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Content Moderation and the Formation of Online Communities:
A Theoretical Framework

Anonymous Author(s)

ABSTRACT
We study the impact of content moderation policies in online com-
munities. In our theoretical model, a platform chooses a content
moderation policy and individuals choose whether or not to partic-
ipate in the community according to the fraction of user content
that aligns with their preferences. The effects of content moder-
ation, at first blush, might seem obvious: it restricts speech on a
platform. However, when user participation decisions are taken
into account, its effects can be more subtle — and counter-intuitive.
For example, our model can straightforwardly demonstrate how
moderation policies may increase participation and diversify con-
tent available on the platform. In our analysis, we explore a rich
set of interconnected phenomena related to content moderation in
online communities. We first characterize the effectiveness of the
natural class of moderation policies for creating and sustaining sta-
ble communities. Building on this, we explore how resource-limited
or ideological platforms might set policies, how communities are
affected by differing levels of personalization, and competition
between platforms. Our model provides a vocabulary and math-
ematically tractable framework for analyzing platform decisions
about content moderation.

CCS CONCEPTS
• Information systems→ Social networks; • Applied comput-
ing→ Economics; • Theory of computation→ Social networks.
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Content moderation, social media, online platforms
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1 INTRODUCTION
Content moderation has been thrust to the center of public dis-
course about online platforms and their impacts on society. Once
an esoteric task undertaken by social media companies with little
external attention, content moderation is now seen (depending
on whom you ask) as a means to fight misinformation, protect
vulnerable communities, or manipulate public opinion.
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In most jurisdictions, governments require platforms to moder-
ate certain kinds of content, like child sexual abuse material and
copyright infringement. However, platforms have wide latitude to
choose moderation policies beyond this. In the U.S., platforms are
not (as of yet) required to protect individuals’ freedom of expres-
sion: the First Amendment only restricts the ability of government
to limit speech, not that of companies. In addition, Section 230 of
the Communications Decency Act protects social media companies
from being sued for their decisions to host or remove a wide range
of content (aside from what is required by law). In other countries,
regulations vary, but platforms in general have significant discre-
tion over their moderation policies. Content moderation in some
form is a nearly universal feature of social media platforms [3], and
a fundamental force affecting life online.

Naively, the effects of content moderation on platform speech are
simple: content that violates platform policies is removed. However,
when participation decisions are factored in, the effects may be
more complicated. On the one hand, users who derive most of their
enjoyment from banned content may decide not to participate, or
they may move to another platform. On the other hand, mainstream
users might increase their participation on the platform if they see
less content they dislike. Thus, moderation policies will not have
a uniform impact on individual decisions to participate and can
lead to subtle and delicate interactions between user participation
decisions. Indeed, changing membership in online communities
may be key to understanding the societal impacts of social media.
For example, Waller and Anderson [18] found a large influx of
right-wing users was responsible for increased polarization on
Reddit after the 2016 US presidential election. Similarly, online
communities saw a massive increase in participation before the
January 6 insurrection [16]. One goal of this work is to provide a
framework to reason about how a platform’s choices for its content
moderation policy affect these dynamics.

Platforms seem to acknowledge that choices of moderation poli-
cies dramatically affect their ability to attract and retain users and
communities. Founders of Gab, Parler, and Truth Social have mar-
keted their platforms as free speech advocates, with less restrictive
moderation policies. Similarly, during his acquisition of Twitter,
Elon Musk promised to reduce the scope of the platform’s mod-
eration policies. In many other cases, highly restrictive rules are
used to appeal to users seeking specific kinds of content, including
contexts where political partisanship or toxicity are not typical
concerns. For example, the subreddit r/aww features a modera-
tion policy banning “sad” content so that it may better serve users
seeking “cute and cuddly” pictures and videos.

Competition betweenmultiple platforms adds further complexity
to the dynamics of content moderation. Heterogeneity in modera-
tion policies between different platforms may create a market for
rules [7, 13]: platforms set rules and users can choose the platform
with rules that best reflect their preferences. If a platform restricts
speech that a user wants to engage in, then the user can leave and
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join a competing platform in which that speech is allowed. Like-
wise, a user who encounters speech they find offensive can leave
for a platform on which such speech is prohibited. This competition
has led to striking changes to online communities, like the high-
profile formation of Gab, Parler and Truth Social. Indeed, empirical
evidence suggests that users deplatformed from Twitter migrated
to Gab and saw increased activity and toxicity [1], although the
overall size of communities deplatformed from Reddit and YouTube
seems to have decreased [6, 14]. Content moderation policies are
thus a key tool for platforms to survive and thrive, users critically
shape the effect of these policies through their preferences and
behavior, and these dynamics have important societal implications.
The present work: modeling content moderation in online
communities. We present and analyze a simple, tractable model
in which platforms set policies in order to build and maintain com-
munities. The interaction between user participation decisions and
content moderation policies is central to our framework and analy-
sis, allowing us to explain fundamental and counter-intuitive phe-
nomena about platform moderation decisions. For example, we can
explain the basic fact, supported by empirical evidence [2], that
moderation — even though it may deliberately remove some users
— may foster much larger communities as a result: there are cases
in which a platform can sustain a large user base under a carefully-
chosen moderation policy while, without moderation, almost no
users would participate. Similarly, our model can explain how the
range of content available on a moderated platform may be greater
than one without it.

In our model, content is associated with points in an ambient
metric space; each user produces content from a subset of this
space, and they also have a subset of this space corresponding to
the set of content that they are willing to consume. For simplicity,
we will restrict our attention to the case in which the ambient space
is a one-dimensional axis, each user speaks from a single speech
point and each user derives positive utility from content within
an interval on this axis. Users derive utility when they encounter
speech that they like and disutility when they encounter speech
that they dislike; a user will join a platform if they would derive
nonnegative utility from it and will leave otherwise. Notice that
decisions to join, stay or leave create externalities for other users;
when a user joins or leaves, their choice can change the utilities of
other users (either positively or negatively), and this can potentially
lead to a sequential cascade of arrivals or departures.

We next consider the content moderation policies available to a
platform. We focus on a natural class of policies that satisfy a pair
of properties:

(1) Speech-based: A moderation policy depends only on users’
speech, not on what they prefer to consume.

(2) Convex: If speech at points 𝑥 and 𝑧 are allowed, then speech
at any 𝑦 ∈ [𝑥, 𝑧] should also be allowed.

Moderation policies that satisfy these properties can be specified by
intervals: the platform deems a (possibly infinite) interval of speech
permissible, and all users with speech points outside that interval
are removed from the platform. We will call such an interval a
moderation window, or window for short. We define and discuss the
basic properties of the model in Section 2.

Using this model, we derive a series of results exploring a plat-
form’s ability to curate communities through its choice of modera-
tion policy. In Section 3, we compare the effectiveness of window-
based moderation to a theoretical optimum, the size of the largest
set of users such that all users in the set have nonnegative utility
with respect to the other users in the set. We also show that best
window-based moderation policy can be approximated in a scalable
way using a small sample from the population. In Section 4, we
introduce an analysis of how much of a population a platform may
lose if it does not implement moderation. Additionally, we discuss
how platforms would choose moderation policies if platforms them-
selves have preferences over user speech. In Section 5, we study
the effects of personalization systems on a platform’s choices of
moderation policies. We show that increased personalization may
counter-intuitively decrease the size of an online community by
shifting the distribution of content in ways that drive mainstream
users away, even for the best choice of moderation window for a
given level of personalization. Thus, our results provide a justifica-
tion for limited personalization for some contexts even disregarding
the challenges of predicting what users want. Next, in Section 6, we
introduce and discuss a model of how competition among platforms
may affect their moderation policies. Finally, we make several con-
cluding remarks and discuss extensions of our model in Section 7.
Proofs of our results are deferred to Appendix G.

In accordance with recent empirical evidence on the societal
importance of changing membership patterns on social media
[1, 6, 16, 18], we focus on the interactions of content moderation
and user participation decisions. Our theoretical framework is nat-
urally suited to explaining these empirical phenomena. Our work
also offers a mathematically tractable way to explore a rich set of
interconnected and subtle ideas in political philosophy, sociology
and legal scholarship related to norms and political expression in
communities. Here we list a few of these ideas. The paradox of toler-
ance posits that a tolerant society must be intolerant of intolerance
in order to survive [12]; our model offers a mathematical interpre-
tation of this idea, where a platform may ban extreme viewpoints
that would otherwise drive other users off the platform. Unraveling:
in sociology, there is a long tradition of studying cascading effects
of participation in public activities; if certain members of a group
representing a particular viewpoint begin to withdraw from public
discourse, then others in this group might withdraw as well because
they perceive themselves to be in the minority. Such dynamics are
sometimes described evocatively as a spiral of silence [4]. In our
model this corresponds to cascades of users, where once users with
a particular viewpoint start leaving the platform, others of a similar
viewpoint may also leave. Lastly, the counterspeech doctrine, out-
lined by the U.S. Supreme Court, says that the remedy to harmful
speech is corrective speech [17]. Our model provides a framework
to understand the conditions under which counterspeech can be
effective and when harmful speech might overpower attempts at
counterspeech. We believe that one of the strengths of our model is
that it naturally captures the nuances of each of these concepts and
provides theoretical explanations for when and why they occur.
Related work. Recent work has explored the interaction between
shifting user beliefs and content moderation policies. Mostagir and
Siderius [11] analyzes how platforms should set policies to reduce
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the risk of harmful offline consequences as a result of extremist on-
line forums. In their model, social media users joining a community
assimilate to a common opinion. Platforms can either ban extremist
communities or make them harder to find and engage with. They
find conditions under which a policy that reduces the risks of an
extremist event in the short-run backfires in the long-run and in
which a policy that increases risk in the short-run may actually
reduce it in the long-run. In a different paper, Mostagir and Siderius
compare the effectiveness of various content moderation policies on
the spread of misinformation in a network model of agents under
(simple) DeGroot and (sophisticated) Bayesian opinion dynamics
[10]. They show that moderation policies that work well for one
type of agent may have the reverse effect for the other.

By contrast, in our work, we consider users’ choices whether to
participate in a community in the first place rather than modeling
changing user preferences. Thus, our analysis is complementary
and focuses how moderation policies shape the size and structure
of online communities rather than individual beliefs.

Other recent work has analyzed how revenue models of social
media companies might affect their moderation policies. Liu et al.
[8] compares advertising- and subscription-based revenue models
and finds that, in the regime where it is profit-maximizing not to
moderate, advertising-based platforms are expected to host less
extreme content. Otherwise, advertising-based platforms are pre-
dicted to be more extreme. Madio and Quinn [9] further explores
the incentives of advertising-based social media companies in the
presence of what advertisers consider “safe” and “unsafe” content.

Ours is a generalization of Schelling’s Bounded Neighborhood
Model [15], which was originally used to explore how mild in-
group preferences of individuals within communities can lead to
large disparities in their demographic composition, a phenome-
non called tipping. In the original model, individuals come from
two groups and have preferences for members of their own group.
Groups in Schelling’s model can be represented in our model by
placing individuals in two stacks, one for each group; individuals of
a given group have intervals identical to others in the same group
and disjoint from those of the other group. Thus, our results can
describe tipping where, in addition to two homogeneous demo-
graphic groups, there may be a much greater range of identities
and individual preferences over membership in the community.

2 A MODEL OF CONTENT CONSUMPTION,
CREATION AND MODERATION

Our model of users in online communities starts with an ambi-
ent metric space of potential content. Each user derives utility or
disutility from content depending on its location in the space, and
produces content at some location, called their speech point.
User content creation and consumption. We focus on the sim-
ple case in which the content space is the real line and a user derives
utility from content within an interval and disutility outside the
interval. Formally, we define a population to consist of a finite col-
lection of potential users, numbered 1, . . . , 𝑛. Each user 𝑖 ∈ [𝑛]
will have a speech point 𝑝𝑖 that is inside the interval [𝑙𝑖 , 𝑟𝑖 ], which
denotes the range of content from which they derive positive utility.
A natural axis to consider is the left-right political spectrum, but
an axis generically represents any dimension along which users

produce and consume content. Disutility might come from a user’s
belief that content is problematic, or they may just find some con-
tent annoying, uninteresting, incomprehensible, or distasteful. A
small population is depicted in fig. 1.

(1)
(2)
(3)

(4)
(5)

Figure 1: Speech points and intervals of a small population.

Our user model can succinctly capture significant user hetero-
geneity: A user whose interval covers most other users may like
to see a diversity of viewpoints on their feed; a narrow window
might reflect a preference for consuming content similar to one’s
own belief. If the subject were, say, chess problems, a narrow win-
dow might reflect a desire to wrestle with, and discuss, problems
appropriate to one’s level of skill. A user whose speech point is
towards one end of their interval might like to challenge their own
perspective from one direction or to keep tabs on an emergent or
dangerous part of the content space; a user whose speech point is
at the center of an interval might only care to consume content
that is close enough to theirs, regardless of the direction of the
disagreement. Many of our proofs and examples can reveal what
user characteristics lead to particular aggregate phenomena.
User utility and personalization. For users 𝑖, 𝑗 ∈ [𝑛], we will
say user 𝑗 ’s content is compatible with user 𝑖 if 𝑗 ’s speech point lies
in 𝑖’s interval: i.e., 𝑝 𝑗 ∈ [𝑙𝑖 , 𝑟𝑖 ]. We will say the users are mutually
compatible if user 𝑖’s content is also compatible with 𝑗 . Each user
must choose to either use the platform or not use it. If user 𝑖 is
on the platform, they will receive utility (normalized to) 1 from
content they consume that is compatible with them and utility −𝑏𝑖 ,
where 𝑏𝑖 ∈ R+, for content they consume that is incompatible with
them. If they are off the platform, they receive zero utility.

In our model, platforms personalize content to each user by
showing them content they like at higher rates than content they
dislike. We call this noisy personalization since these systems do
not necessarily show users only content they like: platforms may
not have completely accurate classifiers, and some types of content,
like replies to one’s posts, may not be personalized at all by design.
For a given user 𝑖 , the platform will show them content inside
their interval at rate (normalized to) 1 and content outside their
interval with rate _𝑖 ∈ [0, 1]; i.e., the platform may filter out some
of the content from which a given user derives negative utility. We
can think of the user as consuming a sample of content where the
relative probability they see a given piece of content inside versus
outside outside their interval is determined by _𝑖 and the relative
proportions of content inside and outside their interval.

If the platform does not personalize at all, then the user sees
content they dislike at rate _𝑖 = 1 and consumes a uniform random
sample of the content on the platform. Unpersonalized forums (e.g.,
Facebook groups, subreddits or Discord servers) are particularly
compelling motivating examples for our analysis, since they have
been central to shaping impactful social phenomena, like the Jan-
uary 6th, 2021 insurrection in the U.S. [16]. If the platform can
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perfectly personalize to a user, then the user never sees content
they dislike, and so _𝑖 = 0. This describes the context in which the
user is in a perfect filter bubble and content moderation would not
be necessary for creating and sustaining large, stable platforms;
users would only see content fromwhich they derive positive utility
and so would always join. Noisy personalization is assumed to be
an intrinsic, fixed quantity for each platform and user, determined
by the platform’s recommendation systems, fidelity of user signals,
and other factors outside of the control of platform decision-makers
choosing moderation policies.

Formally, if a set S ⊆ [𝑛] of users is currently on the platform,
user 𝑖’s utility from the content of S is calculated by

𝑢𝑖 (S) =
∑︁

𝑗 ∈S\{𝑖 }
1{𝑝 𝑗 ∈ [𝑙𝑖 , 𝑟𝑖 ]} − _𝑖𝑏𝑖1{𝑝 𝑗 ∉ [𝑙𝑖 , 𝑟𝑖 ]}.

Note that user 𝑖’s content is excluded from the content they can
consume, so that a user’s utility comes only from consuming the
content of other users. If user 𝑖 is in S, then𝑢𝑖 (S) captures whether
they choose to stay; if 𝑖 is not in S, then𝑢𝑖 (S) captures information
about whether 𝑖 will join: if a user has nonnegative utility with
respect to the set of users currently on the platform, they will join or
stay on the platform; if they have negative utility, they will choose
to leave or stay off the platform.
Platform stability. Let S denote the set of all users on the plat-
form at a given instant. We say that this arrangement of S and its
complement (those users not on the platform) is stable if all users
𝑖 ∈ S have nonnegative utility 𝑢𝑖 (S) ≥ 0 and all users 𝑗 ∉ S would
have negative utility 𝑢 𝑗 (S) < 0 if they joined the platform: a Nash
equilibrium in a game where each player’s strategy consists of the
choice whether to participate and where each player’s payoff is the
utility they get as a result. Additionally, we will say that a set of
users S are compatible if each user 𝑖 ∈ S has nonnegative 𝑢𝑖 (S).
(Unlike stability, compatibility does not say anything about the util-
ities of users excluded from S.) In fact, we can express this model
in a more succinct form: a user 𝑖 experiences nonnegative utility if
and only if the fraction of speech on the platform (excluding user 𝑖)
that is in their interval [𝑙𝑖 , 𝑟𝑖 ] is at least \𝑖 := _𝑖𝑏𝑖/(1+ _𝑖𝑏𝑖 ), which
we call their participation threshold. For the remainder of the paper,
we will primarily use this equivalent, more succinct formulation.

How might a user’s participation threshold \𝑖 vary across users
and contexts? Platforms with better personalization for user 𝑖 (i.e.,
lower _𝑖 ) will yield a lower participation threshold for user 𝑖 , since
\𝑖 decreases as _𝑖 does. Users seeking out communities centered
on organizing collective action might be expected to have a higher
\𝑖 : they might not participate if they see even a small fraction
of dissenters and feel unsafe or unwilling to speak freely. Users
seeking debate might be expected to have a lower value of \𝑖 : they
are willing to tolerate some content they dislike for the sake of
healthy discussion. Thus, \𝑖 is an inherently content- and context-
dependent parameter.

Throughout, we use the platform to refer interchangably to any
single instance of a Facebook group, subreddit, TikTok’s For You
page etc. and community to refer to the (possibly changing) group
of users on a platform over time.
Moderation policies. The primary focus of our analysis is on
how content moderation policies affect online communities. We

consider a simple class of content moderation policies that we will
call window-based moderation, where an instance of the policy is a
window. The window is a range of acceptable speech defined by
the platform and will be represented by a closed interval: users
whose speech is outside the interval are banned from the platform
and those inside are given the choice to join or leave. A closely
related concept from political science is known as the Overton
window and defined by the range of positions that the public finds
acceptable; the feasibility of a public policy depends on whether
or not it is within this range of acceptable ideas. A window will be
specified by 𝐼 := [𝑙, 𝑟 ] or, equivalently, the set of individuals in the
population whose speech points fall inside the interval. The set of
window-based policies will be denoted I.
Initial adopters. We assume the platform will start with some
(possibly empty) set of initial adopters S0 ⊆ [𝑛], or the set of
users who are already on the platform when the platform is choos-
ing its moderation policy. Our analysis is applicable to platforms
choosing moderation policies before any user has joined, as well as
mainstream platforms which already have large user bases and are
choosing a new moderation policy.
Sequence of events. A platform receives as input a population
𝑃 := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , \𝑖 }𝑛𝑖=1,S0 (i.e., user intervals, speech points and par-
ticipation thresholds and the set of initial adopters). The set of all
populations will be denoted P. The platform will choose a mod-
eration window depending on 𝑃 , and then users will be given the
opportunity join or leave the platform one at a time in some infinite
sequence, which we call their switching order. Note that the size of
the community on the platform may depend on the switching order.
For example, if user 𝑖 has negative utility on the platform, they will
leave the platform given the chance. But if other users come before
𝑖 in the switching order and choose to leave first, then, by the time
that 𝑖 gets the chance to leave, the composition of the platform
has changed, and it’s possible that they are no longer unhappy. We
will denote a switching order 𝜎 : Z>0 → [𝑛], where 𝜎 (𝑡) is the
user making the decision whether to switch at time 𝑡 . Additionally,
we will make the natural assumption that all switching orders are
starvation-free; i.e., that at any time step in the process and for any
user, there is a finite amount of time steps before they next decide
to join, stay or leave.
Extensions. Natural extensions of our versatile model capture an
even greater range of social media contexts. We derive many results
for such cases in the appendix and discuss the extensions briefly
in Section 7. We believe our model and results, with their many
possible extensions, can provide a framework and vocabulary for
exploring many different questions and contexts on social media.

3 HOW EFFECTIVE CAN MODERATION
WINDOWS BE?

We begin by considering a single platform choosing a moderation
policy and analyzing how large of a community window-based
moderation is capable of achieving. To characterize the efficacy of
window-based moderation, we compare against a natural baseline:
the largest number of users that could all use the platform and
derive nonnegative utility, a largest compatible community (LCC),
i.e., a (not necessarily unique) largest set S such that 𝑢𝑖 (S) ≥ 0
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for all 𝑖 ∈ S. Notice that an LCC is not necessarily stable: some
users excluded from the LCC might derive nonnegative utility from
participating on a platform with the LCC, but those users drive
some of the utilities of LCC members below zero.

In general, the set of users at equilibrium for one switching order
may be different from that of others. Indeed, there are examples of
populations where the community never reaches an equilibrium
for any starvation-free switching order. (These two facts are not
unique to our context: for example, many games do not have a
unique Nash equilibrium nor any pure-strategy Nash equilibria.)
We provide and discuss results on the possibility of zero or multiple
stable arrangements of users in Appendix F.

For a given population 𝑃 under a moderation policy 𝜋 and with
switching order 𝜎 , the set of users at a time 𝑡 ∈ Z>0 on the plat-
form will be denotedW(𝑃, 𝜋, 𝜎, 𝑡). In our main results, we avoid
making assumptions about particular switching orders. Instead, our
results hold for all switching orders: we analyze a lower bound for
a platform’s size over any starvation-free switching order, defined
as

𝑠 (𝑃, 𝜋) := min
𝜎

lim inf
𝑡→∞

��W(𝑃, 𝜋, 𝜎, 𝑡)�� .
That is, for a given population 𝑃 and moderation policy 𝜋 , 𝑠 (𝑃, 𝜋)
is the limiting minimum size of the platform over switching orders.
Note that this definition is not sensitive to anomalies in the size of
the platform that only occur finitely many times and that 𝑠 (𝑃, 𝜋)
is well-defined even if the platform never reaches an equilibrium.
Thus, analysis of 𝑠 (𝑃, 𝜋) does not require restrictive assumptions
about the ways that user decisions interleave. Our guarantees hold
no matter the order in which users make decisions.

Also, note that this is a true upper bound; i.e., 𝑠 (𝑃, 𝜋) ≤ 𝑠opt (𝑃)
for any moderation policy 𝜋 . To see this, note that, for any set of
usersW such that |W| > 𝑠opt (𝑃), there is a switching order in
which users leaveW until there are at most 𝑠opt (𝑃) users remaining.
Our goal in the remainder of this section will be to characterize the
gap between 𝑠 (𝑃, 𝜋) and 𝑠opt (𝑃) when 𝜋 is a moderation window.

3.1 Window-based moderation vs. the largest
compatible community: a special case.

To build intuition for window-based moderation, we begin with a
special case before providing a general characterization of window-
based moderation compared to the largest compatible community.
Recall that the participation threshold \𝑖 governs what proportion
of content user 𝑖 must see inside their window to join the platform.
In this subsection, we consider the special case where \𝑖 = 1 for all 𝑖 ,
i.e., no user is willing to participate in a platform where any amount
of content they consume falls outside their interval. This describes
contexts where individuals are seeking out a like-minded bubble or
where users could face serious repercussions if their membership
in the group were known to outsiders, like those where members
hold extreme views (e.g., if they were coordinating an insurrection)
or are members of a targeted, vulnerable group (e.g., if they are
seeking an abortion in a state where it is illegal).

In this special case, we show that moderation windows can fully
recover the LCC and such a window can be found in polynomial
time in the size of the population.

Theorem 3.1. For any population 𝑃 where \1 = · · · = \𝑛 = 1, there
exists a moderation window 𝐼∗ ∈ I such that

𝑠 (𝑃, 𝐼∗) = 𝑠opt (𝑃) .

Moreover, such a window 𝐼∗ can be identified in 𝑂 (𝑛3) time.

We can explore this result through the example we introduced
in fig. 1 (reproduced in fig. 2). Recall that user 𝑖 is compatible with
user 𝑗 if 𝑝 𝑗 ∈ [𝑙𝑖 , 𝑟𝑖 ]; i.e., 𝑖 is happy to consume 𝑗 ’s content. In the
example, the LCC is achieved with the set of users {1, 2, 3}. User 4
can’t be included in the community because they are not compatible
with user 2 or 3, even though user 4 would be content to engage
on any platform with any subset of these users. User 5 can’t be
included because users 1 and 2 are not compatible with them.

(𝐼∗)

(1)
(2)
(3)

(4)
(5)

Figure 2: A reproduction of fig. 1 (with LCC shaded in black).
The window 𝐼∗ recovers the LCC.

Notice that the speech points of all of users 1, 2 and 3 fall inside
the window [1,4] and that their user intervals entirely cover the
window. Thus, for any switching order and set of initial adopters,
the platform can set the window to the interval [1, 4] and eventually,
only {1, 2, 3} will remain. To see this, notice that when it is the turn
of any of users 1, 2 or 3, they will join or stay on the platform, since
they derive positive utility from any speech in the window. The
main ideas behind proving Theorem 3.1 are similar to those we
used to identify the LCC in our example. Every set of users where
all are mutually compatible must have a particular structure: all
of their intervals cover the entire interval between the left-most
speech point and the right-most one. Thus, to find a window that
can achieve a usership equal to the LCC, it is sufficient to find the
most extreme speech points in the LCC and set the window to these
extremes; any user in the LCC will have an interval that covers
these extremes and a speech point inside the window. Any user in
the LCC will be content to consume the content of any user in the
window and any user in the window who does not cover the whole
window will not be willing to consume the content of one of the
users with the most extreme speech in the window and will leave
on their own. There are only𝑂 (𝑛2) different possible windows with
endpoints equal to user speech points, and it only takes 𝑂 (𝑛) time
per window to check the number of users with speech point inside
the window and interval that covers the window. Thus, the whole
process only takes 𝑂 (𝑛3) time. The full proof is in Appendix G.1.

3.2 Window-based moderation vs. the largest
compatible community: the general case.

In the \𝑖 = 1 for all 𝑖 case, moderation windows suffice for the
platform to capture the LCC, the theoretical upper bound on what
any platform could achieve for a given population. One might hope
that this holds more generally; however it turns out that when
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users are more willing to consume some amount of content they
disagree with (i.e., when \min := min𝑖 \𝑖 < 1), the size of the
community achievable with a window-based policy diminishes,
relative to the size of the LCC. The first part of our next result
generalizes Theorem 3.1 and says that moderation windows can
capture a constant fraction of the size of the LCC for any population
where \𝑖 is sufficiently large for all 𝑖 . The second part says that
this bound is tight, up to an additive constant: for some problem
instances, the largest community achievable with window-based
moderation is equal to our lower bound up plus a small additive
constant.

Theorem 3.2. For any population 𝑃 where \min > 1/2, there exists
a moderation window 𝐼 ∈ I such that

𝑠 (𝑃, 𝐼 ) ≥ (2\min − 1)𝑠opt (𝑃)

that can be identified in𝑂 (𝑛3) time. On the other hand, for all \min >

1/2, there exists a population 𝑃 such that for any moderation window
𝐼 ∈ I, it holds

𝑠 (𝑃, 𝐼 ) ≤ (2\min − 1)𝑠opt (𝑃) +𝑂 (1) .
and, for all \min ≤ 1/2, there exists a population 𝑃 such that for any
moderation window 𝐼 ∈ I, it holds 𝑠 (𝑃, 𝐼 ) = 𝑂 (1).

In other words, first, the size of a community achievable with
a window-based policy is no less than a (2\min − 1) fraction of
the largest compatible community. It also says that there exist
populations where a window-based policy can achieve at most a
(2\min − 1) fraction of the largest compatible community (up to a
small additive constant), and if \min ≤ 1/2, a window-based policy
is only capable of achieving a constant number of users. This is a
tight lower bound on how effective a platform can be in terms of
the participation thresholds of users, relative to the LCC.

Theorem 3.2 tells us that when users have lower participation
thresholds, meaning they are relatively more willing to see a greater
proportion of content that brings them disutility, it may be counter-
intuitively harder to set policies that preserve a large fraction of
the large community. On the other hand, when users have higher
participation thresholds, platforms can choose simple policies that
preserve a large fraction of the largest compatible community. In-
tuitively, this result holds because every population for sufficiently
large \𝑖 for all 𝑖 contains an efficiently-identifiable set of mutually
compatible users using the same algorithm used to prove Theo-
rem 3.1. In real world platforms, this corresponds to anchoring a
large, core set of users on the platform by ensuring they will like
everything they see, while potentially banning other users who
would like to participate in the platform but might not be compati-
ble with users in the core set. Next, we consider how moderation
windows can be identified on very large populations.

3.3 Is it possible to find approximately optimal
moderatation windows on very large
platforms using limited resources?

In Theorem 3.2, we showed that with moderation windows, a plat-
form can capture a constant fraction of the largest compatible com-
munity when \𝑖 is sufficiently large for each user 𝑖 . However, the
algorithm to choose such a window requires𝑂 (𝑛3) time, which may
be infeasible for large platforms. Can a large platform efficiently

set a moderation window to capture a large user base? We show in
Theorem 3.3 that the answer to this question is yes: with just a small
sample of users, a platform can construct a moderation window
that is within a constant factor of 𝑠opt (𝑃) with high probability.

Theorem 3.3. For any population 𝑃 such that \𝑖 > 1/2 for all 𝑖 , it
holds that, for any 𝛽 ∈ (0, 1), given a random sample of𝑚 users, a
platform can find a moderation window 𝐼 ∈ I in time polynomial in
𝑚 such that

Pr
[
𝑠 (𝑃, 𝐼 ) ≥ 𝛽 · (2\min − 1)𝑠opt (𝑃)

]
≥ 1 − 𝑛 exp

−𝑚
((
\min −

1
2

)
𝑠opt (𝑃)
𝑛
(1 − 𝛽)

)2 ,
where the probability is over the sample of𝑚 users. In fact, sampling
𝑚 users uniformly at random and applying the window achieving the
lower bound in Theorem 3.2 on the sample to the full population will
achieve the stated bound.

In other words, it is possible to capture a constant fraction of
the guarantee for window-based moderation in Theorem 3.2 with
high probability using a sample of𝑚 users. In fact, it suffices to
have𝑚 = 𝑂 (log𝑛) samples to get a non-trivial guarantee as long as
𝑠opt (𝑃) = Ω(𝑛) (i.e., there exists a compatible community consisting
of a constant fraction of the population). Intuitively, this is possible
because a moderation window that achieves a large community on
a random sample of the population is likely to also achieve a large
community on the entire population. In fact, the largest community
achievable with a window in the sample is likely to “cover” the
largest community achievable with a window in the population in
the sense that the most extreme speech in the sample are distributed
cloe to the most extreme users in the largest community achievable
with a window in the population.

The theorem shows us that, as the platform scales, moderators
need not necessarily do anything complicated to learn effective
policies: they can simply sample from the users, compute a policy
with respect to the sample, and apply it to the whole platform while
preserving a constant fraction of the size of the platform, with high
probability. We defer the proof to Appendix G.1. We also note that
our results throughout Section 3 do not depend on the set of initial
adopters S0: our results apply to situations where the platform
starts empty, full or anywhere in between.

4 THE DECISION TO MODERATE
In Section 3, we explored the degree to which a natural class of
platform moderation policies might be used to curate a large com-
munity on a platform, relative to the theoretical optimum for the
population, and how they might do so just from a random sample
of the population. Now we consider platforms that can’t or won’t
impose moderation policies on their users, and platforms that have
ideological preferences over user speech.

To illustrate, suppose a platform is unwilling to pay the costs of
setting up and maintaining a moderation system or the platform
is so-called free speech absolutist, imposing a normative belief that
there should be no platform-imposed boundaries on acceptable
speech. If the platform imposes no moderation policy, the size of the
community it can support might be dramatically smaller than if it
moderated: some individuals might be exposed to too much speech
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they find objectionable and leave. It is simple to find populations
where this choice is disastrous: the platform cannot maintain a
stable community of more than a constant number of users, even
if, with moderation, it could maintain a user base of size Ω(𝑛). All
it takes is a constant number of users (in the size of the population
𝑛) who nearly all others find disagreeable in order to prevent the
platform from attracting and sustaining a large community. This is
formalized in our next result.

Proposition 4.1. Consider any population 𝑃 where there exists a
nonzero constant number of users whose speech point falls outside the
intervals of all other users (i.e., 𝑖 ∈ [𝑛] : 𝑝𝑖 ∉ [𝑙 𝑗 , 𝑟 𝑗 ] for all 𝑗 ∈ [𝑛]).
Then for all moderation windows 𝐼 ∈ I such that 𝑝𝑖 ∈ 𝐼 and empty
set of initial adopters S0 = ∅, it holds that 𝑠 (𝑃, 𝐼 ) = 𝑂 (1).

In other words, if there a small number of users, trolls, who all
others find intolerable, and the troll joins the platform first (as they
will for some switching orders), then no other users will join. On
the other hand, it is trivial to find populations where, setting a
window that excludes the trolls, every other user would be content
to participate on the platform, for any switching order. This provides
a pragmatic argument for content moderation: even if a platform
has no preferences over the speech it hosts, it may still engage in
moderation for the sake of self-preservation. Without moderation
the platform will be effectively abandoned. The same is true for the
range of speech available with and without moderation. Without
moderation, the range of speech available on the platform would
be limited to the trolls’ (which may just be 𝑝𝑖 if the troll is user
𝑖), while with moderation, a much larger range of speech could
be available (from min𝑖 𝑝𝑖 to max𝑖 𝑝𝑖 ). We explore these results in
detail in Appendix A.1.

More generally, a platform’s owners may have ideological prefer-
ences for some ranges of speech over others. In some cases, adver-
tisers do not want to be associated with certain “extreme” content,
meaning a platform only earns ad revenue from some of its users.
Thus, it is natural to imagine that the platform’s utility may depend
on the speech points of the users it hosts. As with users, we can
imagine that the platform has some interval within which they
derive positive utility (normalized to) 1 and outside of which they
derive negative utility 𝑑 . We might think that for a platform with
such preferences, the optimal strategy would simply be to set its
moderation window equal to its speech preference, banning users
whose speech points fall outside of this interval. Intuitively, this
makes sense: the platform would ban any speech from which it
gets negative utility. However, as we explore in Appendix A.2, this
strategy does not necessarily maximize the platform’s utility. We
demonstrate how it may instead be optimal for a platform to set a
window that is narrower or wider than the interval within which
they derive positive utility from user participation. Our results re-
veal limits to a platform’s ability to act without consideration for
the delicate relationships between user preferences; it must make
some effort to cater to its users.

5 CONTENT MODERATION AND
PERSONALIZATION

In the preceding sections, we explored how and why platforms
might set moderation windows to create and maintain communities

online. In this section, we consider how changes to personalization
systems affect platforms’ ability to sustain large communities.

It is natural to ask how a population subject to different per-
sonalization systems may be different. In particular, it would be
intuitive to expect that personalization is an unmitigated good from
the perspective of the size of a community a platform could support:
the same population consuming content that is more personalized
should be more willing to participate in the platform than if they
were consuming content that was less personalized. In a very lim-
ited sense, this is true. For any fixed set of users, the theoretical
upper bound on the size of the community a platform can support
(i.e., the largest compatible community) is nondecreasing as per-
sonalization improves. Thus, the largest a platform could possibly be
only improves with better personalization. We formalize this result
in Proposition 5.1

Proposition 5.1. Consider two populations 𝑃 := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _𝑖 },S0,
𝑃 ′ := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _′𝑖 },S0 that differ only by the fact that personal-
ization in the second is no worse for any user than in the first: i.e,
_𝑖 ≥ _′𝑖 for all 𝑖 ∈ [𝑛]. Then it holds that

𝑠opt (𝑃) ≤ 𝑠opt (𝑃 ′).
The result tells us that the LCC is monotonically nondecreasing

as personalization improves. This proposition follows from the fact
that a compatible set in 𝑃 is also compatible in 𝑃 ′; if you have a set
of compatible set of users and improve personalization, the set of
users remains compatible.

The story gets more complicated for platforms trying to imple-
ment content moderation policies using window-based policies
and accounting for switching dynamics; when we account for the
delicate interactions between user preferences, a platform with
better personalization may not necessarily be better off. Namely,
we can construct a class of populations where increased person-
alization leads to a reduction in the size of the platform relative
to the same set of users subject to less personalization, even if the
platform chooses the best moderation window for a particular level
of personalization. We formalize this result in Proposition 5.2.

Proposition 5.2. There exist two populations 𝑃 := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _𝑖 },S0,
𝑃 ′ := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _′𝑖 },S0 that differ only by the fact that personal-
ization in the second is strictly better for every user than in the first
(i.e, _𝑖 > _′𝑖 for all 𝑖 ∈ [𝑛]) such that

𝑠 (𝑃, 𝐼∗) > 𝑠 (𝑃 ′, 𝐼∗
′
) (1)

for 𝐼∗, 𝐼∗
′
optimal choices of window-based policies on 𝑃 and 𝑃 ′

respectively. In fact, such a pair of populations satisfying ineq. (1) can
be constructed for any 𝑏 := 𝑏1 = · · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛
and an appropriately chosen _′ := _′1 = · · · = _

′
𝑛 .

To illustrate how this might work in a real-world context, con-
sider a forum dedicated to a professional sports league. Such a forum
may permit the largest membership when most users are generally
interested in a variety of discussions of highlights, news and events
surrounding the league. Also suppose there is a small minority
of fans of a particular team who are only interested in news and
events surrounding their team. With limited personalization, the
team-specific minority might be unwilling to participate if there is
not a critical fraction of content about their team. Under more per-
sonalization, however, these team-specific fans may be drawn onto
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the platform, leading to a disproportionate amount of team-specific
content in the forum. This can trigger a cascade of general-interest
off the platform, leaving only the smaller group of team-specific
fans. This all occurs despite the fact that all user speech was within
the bounds of the best window for each level of personalization.
Proposition 5.2 provides a justification for why highly personalized
recommendations are not always advantageous, even putting aside
the difficulty of building personalization systems.

6 CONTENT MODERATION UNDER
COMPETITION

In many real-world contexts, platforms face competition for users,
and as others have noted, this competition might shape how they
set moderation policies, leading to a market for rules where users
participate in communities with the rules they prefer [7, 13]. Recent,
high-profile examples have shown how alternative platforms try
to challenge mainstream ones on the basis of their moderation
policies: platforms like Gab, Parler, Truth Social, Bluesky, Mastodon
and Threads each emerged to try to attracting users away from
Twitter or capitalize on communities banned by Twitter’s content
moderation. We model this competition by considering multiple
platforms who can each set moderation policies, and users choose
which (if any) platform to use.

In Appendix B.1, we formalize a model of competition for users.
Our formalization hinges on the scarcity of user attention: without
scarcity, platforms would just be solving independent moderation
problems. We term this scarcity users’ bandwidths, define it by the
amount of content on a platform a given user can consume.

Then, we explore how insurgent platforms, such as the new
platforms above, may try to compete with an existing, incumbent
platform, like Twitter, on the basis of their moderation policies.
This may entail allowing users who are banned from the dominant
platform and perhaps enticing other users to follow them to the new
platform; alternately, it might involve setting stricter policies to ap-
peal to users dissatisfied with the speech on the dominant platform.
We characterize how, depending on the population, the incumbent
platform may have wide latitude in choosing their moderation poli-
cies without regard to the risks of losing their membership to a
competitor or may be highly vulnerable to competitors regardless
of their policy. The analysis is in Appendix B.2.

We also extend Section 5 to explore differing levels of person-
alization on multiple platforms. With multiple platforms, these
personalization systems may be heterogeneous, either because of
inherent differences in the systems themselves, the amount of ef-
fort they have allocated to building recommendations, or some
other reason. In Proposition B.1, we show how, even factoring in
the dynamics of users switching between platforms, a platform
with worse personalization can out-compete a platform with better
personalization, even if the platform with better personalization
starts off with an LCC on the platform. This result complements
Proposition 5.2 because, rather than considering counterfactual
platforms each setting windows in isolation (as in Proposition 5.2),
we consider two platforms that simultaneously exist and for which
users must choose to participate on one platform or abstain from
both. The analysis is Appendix B.3.

7 CONCLUSION AND EXTENSIONS
In this work, we provide a framework in which to analyze content
moderation, user participation decisions and their impacts on com-
munities. Taking a natural class of moderation policies, moderation
windows, we characterize how effectively these policies can create
and sustain large communities. We also show how our model can
provide insight about platforms’ ideological preferences, differing
levels of personalization, and competition between platforms.

Our model can be naturally extended to explore a number of
related phenomena and contexts on social media. These extensions
shed further light on various social media contexts that can be
described by building on our basic model. Here, we describe several
such generalizations, providing references to the appendix where
we have derived relevant results.
Population changes. An important consideration for platforms
deciding to implement policies is how robust they are to unexpected
changes to the population. In Appendix C, we consider a variant of
the model where the population experiences an 𝑂 (1)-sized change
after the moderation policy is set. We explore the price of robustness:
how much smaller a platform would have to be to ensure a stable
platform after an 𝑂 (1)-sized change to the population.
Dynamic moderation policies. Moderation policies may change
over time, and platforms might want to roll out a squence of policies
to maximize their user base, even if the population does not change.
Dynamic window-based moderation would allow for platforms to
set a moderationwindow that changes over time. In Appendix D, we
explore an interesting class of populations where dynamic windows
are strictly more powerful than static windows.
Lurkers and heterogeneous speech frequencies. Not all mem-
bers of a community need to create content in order to participate.
Our model can be extended to encompass heterogeneity in speech
frequencies by associating a frequency 𝑓𝑖 to each user. This gener-
alization allows for analysis of an additional type of content moder-
ation: caps on the speech frequency for each user. We consider this
variant of the model in Appendix E and present a reduction from
the problem of computing the size of (an appropriate definition of)
the LCC for this generalization to the size of the LCC for a carefully
constructed fixed-frequency problem instance.
Other utility functions. In our work, we consider the natural
special case of constant positive utility from consuming content
inside the user’s interval and constant negative utility outside, i.e.,
users either “like” or “don’t like” content from each other user but
don’t otherwise make distinctions between different content. Our
user utility model could be naturally extended to other functions
over the content space; indeed, several of our results could be
generalized by redefining “compatible” as content from which a
given user derives nonnegative utility. One could also consider user
production utilities; users may derive utility from producing content
that others like to consume.
Multiple dimensions. It would be useful to extend the ambient
content space to multiple dimensions, rather than just one: e.g.,
economic versus social policy discussions might be best modeled
by a two-dimensional ambient space. Other discussions might be
best modeled by a high-dimensional latent embedding space.
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A THE DECISION TO MODERATE
We provide a more complete analysis and discussion of Section 4.

A.1 When is moderation necessary?
With no moderation, the platform has no control over its users;
they simply join or leave according to some switching order. In
Proposition 4.1, we state that all it takes is a small number of trolls
in order to prevent the platform from attracting and sustaining a
community of more than a constant number of users.

Let 𝑖 be the index of any user whose speech point falls outside
the intervals of all other users. To see why the proposition holds,
notice that user 𝑖 is first in the switching order. User 𝑖 will join the
platform, since the first user on a platform will have zero utility,
and then no other users will join. Indeed, this is true even for
populations where all other users would join the platform for any
switching order. For example, consider a population 𝑃 where, for

some 𝑙, 𝑝, 𝑟 , it holds that 𝑙 = 𝑙1 = · · · = 𝑙𝑛−1, 𝑝 = 𝑝1 = · · · = 𝑝𝑛−1
and 𝑟 = 𝑟1 = · · · = 𝑟𝑛−1 and 𝑝𝑛 = 𝑟 + 1. That is, all user preferences
are identical except for those of user 𝑛. If user 𝑛 joins the platform
(as they will for some switching orders), none of the other users
will join the platform. However, a moderation window were set to
[𝑙, 𝑟 ], then all users 1, . . . , 𝑛 − 1 would join the platform. Thus, as 𝑛
grows, the gap between the size of the moderated platform and an
unmoderated one can grow arbitrarily large.

In fact, the conditions for a large gap between a moderated and
unmoderation platform stated in the proposition are not unique: for
example, the platform does not necessarily need to start empty. Any
number of combinations of number of trolls, sets of initial adopters
and switching orders can be conceived where a small number of
trolls force the rest of the users off the platform.

Proposition 4.1 provides some insight as to why platforms re-
move users even when their ultimate goal is to maximize their user
base: without moderation, a platform may hollow out as some users
drive others away. Moderation windows allow platforms to build
stable communities.

A.2 How might an ideological platform choose
policies?

In this subsection, we will consider moderation policies of ideo-
logical platforms (i.e., platforms whose intervals are not (−∞,∞)).
As with users, we will imagine that a platform has some interval
[𝑙, 𝑟 ] within which they derive positive utility (normalized to) 1 and
outside of which they derive negative utility 𝑏. When the platform’s
interval is (−∞,∞), the platform derives utility from all speech; this
corresponds to the objective of maximizing the size of the platform,
which aligns with the focus of our analysis outside of this section.

We might think that for a platform with some interval [𝑙, 𝑟 ], the
optimal strategy would simply be to set its moderation window
equal to [𝑙, 𝑟 ], banning users whose speech points fall outside of
this interval. However, this strategy does not necessarily maximize
the platform’s utility. In fact, we already saw an example of this in
Proposition 4.1. Even though the platform derives positive utility
from users participating anywhere on (−∞,∞), it may be utility-
maximizing set a narrower moderation window. In this example,
the narrower window was necessary to ensure that more extreme
users do not drive others off the platform, even though the platform
itself had no preference against extreme speech points.

In other cases, it may instead be optimal for a platform to set
a window that is wider than their interval. Suppose a platform
consists of four types of users as in fig. 3: there are far-left, center-
left, center-right and far-right users. We use the notation ×0.25𝑛
here and in future examples to indicate the number of users whose
speech point is of that type. Users of type 1 derive positive utility
from all other users. All other users derive utility from users of the
same type and users directly to their left. The platform derives utility
1 from each user on the platform within the interval containing the
center-left, center-right and far-right users and disutility 𝑑 for each
user off the platform for some 𝑑 < 2. Suppose that the set of initial
adopters is empty: S0 = ∅.

What would happen if the platform simply set its moderation
window equal to its interval? If it did, any switching order in which
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Figure 3: An ideological platform that sets a window wider
than its interval for \ = 1/4, 𝑑 < 2.

users of type 4 start would end up with only users of type 4. Mean-
while, if the moderation window were set to include all users, then
users of type 1 would always join the platform, since they are com-
patible with all others. Then, once all users of type 1 were on the
platform, all users of type 2 would also join the platform, regardless
of any other users were already on the platform. Similarly, all users
of type 3 would then be willing to join, and finally users of type 4
would join. While they would suffer disutility 𝑑 · 0.25𝑛 for the pres-
ence of type 1 users, this would be more than offset by the utility
gain of 0.5𝑛 from type 2 and 3 users who are now willing to remain
on the platform, since by assumption 𝑑 < 2. It is advantageous for
the platform to allow all users on the platform so that users of type
(2) and (3) join the platform.

These examples demonstrate that even if a platform has prefer-
ences over speech, the optimal strategy to implement those prefer-
ences may depend on the user population. This can include setting
a narrow window to prevent users from being driven off, setting a
wider window to retain users who enjoy speech that the platform
does not, or potentially some combination of the two.

B CONTENT MODERATION UNDER
COMPETITION

We provide a more complete analysis and discussion of Section 6.

B.1 A model of consumption bandwidth under
competition.

If platforms are going to compete for users, then user attention
must be scarce: otherwise multiple platforms would just be solving
independent moderation problems on the same population — and
user 𝑖 could just participate in all platformswhere theywould derive
positive utility. Thus, scarcity of user attention is a crucial element
that we will add to the model to introduce competition between
platforms. We will call this scarcity the users’ bandwidths.

Formally, we assume that each user has some bandwidth 𝛾𝑖 > 0
for consuming content. The parameter 𝛾𝑖 represents the number of
users on a platform for whom user 𝑖 can consume all content. If a
platform has greater than 𝛾𝑖 users and user 𝑖 is using the platform,
they will consume a random sample of the content, which we model
deterministically for simplicity as the expected utility derived from
consuming 𝛾𝑖 users’ content.

Recall that each platform has a personalization system that may
filter out some of the content that a user derives disutility from.
With multiple platforms, these personalization systems may be
heterogeneous: an individual’s personalization on one platformmay
be different, either because of inherent differences in the systems
themselves, the amount of effort they have allocated to building

recommendations, or some other reason. Thus, user 𝑖 on platform 𝑗

will be said to have personalization parameter _𝑖, 𝑗 on that platform.
If a user is choosing between two platforms from which they

would derive positive utility and for which the size of both platforms
is greater than 𝛾𝑖 , the user will go to the platform for which they
are compatible with a higher fraction of content they consume. We
call this proportion-based switching because users are choosing the
platform for which they consume a higher proportion of content
compatible with them. (Recall that some of the content outside
their interval may be filtered out, so individuals may not consume
a representative sample of the composition of the platform as a
whole).

On the other hand, if one or both of the platforms are smaller
than size 𝛾𝑖 , we assume users take into account total utility, rather
than just the proportion of compatible content, when choosing a
platform.We call this utility-based switching. Notice that proportion-
and utility-based switching smoothly interpolate: For each platform,
they calculate the proportion of content inside their interval minus
the rate of content outside their interval _𝑖 times the disutility from
consuming content 𝑏𝑖 all times the minimum of their bandwidth
and the size of the platform, and then go to the platform with larger
utility. That is, if the current sets of users on the platforms are
S1 . . .S𝑘 , then the utility user 𝑖 would receive on platform 𝑗 is
defined as

𝑣𝑖, 𝑗 (S𝑗 ) :=min
{
𝛾𝑖 ,

��S𝑗 ��} ∑︁
ℓ∈S𝑗

1{𝑝ℓ ∈ [𝑙𝑖 , 𝑟𝑖 ]} − _𝑖, 𝑗𝑏𝑖1{𝑝ℓ ∈ [𝑙𝑖 , 𝑟𝑖 ]}

where we assume the individual chooses the platform that derives
them higher total utility and they produce their content on this
platform. As in the preceding sections, platforms are stable if no
user stands to gain utility from changing from their current posi-
tion while the other users stay the same. We will also specify as
starvation-free switching order as before and a set of initial adopters
for each platform.

As in the single platform case, platforms need not necessarily
reach an equilibrium. This can be the case under either proportional-
or utility-based switching. However, in some circumstances, such
as when all compatibilities are mutual under utility-based switch-
ing (i.e., user 𝑖 is compatible with 𝑗 ’s content if and only if 𝑗 is
compatible with 𝑖’s content) then it is possible to show that the
platform will always reach an equilibrium. Details on cycling for
multiple platforms are available on Appendix F.2.

B.2 Emergent platforms challenging a large,
stable platform.

We explore populations where a single platform can sustain a large
stable set of users in isolation and a second platform is started to try
to attract as many users as it can. To formalize this, we will assume
platform 1 starts with a large stable set of users, and platform 2
starts empty. Through two examples, we show that, depending on
the population, a large, previously stable platform can be extremely
vulnerable to a new platform and that in other cases, the platform
may have wide latitude to choose a moderation policy — even a
sub-optimal one in the sense of the largest number of users it could
attract — while still preventing the new platform from attracting
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many users. The first situation we call insurgency bias and the
second situation we call incumbency bias.
Insurgency bias. Large platforms choosing best windows can be
vulnerable to disruption, even if the large platform has nearly all
of the population on their platform. We can see this in fig. 4, fixing
any 0 < Y < 1/2. Suppose the set of initial adopters for the first
platform is all users: S1 = [𝑛].

×Y𝑛, (1)
×(1/2 − Y)𝑛, (2)
×(1 − Y)𝑛/2, (3)
×Y𝑛/2, (4)

Figure 4: A population where there is insurgency bias for
\ := \1 = · · · = \𝑛 = 1/2, 0 < Y < 1/2.

First, notice that the first platform can set a window so as to
capture users of type 1, 2 and 3, which constitute (1− Y/2)𝑛, nearly
the whole population if Y is close to 0. If the platform does not
set a window to exclude users of type 4, users of type 1 would
have (𝑛/2 − 1)/(𝑛 − 1) < 1/2 compatibilities, so they would exit
the platform given the chance, leading to a smaller platform after
it reached equilibrium. However, when an alternative platform
becomes available, the alternative platform’s best response is simply
to set no window and the platform will be seeded with users of type
4, who otherwise have no platform when the original platform set
a window of [1,3]. But notice that, under proportional switching,
users of type 3 will have compatibility with all of the users on
platform 2 and some users who they are not compatible with on
platform 1. Thus, users of type 3 will defect to platform 2. But now
notice that users of type 2 are compatible with all of the users on
platform 2 but not on platform 1, so those users will defect as well.
Finally, users of type 1 will stay on platform 1, leaving platform 1
with only an Y-fraction of the population. We can thus construct
populations where the first platform can lose an arbitrarily large
fraction of its users if another platform joins and sets a different
window, for any user bandwidths 𝛾1, . . . , 𝛾𝑛 .

When the original platform chose a window to capture the most
users, it ultimately created space for another platform to attract
users excluded from the first platform and pull a large fraction
of users from the first platform to the second one. Notice that,
if platform 1 wants to defend against the possible emergence of
platform 2, it should set no moderation window and let users of type
1 leave the platform, even though this is suboptimal in the setting
where they are the only platform. Thus, just like a platform may
need to choose windows achieving smaller communities (compared
to what they would choose in a single-platform setting) in order to
defend against possible competition.
Incumbency bias. For some populations, a platform has signif-
icant flexibility in the content moderation policy that it chooses,
and has no risk of losing users to other platforms, for any values of
𝛾1, . . . , 𝛾𝑛 . Thus, after platform 1 chooses a policy, no users leave
platform 1, regardless of which policy it chooses among a large set
of possible policies. Consider fig. 5 where𝑀 is some large integer
and \ := \1 = · · · = \𝑛 = (𝑀 − 1)/(𝑀 + 5).There is only one user
of types 1-3 and 5-7.

(1)
(2)
(3)

(5)
(6)
(7)

×𝑀 , (4)

Figure 5: A populationwith incumbency bias.𝑀 is some large
integer and \ := \1 = · · · = \𝑛 = (𝑀 − 1)/(𝑀 + 5).

Suppose all users start on platform 1 and that platform 1 chooses
any window that includes users of type 4. Notice that the platform
will be stable because all users except type 4will have positive utility
on any platform and users of type 4 will have their compatibilities
satisfied. Now suppose platform 2 is seeded with whichever users
were banned from platform 1 inside platform 2’s window. No users
from type 4 will defect onto the new platform, since the first user
to defect would have negative utility (or at most zero utility if the
second platform was empty). Similarly, no users other than type 4
on the platform will defect, since they all derive higher utility from
the larger, incumbent platform.

Notice that the first platform is free to choosemoderation policies
that are sub-optimal, in the sense that they need not capture all
of the users on the platform. For example, it could set a window
of [2,6], excluding users 1 and 7: perhaps such ideas at the far
extremes pose risks to society that the platform does not want
support. Alternately, a partisan platform that favors right-leaning
or left-leaning perspectives could set a window of [4,7] or [1,4] and
thus skew the range of allowable speech without the risk of losing a
substantial fraction of its membership. No other users would leave
the platform as a result of the decision to disallow the extreme
users: if the platform has some preferences over user speech (as
long as that preference includes users of type 4), it is free to enforce
these preferences on the users without the threat of losing users to
the competition. Generally, notice that the first platform can choose
from an arbitrarily large number of windows, if we add more users
on the left and the right. That is, for a general population, suppose
there are 𝑢 users on either side of the stack of𝑀 users in the center
of the platform. Then if \ = (𝑀−1)/(𝑀+2𝑢−1), whichever window
the platform sets, as long as it includes the stack of𝑀 users in the
center, will be the range of allowable speech for the vast majority
of users on the platform. All of these choices could have real-world
consequences for users’ behavior off the platform: if policymakers
choose positions of policies based on the range of allowable speech
or if individuals make choices based on their perception of the range
of socially allowable speech, the platform may have significant
influence over public opinion and policy. This is an extreme case
where ideological platforms (as defined in Section 4) could set
their window equal to their interval and achieve maximal utility
with respect to the population, as long as their interval covers the
set of 𝑀 users in the center. More complete exploration of these
downstream phenomena are interesting directions for future study.
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B.3 Platforms with different personalization
systems.

We close this section by returning to the analysis of how varying
personalization affects platforms. In particular, we would like to
explore whether greater personalization can be a liability for a
platforms competing for users. Using the same construction in the
proof of Proposition 5.2, we show that, even if platform 1 starts with
a large compatible community and offers better personalization
and if platform 2 starts empty and has worse personalization, there
may be situations in which platform 2 captures a large fraction
(bounded below by a constant factor) of the users on platform 1.
In other words, a platform with better personalization may not be
better off over the long term, even if they start with all of the users
in the largest compatible community on the platform.

Proposition B.1 (Corollary to Proposition 5.2). There exist users {𝑙𝑖 ,
𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 }𝑖∈[𝑛] and two platforms Platform 1 and Platform 2 where:

(1) personalization for Platform 1 is no worse than on Platform 2
for every user (i.e., _𝑖,1 ≤ _𝑖,2 for all 𝑖 ∈ [𝑛]),

(2) all individuals in a largest compatible community start on
Platform 1 and Platform 2 is empty,

and at equilibrium, Platform 2 can set a window so at least an
min

{
1/(1 + 𝑏), 𝑏/(1 + 𝑏)

}
fraction of users in the largest compat-

ible community are on Platform 2. In fact, this result holds for any
fixed choices of 𝑏 := 𝑏1 = · · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛 and for
some appropriately chosen _′ := _′1 = · · · = _

′
𝑛 .

The proof of Proposition B.1 is qualitatively similar to Proposi-
tion 5.2 but additionally deals with the dynamics of users choosing
between multiple platforms. This tells us that, even factoring in
the dynamics of users switching between platforms, a platform
with worse personalization can out-compete a platform with better
personalization, even if the platform with better personalization
starts off with a largest compatible community on the platform.
Thus, whether personalization provides a competitive advantage is
sensitive to the population in question.

C HOW ROBUST ARE PLATFORMS TO
UNANTICIPATED POPULATION CHANGES?

Up to this point, we have assumed that the population of potential
users is known to the platform before it sets its moderation policy.
This assumption is sensible if platforms have sufficient data to infer
the preferences of their potential user base with high fidelity at
the time they are setting a moderation policy. Thus, the model
we use throughout the rest of the paper implicitly assumes that
user switching occurs on a much faster time scale than platform
choices whether to set moderation policies. (Alternately, individuals
arrive and leave from the population as independent and identically
distributed samples from some underlying distribution, the platform
could use the results from Section 3.3 to sustain a community that
is a constant fraction of the size of the LCC with high probability.)
Thus, if the platform is considering its membership over a large
number of user switching decisions before it next re-evaluates its
moderation policy, it is sensible to treat the population as fixed.
However, in some contexts, the assumption of a fixed population
may break down: user bases settling on a platform may occur at
the same time as the population of potential users itself changes.

In this section, we consider the scenario in which populations
may change after the moderation policy is set. One of the main
motivating reasons to consider population changes is the presence
of adversaries in society: a small minority of users who try to
influence the membership of the platform. Adversaries may try, via
private messages or off-platform activity, to threaten or harass a
user in order to force particular users off of the platform. Alternately,
the adversaries themselves may join the platform, disguised as
genuine users, and may try to manipulate platform membership
by strategically speaking at a point that triggers a cascade of users
leaving the platform.We focus on small changes (i.e., the addition or
removal of a small, constant number of users) after the moderation
policy is chosen and ask how significant their impacts could be on
a large platform.

A naive platform that fails to anticipate small changes in the user
population can be quite fragile: the arrival or departure of just a
constant number of users can lead to a mass exodus off the platform.
For example, consider the construction in fig. 6 and assume that
all users are on the platform. Notice that the platform is stable:
each user is consuming a high enough proportion of content that
they like and are willing to stay on the platform. But what if a user
joins or leaves the population, i.e., the membership of the original
set of individuals changes? For example, what if user 1 leaves the
population, or another user whose speech point falls outside of user
4’s interval joins the population? In both of these cases, users 1
through 4 would all leave the platform for switching orders where
they move first, which would cause a mass exodus: all of the rest of
the users on the platform could similarly leave (except for the last
user, who will be alone, have zero utility and stay). We will call the
arrival or departure of a small, constant number of users from the
population a population shock, and we do not try to explain why
the users join or leave the population, instead treating this as an
event determined by factors outside of our utility model of users or
the control of the platform.

(1)
(2)
(3)
(4)
(5)

(6)
(7)

(8)
(9)

Figure 6: A platform where it is possible to protect against
shocks at a modest cost to size. There are 9 users on the
platform, with \1 = · · · = \9 = 1/2.

A more sophisticated platform might anticipate these potential
changes and try to set a moderation policy that is somehow robust
to them. Such a platformmight bewilling to accept a slightly smaller
user base in exchange for robustness against a small number of
unanticipated arrivals or departures. Returning to the example in
fig. 6, note that the if platform sets a narrower window, excluding
users 8 and 9, it becomes robust to the arrival or departure of any
one user.
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This construction is a single example of a class of populations
that are robust to population shocks. For any \ ∈ (0, 1) and 𝑛,
such a population can be constructed as follows: Each user 𝑖 will
have speech point 𝑖 . The first ⌈\ (𝑛 − 1)⌉ users will have intervals
[1, ⌈\ (𝑛 − 1)⌉ + 1], and each following user 𝑖 will have interval [𝑖 −
⌈\ (𝑛 − 1)⌉, 𝑖]. The set of initial adopters will be the full population
[𝑛]. Then, it is easy to show that, to protect against the arrival or
departure of any 𝑘 users, it is only necessary to remove the⌈

𝑘 ·max
{
1 − \
\

, 1
}⌉

users with the greatest speech points (as long as this is not greater
than ⌊(1 − \ ) (𝑛 − 1)⌋ + 1, which will be true for 𝑛 large enough).
That is, for this family, the platform can sacrifice 𝑂 (1) users at the
time that the moderation policy is set in order to prevent the exodus
of Ω(𝑛) users if a small population shock were to occur.

In these examples, the price of robustness is low: the platform
could defend against a single change to the population by reducing
its user base by𝑂 (1). Platforms might hope that this would be true
in general: they could exclude 𝑂 (1) users from the platform when
choosing their moderation policy such that a population shock does
not cause an exodus of Ω(𝑛) users.

To make this concept formal in our model, for a population 𝑃 we
will define a population shock that creates 𝑃 to mean the addition
or removal of individuals from 𝑃 , where 𝑃 is the population with
more or fewer individuals. Then, a 𝑘-robust community achievable
with a moderation window 𝐼 is defined as

𝑠𝑘 (𝑃, 𝐼 ) := min
𝑃 : | |𝑃 |−𝑛 | ≤𝑘

𝑠 (𝑃, 𝐼 );

i.e., the size of the largest community under window-based mod-
eration such that if up to 𝑘 arbitrary users left the population or
up to 𝑘 new individuals joined the population. In Proposition C.1,
we show that an 𝑂 (1) change in the size of the platform does not
have implications for max𝐼 𝑠𝑘 (𝑃, 𝐼 ) in terms of the size of 𝑠opt (𝑃):
the tight lower bound on the size of max𝐼 𝑠 (𝑃, 𝐼 ) for Theorem 3.2
also holds for max𝐼 𝑠𝑘 (𝑃, 𝐼 ), up to an additive constant 𝑘 .

Proposition C.1 (Corollary to Theorem 3.2). For a population 𝑃
where \min > 1/2, there exists a moderation window 𝐼 ∈ I such that

𝑠𝑘 (𝑃, 𝐼 ) ≥ (2\min − 1)𝑠opt (𝑃) − 𝑘.
On the other hand, for all \min > 1/2 there exists a population 𝑃 with
population shock 𝑃 such that for any moderation window 𝐼 ∈ I, it
holds

𝑠𝑘 (𝑃, 𝐼 ) ≤ (2\min − 1)𝑠opt (𝑃) +𝑂 (1) .
and for all \min ≤ 1/2 there exists a population 𝑃 with popula-
tion shock 𝑃 such that for any moderation window 𝐼 ∈ I, it holds
𝑠𝑘 (𝑃, 𝐼 ) = 𝑂 (1).

Intuitively, Proposition C.1 says that the tight lower bound we
established in Theorem 3.2 does not get any weaker (besides the
size of the shock) for moderation windows under population shocks.
This is because the window that achieves the lower bound includes
a set of at least (2\min − 1) users with speech points inside with
window and intervals that cover the interval. Thus, no users from
this set (unless they themselves are removed by the population
shock) will leave the platform if any constant number of users

arrive or leave. The second part, establishing the tightness of the
bound, also follows from Theorem 3.2, since, for any window 𝐼 ∈ I
and 𝑘 ≥ 0, it holds

𝑠𝑘 (𝑃, 𝐼 ) ≤ 𝑠0 (𝑃, 𝐼 ) ≤ max
𝐼 ′∈I

𝑠 (𝑃, 𝐼 ′).

A open question for future research is whether there exists a
nontrivial lower bound on the size of max𝐼 𝑠𝑘 (𝑃, 𝐼 ) in terms of
max𝐼 𝑠 (𝑃, 𝐼 ). That is, what is a lower bound on the largest 𝑘-robust
community achievable by a window in terms of the largest com-
munity achievable by a window?

D DYNAMICWINDOWS AND DEBATE IN A
SINGLE DIRECTION

In the body of the paper, we only considered contexts where debate
extends in both directions: users will derive disutility at some point
from content that is too far to the left or the right. But in some
contexts, this is not the case; sometimes debate is only sensible in
one direction. Consider negotiation about safe levels of average
global temperature rise. Every individual would be willing to accept
climate change of zero degrees (a left end point of 0), estimates some
temperature that they think correctly balances the risks and costs
associated with limiting global temperature rise (their speech point),
and would be willing to consider propositions of up to some limit
(their right end point). We can model this as above by restricting
our axis to the nonnegative reals and modeling users with intervals
[0, 𝑟𝑖 ] and speech points somewhere in the interval. Notice that
this can also be used to capture populations where intervals are all
semi-infinite in one direction, or more generally, where the right-
most left endpoint is to the left of the left-most speech point. We
could also flip the axis to consider intervals that extend only until
some upper limit. This generalizes the user model of Liu et al. [8],
where users are always willing to consume content less extreme
than theirs. This kind of population with upper-limits might also
describe a certain type of hobby-driven community. The hobby,
like baking, may allow for increasing levels of intensity in one
direction: there are beginner bakers, then bakers relying on more
complex techniques, like using sourdough, then hobbyist with even
more complex techniques, using only self-milled ancient grains and
so on. Each user derives positive utility from content posted to a
community focused on the hobby but derives negative utility from
content that is too sophisticated. In this community, users agree on
their left endpoints, meaning they all derive utility from content
from beginners, but they disagree on the level of sophistication that
they enjoy.

For such a community, in which disagreement only exists in one
direction, we compare the power of dynamic moderation windows
with the largest compatible community. We find that in this special
case and if \ := \1 = · · · = \𝑛 , the community achievable with
dynamic window-based moderation is as large as the largest com-
patible community and can be found in polynomial time. Note that
this is a much stronger bound than Theorem 3.2, which holds for
general populations. Whereas Theorem 3.2 says that a window can
only always hope to achieve a (2\ − 1) fraction of an LCC on a
general population, in this case, a dynamic window can capture a
complete LCC for all \ .
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First, we formally define dynamic moderation windows. A dy-
namic moderation window 𝐼 : Z>0 → I defines a moderation
window at each time step. The window at time 𝑡 will be denoted
𝐼 (𝑡) := [𝑙 (𝑡 ) , 𝑟 (𝑡 ) ]. In this section, we will refer to non-dyanmic
moderation windows as static.

Proposition D.1. For any population 𝑃 such that 0 = 𝑙1 = · · · = 𝑙𝑛
(i.e., all left endpoints are zero) and \ := \1 = · · · = \𝑛 , there exists a
dynamic moderation window 𝐼 (·) such that

𝑠 (𝑃, 𝐼 (·)) = 𝑠opt (𝑃)
Further, for all static moderation windows 𝐽 ∈ I, there exists a
population 𝑃 such that 0 = 𝑙1 = · · · = 𝑙𝑛 (i.e., all left endpoints are
zero) and \ := \1 = · · · = \𝑛 and

𝑠 (𝑃, 𝐽 ) ≤ (2\ − 1)𝑠 (𝑃, 𝐼 ).

Intuitively, the result says that the best dynamic moderation
window can always achieve a community as large as the largest
compatible community, but a static moderation window cannot.
Proof of Proposition D.1. As in the proof of Theorem 3.1, we first
construct a maximal compatible set. Then we show how a window
can be set so that all users in the moderation window will remain
when switching reaches an equilibrium.

Lemma D.2. When the left endpoints of the intervals are the same,
the maximal compatible set can be found using the following algo-
rithm.

ALGORITHM 1: Maximal compatible set for one-sided intervals.

Input: Users
{
(𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 )

}𝑛
𝑖=1 with 𝑙1 = · · · = 𝑙𝑛 = 0 and

\ := \1 = · · · = \𝑛 .
Output: A maximal compatible set.
for 𝑗 ∈ [𝑛] do

Let S :=
{
𝑖 ∈ [𝑛] : 𝑝𝑖 ∈ 𝐼 𝑗 , 𝑟𝑖 > 𝑟 𝑗

}
be the index set of users

whose speech points are in user 𝑗 ’s interval and whose intervals
are longer than user 𝑗 ’s interval.

Let T :=
{
𝑖 ∈ [𝑛] : 𝑝𝑖 > 𝑟 𝑗

}
be the index set of users whose

speech points are outside of user 𝑗 ’s interval.
LetW :=

{
𝑗
}
∪ S be a working set.

Add (1/\ − 1) |S | arbitrary intervals from T toW.
Check ifW is the largest compatible set found so far. If so, record
its entries.

end

We can interpret this lemma as a way of understanding the mech-
anisms by which an agreement is formed: in any stable community,
there must exist some user (call them user 𝑖) with the shortest inter-
val in any compatible set. This user must be willing to stay on the
platform, so they must have nonnegative utility (or, equivalently, a
\𝑖 fraction of compatible content) from other users. All other users
on the platform have intervals that contain user 𝑖’s interval, so they
must derive at least as much utility from the platform as user 𝑖 .
Given that the user with the shortest interval is willing to to stay,
all users with longer intervals must also be willing to stay.
Proof of Lemma D.2. We will prove that the algorithm above
finds a set of equivalent or greater size to an any compatible set.

LetW,S and T be those recorded by the algorithm. LetW ′ be
an arbitrary compatible set, let 𝑗 be index of the shortest interval

inW ′, let S′ be the set of intervals inW ′ compatible with 𝑗 and
let T ′ be the set of intervals inW ′ that are not compatible with 𝑗 .

Notice S′ ⊆ S and
��T ′�� ≤ T since the algorithm had S′ in

iteration 𝑗 . Notice that intervals in S′ are all mutually compatible,
since 𝑝𝑖 < 𝑟 𝑗 and 𝑟𝑖 > 𝑟 𝑗 for all 𝑖 ∈ S′. This also implies that any
user in S′ will still have their compatibility constraints satisfied
if up to (1/\ − 1)

��S′�� intervals join the platform. Notice that we
can have a maximum of (1/\ − 1)

��S′�� intervals from T inW or
W ′; any more than (1/\ − 1)

��S′�� intervals added to the working
set would violate the compatibility constraint of interval 𝑗 . Also,
any user in T ′ will have their compatibility constraints satisfied if
up to (1/\ − 1)

��S′�� are added to the set. This is because all intervals
in { 𝑗} ∪S′ are compatible with all intervals in T ′. To see this, note
𝑝𝑖 < 𝑟 𝑗 for all 𝑖 ∈ S′ and 𝑝𝑖 > 𝑟 𝑗 for all 𝑖 ∈ T ′. Trivially 𝑟𝑖 > 𝑝𝑖 , so
𝑟𝑖 > 𝑝𝑘 for all 𝑖 ∈ T ′ and 𝑘 ∈ S′. We also assumed 𝑙1 = . . . 𝑙𝑛 , so
𝑝𝑘 ∈ 𝐼𝑖 for all 𝑖 ∈ T ′ and 𝑘 ∈ S′.

Since
��S′�� ≤ |S| and we could proceed by exchanging elements

from T ′ \W with elements fromW \ T ′, we knowW is at least
as large asW ′. □

Next, we want to show that a dynamic window can be chosen
such that the resulting set, for any starting orientation and switch-
ing order, is as large as the LCC.

Our dynamic window will be as follows. Let S∗ be a set of
users in the LCC whose content are compatible with the user with
shortest interval, call it 𝑗∗. LetW∗ be the set of users in the largest
compatible community, where we take the union over S∗ and the
(1/\ − 1)

��𝑆∗�� users with the least speech points greater than 𝑟 𝑗∗ .
We set our dynamic window to be the minimum length interval
that covers S∗ until all members of S∗ are on the platform, at
which point we set it to be the minimum length interval that covers
W∗. Notice that any user from S∗ will join the platform under
a window that covers S∗, since they will derive positive utility
from all users allowed on the platform. Also notice that after all
users from S∗ join the platform, there are only (1/\ − 1)

��𝑆∗�� users
outside of user 𝑗∗’s interval allowed on the platform. Each of these
users will join the platform when given the chance, since they have
all of the compatibilities of user 𝑗∗ (and possibly more) and user
𝑗∗ has at least

��S∗�� compatibilities and no more than (1/\ − 1)
��𝑆∗��

incompatibilities. Thus, user 𝑗∗ is satisfied. And since all users inS∗
have intervals longer than that of 𝑗∗, they must also derive positive
utility from the platform. □

E HETEROGENEOUS SPEECH FREQUENCIES
Consider adding an extra parameter to each of the users on the
platform: speech frequency. That is, some users will speak more
frequently than others, and thus will show up more often in the
feeds of other users and therefore exert more influence on whether
users are willing to participate in the platform. User 𝑖’s speech fre-
quency will be denoted 𝑓𝑖 ≥ 0. We will call these variable-frequency
populations and the normal version of the model fixed-frequency.
We show that the maximal compatible set problem on the variable-
frequency problem can be reduced to the fixed-frequency problem
in polynomial time in the total amount of speech. For simplicity,
we will just consider integer values of 𝑓𝑖 , but the analysis can be
extended to rationals (or arbitrarily tight approximations of irra-
tionals) by multiplying all frequencies by a constant such that all
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frequencies are integers. In this problem, each user can produce
content at a rate between zero and 𝑓𝑖 and will leave the platform
if the total amount of speech compatible with them (weighted by
frequencies) is not at least a \𝑖 proportion.

Proposition E.1. For a variable-frequency population𝑄 = {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 ,
\𝑖 , 𝑓𝑖 }𝑖∈[𝑛] ,S0 let 𝑠opt (𝑄) be the LCC of users that a platform could
sustain if it could choose an arbitrary set of users to allow on the
platform and set caps on the frequencies of user speech.

Define 𝑓 :=
∑𝑛
𝑖=1 𝑓𝑖 . Then

𝑠opt
(
𝑄

)
= 𝑠opt

({
𝐼𝑖 , 𝑝𝑖 , \𝑖 +

𝑓𝑖 − 1
𝑓 − 1

}
𝑖∈[𝑛]

,S0

)
. (2)

In other words, Proposition E.1 says that the largest compatible
community under a variable-frequency problem can be computed
by finding the largest compatible community of a fixed-frequency
problem in polynomial time in the sum of frequencies.
Proof of Proposition E.1. For a given variable-frequency pop-
ulation, we create a construction of a fixed-frequency population
(where users all have the same frequency) from the variable-frequency
problem. Start by creating 𝑓𝑗 identical users with the same 𝑟 𝑗 , 𝑝 𝑗 and
𝑙 𝑗 . We will choose their tolerance threshold in the fixed-frequency
problem so that it is equivalent to the threshold in the variable-
frequency problem. Notice that, since we created 𝑓𝑗 identical users
in the fixed-frequency problem, each of the users are compatible
with each other. However, since users do not get utility from con-
suming their own speech, we need to increase user thresholds in
the fixed-frequency problem to account for the “free” utility users
get from listening to other identical users. Define

\ ′𝑗 := \ 𝑗 +
𝑓𝑗 − 1
𝑓 − 1

and notice that users in the variable-frequency problem are satisfied
if and only if each user is satisfied in the fixed-frequency problem.
To see this, suppose a user 𝑗 in the variable-frequency problem is
satisfied. Then at least \ 𝑗 proportion of the speech in the variable-
frequency problem is compatible with user 𝑗 . Let 𝑗𝑙 for 𝑙 = 1, . . . , 𝑓𝑗
be the users identical to user 𝑗 in the fixed-frequency problem. Then
at least

𝑓𝑗 − 1 +
∑
𝑘≠𝑗 𝑓𝑘1{𝑝𝑘 ∈ 𝐼 𝑗 }
𝑓 − 1 ≥ \ 𝑗 +

𝑓𝑗 − 1
𝑓 − 1

speech in the fixed-frequency problem are compatible with user 𝑗𝑙 .
Conversely, if user 𝑗𝑙 is satisfied in the fixed-frequency problem,
then at least \ ′ proportion of speech is compatible. Then the same
holds for all other 𝑗𝑘 for 𝑘 = 1, . . . , 𝑓𝑗 since 𝑗𝑙 and 𝑗𝑘 have the same
interval and tolerance threshold.

Then user 𝑗 in the variable-frequency problem has at least

\ ′𝑗 −
𝑓𝑗 − 1
𝑓 − 1 = \ 𝑗

speech they find compatible. □

F PLATFORM STABILITY AND SWITCHING
DYNAMICS

In both our single platform model and our multiple platform model,
platforms may never reach an equilibrium. However, under some
conditions, such as when all compatibilities are mutual (i.e., if user

𝑖 is compatible with 𝑗 , then 𝑗 is compatible with 𝑖) and participation
thresholds are homogeneous (i.e., \1 = · · · = \𝑛), then the plat-
form is guaranteed to reach an equilibrium — for either the single
platform case or multiple platforms. We prove these results below.

F.1 The single platform case
Our first observation is that switching dynamics need not stabilize
and may not have any stable arrangements of users where the plat-
form is nonempty. After that, we show that when all compatibilities
are mutual and participation thresholds are homogeneous, then the
platform is guaranteed to stabilize.

To show that some populations may never stabilize under any
switching order, we use the following example.

Example F.1. Suppose we have a population of 𝑛 users arranged
as in fig. 7 with the number of users for each type to the right along
with group numbers in parentheses. Let \𝑖 = 2/3 and _𝑖 = 1 for all
𝑖 ∈ [𝑛]. Further, suppose there is no moderation window.

× 0.2𝑛, (1)
× 0.45𝑛, (2)
× 0.35𝑛, (3)

Figure 7: Platform cycling. Suppose \𝑖 = 2/3 for all 𝑖.

Proposition F.2. There are no equilibria in Example F.1.

Proof of Proposition F.2. Notice that regardless of which users
the platform is seeded with, all the users of type 1 will always
choose to join, since they are compatible with all possible users
on the platform. To see this, observe that when a user of type 1
is next in the switching order, they always will join a nonempty
platform and will never leave, since every speech point is within
their interval and this means they can have a minimum of 0 utility.
Additionally, once a platform has a nonempty set of seed users,
it will never become empty. This is because users leave one at a
time, so the last user on the platform will have zero utility and
will thus not leave the platform. Thus, we will start our analysis
assuming all members of type 1 have joined. Also notice that if any
one user of type 1, 2 or 3 is on the platform and derives positive
utility, all of the users must, so any equilibrium will have all users
of a given type or none. This establishes the following equivalence
between equilibria in our example for any 𝑛 and the \𝑖 are as above.
(Throughout, when we present examples, they will generally apply
regardless of whether the platform is small or large.) The ratios
between the number of users are the crux of the example.

We proceed to the proof that the construction above results in
cycling. Any nonempty platform without 1 is not an equilibrium,
since users 1 will always join the platform. The platform with just
1 is not an equilibrium since users 2 will want to join. The platform
with 1 and 2 or 1 and 3 are not equilibria because in each case users
3 will want to switch from their current status. This is because,
in the platform with 1 and 2, the users 3 will each have at least
0.45𝑛/(0.2𝑛 + 0.45𝑛) > 2/3 content they are compatible with, so
those users would join the platform if given the chance. In the
platform with 1 and 3, users 3 would have only 0.35𝑛/(0.35𝑛 +
0.2𝑛) < 2/3 content they are compatible with, so those users would
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leave the platform if given the chance. The platform with 1, 2, and
3 is not an equilibrium because in this case user 2 wants to leave,
since they would have a proportion of only 0.65 of content they
like.

This process is easiest to visualize when users from each group
move en masse. Suppose users 1 start on the platform. Users 2 join,
since they derive positive utility from other members of their group
and users 1. Then users 3 join, since they derive positive utility
from users 2 and themselves. But this causes users 2 to leave, and
the process repeats. □

Cycling does not occur, however, when the population consists
of users where all compatibilities are mutual and users have the
same participation thresholds.

Proposition F.3. Consider a population where, if user 𝑖 is compatible
with user 𝑗 , then user 𝑗 is compatible with user 𝑖 , where 𝑏 := 𝑏1 =

· · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛 . Then, for any switching order, the
platform will reach an equilibrium.

Proof of Proposition F.3. We will show that every finitely often,
the sum of the current utilities of individuals increases by at least a
constant amount. Once we show this, since the maximum utility
is bounded by 𝑛(𝑛 − 1) (this is achieved in the extreme case that
all users are mutually compatible) and each switch increases total
utility by at least a constant amount, the switching process must
converge in finite time.

First, observe that when a user joins a platform, it must be be-
cause their utility for participating on the platform is nonnegative.
As before, let us define 𝑢𝑖 (S) to be the utility of user 𝑖 ∈ [𝑛] if they
were to join the platform andS to be the index set of users currently
on the platform. Also, define 𝑣𝑖 (S) to be the sum of utilities that
all users on the platform would derive from user 𝑖 . That is,

𝑣𝑖 (S) =
∑︁

ℓ∈S\{𝑖 }
1{𝑝𝑖 ∈ 𝐼ℓ } − _𝑏1{𝑝𝑖 ∉ 𝐼ℓ }.

Notice, since all compatibilities are mutual, 𝑣𝑖 (S) = 𝑢𝑖 (S) for
all 𝑖, 𝑗 . Then, since user 𝑖 is joining the platform, 𝑢𝑖 (S) ≥ 0 and
thus 𝑣𝑖 (S) ≥ 0. That is, user 𝑖 derives nonnegative utility from
joining the platform, and the current members of the platform
derive nonnegative aggregate utility from user 𝑖 . Thus, every time
a user joins the platform, utility among the set of users on the
platform is nondecreasing.

Similarly, when a user leaves a platform, it must be because their
utility for participating was strictly negative. Thus, every time a
user leaves the platform, net utility of users on the platform must
strictly increase.

The utilities of those who are not currently on the platform do
not change, so the sum of the current utilities of all users must
not decrease every time a user joins a platform and must strictly
increase every time a user leaves a platform. Since there are only
𝑛 users, only 𝑂 (𝑛) switches can occur before total utility strictly
increases.

Next, we argue that if total utility increases, it does so by at least
a constant in the parameters of the population. Notice that 𝑣𝑖 (S)
must be an integer multiple of 1 and _𝑏 where each integer is less
than the size of the platform. The set{

𝑥 − 𝑦_𝑏
�� 𝑥 − 𝑦_𝑏 > 0, 𝑥 ∈ [𝑛], 𝑦 ∈ [𝑛]

}

is finite, so it must have achieve a positive minimum that is a
function of 𝑏 and _.

Next, we prove corresponding results for cycling on multiple
platforms.

F.2 Cycling with multiple platforms
As with the single-platform case, platforms under competition can
cycle indefinitely, regardless of whether the platforms are large
(greater than the size of user bandwidths) or small (lesser than the
size of user bandwidiths). We demonstrate this through several
examples, and then we prove a result similar to Proposition F.3
which gives conditions under which an equilibrium is guaranteed
for multiple platforms.

We will construct examples where users can cycle between plat-
forms, regardless of whether they are following proportion- or
utility-based switching. Recall that users follow proportion-based
switching when the amount of content the platform might serve
them is larger than their bandwidth and utility-based switching
when it is smaller. With no personalization, the amount of content
the platform might serve them is equal to the number of users on
the platform; with personalization, some content outside of a user
interval is filtered out, reducing the amount of content for a given
user.

In fig. 8, there are four types of users. Suppose they each have
\𝑖 = 7/9 and _𝑖 = 1 for all 𝑖 ∈ [𝑛]. Two of the types of users, types
1 and 4, have intervals that cover all other user speech. Meanwhile,
users of types 2 and 3 only derive positive utility from some of the
other users. Users of type 2 only derive utility from users of type 1,
2 and 4, while users of type 3 only derive utility from users of type
2 or 3. Users of type 1, 2 and 3 start on platform 1, while users of
type 4 start on platform 2. Further, suppose neither platform sets a
moderation window.

×0.1𝑛, (4)

×0.1𝑛, (1)
×0.6𝑛, (2)

×0.2𝑛, (3)
Platform 1

Platform 2

Figure 8: Platform cycling under proportional- and utility-
based switching. Fix \ := \1 = · · · = \𝑛 = 7/9 and _ := _1 =

· · · = _𝑛 = 1. The first platform is displayed above the axis
and the second platform is displayed below the axis.

We will argue that, under both utility-based and proportional-
based switching, for some starvation-free switching order, the plat-
form will never reach an equilibrium.

We will specify switching orders in which users of a given type
move sequentially: all users of type 𝑗 will be given a chance to
switch in a row for each 𝑗 . For proportional-based switching, we
choose an order of types 1, 2, 3, 4, 1, 2, 3, 4, . . . . Observe that users of
type 1 and 4 will never leave their platform, since they each derive
positive utility from every other user on the platform. Thus, when
users of type 1 are first in the switching order, they stay. Next in the
order is users of type 2. Any user of type 2 is completely compatible
with the users on platform 2 (which are users of type 4), and so
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will switch to the second platform. All of the rest of users of type
2 will follow. Now, users of type 3 will have negative utility on
platform 1 but positive utility on platform 2, leading each of them
to switch to platform 2. Finally, users 4 will not leave their platform
since they derive positive utility from every other user. Then, the
process repeats, users 1 stay on the platform, users 2 switch, then
users 3 switch and users 4 stay. This gets us back to the starting
arrangement and thus the platforms will cycle indefinitely.

For utility-based switching, we choose 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2,
3, . . . for our switching order, such that all users of type 1 are
allowed to switch, then type 2, then 3, then 4, then 2, then 3 then
the whole sequence is repeated. We will set each user 𝑖’s bandwidth
to 𝛾𝑖 = 𝑛: they could consume all possible content if all users were
all on one platform. When users of type 1 are up in the switching
order, they derive positive utility from every user so will choose
whichever platform is larger. This is platform 1, so they will stay.
Users of type 2 are next in the switching order. The first user of type
2 in the switching order will have total utility (0.7𝑛 − 1) − 0.2𝑛𝑏
on platform 1 (the minus one term comes from the fact that users
do not derive utility from themselves), and utility 0.1𝑛 utility on
platform 2. It can trivially be verified that for 𝑏 = 7/2, it holds
that (0.7𝑛 − 1) − 0.2𝑛𝑏 < 0.1𝑛, for all 𝑛 ≥ 1 and so the first user
of type 2 switches to platform 2. But then each subsequent user
of type 2 has even lower utility on platform 1 and greater utility
on platform 2. Thus, they all switch to platform 2. Next, users of
type 3 have negative utility on platform 1 and positive utility on
platform 2, so they also all switch to platform 2. Finally, users of
type 4, like users of type 1, will always go to the platform with the
larger number of users, which is platform 2 when they are given
the chance to switch, so they will stay on the platform. But now
the platforms are symmetric to before switching started, so users
of type 2 and 3 switch back to platform 1 and the process repeats,
cycling indefinitely.

Notice that under either type of switching, users of type 1 will
stay on platform 1, then users of type 2 will leave for platform 2,
then user 3 will follow users of type 2 to platform 2 and so on. Thus,
for general populations with two platforms, platforms can cycle
when platforms are below and above their bandwidth thresholds.
However, for utility-based switching with mutually compatible
users and homogeneous utility functions, this is not the case. We
show this in the next result, which closely follows the logic of
Proposition F.3.

Proposition F.4. Consider a population where, if user 𝑖 is compatible
with user 𝑗 , then user 𝑗 is compatible with user 𝑖 , where 𝑏 := 𝑏1 =

· · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛 . Suppose user bandwidths 𝛾𝑖 ≥ 𝑛 are
no smaller than the size of the population. Then, for any switching
order, the platform will reach an equilibrium.

Proof of Proposition F.4. The logic of the proof of Proposition F.4
closely follows Proposition F.3. As before, we will show that to-
tal utility always strictly increases every finitely many switches.
Then, since utility is bounded from above and every time utility
increases, it must increase by at least a constant amount in the
population parameters, this shows that the platform must converge
to an equilibrium.

Define 𝑢𝑖 (S𝑗 ) to be the utility that user 𝑖 would derive on plat-
form 𝑗 where S𝑗 is the current set of users on platform 𝑗 . And let

𝑣𝑖 (S𝑗 ) be the utility derived from user 𝑖’s on platform 𝑗 . That is,

𝑣𝑖 (S𝑗 ) =
∑︁

ℓ∈S𝑗 \{𝑖 }
1{𝑝𝑖 ∈ [𝑙ℓ , 𝑟ℓ ]} − _𝑏1{𝑝𝑖 ∉ [𝑙ℓ , 𝑟ℓ ]}

Now, notice that 𝑢 𝑗 (𝑖) = 𝑣 𝑗 (𝑖) and thus, since when a user
switches or leaves platforms, total utility must increase. Since there
are only finitely many values of 𝑥 − 𝑦_𝑏 > 0 for 𝑥,𝑦 nonnegative
integers no greater than 𝑛 and since total utility is bounded by
𝑛(𝑛 − 1), the platforms must converge. □

G DEFERRED PROOFS
In what follows, we restate each result before the proof for conve-
nience.

G.1 Proofs for Section 3
Theorem 3.1. For any population 𝑃 where \1 = · · · = \𝑛 = 1, there
exists a moderation window 𝐼∗ ∈ I such that

𝑠 (𝑃, 𝐼∗) = 𝑠opt (𝑃) .

Moreover, such a window 𝐼∗ can be identified in 𝑂 (𝑛3) time.

Proof of Theorem 3.1. We first need to find the size of the largest
compatible community. We do this by construction in Lemma G.1.

Lemma G.1. When \1 = · · · = \𝑛 = 1, the largest compatible
community can be found using algorithm 2.

ALGORITHM2: Largest compatible community for \1 = . . . \𝑛 = 1

Input: Users
{
(𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 )

}𝑛
𝑖=1 with participation thresholds

\ := \1 = · · · = \𝑛 = 1 and set of initial adopters S0.
Output: The largest compatible community.
Relabel intervals so 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑛 .
for each 𝑖, 𝑗 ∈ [𝑛] × [𝑛] such that 𝑖, 𝑗 mutually compatible and
𝑖 < 𝑗 do

Initialize some set S𝑖,𝑗 ← ∅.
For each 𝑘 ∈ [𝑛] such that 𝑖 < 𝑘 < 𝑗 , add 𝑘 to S𝑖,𝑗 if and only if
it is mutually compatible with both 𝑖, 𝑗 .

Check if S𝑖,𝑗 is the largest compatible community found so far. If
so, record its entries.

end
Return the largest S𝑖,𝑗 .

Proof of LemmaG.1. Notice that, when \ 𝑗 = 1 for all 𝑗 , every user
in a compatible community must be compatible with every other
user. Equivalently, every compatible community must have the
property that every user interval in the set covers all speech points
in the set. Each compatible community must have a maximum
and minimum speech point, and we iterate over these choices of
speech points to find the largest one. In the for-loop, for given pair
of users 𝑖 and 𝑗 , we enforce the properties that all other speech
points fall in [𝑝𝑖 , 𝑝 𝑗 ] and all intervals in the compatible community
cover [𝑝𝑖 , 𝑝 𝑗 ]. To see the first part, notice that the speech points are
sorted and we only search over 𝑘 such that 𝑖 < 𝑘 < 𝑗 in the inner
for-loop. To see the second part, notice that we are requiring that 𝑘
be mutually compatible with 𝑖 and with 𝑗 , which means that user
𝑘’s interval extends left at least until 𝑝𝑖 and right until 𝑝 𝑗 . Since this
means that every user interval in the set covers all speech points,
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this proves that each set created in an iterator of the for-loop is
compatible. Since we iterate over all choices of 𝑝min and 𝑝max, we
must find every compatible community, which means that we can
take the largest of these as the maximum. □

We now proceed with the rest of the proof. Suppose we choose
the moderation window to be equal to the minimum and maximum
speech points in the largest compatible community. Notice that
every user in the largest compatible community covers the entire
window, and this means that no user can join the platform whose
speech is not compatible with them. Thus, every user in the largest
compatible community will have their participation threshold sat-
isfied and will stay on the platform. Now we just need to show
that every user in the moderation window will join the platform.
Since they cover the whole window and no users whose speech
falls outside the window are allowed on, every user in the largest
stable platform will gain positive utility from every other user on
the platform at any time in the process. So users in the largest stable
set will always choose to join the platform when it is their turn to
choose, and they will never leave. Further, these users are the only
ones whose intervals cover the whole range from 𝑝min to 𝑝max, so
no other users will join the platform and stay forever. □

Theorem 3.2. For any population 𝑃 where \min > 1/2, there exists
a moderation window 𝐼 ∈ I such that

𝑠 (𝑃, 𝐼 ) ≥ (2\min − 1)𝑠opt (𝑃)

that can be identified in𝑂 (𝑛3) time. On the other hand, for all \min >

1/2, there exists a population 𝑃 such that for any moderation window
𝐼 ∈ I, it holds

𝑠 (𝑃, 𝐼 ) ≤ (2\min − 1)𝑠opt (𝑃) +𝑂 (1) .
and, for all \min ≤ 1/2, there exists a population 𝑃 such that for any
moderation window 𝐼 ∈ I, it holds 𝑠 (𝑃, 𝐼 ) = 𝑂 (1).

Proof of Theorem 3.2. For the first part of the theorem, we
start with a result showing that any compatible community S for
\min ≥ 1/2 must include a set of users that are compatible with all
other users in the compatible community, proportional to the size
of S.

Lemma G.2. Let users
{
(𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 )

}𝑛
𝑖=1 for \min ≥ 1/2 contain a

compatible community of at least 𝑘 users. Then there must exist at
least 𝑘 (2\min − 1) users which are compatible with all other users in
the set.

Proof of Lemma G.2. Suppose the users in the compatible com-
munity are ordered so that 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑘 and define
\ := ⌈(𝑘 − 1)\min⌉/(𝑘 − 1). We will show users (1 − \ ) (𝑘 − 1) + 1,
. . . , \ (𝑘 − 1) + 1 are compatible with every other user. To see why
this is true, consider an arbitrary user 𝑗 . Since the set is compatible,
user 𝑗 must be compatible with at least \ (𝑘 − 1) other users. If
𝑗 < \ (𝑘 −1) +1, then user \ (𝑘 −1) +1must be compatible with user
𝑗 since there are not \ (𝑘 − 1) users 𝑖 such that 𝑝𝑖 < 𝑝\ (𝑘−1)+1 since
we labeled the users in ascending order of speech point. Similarly, if
𝑗 ≥ \ (𝑘 −1) +1, then user \ (𝑘 −1) +1must be compatible with user
𝑗 since there are not \ (𝑘 − 1) users 𝑖 such that 𝑝𝑖 > 𝑝\ (𝑘−1)+1. The
same reasoning will show that user (1 − \ ) (𝑘 − 1) + 1 is compatible
with user 𝑗 : If 𝑗 > (1 − \ ) (𝑘 − 1) + 1, then user (1 − \ ) (𝑘 − 1) + 1
must be compatible with user 𝑗 since there are not \ (𝑘 − 1) users 𝑖

such that 𝑝𝑖 > 𝑝 (1−\ ) (𝑘−1)+1 since we labeled the users in ascend-
ing order of speech point. Similarly, if 𝑗 ≤ (1 − \ ) (𝑘 − 1) + 1, then
user (1 − \ ) (𝑘 − 1) + 1 must be compatible with user 𝑗 since there
are not \ (𝑘 − 1) users 𝑖 such that 𝑝𝑖 < 𝑝 (1−\ ) (𝑘−1)+1. □

By Lemma G.2, there must be a set S of mutually compatible
users where |S| ≥ (2\min−1)𝑠opt (𝑃). We will construct an window
such that all users in S are willing to use the platform regardless
of switching order. Let 𝑝min and 𝑝max be the left- and right-most
speech points in 𝑆 , i.e.,

𝑝min ≜ min
𝑖∈𝑆

𝑝𝑖

𝑝max ≜ max
𝑖∈𝑆

𝑝𝑖

Because all of the users inS are mutually compatible, their intervals
must all include both 𝑝min and 𝑝max. We will chose our window to
be exactly [𝑝min, 𝑝max], so that every user in S covers the entire
window. Next, wewill argue that when it is the turn of any user from
S in the starvation-free switching order, they will join the platform.
To see this, we will first argue that the platform is nonempty when
the first user from the set is given the opportunity to join. The
platform starts with some user, the first in the switching order
whose speech falls in the interval. But since switching happens
one user at a time, at least one user whose speech is inside the
window will be on the platform at all times: a single user will never
leave, since they derive zero utility. Since every user allowed on
the platform is compatible with every interval in S, the first user
from the set that is allowed to join will do so. But then since their
interval covers the whole window, they will derive positive utility
from any user on the platform, so that user will never leave. And this
means that every user from the mutually compatible community
will join the platform eventually. Finally, since there are greater
than (2\min − 1)𝑠opt (𝑃) speech points in [𝑝min, 𝑝max] that cover
the whole interval by the existance of 𝑠opt (𝑃), and all of them will
join the platform when given the chance, at least this number will
join the platform and never leave.

For upper bound in the theorem, we will use constructions where
all individuals have the same participation threshold: \ = \1 = · · · =
\𝑛 . We will handle the case when \ ∈ (1/2, 1) first and the one
for \ ≤ 1/2 second. The first case will have an upper bound for a
platform with window-based moderation of (2\ − 1)𝑠opt (𝑃) +𝑂 (1)
and the second will have an upper bound of nomore than a constant
number of users.

For the first construction, without loss of generality, let (\−1/2)𝑛
be an integer. (Otherwise, simply define a new\ ′ := ⌊(\ − 1/2)𝑛⌋/𝑛+
1/2 and substitute \ ′ throughout instead.) Let there be

𝐾 := 2


(1 − \ )𝑛 − 1(
\ − 1

2

)
𝑛


sets of 𝑄 ≈ (\ − 1/2)𝑛 users (some stacks will have one fewer
user so that the total number of users in these 𝐾 stacks adds up to
2((1−\ )𝑛− 1)). Users within a set will have identical speech points
and intervals. We will specify 𝑛 later. For 𝑗 = 1, . . . , 𝐾/2 let the 𝑗th
set of users have speech point 𝑗 and semi-infinite intervals [ 𝑗,∞)
(or equivalently, finite intervals that extend past the right-most
speech point in the construction). For 𝑗 = 𝐾/2 + 3, . . . , 𝐾 , let the
𝑗th set of users have speech point 𝑗 + 3 and semi-infinite intervals
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(−∞, 𝑗 +3]. Finally, let there be two additional sets of users: the first
will have speech point 𝐾/2 + 1 and interval [𝐾/2 + 1,∞) and the
second will have speech point 𝐾/2 + 2 and interval (−∞, 𝐾/2 + 2].
Each of these sets will have (\ − 1/2)𝑛 + 1 users. The set of initial
adopters will be S0 = ∅. A diagram of the construction is shown
in fig. 9.

. . . . . .

×𝑄

×𝑄

×𝑄

×𝑄
×(\ − 1/2)𝑛 + 1
×(\ − 1/2)𝑛 + 1

Figure 9: A construction for \ > 1/2. A window can achieve
no more than a (2\ − 1)𝑛 + 2-sized platform.

Now we will argue that, for any window, there exist a stable
platform with no more than (2\ − 1)𝑛 + 2 users. Let the window be
[𝐿, 𝑅] where the endpoints are integers in {1, . . . , 𝐾 + 3} without
loss of generality. Then, consider switching orders in which the
sets with speech points at 𝐿 are given the opportunity to join first
and the speech points at 𝑅 are given the opportunity to join next.
Observe that all users in each set will join the platform, since they
are compatible with all users on the platform already.

Next, we will argue that no other users will join the platform.
First notice that all users inside the window still on the platform
are compatible with exactly one of the set with speech point 𝐿 or
the speech point 𝑅. Let 𝑁𝐿 and 𝑁𝑅 be the number of users in the
sets of users with speech point at 𝐿 and with 𝑅, respectively. Then,
notice that if 𝑁𝐿/(𝑁𝐿 + 𝑁𝑅) < \ and 𝑁𝑅/(𝑁𝐿 + 𝑁𝑅) < \ , then no
other users will join the platform. The conditions in the previous
sentence are equivalent to the condition

1 − \
\

𝑁𝐿 < 𝑁𝑅 <
\

1 − \ 𝑁𝐿 .

Now notice that sets that are on the periphery of the set (i.e., the 𝐾
sets of 𝑄 users) have sets that are no more than size 1 difference.
Thus, the conditions are trivially satisfied for large enough 𝑛 for
windows [𝐿, 𝑅] where 𝐿 and 𝑅 are both the speech points of users
in the 𝐾 sets of𝑄 users. If either 𝐿 or 𝑅 indexes one of the core sets
with (\ − 1/2)𝑛 + 1 users, then we just need to verify the inequality
where, without loss of generality, 𝐿 is the speech point of the core
set of users. Thus, the inequalities we want to prove are

1 − \
\

((
\ − 1

2

)
𝑛 + 1

)
< 𝑄 <

\

1 − \

((
\ − 1

2

)
𝑛 + 1

)
.

For the first inequality, we can notice

𝑄 ≥
(
\ − 1

2

)
𝑛 − 1

>
1 − \
\

((
\ − 1

2

)
𝑛 + 1

)
. (since (1 − \ )/\ < 1)

for large enough 𝑛. The second inequality is satisfied by noticing

𝑄 ≤
(
\ − 1

2

)
𝑛

<
\

1 − \

((
\ − 1

2

)
𝑛 + 1

)
(since 1 < \/(1 − \ ))

for large enough 𝑛. Finally, since 𝑄 ≤ (\ − 1/2)𝑛, no window can
capture more than (2\−1)𝑛+2 users (which is achieved by selecting
the two center stacks of users). This concludes the proof for this
construction.

Next we handle the case when \ ≤ 1/2. We will start by describ-
ing the unique largest compatible set (in terms of some 𝑠opt (𝑃) to
be specified later), which will consist of users indexed 1, . . . , 𝑠opt (𝑃).
For all 𝑖 = 1, . . . , 𝑠opt (𝑃), let 𝑝𝑖 = 𝑖 . For 𝑖 = 1, . . . , ⌈\ (𝑠opt (𝑃) − 1)⌉,
let 𝑙𝑖 = 𝑖 and 𝑟𝑖 = 𝑖 + ⌈\ (𝑠opt (𝑃) − 1)⌉. For 𝑖 = ⌈\ (𝑠opt (𝑃) − 1)⌉ +
1, . . . , 𝑠opt (𝑃), let 𝑙𝑖 = 𝑖 − ⌈\ (𝑠opt (𝑃) − 1)⌉ and 𝑟𝑖 = 𝑖 . Notice that
this set is compatible.

Next, we will describe a set of users whose speech is interspersed
with the largest compatible community in such a way that, for
some switching order, only a constant number of users will ever
be on the platform. We will call these users spoilers. Spoilers will
be constructed differently depending on whether \ ≤ 1/3 or \ ∈
(1/3, 1/2]. The \ ≤ 1/3 condition is simpler and illustrates the main
intuition, so we start with that first.

Define𝑀 > (1−\ )/\2 to be the number of spoilers per user. For
each user 𝑖 ∈ [𝑠opt (𝑃)], each of the𝑀 spoilers will be indexed 𝑖 𝑗 for
𝑗 = 1, . . . , 𝑀 , and say these are the spoilers corresponding to user
𝑖 . For all 𝑖 ∈ [𝑠opt (𝑃)] such that 𝑙𝑖 = 𝑖 , for 𝑗 = 1, . . . , 𝑀 , let 𝑝𝑖 𝑗 =

𝑖 − 𝑗/(𝑀 + 1) let 𝑙𝑖 𝑗 = 𝑝𝑖 𝑗 . For 𝑗 = 1, . . . , 𝑀 , let 𝑟𝑖 𝑗 = 𝑝𝑖 . Similarly,
for all 𝑖 such that 𝑟𝑖 = 𝑖 , for 𝑗 = 1, . . . , 𝑀 , let 𝑝𝑖 𝑗 = 𝑖 + 𝑗/(𝑀 + 1) and
let 𝑟𝑖 𝑗 = 𝑝𝑖 𝑗 . For 𝑗 = 1, . . . , 𝑀 , let 𝑙𝑖 𝑗 = 𝑝𝑖 .

Now we analyze the size of the platform over time depending
on the window chosen by the platform. First, suppose the plat-
form chooses a window that only includes users 𝑖 in the largest
compatible community such that 𝑙𝑖 = 𝑝𝑖 . Then the most extreme
user min𝑖 𝑝𝑖min could join, and no other users would ever join. The
symmetric argument shows that if the window only includes users
𝑖 in the largest compatible community such that 𝑟𝑖 = 𝑝𝑖 , only one
user will ever join the platform.

Now suppose the window includes at least one user with their
speech point equal to the left endpoint of their interval and one
with their speech point equal to the right endpoint of their interval.
Let 𝐼 = [𝐿, 𝑅] be the window set by the platform and let 𝑖 (𝐿) (𝑖 (𝑅) )
be the index of the user in the largest compatible community with
the minimum (maximum) speech point.

Suppose 𝐿 ≤ 𝑖 (𝐿) − 1/(𝑀 + 1) and 𝑅 ≥ 𝑖 (𝑅) + 1/(𝑀 + 1). (That is,
suppose the window includes at least one spoiler associated with
the most extreme users in the largest compatible community.) Then
we claim that there exists a switching order in which no more than
2 users are ever on the platform. The intuition for the choice of
switching order is that every user that joins has an interval that
covers the one currently on the platform but has a speech point
outside of the interval of the user currently on the platform. Thus, if
the user that was currently on the platformwhen this new user joins
is asked to leave, they will do so. This swapping process happens
forever, so that there are never more than 2 users on the platform.
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Formally, for each 𝑖 ∈ 𝑠opt (𝑃) inside the window, the following
sequence of switches will occur: First, user 𝑖 will be offered the
opportunity to join the platform. Next, if there is any other user on
the platform, they will be offered the chance to leave. Next, user 𝑖1
will be offered the chance to join, then user 𝑖 then user 𝑖2 then user
𝑖1 and so on such that user 𝑖 𝑗 is offered the chance to join and then
𝑖 𝑗−1 is offered the chance to leave. We claim that at the end of such
an iteration, only user 𝑖𝑀 (or whatever the maximum 𝑗 such that 𝑖 𝑗
is allowed inside the platform) remains. Notice that if user 𝑖 joins
the platform and there is some other user on the platform that 𝑖 is
not compatible with, that user will leave the platform. Also notice
that if user 𝑖 is on the platform and is the only user on the platform
user 𝑖1 will join and then user 𝑖 will leave when given the chance.
Similarly, user 𝑖 𝑗 will join the platform if user 𝑖 𝑗−1 is the only one
currently on the platform and then user 𝑖 𝑗−1 will leave when given
the chance if there is some other user with speech point outside
their interval on the platform. Thus, at the end of an iteration 𝑖 ,
at most one user is left on the platform, and that user is not one
in the LCC by the assumption that each user in the LCC has at
least one corresponding spoiler allowed on the platform by the
window. But since any user remaining on the platform at the end of
an iteration is not in the LCC, their only compatibility is with user
𝑖 , which is not on the platform. Thus, in the next iteration when
the user on the platform from the previous iteration is allowed to
leave the platform, they will do so. Cycling through values of 𝑖
infinitely in a starvation-free way will give a switching order that
is starvation-free for all users, since each spoiler corresponding to
a user 𝑖 is offered the chance to join/stay/leave each time user 𝑖 is
selected for an iteration.

Now consider the situation in which 𝐿 > 𝑖 (𝐿) − 1/(𝑀 + 1).
That is, consider the situation in which the left endpoint of the
moderation window excludes all spoilers corresponding to user
𝑖 (𝐿) (The symmetric argument will prove the case when 𝑅 < 𝑖 (𝑅) −
1/(𝑀 + 1), so this is without loss of generality.) We will again show
that there exists a switching order that results in 𝑠opt (𝑃) no larger
than a constant.

There are three cases to consider. In the first case, suppose that
there are greater than (1−\ )/\ spoilers corresponding to user 𝑖 (𝑅) .
Consider the switching order in which user 𝑖 (𝐿) joins first. Then, for
each 𝑖 ∈ 𝑠opt (𝑃), 𝑖 ≠ 𝑖 (𝐿) inside the moderation window, consider
the case in which the switching order is 𝑖, 𝑖1, . . . , 𝑖max, 𝑖, 𝑖1, . . . , 𝑖max
(where 𝑖max is the spoiler with largest 𝑗 inside the moderation
window). Notice that 𝑖max = 𝑖𝑀 for all 𝑖 ≠ 𝑖 (𝑅) , 𝑖 (𝐿) (and possi-
bly for 𝑖 = 𝑖 (𝑅) and 𝑖 = 𝑖 (𝐿) as well). Notice that if users 𝑖 and
𝑖 (𝐿) are the only two users on the platform, user 𝑖1 will join the
platform when given the chance, then user 𝑖2 will as well, leading
to all users 𝑖1, . . . , 𝑖max to join the platform. But then, if all users
𝑖 (𝐿) , 𝑖, 𝑖1, . . . , 𝑖max are on the platform, user 𝑖 will have net-negative
utility since

��{𝑖1, . . . , 𝑖max}
�� > (1 − \ )/\ by assumption of the win-

dow chosen by the platform. Thus, if all users 𝑖 (𝐿) , 𝑖, 𝑖1, . . . , 𝑖max are
on the platform when user 𝑖 is next offered the chance to leave,
they will do so. But then user 𝑖1 will have no compatibilities and
will all leave when given the chance. Similarly, users 𝑖2, . . . , 𝑖max
will all leave the platform sequentially since they will also have no
compatibilities. Thus, any sequence that iterates over values of 𝑖
repeating such a sequence will result in a platform of size never

more than 2+𝑀 which is𝑂 (1) since𝑀 does not depend on 𝑠opt (𝑃).
To make the sequence starvation-free, the sequence should iterate
over all 𝑖 inside the window, and occasionally ask user 𝑖 (𝐿) whether
they want to stay when the platform is otherwise empty, at which
point they will have zero utility and stay on the platform.

In the second case, suppose that there are 𝑘 < (1−\ )/\ −1 spoil-
ers corresponding to user 𝑖 (𝑅) . We will use a switching order that
is similar to the one for the first case. Let 𝑖 (𝐿) join the platform first.
As before, suppose the switching order is specified by an infinite
starvation-free sequence of iterations parametrized by 𝑖 ∈ 𝑠opt (𝑃).
For a given iteration, suppose the order is 𝑖, 𝑖1, . . . , 𝑖max, 𝑖, 𝑖1, . . . , 𝑖max
where again 𝑖max is the user 𝑖 𝑗 the user with largest 𝑗 with speech
point inside the moderation window. Now suppose that 𝑖 = 𝑖 (𝑅)

and that 𝑖 (𝐿) is not compatible with 𝑖 (𝑅) . If 𝑖 (𝐿) is the only user
on the platform when user 𝑖 (𝑅) is offered the chance to join, user
𝑖 (𝑅) will not join, and neither will any of the spoilers 𝑖 (𝑅)1 , . . . , 𝑖

(𝑅)
max.

Now suppose that 𝑖 ≠ 𝑖 (𝑅) and that 𝑖 (𝐿) is the only user on the
platform. Then, if user 𝑖 (𝐿) is compatible with user 𝑖 , user 𝑖 will join
the platform as will all spoilers. Then, user 𝑖 will be given a chance
to leave the platform and will do so since they have negative utility
as a result of the spoilers. Similarly, all 𝑖1, . . . , 𝑖max will also cascade
off the platform, leaving only user 𝑖 (𝐿) left on the platform. This
proves the case when 𝑖 (𝐿) is not compatible with 𝑖 (𝑅) , since we just
need the iterations to have 𝑖 (𝑅) go first after 𝑖 (𝐿) joins, followed
by the rest of the iterations over 𝑖 ∈ [𝑠opt (𝑃)] inside the window.
(We just need to make sure 𝑖 (𝐿) is offered a chance to stay when
they will do so, say right after user 𝑖 (𝐿) + 1 joins; thus the switching
order can be starvation-free.)

Now suppose that 𝑖 (𝐿) is compatible with 𝑖 (𝑅) . When 𝑖 (𝑅) is
offered the chance to join when 𝑖 (𝐿) is on the platform, user 𝑖 (𝑅) will
join, as will 𝑖 (𝑅)1 , . . . , 𝑖

(𝑅)
max. But since there are fewer than (1−\ )/\−1

spoilers corresponding to user 𝑖 (𝑅) , user 𝑖 (𝑅) will have net positive
utility the second time they are asked and stay. Similarly, all users
𝑖
(𝑅)
1 , . . . , 𝑖

(𝑅)
max will also stay. Thus, at the end of the iteration where

𝑖 = 𝑖 (𝑅) , all users 𝑖 (𝐿) , 𝑖 (𝑅) , 𝑖 (𝑅)1 , . . . , 𝑖
(𝑅)
max will be present on the

platform.
Now, consider some other iteration 𝑖 for 𝑖 ≠ 𝑖 (𝑅) but after 𝑖 (𝑅)

and all corresponding spoilers have joined the platform. The fact
that 𝑖 (𝑅) and 𝑖 (𝐿) are mutually compatible (by assumption) implies
that for any 𝑖 such that 𝑖 (𝑅) < 𝑖 < 𝑖 (𝐿) either 𝑖 (𝑅) or 𝑖 (𝐿) is compat-
ible with user 𝑖 . But since there are a total of fewer than (1 − \ )/\
users on the platform and user 𝑖 is compatible with at least one of
them, user 𝑖 will join the platform when given the chance. User
𝑖1 will also join the platform since they have at least one compat-
ibility (user 𝑖) and there are no more than (1 − \ )/\ users on the
platform. Similarly, users 𝑖2, . . . , 𝑖𝑀 will also join the platform since
they will also have no fewer than a \ fraction of compatibilities.
Next, user 𝑖 will be given an opportunity to leave, and now there
are 3 + 𝑘 +𝑀 users on the platform (users 𝑖 , 𝑖 (𝑅) , 𝑖 (𝐿) , 𝑘 spoilers
corresponding to user 𝑖 (𝑅) and𝑀 spoilers corresponding to user 𝑖)
and user 𝑖 has at most 1+𝑘 compatibilities. Thus, they have negative
utility and will leave. At this point, user 𝑖1 will have zero compati-
bilities and will also leave, then user 𝑖2 and the rest of the spoilers
corresponding to user 𝑖 will cascade off the platform. Thus, any
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permutation over {𝑖 : 𝑖 (𝐿) < 𝑖 < 𝑖 (𝑅) } where user 𝑖 (𝑅) is offered
the chance to stay periodically and the sequence 𝑖 (𝐿) , 𝑖 (𝐿)1 , . . . , 𝑖

(𝐿)
max

is interspersed periodically in between iterations. Thus, there exists
a switching order where, if 𝑖 (𝐿) and 𝑖 (𝑅) are mutually compatible,
at most a finite number of users are on the platform at any one
time. This completes the construction of a switching order for the
second case.

In the third case, suppose that there are 𝑘 ∈ [(1 − \ )/\ −
1, (1 − \ )/\ ] spoilers corresponding to user 𝑖 (𝑅) inside the win-
dow. Our strategy will be similar to the second case: We will al-
low user 𝑖 (𝐿) on the platform, then user 𝑖 (𝑅) then the first 𝑗 =

1, . . . , ⌊(1 − \ )/\ − 1⌋ spoilers associated with 𝑖 (𝑅) on the platform,
then sequences of 𝑖, 𝑖1, . . . , 𝑖𝑀 , 𝑖, 𝑖1, . . . , 𝑖𝑀 for each 𝑖 such that 𝑖 (𝐿) <
𝑖 < 𝑖 (𝑅) . The only hitch is there are more than (1−\ )/\ −1 spoilers
associated with user 𝑖 (𝑅) , and to have a starvation-free switching
order, these users must have the chance to join the platform infin-
itely often in the switching order. So we need to consider whether
there exist switching orders where these additional users can be
asked to join where they will not do so. We can notice that there are
indeed such switching order if we use the switching order from case
2 and then strategically insert the last ⌊(1 − \ )/\ − 1⌋ − 𝑘 spoilers
corresponding to user 𝑖 (𝑅) into the order at a position where these
users are not willing to join the platform. In fact such a position
exists at any time when a user 𝑖 and all spoilers 𝑖1, . . . , 𝑖𝑀 have
joined the platform for 𝑖 (𝐿) < 𝑖 < 𝑖 (𝑅) but before they all cascade
off the platform. This can be done in a starvation-free way and
completes this case.

Next, we deal with the condition when \ ∈ (1/3, 1/2]. The con-
struction is similar to \ ≤ 1/3, but there is some additional analyti-
cal complexity to manage. The chief reason for the complexity is
that, since \ is larger than 1/3, it may be the case that users in the
LCC would join the platform when given the chance but their cor-
responding spoilers would not join the platform. Our construction
will ameliorate this issue and ensure that there is a switching order
in which, whenever a user in the LCC joins the platform, so will
their corresponding spoilers.

The construction is as follows. We will differentiate two different
types of spoilers: long spoilers and short spoilers. Long spoilers will
be the first few spoilers (the ones with the first indices 𝑗 for spoiler
𝑖 𝑗 ) and short spoilers will be the remaining spoilers. Long spoiler
𝑖 𝑗 will have an interval that extends beyond the speech of user 𝑖
to cover a few more users. Short spoiler 𝑖 𝑗 will have an interval
that extends just until the speech of user 𝑖 . Long spoiler 𝑖 𝑗 will
cover enough users so that they will join the platform whenever
user 𝑖 joins, for some switching order. Short spoiler 𝑖 𝑗 will also join
whenever user 𝑖 and all long spoilers corresponding to user 𝑖 have
joined for the switching order we specify.

Formally, suppose there is some user 𝑖 such that 1 ≤ 𝑖 < ⌈\𝑠opt (𝑃)⌉
or ⌈\𝑠opt (𝑃)⌉ + 1 < 𝑖 ≤ 𝑠opt (𝑃). This user will have 6 + 3⌊1/\⌋ cor-
responding long spoilers. If 0 ≤ 𝑖 < ⌈\𝑠opt (𝑃)⌉, the long spoiler 𝑖 𝑗
will have 𝑙𝑖 𝑗 := 𝑝𝑖 𝑗 and

𝑟𝑖 𝑗 := 𝑖 +
1

𝑀 + 1 (3 + ⌊1/\⌋).

If ⌈\𝑠opt (𝑃)⌉ + 1 < 𝑖 < 𝑠opt (𝑃), the spoiler 𝑖 𝑗 will have 𝑟𝑖 𝑗 := 𝑝𝑖 𝑗
and

𝑙𝑖 𝑗 := 𝑖 −
1

𝑀 + 1 (3 + ⌊1/\⌋).

For users 𝑖 = ⌈\𝑠opt (𝑃)⌉, ⌈\𝑠opt (𝑃)⌉ + 1, there will be⌈
\

1 − \ (5 + ⌊1/\⌋)
⌉
− 1

corresponding long spoilers. If user 𝑖 = ⌈\𝑠opt (𝑃)⌉ − 1, the long
spoiler 𝑖 𝑗 will have 𝑙𝑖 𝑗 := 𝑝𝑖 𝑗 and

𝑟𝑖 𝑗 = 𝑖 +
2

𝑀 + 1 .

If user 𝑖 = ⌈\𝑠opt (𝑃)⌉, the long spoiler 𝑖 𝑗 will have 𝑟𝑖 𝑗 := 𝑝𝑖 𝑗 and

𝑙𝑖 𝑗 = 𝑖 −
2

𝑀 + 1 .

Each user will have a total of

𝑀 := max
{⌊

2
\
(2 + ⌊1/\⌋)

⌋
,

6 + 3⌊1/\⌋,⌊
3 + ⌊1/\⌋

\

⌋
+ 5 + 3⌊1/\⌋

}
corresponding spoilers (the number of short spoilers can be calcu-
lated by subtracting away the number of long spoilers).

As before, we will break the analysis for \ ≤ 1/3 into several
cases. First, consider when the platform chooses a window that
only includes users 𝑖 in the largest compatible community such
that 𝑙𝑖 = 𝑝𝑖 . Then the most extreme-speech user min𝑖 𝑝𝑖min could
join the platform and no other user would be willing to join. The
symmetric argument shows that if the window only includes users
𝑖 in the largest compatible community such that 𝑟𝑖 = 𝑝𝑖 only one
user will ever join the platform if the most extreme-speech user
joins first.

Now, consider when the platform chooses a window with at
least one user 𝑖 with 𝑙𝑖 = 𝑝𝑖 and 𝑟𝑖 = 𝑝𝑖 for 𝑖 ∈ [𝑠opt (𝑃)]. As
before, 𝐼 = [𝐿, 𝑅] and let 𝑖 (𝐿) (𝑖 (𝑅) ) be the index of the user in
the largest compatible community with the minimum (maximum)
speech point.

Suppose 𝐿 ≤ 𝑖 (𝐿) + 1/(𝑀 + 1) and 𝑅 ≥ 𝑖 (𝑅) + 1/(𝑀 + 1). (That
is, suppose the window includes at least one spoiler corresponding
to the most extreme users in the largest community community.)
If 𝑖 (𝐿) = ⌈\𝑠opt (𝑃)⌉ − 1 and 𝑖 (𝑅) = ⌈\𝑠opt (𝑃)⌉, there are only a
constant number of users allowed on the platform, so the bound
holds, regardless of switching order. If, without loss of generality,
𝑖 (𝐿) = ⌈\𝑠opt (𝑃)⌉ − 1 but 𝑖 (𝑅) ≠ ⌈\𝑠opt (𝑃)⌉, if 𝑖 (𝑅) is compatible
with the long spoilers corresponding to user 𝑖 (𝐿) , there are only a
constant number of users allowed on the platform, so the bound
holds, regardless of switching order. If, without loss of general-
ity, 𝑖 (𝐿) = ⌈\𝑠opt (𝑃)⌉ − 1 and 𝑖 (𝑅) ≠ ⌈\𝑠opt (𝑃)⌉ and 𝑖 (𝑅) is not
compatible with the long spoilers corresponding to user 𝑖 (𝐿) , then
we can use the same switching order that we use in the case that
𝑖 (𝐿) ≠ ⌈\𝑠opt (𝑃)⌉ − 1 and 𝑖 (𝑅) ≠ ⌈\𝑠opt (𝑃)⌉, the description of
which follows next.

If 𝑖 (𝐿) ≠ ⌈\𝑠opt (𝑃)⌉ − 1 and 𝑖 (𝑅) ≠ ⌈\𝑠opt (𝑃)⌉, the following
switching order yields 𝑠 (𝑃, 𝐼 ) = 𝑂 (1). As in the case of \ < 1/3,
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𝐿 ≤ 𝑖 (𝐿) − 1/(𝑀 + 1) and 𝑅 ≥ 𝑖 (𝑅) + 1/(𝑀 + 1), we claim that for
each user, there is some user who is compatible with them that they
are not compatible with. We can choose a switching order such that
each time a user joins the platform, someone who is compatible
with them but who they are not compatible with will join. Then, if
the original user is asked if they want to leave, they will do so and
the process repeats. The fact that for each user, there is some user
who is compatible with them that they are not compatible with can
be verified by the fact that each spoiler is not compatible with the
user in the LCC that is furthest away from them in the window, but
this LCC user is compatible with them. This concludes the analysis
for when 𝐿 ≤ 𝑖 (𝐿) + 1/(𝑀 + 1) and 𝑅 ≥ 𝑖 (𝑅) + 1/(𝑀 + 1).

Now, consider when 𝐿 > 𝑖 (𝐿) − 1/(𝑀 + 1). That is, consider
the situation in which the left endpoint of the moderation window
excludes all spoilers corresponding to user 𝑖 (𝐿) . (The symmetric
argument proves the case when 𝑅 < 𝑖 (𝑅) + 1/(𝑀 + 1).) Let 𝑘 be the
number of spoilers corresponding to user 𝑖 (𝑅) . This time, there are
only the two cases: the first case is the one where 𝑘 > (1−\ )/\ and
the second case is when there are 𝑘 ≤ (1 − \ )/\ spoilers. (There is
no need for the case when 𝑘 < (1 − \ )/\ − 1 since this number is
less than 1 for \ > 1/3.)

For the first case, we consider when 𝑘 > (1 − \ )/\ . This case is
simple: we can use the switching order we used when \ ≤ 1/3 and
𝑘 > (1 − \ )/\ . For the switching order leading to small 𝑠 (𝑃, 𝐼 ) in
that case, we can use the same switching order and it will lead to a
small 𝑠 (𝑃, 𝐼 ) in this case as well. As before, we choose a switching
order such that 𝑖 (𝐿) always chooses the stay on the platform, and
then a starvation free switching order composed of concatenated
sequences 𝑖, 𝑖1, . . . , 𝑖max, 𝑖, 𝑖1, . . . , 𝑖max for each 𝑖 ∈ [𝑠opt (𝑃)] leads
one of two possibilities to occur: either none of the users join
the platform, or they all do during the first part of the sequence
(𝑖, 𝑖1, . . . , 𝑖max) and then leave during the remaining part of the
sequence.

For the second case, we consider when 𝑘 ≤ (1 − \ )/\ . This case,
we will choose the switching order carefully so that, when a user 𝑖 in
the LCC joins the platform, so do their spoilers, leading to a cascade
of users 𝑖, 𝑖1, . . . , 𝑖𝑀 all leaving the platform. This case is the reason
why the construction for \ ≤ 1/3 would not work for when \ ∈
(1/3, 1/2]. For our switching order, we will first let user 𝑖 (𝐿) join the
platform, followed by user 𝑖 (𝑅) , 𝑖 (𝑅)1 , . . . , 𝑖

(𝑅)
max. Then, exactly 2 users

from the LCC with the smallest indices 𝑖 such that 𝑖 < ⌈\𝑠opt (𝑃)⌉
will be next in the switching order and will join the platform. Next,
user ⌈\𝑠opt (𝑃)⌉ will be next in the switching order and join the
platform, followed by all corresponding spoilers. By definition of
their intervals, each of these spoilers will join the platform. Then,
user ⌈\𝑠opt (𝑃)⌉ −1will have a chance to leave the platform and will
do so. Similarly, the first 𝑀 − (3 + ⌊1/\⌋) corresponding spoilers
will have a chance to leave and will do so. Then, user ⌈\𝑠opt (𝑃)⌉ − 2
will have a chance to join the platform and will do so, as will
all corresponding spoilers Then, the remaining 3 + ⌊1/\⌋ spoilers
corresponding to user ⌈\𝑠opt (𝑃)⌉ − 1 will have a chance to leave
the platform and will do so. Then the first𝑀 − (3 + ⌊1/\⌋) spoilers
corresponding to user ⌈\𝑠opt (𝑃)⌉ − 2 will have a chance to leave
the platform and will do so. The same pattern will repeat for each
𝑖 ∈ [𝑠opt (𝑃)] such that 𝑖 < ⌈\𝑠opt (𝑃)⌉ − 1, where the switching
order for the 𝑖th iteration will be 𝑖, 𝑖1, . . . , 𝑖𝑀 , 𝑖, 𝑖1, . . . , 𝑖𝑀 . In each

case, users 𝑖, 𝑖1, . . . , 𝑖𝑀 will join the platform and then and remaining
spoilers corresponding to user 𝑖 + 1 will have the chance to leave
the platform and do so. After all 𝑖 (𝐿) < 𝑖 < ⌈\𝑠opt (𝑃)⌉ −1 iterations
have been completed, the mirror process will occur: First, exactly
2 users from the LCC will join indexed by the largest indices less
than or equal to ⌈\𝑠opt (𝑃)⌉ − 1. Subsequently, user ⌈\𝑠opt (𝑃)⌉ will
join the platform, then will all corresponding spoilers. Then, the
first 𝑀 − (3 + ⌊1/\⌋) spoilers corresponding to user ⌈\𝑠opt (𝑃)⌉
will have a chance to leave the platform and will do so. Then, for
𝑖 = ⌈\𝑠opt (𝑃)⌉, . . . , 𝑖 (𝑅) , the switching order will be 𝑖, 𝑖1, . . . , 𝑖max,
followed by any remaining spoilers corresponding to user 𝑖 − 1,
then the first𝑀 − (3 + ⌊1/\⌋) spoilers corresponding to user 𝑖 will
have a chance to leave the platform and will do so. The numbers of
spoilers that remain in each iteration are set so that spoilers in the
next iteration are willing to join the platform, at which point all of
those remaining spoilers leave, triggering a cascade of users who
leave the platform. This completes the case when 𝑘 ≤ (1−\ )/\ . □

Theorem 3.3. For any population 𝑃 such that \𝑖 > 1/2 for all 𝑖 , it
holds that, for any 𝛽 ∈ (0, 1), given a random sample of𝑚 users, a
platform can find a moderation window 𝐼 ∈ I in time polynomial in
𝑚 such that

Pr
[
𝑠 (𝑃, 𝐼 ) ≥ 𝛽 · (2\min − 1)𝑠opt (𝑃)

]
≥ 1 − 𝑛 exp

−𝑚
((
\min −

1
2

)
𝑠opt (𝑃)
𝑛
(1 − 𝛽)

)2 ,
where the probability is over the sample of𝑚 users. In fact, sampling
𝑚 users uniformly at random and applying the window achieving the
lower bound in Theorem 3.2 on the sample to the full population will
achieve the stated bound.

Proof of Theorem 3.3. We first define some random variables
that we will use in the rest of the proof. Let S be a sample of
users of size𝑚. LetU to be the largest set of users in the sample
such that each user in the set is mutually compatible with every
other user in the set. Let 𝑢 := |U|. We proved in algorithm 2 that
this set can be found in 𝑂 (𝑚3) time. For a fixed interval [𝑎, 𝑏], let
S𝑎,𝑏 := {𝑖 ∈ S : 𝑎 ≤ 𝑝𝑖 ≤ 𝑏}. Define

U𝑎,𝑏 =
{
𝑖 ∈ [𝑛] : 𝑎 ≤ 𝑝𝑖 ≤ 𝑏, 𝑙𝑖 ≤ 𝑎, 𝑏 ≤ 𝑟𝑖

}
to be the set of users whose speech falls in [𝑎, 𝑏] and intervals cover
[𝑎, 𝑏]. Let 𝑢𝑎,𝑏 =

��U𝑎,𝑏

��. DefineV = U∩S, and let𝑉 = |V|. Define
V𝑎,𝑏 = U𝑎,𝑏 ∩ S𝑎,𝑏 , and let 𝑉𝑎,𝑏 =

��V𝑎,𝑏 ��.
Notice

E
[
𝑉𝑎,𝑏

]
=

∑︁
𝑖∈U𝑎,𝑏

E
[
1{𝑖 ∈ S}

]
=

∑︁
𝑖∈U𝑎,𝑏

𝑚

𝑛

=
𝑚

𝑛
𝑢𝑎,𝑏 .

For some 𝑡 , define the event

A𝑎,𝑏 =

{ ����𝑉𝑎,𝑏 − 𝑚𝑛 𝑢𝑎,𝑏 ���� ≤ 𝑡} .
We will upper bound the probability of A𝑎,𝑏 as a function of

𝑡 . Let 𝑋1, . . . , 𝑋𝑚 represent the indicator variable that is 1 if the
22
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corresponding element in S is inU𝑎,𝑏 and zero otherwise. To do
this, we will use Hoeffding’s inequality:

Lemma G.3 (Hoeffding’s inequality for sampling without replace-
ment, adapted from [5]). Let a population consist of𝑛 values𝑥1, 𝑥2, . . . 𝑥𝑛
where 𝑥𝑖 ∈ [𝑎, 𝑏] for all 𝑖 ∈ [𝑛], and let 𝑋1, 𝑋2, . . . , 𝑋𝑘 be a sam-
ple of 𝑘 values from the population without replacement. Define
𝑆 = 𝑋1 + · · · + 𝑋𝑘 . Then

P
[��𝑆 − E [𝑆]�� ≥ 𝑡 ] ≤ 2 exp

{
−2𝑡2

𝑘 (𝑏 − 𝑎)2

}
.

The desired inequality can be derived as:

P
[
A𝑎,𝑏

]
= P

[����𝑉𝑎,𝑏 − 𝑚𝑛 𝑢𝑎,𝑏 ���� ≥ 𝑡 ]
= P

[���𝑉𝑎,𝑏 − E [
𝑉𝑎,𝑏

] ��� ≥ 𝑡 ]
= P


�������
𝑚∑︁
𝑖=1

𝑋𝑖 − E

𝑚∑︁
𝑖=1

𝑋𝑖


������� ≥ 𝑡


≤ 2 exp

{
−2𝑡2
𝑚

}
. (Hoeffding’s inequality, Lemma G.3)

Let A be the event that A𝑝𝑖 ,𝑝 𝑗
holds for all 𝑖 < 𝑗 ∈ [𝑛]. Then,

using a union bound, we have

P
[
A

]
≤ 2𝑛2 exp

{
−2𝑡2
𝑚

}
If we would like A to occur with probability at least 1 − 𝛿 , we can
choose

𝑡 =

√︄
𝑚

2
log

(
2𝑛2

𝛿

)
.

Define the random variables

𝐿 := min
𝑗 ∈V

{
𝑝 𝑗

}
,

𝑅 := max
𝑗 ∈V

{
𝑝 𝑗

}
.

to represent the least and greatest speech points inV . Notice that
by definitionV𝐿,𝑅 = V .

Conditioning on A , we have that

𝑢𝐿,𝑅 ≥
𝑛

𝑚

©«𝑉𝐿,𝑅 −
√︄
𝑚

2
log

(
2𝑛2

𝛿

)ª®¬ .
Now we we use A to prove a lower bound on the size of 𝑉𝐿,𝑅 .

Then, A also implies

𝑉 ≥ 𝑚
𝑛
𝑢 −

√︄
𝑚

2
log

(
2𝑛2

𝛿

)
≥ 𝑚
𝑛
(2\ − 1)𝑠opt (𝑃) −

√︄
𝑚

2
log

(
2𝑛2

𝛿

)
.

where the second inequality comes from Lemma G.2 that 𝑢 ≥
(2\ − 1)𝑠opt (𝑃).

(T1)
(T2)

(T3)
(T4)

Figure 10: Construction for a population instance where bet-
ter personalization reduces the size of the platform achiev-
able with a moderation window. Users in S0 are shown in
black.

Putting it together, conditionine on A and setting the window
to [𝐿, 𝑅], it holds that

𝑠 (𝑃, [𝐿, 𝑅]) = 𝑢𝐿,𝑅

≥ 𝑛

𝑚

©«𝑉𝐿,𝑅 −
√︄
𝑚

2
log

(
2𝑛2

𝛿

)ª®¬
≥ 𝑛

𝑚

©«𝑉 −
√︄
𝑚 log

(
𝑛

𝛿

)ª®¬ (assuming 𝛿 ≤ 1/2)

≥ 𝑛

𝑚

©«𝑚𝑛 𝑢 − 2
√︄
𝑚 log

(
𝑛

𝛿

)ª®¬
≥ (2\ − 1)𝑠opt (𝑃) − 2𝑛

√︄
1
𝑚

log
(
𝑛

𝛿

)
,

which can be rearranged to show the desired result.

G.2 Proofs for Section 5
Proposition 5.2. There exist two populations 𝑃 := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _𝑖 },S0,
𝑃 ′ := {𝑙𝑖 , 𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 , _′𝑖 },S0 that differ only by the fact that personal-
ization in the second is strictly better for every user than in the first
(i.e, _𝑖 > _′𝑖 for all 𝑖 ∈ [𝑛]) such that

𝑠 (𝑃, 𝐼∗) > 𝑠 (𝑃 ′, 𝐼∗
′
) (1)

for 𝐼∗, 𝐼∗
′
optimal choices of window-based policies on 𝑃 and 𝑃 ′

respectively. In fact, such a pair of populations satisfying ineq. (1) can
be constructed for any 𝑏 := 𝑏1 = · · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛
and an appropriately chosen _′ := _′1 = · · · = _

′
𝑛 .

Proof of Proposition 5.2. We will build a family of problem
instances where the best window for a platform with worse per-
sonalization results in a larger platform than the best window for a
platform with better personalization.

Our construction is as follows. For concreteness, we will instan-
tiate the construction with numbers, but of course, the family is
general. We create 4 types of users indexed by T1, . . . ,T4, where
the size of each set will be determined later. The speech point of
user 𝑖 ∈ T𝑗 will be 𝑝𝑖 = 𝑗 . All users in T1,T2 will have interval [1, 2],
users in T3 will have interval [2, 3] and users in T4 will have interval
[2, 4]. Users in T1,T2 and T4 start on the platform: S0 = T1∪T2∪T4.
A drawing of the construction is depicted in fig. 10.

Let \ := _𝑏/(1 + _𝑏) and \ ′ := _′𝑏/(1 + _′𝑏). Define 𝛽 := \ ′/\
and notice 𝛽 ∈ (0, 1) by the fact that there is more personalization
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for 𝑃 ′ than for 𝑃 . The construction only works if

𝛽 ≥ ⌈\𝑛⌉ + 1
𝑛 − 1 ;

_′ must not be too much smaller than _.
Now we define the sizes of each of the sets of users. Define

𝑛0 := |S0 | = |T1 | + |T2 | + |T4 |. We will have

|T1 | = ⌈\ (𝑛0 − 1)⌉ + 1 −|T2 | ;
(3)

max
{
(2\ − 1)𝑛0 + 1, 𝛽\ (𝑛0 − 1)

}
< |T2 | < \ (𝑛0 − 1); (4)

(1 − 𝛽) ⌈\𝑛0⌉ + 1
𝛽\

< |T3 | < ⌊(1 − \ ) (𝑛0 − 1)⌋; (5)

|T4 | = ⌊(1 − \ ) (𝑛0 − 1)⌋ . (6)
(7)

First, notice thatS0 is a compatible set. This is because all users in
T1,T2 and T4 have ⌈\ (𝑛0 − 1)⌉ compatibilities, which is a \ fraction
of the total size of S0. Also, notice that no users in T3 will join
the platform, since they have strictly fewer than the \ (𝑛0 − 1)
compatibilities necessary for users in T3 to join.

However, under more personalization, users in T3 would be will-
ing to join the platform if they were inside the moderation window,
since they have at least 𝛽\ (𝑛0 − 1) compatibilities. Further, under
switching orders where, after users in T3 are offered to join the
platform and then users in T1 and T2 were given the chance to
leave, they would all do so since they would not have the 𝛽\ (𝑛 − 1)
compatibilities necessary to be willing to stay. These users would
stay off the platform permanently, since they would never have

enough compatibilities going forward. Thus, the platform would
be smaller than 𝑛0 after switching stabilized. This shows us that,
if the window were set to encompass all users, more personaliza-
tion is not better: the platform could end up smaller than it would
under less personalization. Similarly, the platform could not set a
window that captured 𝑛0 under more personalization. This proves
the desired result.

G.3 Proofs for Section 6
Proposition B.1 (Corollary to Proposition 5.2). There exist users {𝑙𝑖 ,
𝑝𝑖 , 𝑟𝑖 , 𝑏𝑖 }𝑖∈[𝑛] and two platforms Platform 1 and Platform 2 where:

(1) personalization for Platform 1 is no worse than on Platform 2
for every user (i.e., _𝑖,1 ≤ _𝑖,2 for all 𝑖 ∈ [𝑛]),

(2) all individuals in a largest compatible community start on
Platform 1 and Platform 2 is empty,

and at equilibrium, Platform 2 can set a window so at least an
min

{
1/(1 + 𝑏), 𝑏/(1 + 𝑏)

}
fraction of users in the largest compat-

ible community are on Platform 2. In fact, this result holds for any
fixed choices of 𝑏 := 𝑏1 = · · · = 𝑏𝑛 and _ := _1 = · · · = _𝑛 and for
some appropriately chosen _′ := _′1 = · · · = _

′
𝑛 .

Proof of Proposition B.1. We use the same construction used
in the proof of Proposition 5.2. In Proposition 5.2, we proved that
a platform with more personalization was not necessarily better
off than one with less personalization. In fact, we showed that the
platform could capture at most amax

{
𝑛 −|T4 | ,|T4 |

}
fraction of the

platform. Platform 2 can set a window to capture either T1,T2 or
T4, depending on which one is smaller, resulting in a proportion of
min{1/(1 + 𝑏), 𝑏/(1 + 𝑏)}.
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