantial benefits of reinforcement learning in fa-
cilitating cross-task synergy and optimization for ULMs. Code is available at
https://github.com/mm-vl/ULM-R1.

1 Introduction

As large foundation models (LFMs) continue to advance in their general capabilities and breadth
of knowledge, post-training [30, 46, 70, 73, 108] has emerged as a critical paradigm for further
refining pretrained LFMs toward specialized applications, thereby facilitating task adaptation and
human-aligned behaviors. Recently, reinforcement learning (RL)-based approaches [51, 52, 59, 64,
69, 72, 95] have exhibited considerable promise due to their data efficiency and strong alignment
abilities. A notable exemplar is DeepSeek-R1 [19], which demonstrates that RL with verifiable
rewards and the group relative policy optimization (GRPO) algorithm constitutes a practical and
stable strategy that sidesteps explicit preference modeling [77] and reward model learning [83]. This
promising paradigm indicates the significant potential of LFMs to acquire advanced capabilities and
generalize effectively without dependence on large-scale, high-quality supervised data.

In the multimodal AI research community, the prevailing implementation [9, 24, 40, 41, 53, 69, 100,
101] of the GRPO algorithm centers on crafting diverse rule-based reward mechanisms to incentivize
long-chain reasoning capabilities of multimodal large language models (MLLMs). These initiatives
primarily target multimodal understanding, with a particular focus on visual and mathematical
reasoning tasks. Conversely, its application to visual generation remains surprisingly limited, with
only pioneering explorations [25, 79] suggesting its feasibility. More importantly, extending GRPO
to unified MLLMs (ULMs) [8, 39, 88, 90] capable of concurrently performing visual understanding
and generation tasks remains considerably under-explored. Intuitively, ULMs could significantly
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benefit from GRPO owing to their inherent advantages of cross-task synergy and LLM sharing, which
enables ULMs to share reward signals across various tasks and effectively mitigate reward imbalance,
particularly as GRPO operates by jointly ranking outputs within task-agnostic groups.

This paper aims to enhance the understanding and generation capabilities of ULMs without relying on
supervised data. We begin with a set of pilot experiments to explore efficient reinforcement learning
paradigms. Specifically, we systematically examine four rule-based training strategies: (i) separate
RL for individual tasks, (ii) separate RL with weight merging, (iii) cycle RL alternating between
tasks, and (iv) unified RL with joint optimization. Our explorations reveal two critical findings. First,
direct task-specific RL fails to achieve the anticipated improvements, particularly in visual generation,
and even impairs other abilities. Second, compared with alternative strategies, unified RL showcases
comprehensive advantages across tasks. These results demonstrate the synergistic co-evolution of
dual capabilities under a shared policy optimization paradigm.

In light of our preliminary findings, we propose CoRL, a co-reinforcement learning framework de-
signed to synergistically improve the understanding and generation capabilities of ULMs. Specifically,
CoRL follows a Foundation-then-Specialization paradigm and is implemented through a two-stage
RL procedure: a unified RL stage for joint optimization of dual capabilities and a refined RL stage
for task-specific enhancement. In the first stage, the policy ULM is optimized through a unified
GRPO algorithm with diverse rewards on a carefully curated dataset spanning both understanding
and generation tasks. To effectively guide policy optimization in visual generation, we introduce a
bidirectional cycle consistency reward and a text-image matching reward, which together promote
semantic consistency and faithfulness between synthesized images and their corresponding prompts.
The designed rewards complement typical multimodal understanding rewards (i.e., accuracy and
format) within a unified group, enabling cross-task joint optimization. In the subsequent stage,
we independently reinforce the policy’s understanding and generation capabilities using respective
rewards and tailored datasets for task-specific refinement.

Applying the two-stage CoRL procedure to the baseline ULM Janus-Pro [8] yields ULM-R1, a
unified model with reinforced capabilities in both understanding and generation. To comprehensively
assess its performance, we conduct extensive comparisons against state-of-the-art unified MLLMs and
dedicated models across both three visual generation and nine multimodal understanding benchmarks.
Notably, ULM-R1 achieves substantial gains over its baseline on complex mathematical and logical
reasoning tasks, such as WeMath (+15.2) and LogicVista (+10.6). These results underscore the
effectiveness of CoRL, providing compelling empirical evidence for the efficacy of RL in jointly
advancing visual understanding and generation tasks.

We summarize our main contributions as follows:

• We establish that RL with verifiable rewards and GRPO constitutes a data-efficient paradigm for
cross-task co-optimization and capability enhancement.

• We introduce a co-reinforcement learning framework, CoRL, to synergistically enhance the dual
capabilities of ULMs using a unified-then-refined RL paradigm.

• We demonstrate the effectiveness of CoRL and the advantage of ULM-R1 through extensive
qualitative and quantitative experiments across diverse benchmarks.

2 Related Work

Unified Multimodal Understanding and Generation. Recent advancements [8, 39, 67, 71, 76, 82,
86–88, 90, 91, 107] have witnessed increasing attention to jointly model multimodal understanding
and visual generation within a unified model. Pioneering attempts [12, 17] predominantly rely on
continuous diffusion models, integrating external diffusion decoders for image synthesis. Inspired by
autoregressive next-token prediction, a growing line of research [8, 31, 39, 47, 57, 71, 82, 85–88, 111]
encode visual inputs into discrete tokens and generate images in a fully autoregressive (F-AR) manner.
Specifically, this approach employs a vector quantized (VQ) tokenizer [14, 93] to convert images into
discrete tokens, analogous to text tokenization. To mitigate information loss in VQ discretization,
another stream of work [4, 16, 23, 29, 48, 65, 74, 76, 90, 92] explores autoregressive and diffusion
(AR-Diff) hybrid modeling approaches. Architecturally, these models typically comprise a vision
autoencoder, a text tokenizer, and an LLM. Given the unified advantage of the F-AR model in
generation manner, this work builds upon it to develop our co-reinforcement learning framework.
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RL-based Post-Training for MLLMs. Post-training [108] aims to further enhance the performance
of pretrained models for customized applications and user needs. Recently, RL [78, 84] has emerged
as a powerful post-training technique, enabling models to learn from feedback and align with human
values. RL in MLLMs can be broadly categorized into two paradigms: (1) RL from human/AI
feedback (RLHF) [34, 54, 61, 68, 77, 81–83, 92, 95, 96, 99, 106, 109] and (2) RL with verifiable
reward mechanisms [35, 40, 41, 69, 79, 100]. RLHF involves learning reward models from preference
data before RL optimization, whereas the latter directly optimizes models using task-specific reward
functions, bypassing explicit preference modeling. For example, DPO [59] is a notable implementa-
tion of RLHF and has been adopted by Emu3 [82] and HermesFlow [92] to narrow the performance
gap between understanding and generation. In contrast, GRPO [64] exemplifies the second paradigm,
simplifying reward formulation via group-wise relative advantage estimation. Our work also falls
into this paradigm but diverges from prior work such as SimpleAR [79], which utilizes GRPO with
external CLIP reward for autoregressive visual generation, and R1-like MLLMs [24, 41, 69, 100] that
focus on incentivizing reasoning capabilities. First, our work demonstrates the significant potential
of RL in co-optimizing understanding and generation, thereby broadening its applicability beyond
reasoning. Moreover, we identify semantic consistency rewards and a co-evolutionary reinforcement
strategy as crucial components in enhancing ULMs.

3 Methodology

3.1 Preliminary

Group relative policy optimization (GRPO) [64] is a value-free policy optimization algorithm with
improved training stability and sample efficiency. Building upon PPO [62], GRPO introduces a group-
wise relative advantage approach to bound policy updates while maintaining optimization flexibility.
Let πθ denote a policy parameterized by θ. Formally, given an input content c, the algorithm first
samples a group of G outputs {o1, o2, . . . , oG} from the current policy πθold

. Each output is then
evaluated using predefined, verifiable reward functions, yielding the reward set {r1, r2, . . . , rG}.
These rewards are subsequently normalized to compute group-relative advantages as follows:

Ai =
ri −mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
. (1)

After obtaining the advantage set {A1, A2, . . . , AG} via group relative advantage estimation, the
policy πθ is optimized by maximizing the following objective:

L(θ) = E{oi}Gi=1∼πθold

1

G

G∑
i=1

[
πθ(oi)

πθold(oi)
Ai − β DKL (πθ ‖πref)

]
, (2)

where DKL denotes the KL-divergence used to constrain the deviation between πθ and its reference
policy πref , and β is a regularization coefficient.

3.2 Pilot Exploration
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Figure 1: Results of different RL paradigms.
Janus-Pro-1B [8] serves as the baseline.

Given the exceptional performance and data ef-
ficiency of DeepSeek-R1-Zero [19], we explore
the potential of ULMs to enhance understand-
ing and generation capabilities without depen-
dence on task-specific supervised fine-tuning.
To accomplish this, we curate a dataset2 com-
prising 16K samples sourced from the COCO
2017 training split [38]. Each sample includes
a real image, an associated caption as a textual
prompt for visual generation, and a correspond-
ing QA pair for the multimodal understanding
task. We adopt CLIP Score [58] as the verifiable
reward for image generation, along with a com-
bination of formatting correctness and answer

2https://huggingface.co/datasets/mm-vl/x2x_rft_16k
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Figure 2: Overview of CoRL, a co-reinforcement learning framework to jointly improve the dual
capabilities of ULMs. CoRL adopts a two-stage RL procedure, comprising a unified RL stage for
joint optimization and a refined RL stage for task-specific enhancement.

accuracy as the reward for text generation. We investigate four distinct RL paradigms: (i) separate RL,
where understanding and generation tasks are independently optimized with their respective reward
mechanisms; (ii) separate RL followed by weight merging, where each task is separately optimized,
and the resulting weights are subsequently merged using a Gaussian distribution-based merging
strategy [66] to incorporate both abilities; (iii) cycle RL, which employs a scheduled alternation
between the two tasks throughout the training process; and (iv) unified RL, in which both tasks are
jointly optimized within a unified paradigm to promote the co-evolution of dual capabilities.

As presented in Figure 1, we observe that (1) direct task-specific RL fails to achieve the expected
improvements for ULMs, particularly in the visual generation task, and may even impair performance
on the other task; and (2) unified RL demonstrates substantial advantages over alternative paradigms.
These findings indicate that the dual capabilities that co-evolve within a shared training framework
contribute to enhanced cross-task synergy and knowledge transfer.

3.3 Co-Reinforcement Learning

3.3.1 Verifiable Reward for Multimodal modeling

In this section, we develop a suite of verifiable rewards for multimodal modeling, which provide clear
and objective feedback to steer ULMs toward generating high-quality image and text outputs.

Bidirectional Cycle Consistency Reward in Text-to-Image Generation. To encourage ULMs to
generate images that faithfully depict the concepts and entities described in the input prompt, we
introduce a bidirectional cycle consistency rewardRcycle, which measures the consistency between
predictions and ground truth in both visual and textual spaces. For visual consistency, we adopt
LPIPS [104] to assess the patch-level perceptual similarity between the real image Ireal and the
synthesized image Igen. Textual consistency is implemented in a re-captioning manner. Specifically,
we first employ BLIP [32] to generate a caption Cre-cap for each synthesized image, and then compute
the SPICE [1] score between Cre-cap and its original prompt Porg to measure semantic fidelity. The
combined bidirectional cycle reward is defined as:

Rcycle = 1− LPIPS(Ireal, Igen) + SPICE(Porg, Cre-cap). (3)

This bidirectional reward forms a closed feedback loop that promotes mutual consistency between
texts and images, effectively penalizing hallucinated content and reinforcing prompt-aligned visual
generation by simultaneously optimizing for both visual and textual consistency. Furthermore,
Rcycle is normalized to the range [0, 1] before being combined to ensure that all rewards operate on
comparable scales and to prevent any single component from dominating due to scale differences.
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Text-Image Matching Reward. While CLIP Score [58] provides a holistic measure of text-image
alignment, as shown in Sec. 3.2, it underperforms due to its limited capacity for assessing fine-
grained semantics. To address this limitation, we instead propose a text-image matching reward
RTIM, which leverages the ULM itself to evaluate cross-modal alignment at the token level. Given a
textual representation T = {t1, t2, . . . , tLt

} ∈ RLt×d of the prompt and the corresponding visual
representation I = {i1, i2, . . . , iLi

} ∈ RLi×d of a generated image, the reward is computed as:

RTIM =
1

2

 1

Li

Li∑
j=1

max
k∈[1,Lt]

cos(ij , tk) +
1

Lt

Lt∑
k=1

max
j∈[1,Li]

cos(tk, ij)

 , (4)

where Lt and Li are the sequence lengths of the textual and visual tokens, d is the embedding
dimension, andRTIM is also be normalized to the range [0, 1]. This reward captures the fine-grained
correspondence between textual concepts and visual elements through maximum cosine similarity,
ensuring mutual alignment between visual tokens and their most relevant textual counterparts.

Accuracy Reward in Multimodal Question Answering. Accuracy rewards leverage task-specific
metrics to directly evaluate the correctness of ULM predictions. We consider two accuracy rewards
tailored to different question types: RMCQ-Acc for multi-choice questions andROE-Acc for open-ended
questions. These rewards follow a binary evaluation mechanism, assigning a value of 1 when the
predicted answer (i.e., the final answer parsed from within <answer> and </answer> tags) matches
the ground truth and 0 otherwise.

Format Reward in Text Generation. To encourage ULMs to generate structured and interpretable
textual responses, we adopt the format reward [19], which requires the model to enclose its think-
ing process inside <think> · · · </think>, and provide its final answer within <answer> and
</answer> tags. The format rewardRFormat returns 1 for strict compliance and 0 otherwise.

3.3.2 Unified Reinforcement Learning for Synergistic Multimodal Modeling

As illustrated in Figure 2, the policy ULM first undergoes unified reinforcement learning with diverse
rewards across understanding and generation tasks. This unified process aims to jointly enhance its
dual capabilities and establish a solid foundation for subsequent task-specific refinement.

Reward Function and Training Objective. To ensure diversity and complementarity in reward
signals for unified multimodal modeling, we formulate a joint reward function as

RUni-S1 = Rcycle +RTIM + λ · (RAcc +RFormat), (5)

where λ is a coefficient that balances the two types of rewards. During training, given an input
prompt and an image-question pair, the policy model πθold

first generates G candidate responses,
o = {(I1, T1), (I2, T2), . . . , (IG, TG)}, each comprising a synthesized image I and a CoT-format
solution T . Concurrently, the joint reward functionRUni-S1 evaluates each candidate pair, yielding
the reward set r = {r1, r2, . . . , rG}. These rewards are subsequently normalized according to Eq. (1)
to compute the corresponding group-relative advantages A = {A1, A2, . . . , AG}. The new policy
model πθ is then updated by maximizing the following GRPO-based objective:

LS1 = E{oi}Gi=1∼πθold

1

G

G∑
i=1

πθ(oi)

πθold
(oi)

Ai , where oi = (Ii, Ti). (6)

Notably, based on empirical findings from recent work [94], we omit the KL-divergence constraint
during this stage to improve both optimization efficiency and generalization capability.

Training Data. To support unified RL for synergistic multimodal modeling, we curate a compre-
hensive dataset comprising 22K samples3, which follows the data structure established in Sec. 3.2.
Each sample includes a real image, a prompt for visual generation, and a CoT-format QA pair for
multimodal understanding. This balanced data composition facilitates joint optimization of dual
capabilities within a unified framework, while preserving the granularity of task-specific supervision.

3https://huggingface.co/datasets/mm-vl/x2x_rft_22k
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Table 1: Results on text-to-image generation benchmarks. ♣ and ♣ denote models trained using
DPO and GRPO strategies. The best performance in each category is highlighted in bold.

Model Scale Res. Type GenEval ↑ WISE ↑ DPG ↑
Two Obj. Counting Position Color Attri. Overall Overall Overall

H Generation Only
PixArt-α [5] 0.6B 5122 Diff 0.50 0.44 0.08 0.07 0.48 0.47 71.11
SDv1.5 [60] 0.9B 5122 Diff 0.38 0.35 0.04 0.06 0.43 0.32 63.18
SDv2.1 [60] 0.9B 5122 Diff 0.51 0.44 0.07 0.17 0.50 0.32 68.09
SD3-Medium [15] 2B 5122 Diff 0.94 0.72 0.33 0.60 0.74 0.42 84.08
SDXL [55] 2.6B 10242 Diff 0.74 0.39 0.15 0.23 0.55 0.43 74.65
DALL·E 3 [3] - 10242 Diff 0.87 0.47 0.43 0.45 0.67 - 83.50
LlamaGen [67] 0.8B 2562 F-AR 0.34 0.21 0.07 0.04 0.32 - 65.16
SimpleAR [79] ♣ 1.5B 10242 F-AR 0.90 - 0.28 0.45 0.63 - 81.97

H Unified Understanding and Generation
TokenFlow [57] 8B 2562 F-AR 0.60 0.41 0.16 0.24 0.55 - 73.38
Emu3 [82] 8B 5122 F-AR - - - - 0.66 0.39 80.60
Emu3-DPO [82] ♣ 8B 5122 F-AR - - - - 0.64 - 81.60
LWM [39] 7B 5122 F-AR 0.41 0.46 0.09 0.15 0.47 - -
Orthus [29] 7B 5122 AR-Diff - - - - 0.58 0.27 -
Janus-Pro [8] 7B 3842 F-AR 0.89 0.59 0.79 0.88 0.80 0.35 84.19
ILLUME+ [23] 3B 3842 AR-Diff 0.88 0.62 0.42 0.53 0.72 - -
D-DiT [37] 2B 5122 Diff 0.80 0.54 0.32 0.50 0.65 - -
Harmon [87] 1.5B 5122 F-AR 0.86 0.66 0.74 0.48 0.76 0.41 -
show-o [90] 1.3B 5122 AR-Diff 0.80 0.66 0.31 0.50 0.68 0.35 67.48
HermesFlow [92] ♣ 1.3B 5122 AR-Diff 0.84 0.66 0.32 0.52 0.69 - 70.22
Janus [85] 1.3B 3842 F-AR 0.68 0.30 0.46 0.42 0.61 0.23 79.68
Janus-Pro [8] 1.5B 3842 F-AR 0.82 0.51 0.65 0.56 0.73 0.26 82.63
ULM-R1 ♣ 1.5B 3842 F-AR 0.85 0.71 0.68 0.80 0.77 0.33 83.92

3.3.3 Refined Reinforcement Learning for Task-specific Enhancement

After completing unified RL, as shown in Figure 2, we apply a targeted learning strategy to further
enhance the task-specific performance of the policy model. This second-stage optimization leverages
task-specific rewards and tailored datasets for individual tasks.

Reward Function and Training Objective. For text-to-image generation, the reward is defined as
RT2I-S2 = Rcycle +RTIM. For multimodal understanding, we define two distinct reward formulations:
(1)RMCQ-S2 = RMCQ-Acc+RFormat for multiple-choice questions, and (2)ROE-S2 = ROE-Acc+RFormat
for open-ended questions. The training objective in this stage adheres to the standard GRPO
formulation in Eq. (2), with the appropriate task-specific reward (RT2I-S2, RMCQ-S2, or ROE-S2)
replacing Ai depending on the task. To ensure stable optimization, we reintroduce the KL-divergence
constraint at this stage to limit policy deviation from the reference distribution.

Training Data. For text-to-image generation, we continue training on the curated dataset introduced
in Sec. 3.2. For multimodal understanding, we utilize two specialized datasets: mcot_r1_mcq4 for
multiple-choice questions and mcot_r1_vqa5 for open-ended questions. These task-specific datasets
enable the model to develop more refined and robust capabilities within each task domain.

4 Experiment

4.1 Experimental Setups

Evaluation Benchmarks. We evaluate visual generation capabilities on the GenEval [18], WISE [50],
and DPG-Bench [22] benchmarks. GenEval employs an object-centric evaluation protocol to assess
compositional and attribute-level alignment, while DPG-Bench adopts a VQA-based setting to
evaluate dense prompt-following and semantic fidelity. WISE provides a holistic evaluation of models’
world knowledge, considering consistency, realism, and aesthetics. We also evaluate multimodal
understanding capabilities across diverse benchmarks. Specifically, MMStar [6], MMMU [98], and

4https://huggingface.co/datasets/mm-vl/mcot_r1_mcq_66k
5https://huggingface.co/datasets/mm-vl/mcot_r1_vqa_66k
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Table 2: Results on multimodal understanding benchmarks. The best performance within each
category is highlighted in bold. † denotes results obtained from our evaluation.

Model LLM Multi-Choice (MC) ↑ Open-Ended (OE) ↑ MC&OE Mixed ↑
MMMU MMStar MathWe MMVet POPE LogicVT MathVT MathVS MathVis

H Understanding Only
SmolVLM [49] SmolLM2-1.7B 38.8 41.7 9.1 33.8 85.5 28.0 43.6 12.6 12.8
SAIL-VL [11] Qwen2.5-1.5B 44.1 56.5 14.6 44.2 88.1 30.4 62.8 17.4 17.3
Ovis2 [45] Qwen2.5-1.5B 45.6 56.7 9.9 58.3 87.8 34.7 64.1 29.4 17.7
InternVL3 [110] Qwen2.5-1.5B 48.7 61.1 22.9 67.0 90.1 34.7 57.6 24.5 20.2
Qwen2.5-VL [2] Qwen2.5-3B 51.2 56.3 22.9 60.0 85.9 40.3 61.2 31.2 21.9
LMM-R1 [53] Qwen2.5-3B - 58.0 - - - - 63.2 41.6 26.4

H Unified Understanding and Generation
ILLUME+ [23] Qwen2.5-3B 44.3 - - 40.3 87.6 - - - -
Harmon [87] Qwen2.5-1.5B 38.9 - - - 87.6 - - - -
VILA-U [88] LLaMA-2-7B - - - 33.5 85.8 - - - -
Orthus [29] Chameleon-7B 28.2 - - - 79.6 - - - -
UniToken [27] Chameleon-7B 32.8 46.1 - - - - 38.5 -
SGen-VL [31] InternLM2-1.8B 34.2 - - 34.5 85.3 - 42.7 -
Show-o [90] Phi-1.3B 26.7 - - - 80.0 - - - -
HermesFlow [92] Phi-1.3B 28.3 - - - 81.4 - - - -
Janus-Pro [8] DeepSeek-LLM-7B 41.0 46.5 9.7 50.0 87.4 28.0 42.5 15.9 14.7
Janus [85] DeepSeek-LLM-1.3B 30.5 37.6 3.4† 34.3 87.0 23.9† 33.7 14.9† 13.4†

Janus-Pro [8] DeepSeek-LLM-1.5B 36.3 43.1† 5.9† 39.8 86.2 23.9† 37.3† 13.5† 13.4†

ULM-R1 DeepSeek-LLM-1.5B 42.3 47.6 21.1 43.9 88.9 34.5 42.5 25.4 22.0

WeMath (MathWe) [56] are used for multi-choice evaluation, while MMVet [97], POPE [36], and
LogicVista (LogicVT) [89] are used for open-ended evaluation. In addition, we employ MathVista
(MathVT) [43], MathVerse-Vision (MathVS) [102], and MathVision (MathVis) [80] to assess complex
mathematical reasoning capabilities, covering both multi-choice and open-ended QA formats. On
these benchmarks, we compute accuracy using the toolkit VLMEvalKit [13].

Implementation Details. We develop ULM-R1 using Janus-Pro-1B [8] as the baseline ULM for
unified multimodal understanding and generation. To ensure reproducibility and scalability, our
RL training is built upon the trl [75] framework. In the unified RL stage, we employ the AdamW
optimizer with an initial learning rate of 4e-6 and a batch size of 16. We sample 8 responses for both
understanding and generation tasks, and set the reward balancing factor in Eq. (5) to 0.8. In the refined
RL stage, we sample 16 responses for both multimodal understanding and text-to-image generation
tasks. Additionally, we reduce the learning rate to 1e-6 to facilitate fine-grained optimization. All
training is conducted on 8 NVIDIA H20 (96G) GPUs. During inference, greedy decoding is used
for text generation in multimodal understanding tasks. For text-to-image generation, we employ
classifier-free guidance (CFG) [20] with a guidance weight set to 5. More details on the training data
and settings are provided in App. A.

4.2 Quantitative Results

Text-to-Image Generation. Table 1 presents a comprehensive comparison between ULM-R1 and
state-of-the-art models across three visual generation benchmarks. Among unified models, our model
ranks second on both GenEval and WISE benchmarks. Notably, it achieves balanced performance
across diverse task categories within GenEval, with the best score of 0.71 in object counting. When
compared with specialized generation-only models, ULM-R1 surpasses the top performer SD3-
Medium [15] by a slight margin (0.77 vs. 0.74 on GenEval). Moreover, ULM-R1 shows consistent
improvements over its base model across all benchmarks. These results collectively demonstrate the
effectiveness and advantage of our CoRL in enhancing visual generation quality.

Multimodal Understanding. Results are shown in Table 2. For mixed QA format evaluation,
we continue to apply the Gaussian-distribution-based merging strategy [66] to combine the two
task-specific policy models and obtain a final model capable of following both types of instructions.
Overall, ULM-R1 markedly outperforms existing unified models across most benchmarks, and
substantially narrows the performance gap with leading understanding-only MLLMs of comparable
model scale. More specifically, our model achieves state-of-the-art performance among unified models
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Table 3: Comparison between different RL paradigms for ULMs. The cold SFT data is consist of
x2x_rft_22k, mcot_r1_mcq (22K), and mcot_r1_vqa (22K). #7: CoRL.

# Ablated Setting Stage GenEval DPG MMMU MathWe MMVet LogicVT

0 Baseline - 73.0 82.6 36.3 5.9 39.8 23.9

1 + Cold-SFT S1 72.8 (-0.3) 82.5 (-0.1) 41.0 (+4.7) 18.0 (+12.1) 42.0 (+2.2) 27.9 (+4.0)
2 + Unified-RL S1 75.9 (+2.9) 83.3 (+0.7) 40.3 (+4.0) 14.0 (+8.1) 42.5 (+2.7) 30.2 (+6.3)

3 + Refined-RL (T2I) S2 75.1 (+2.1) 83.0 (+0.4) / / / /
4 + Refined-RL (MM2T-MC) S2 / / 39.6 (+3.3) 15.8 (+9.9) / /
5 + Refined-RL (MM2T-OE) S2 / / / / 42.2 (+2.4) 29.5 (+5.6)

6 + Refined-RL w/ Cold-SFT S1&S2 74.5 (+1.5) 82.8 (+0.2) 41.8 (+5.5) 22.5 (+16.6) 43.7 (+3.9) 35.9 (+12.0)
7 + Refined-RL w/ Unified-RL S1&S2 77.3 (+4.3) 83.9 (+1.3) 42.3 (+6.0) 21.1 (+15.2) 43.9 (+4.1) 34.5 (+10.6)

Janus-Pro ULM-R1 Janus-Pro ULM-R1 Janus-Pro ULM-R1

a photo of a knife and a zebra a photo of four bowls a photo of four donuts

a photo of a computer keyboard and a laptop a photo of a cell phone and a horse a photo of a green skis and a brown airplane

A clear image of a blackboard with a clean, 
dark green surface and the word 'Hello' 

written precisely and legibly in the center 
with bold, white chalk letters.

An old-fashioned metal lantern with a 
weathered bronze patina. The glass panels are 

slightly foggy from years of use, ... casting 
warm light across a dark wooden surface.

A large brown bear is partially submerged in a 
clear, tranquil body of water. ... The water 

ripples gently around the bear as it sits calmly, 
enjoying the warmth of the sunlight.

Figure 3: Qualitative comparison of text-to-image generation between Janus-Pro and ULM-R1.
The red box marks an exemplary failure case.

on MMStar (47.6), WeMath (21.1), LogicVista (34.5), and on several mixed-format math benchmarks,
including MathVerse (25.4) and MathVision (22.0). Particularly, ULM-R1 demonstrates considerable
improvements over its base model in mathematical and logical reasoning tasks, achieving gains of
15.2 on WeMath and 10.6 on LogicVista. These results not only demonstrate the effectiveness of
CoRL in enhancing ULMs’ understanding capabilities, but also establish that reinforcement learning
provides a data-efficient pathway for achieving both robust generalization and sophisticated reasoning
capabilities, without the need for large-scale supervised data.

4.3 Qualitative Results

In this section, we first present a qualitative comparison between ULM-R1 and Janus-Pro for visual
generation, as illustrated in Figure 3. The results clearly show that ULM-R1 achieves superior text-to-
image alignment and object grounding across diverse prompts, with especially notable improvements
in spatial arrangement of objects and compositional consistency. Next, as shown in Figure 4, we visu-
alize several representative examples of multimodal understanding. Compared to Janus-Pro, ULM-R1
exhibits significantly enhanced understanding capabilities, particularly in mathematical reasoning.
These comprehensive qualitative results demonstrate the effectiveness of CoRL in simultaneously
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Question: As shown in the diagram, there is a circle made of wire. What is the circumference of this circle?
Options: A. 15π B. 10π C. 5π D. No correct answer

Janus-Pro: A

ULM-R1: <think>The circumference of a circle is calculated using the formula C = 2πr. Substituting the given 
value, r = 5cm, we get C = 2π*5 = 10π. The answer is B.<\think> <answer>B<\answer> 

Question: The graph shows an angle a in standard position with its terminal side intersecting the figure at 
P(3/5, 4/5). Find the value of tan a.

Janus-Pro: The value is 3/4. 
ULM-R1: <think>The tangent of an angle in a right triangle is the ratio of the length of the side opposite the 
angle to the length of the side adjacent to the angle. In this case, the side opposite the angle a is y-coordinate 
of the point P, which is 4/5, and the side adjacent to the angle a is the x-coordinate of the point P, which is 3/5. 
Therefore, tan a = (4/5)/(3/5) =4/3. The answer is 4/3.<\think> <answer>4/3<\answer> 

Question: What is the substance that is developing on these leaves?
Options: A. Algae B. Downy mildew  C. Powdery mildew  D. Sooty mould E. Don't know and don't want to guess

Janus-Pro: B

ULM-R1: <think>The green leaves on the plant are covered in a white powdery substance. This substance is a 
type of mildew that grows on the leaves of plants. Powdery mildew is a common disease that affects many 
plants. Therefore, the answer is C Powdery mildew.<\think><answer>C<\answer> 

Question: Is the person bigger than the car?

Janus-Pro: Yes, the person is bigger than the car. The person is standing on the side of the road, while the 
car is on the road ahead of him.
ULM-R1: <think>No, the person is not actually bigger than the car.<\think><answer>No<\answer> 

Figure 4: Qualitative comparison of multimodal understanding between Janus-Pro and ULM-R1.
The red box marks an exemplary failure case.

improving visual generation and multimodal understanding in ULMs. Furthermore, Figures 3 and 4
respectively showcase exemplary failure cases of ULM-R1 in visual generation and understanding
tasks, providing an intuitive grasp of its limitations. For instance, in the understanding example, it
misinterprets commonsense and professional knowledge, leading to an incorrect answer.

4.4 Ablation Study and Discussion

In this section, we primarily evaluate the effectiveness of our RL training strategy and the proposed re-
ward functions for text-to-image generation. In addition, we discuss the impact of the hyperparameter
λ and the scalability of CoRL.

Comparison Between Various RL Paradigms. As presented in Table 3, we conduct a compre-
hensive ablation study to evaluate the effects of different RL paradigms for ULMs. The results
reveal two key findings: I #2 vs. #1: Unified-RL effectively enhances both the generation and
understanding capabilities of ULMs, whereas Cold-SFT has minimal impact on visual generation.
I #7 vs. #6: Compared to the de facto paradigm, our CoRL consistently outperforms it on visual
generation benchmarks while achieving comparable results on multimodal understanding benchmarks.
These findings indicate that unified RL provides a robust foundation for task-specific refinement,
even without reliance on supervised data. Additionally, CoRL consistently outperforms both its
baseline and task-specific RL variants (#3-#5), achieving improvements of 2.1 points on GenEval (vs.
generation-only RL, #3) and 5.3 points on WeMath (vs. understanding-only RL, #4). These results
demonstrate the efficacy of CoRL as our final RL paradigm.

Effect of Rewards in Text-to-Image Generation. To evaluate the effectiveness of our proposed
rewards for text-to-image generation, we conduct ablation experiments as detailed in Table 4. The
results demonstrate that incorporating either reward individually improves performance over the
baseline: Rcycle yields an increase of 2.1 in average score, while RTIM results in an increase of
0.8. Notably, combining both rewards leads to the best overall performance, achieving an average
score of 80.6. These findings suggest a modest but complementary effect between Rcycle and
RTIM, enhancing their joint benefit in enhancing visual generation quality. In addition, we further
compare the CLIP score (RCLIP) and RTIM under our final RL training paradigm. As shown in
the table,RTIM achieves better overall performance, especially on the DPG benchmark with dense,
long-horizon prompts for image generation, highlighting its superior ability to capture fine-grained
semantic alignment compared to the CLIP score.
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Table 4: Effect of visual generation rewards.
Rewards GenEval DPG Avg. ↑

Baseline 73.0 82.6 77.8

RCLIP 74.2 82.4 78.3 (+0.5)
RTIM 74.1 83.0 78.6 (+0.8)
Rcycle 76.2 83.5 79.9 (+2.1)
Rcycle + RCLIP 77.0 83.4 80.2 (+2.4)
Rcycle + RTIM 77.3 83.9 80.6 (+2.8)

Table 5: Comparison among
visual consistency measures
used inRcycle.

Measures GenEval DPG

PSNR 76.0 82.4
MSE 77.1 83.2
SSIM 77.5 83.6
LPIPS 77.3 83.9

Table 6: Impact of λ.

λ
GenEval MMMU

(Gen.) (Und.)

0.5 77.1 41.0
0.7 77.3 42.3
0.8 77.3 42.3
0.9 77.1 43.5
1.0 76.9 43.0

Impact of Visual Consistency Measures inRcycle. Table 5 provides a more detailed analysis of
how different visual consistency measures (PSNR, MSE, SSIM, and LPIPS) used in Rcycle affect
the quality of visual generation. PSNR and MSE are pixel-level metrics that quantify low-level
differences between the generated images, while SSIM and LPIPS assess higher-level perceptual
and structural similarities. As shown in the table, SSIM and LPIPS perform better than the other
two metrics, with LPIPS achieving the best performance (83.9) on the DPG benchmark. This can be
attributed to the fact that LPIPS measures image similarity in a feature space, making it more robust
to minor, semantically irrelevant variations and thus better suited to reward high-level consistency.

Impact of hyperparameter λ. The factor λ in Eq. (5) balances the reward scales between the two
tasks during unified RL. As shown in Table 6, we conduct experiments using different values of λ to
assess its impact on both generation and understanding performance. The results show that moderate
values of λ (∼ 0.8) achieve a balanced trade-off between generation and understanding. Larger values
slightly degrade generation performance, indicating that overemphasizing understanding rewards
may hinder cross-task optimization.

Scalability of CoRL. To validate the effectiveness of CoRL on other ULMs, as illustrated in Table 7,
we conduct additional experiments using Janus-1.3B [85] and Janus-Pro-7B [8] as the baseline.
The results show consistent improvements across both generation and understanding benchmarks,
confirming the scalability of CoRL. Notably, Janus-Pro-7B with LoRA tuning achieves smaller gains
on the mathematical reasoning benchmark (WeMath) than Janus-1.3B, suggesting that while CoRL
scales well across model size, its enhancement of complex reasoning does not scale linearly.

Table 7: Effectiveness of CoRL on other ULMs. For Janus-Pro-7B, we adopt LoRA tuning [21] to
enable efficient training and mitigate memory pressure during unified RL.

Methods GenEval WISE DPG MMMU MMStar MathWe MMVet POPE LogicVT

Janus-1.3B 0.61 0.23 79.68 30.5 37.6 3.4† 34.3 87.0 23.9
+ CoRL (Full Fine-Tuning) 0.64 0.26 80.92 34.6 41.9 16.4 36.9 88.1 27.0

Janus-Pro-7B 0.80 0.35 84.19 41.0 46.5 9.7 50.0 87.4 28.0
+ CoRL (LoRA Tuning) 0.82 0.41 84.97 44.6 49.5 16.0 52.6 88.0 32.4

5 Limitation

Despite the substantial improvements achieved, several limitations remain that warrant further
investigation. First, a notable performance gap still exists between generation and understanding
tasks of ULMs. Second, our rewards for multimodal understanding are relatively simple and primary.
These limitations highlight the need for more sophisticated RL designs that can further enhance
understanding capabilities and narrow the performance gap. We hope our work provides valuable
insights for future RL research in ULMs.

6 Conclusion

In this work, we investigate how to jointly enhance the understanding and generation capabilities of
ULMs, and propose a co-reinforcement learning framework (CoRL). Within the proposed CoRL,
the policy model follows a Foundation-then-Specialization paradigm that involves a two-stage
RL procedure: a unified RL stage for joint optimization and a refined RL stage for task-specific
enhancement, yielding ULM-R1. Extensive evaluations across diverse understanding and generation
benchmarks demonstrate the effectiveness of CoRL and the advantage of ULM-R1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the last section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide all links to our data in the footnote of the paper and will soon
release our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We use official evaluation protocols provided by the corresponding bench-
marks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide all the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in the conclusion and introduction sections.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All are properly referred to.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used for paper polishing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Training Data

Training Data for Unified Reinforcement Learning. To support synergistic multimodal modeling
during unified RL, we curate a dataset (i.e., x2x_rft_22k) that simultaneously involves text-to-image
generation and multimodal understanding tasks. As illustrated in Figure 5, each sample includes a
real image, a prompt for generation, and a problem for understanding. The real images are sourced
from the COCO 2017 train split [38], while the problems and their corresponding solutions are
adapted from A-OKVQA [63] and GPT-VQA [105]. In addition, prompts are selected from the
original COCO captions based on their entity coverage with the problem solutions.

Understanding (MC)

Generation

Question: The girl is going to get hurt if the carrot goes 
in her throat because she will start doing what?
Options:
A. choking 
B. passing out
C. chewing
D. laughing

Prompt: a girl eating a carrot

Answer the question based on the image and your knowledge. 
Please write your thinking process inside <think> </think> tags, and 
provide your final answer (option letter, e.g., A/B/C/D) inside 
<answer> </answer> tags.
Your response MUST strictly follow this format: <think> ...</think> 
<answer>option letter</answer>

Understanding (OE)

Generation

Question: What type of truck is this?

Prompt: an ice cream truck parked in 
a field with kites flying in the sky

Answer the question based on the image and your knowledge. 
Please write your thinking process inside <think> </think> tags, and 
provide your final answer (only 1-3 words) inside 
<answer> </answer> tags.
Your response MUST strictly follow this format: <think> ...</think> 
<answer>concise answer</answer>

Figure 5: Illustration of training examples used in unified reinforcement learning.

Training Data for Refined Reinforcement Learning. In this stage, we collect three specialized
datasets for task-specific RL. For text-to-image generation, we continue constructing a dataset (i.e.,
x2x_rft_16k) with prompts derived from COCO captions. Moreover, we curate mcot_r1_mcq and
mcot_r1_vqa for multiple-choice and open-ended multimodal understanding, respectively. These
two datasets are curated on top of MCoT-Instruct [26], which encompasses a diverse range of multi-
modal tasks, including mathematical reasoning, science-problem solving, and visual commonsense
reasoning, across multiple source datasets. Specifically, the source datasets of mcot_r1_mcq com-
prise A-OKVQA [63], M3CoT [7], SQA-IMG (train) [42], ArxivQA [33], TabMWP (MC) [44], and
MAVIS-Instruct (MC) [103], while the source datasets of mcot_r1_vqa include GeomVerse [28],
R-CoT [10], TabMWP (OE) [44], and MAVIS-Instruct (OE) [103].

A.2 Supplementary Experimental Setups

Table 8 provides detailed hyperparameter settings for ULM-R1’s RL training.

Table 8: Training hyperparameter setting.
Configuration Unified RL Refined RL (T2I) Refined RL (MM2T-MC) Refined RL (MM2T-OE)

Number of sampled outputs (G) 8 16 16 16
Regularization coefficient of DKL (β) 0 0.02 0.02 0.02
Max prompt length 1024 256 1024 1024
Max completion length 512 / 512 512
Batch size 16 16 32 32
Peak learning rate 4e-6 1e-6 1e-6 1e-6
Epoch 1 1 1 1
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